/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2010 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ /* All Rights Reserved */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DEBUG static uint32_t afd_maxfd; /* # of entries in maximum allocated array */ static uint32_t afd_alloc; /* count of kmem_alloc()s */ static uint32_t afd_free; /* count of kmem_free()s */ static uint32_t afd_wait; /* count of waits on non-zero ref count */ #define MAXFD(x) (afd_maxfd = ((afd_maxfd >= (x))? afd_maxfd : (x))) #define COUNT(x) atomic_add_32(&x, 1) #else /* DEBUG */ #define MAXFD(x) #define COUNT(x) #endif /* DEBUG */ kmem_cache_t *file_cache; static int vpsetattr(vnode_t *, vattr_t *, int); static void port_close_fd(portfd_t *); /* * File descriptor allocation. * * fd_find(fip, minfd) finds the first available descriptor >= minfd. * The most common case is open(2), in which minfd = 0, but we must also * support fcntl(fd, F_DUPFD, minfd). * * The algorithm is as follows: we keep all file descriptors in an infix * binary tree in which each node records the number of descriptors * allocated in its right subtree, including itself. Starting at minfd, * we ascend the tree until we find a non-fully allocated right subtree. * We then descend that subtree in a binary search for the smallest fd. * Finally, we ascend the tree again to increment the allocation count * of every subtree containing the newly-allocated fd. Freeing an fd * requires only the last step: we ascend the tree to decrement allocation * counts. Each of these three steps (ascent to find non-full subtree, * descent to find lowest fd, ascent to update allocation counts) is * O(log n), thus the algorithm as a whole is O(log n). * * We don't implement the fd tree using the customary left/right/parent * pointers, but instead take advantage of the glorious mathematics of * full infix binary trees. For reference, here's an illustration of the * logical structure of such a tree, rooted at 4 (binary 100), covering * the range 1-7 (binary 001-111). Our canonical trees do not include * fd 0; we'll deal with that later. * * 100 * / \ * / \ * 010 110 * / \ / \ * 001 011 101 111 * * We make the following observations, all of which are easily proven by * induction on the depth of the tree: * * (T1) The least-significant bit (LSB) of any node is equal to its level * in the tree. In our example, nodes 001, 011, 101 and 111 are at * level 0; nodes 010 and 110 are at level 1; and node 100 is at level 2. * * (T2) The child size (CSIZE) of node N -- that is, the total number of * right-branch descendants in a child of node N, including itself -- is * given by clearing all but the least significant bit of N. This * follows immediately from (T1). Applying this rule to our example, we * see that CSIZE(100) = 100, CSIZE(x10) = 10, and CSIZE(xx1) = 1. * * (T3) The nearest left ancestor (LPARENT) of node N -- that is, the nearest * ancestor containing node N in its right child -- is given by clearing * the LSB of N. For example, LPARENT(111) = 110 and LPARENT(110) = 100. * Clearing the LSB of nodes 001, 010 or 100 yields zero, reflecting * the fact that these are leftmost nodes. Note that this algorithm * automatically skips generations as necessary. For example, the parent * of node 101 is 110, which is a *right* ancestor (not what we want); * but its grandparent is 100, which is a left ancestor. Clearing the LSB * of 101 gets us to 100 directly, skipping right past the uninteresting * generation (110). * * Note that since LPARENT clears the LSB, whereas CSIZE clears all *but* * the LSB, we can express LPARENT() nicely in terms of CSIZE(): * * LPARENT(N) = N - CSIZE(N) * * (T4) The nearest right ancestor (RPARENT) of node N is given by: * * RPARENT(N) = N + CSIZE(N) * * (T5) For every interior node, the children differ from their parent by * CSIZE(parent) / 2. In our example, CSIZE(100) / 2 = 2 = 10 binary, * and indeed, the children of 100 are 100 +/- 10 = 010 and 110. * * Next, we'll need a few two's-complement math tricks. Suppose a number, * N, has the following form: * * N = xxxx10...0 * * That is, the binary representation of N consists of some string of bits, * then a 1, then all zeroes. This amounts to nothing more than saying that * N has a least-significant bit, which is true for any N != 0. If we look * at N and N - 1 together, we see that we can combine them in useful ways: * * N = xxxx10...0 * N - 1 = xxxx01...1 * ------------------------ * N & (N - 1) = xxxx000000 * N | (N - 1) = xxxx111111 * N ^ (N - 1) = 111111 * * In particular, this suggests several easy ways to clear all but the LSB, * which by (T2) is exactly what we need to determine CSIZE(N) = 10...0. * We'll opt for this formulation: * * (C1) CSIZE(N) = (N - 1) ^ (N | (N - 1)) * * Similarly, we have an easy way to determine LPARENT(N), which requires * that we clear the LSB of N: * * (L1) LPARENT(N) = N & (N - 1) * * We note in the above relations that (N | (N - 1)) - N = CSIZE(N) - 1. * When combined with (T4), this yields an easy way to compute RPARENT(N): * * (R1) RPARENT(N) = (N | (N - 1)) + 1 * * Finally, to accommodate fd 0 we must adjust all of our results by +/-1 to * move the fd range from [1, 2^n) to [0, 2^n - 1). This is straightforward, * so there's no need to belabor the algebra; the revised relations become: * * (C1a) CSIZE(N) = N ^ (N | (N + 1)) * * (L1a) LPARENT(N) = (N & (N + 1)) - 1 * * (R1a) RPARENT(N) = N | (N + 1) * * This completes the mathematical framework. We now have all the tools * we need to implement fd_find() and fd_reserve(). * * fd_find(fip, minfd) finds the smallest available file descriptor >= minfd. * It does not actually allocate the descriptor; that's done by fd_reserve(). * fd_find() proceeds in two steps: * * (1) Find the leftmost subtree that contains a descriptor >= minfd. * We start at the right subtree rooted at minfd. If this subtree is * not full -- if fip->fi_list[minfd].uf_alloc != CSIZE(minfd) -- then * step 1 is done. Otherwise, we know that all fds in this subtree * are taken, so we ascend to RPARENT(minfd) using (R1a). We repeat * this process until we either find a candidate subtree or exceed * fip->fi_nfiles. We use (C1a) to compute CSIZE(). * * (2) Find the smallest fd in the subtree discovered by step 1. * Starting at the root of this subtree, we descend to find the * smallest available fd. Since the left children have the smaller * fds, we will descend rightward only when the left child is full. * * We begin by comparing the number of allocated fds in the root * to the number of allocated fds in its right child; if they differ * by exactly CSIZE(child), we know the left subtree is full, so we * descend right; that is, the right child becomes the search root. * Otherwise we leave the root alone and start following the right * child's left children. As fortune would have it, this is very * simple computationally: by (T5), the right child of fd is just * fd + size, where size = CSIZE(fd) / 2. Applying (T5) again, * we find that the right child's left child is fd + size - (size / 2) = * fd + (size / 2); *its* left child is fd + (size / 2) - (size / 4) = * fd + (size / 4), and so on. In general, fd's right child's * leftmost nth descendant is fd + (size >> n). Thus, to follow * the right child's left descendants, we just halve the size in * each iteration of the search. * * When we descend leftward, we must keep track of the number of fds * that were allocated in all the right subtrees we rejected, so we * know how many of the root fd's allocations are in the remaining * (as yet unexplored) leftmost part of its right subtree. When we * encounter a fully-allocated left child -- that is, when we find * that fip->fi_list[fd].uf_alloc == ralloc + size -- we descend right * (as described earlier), resetting ralloc to zero. * * fd_reserve(fip, fd, incr) either allocates or frees fd, depending * on whether incr is 1 or -1. Starting at fd, fd_reserve() ascends * the leftmost ancestors (see (T3)) and updates the allocation counts. * At each step we use (L1a) to compute LPARENT(), the next left ancestor. * * flist_minsize() finds the minimal tree that still covers all * used fds; as long as the allocation count of a root node is zero, we * don't need that node or its right subtree. * * flist_nalloc() counts the number of allocated fds in the tree, by starting * at the top of the tree and summing the right-subtree allocation counts as * it descends leftwards. * * Note: we assume that flist_grow() will keep fip->fi_nfiles of the form * 2^n - 1. This ensures that the fd trees are always full, which saves * quite a bit of boundary checking. */ static int fd_find(uf_info_t *fip, int minfd) { int size, ralloc, fd; ASSERT(MUTEX_HELD(&fip->fi_lock)); ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); for (fd = minfd; (uint_t)fd < fip->fi_nfiles; fd |= fd + 1) { size = fd ^ (fd | (fd + 1)); if (fip->fi_list[fd].uf_alloc == size) continue; for (ralloc = 0, size >>= 1; size != 0; size >>= 1) { ralloc += fip->fi_list[fd + size].uf_alloc; if (fip->fi_list[fd].uf_alloc == ralloc + size) { fd += size; ralloc = 0; } } return (fd); } return (-1); } static void fd_reserve(uf_info_t *fip, int fd, int incr) { int pfd; uf_entry_t *ufp = &fip->fi_list[fd]; ASSERT((uint_t)fd < fip->fi_nfiles); ASSERT((ufp->uf_busy == 0 && incr == 1) || (ufp->uf_busy == 1 && incr == -1)); ASSERT(MUTEX_HELD(&ufp->uf_lock)); ASSERT(MUTEX_HELD(&fip->fi_lock)); for (pfd = fd; pfd >= 0; pfd = (pfd & (pfd + 1)) - 1) fip->fi_list[pfd].uf_alloc += incr; ufp->uf_busy += incr; } static int flist_minsize(uf_info_t *fip) { int fd; /* * We'd like to ASSERT(MUTEX_HELD(&fip->fi_lock)), but we're called * by flist_fork(), which relies on other mechanisms for mutual * exclusion. */ ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); for (fd = fip->fi_nfiles; fd != 0; fd >>= 1) if (fip->fi_list[fd >> 1].uf_alloc != 0) break; return (fd); } static int flist_nalloc(uf_info_t *fip) { int fd; int nalloc = 0; ASSERT(MUTEX_HELD(&fip->fi_lock)); ASSERT((fip->fi_nfiles & (fip->fi_nfiles + 1)) == 0); for (fd = fip->fi_nfiles; fd != 0; fd >>= 1) nalloc += fip->fi_list[fd >> 1].uf_alloc; return (nalloc); } /* * Increase size of the fi_list array to accommodate at least maxfd. * We keep the size of the form 2^n - 1 for benefit of fd_find(). */ static void flist_grow(int maxfd) { uf_info_t *fip = P_FINFO(curproc); int newcnt, oldcnt; uf_entry_t *src, *dst, *newlist, *oldlist, *newend, *oldend; uf_rlist_t *urp; for (newcnt = 1; newcnt <= maxfd; newcnt = (newcnt << 1) | 1) continue; newlist = kmem_zalloc(newcnt * sizeof (uf_entry_t), KM_SLEEP); mutex_enter(&fip->fi_lock); oldcnt = fip->fi_nfiles; if (newcnt <= oldcnt) { mutex_exit(&fip->fi_lock); kmem_free(newlist, newcnt * sizeof (uf_entry_t)); return; } ASSERT((newcnt & (newcnt + 1)) == 0); oldlist = fip->fi_list; oldend = oldlist + oldcnt; newend = newlist + oldcnt; /* no need to lock beyond old end */ /* * fi_list and fi_nfiles cannot change while any uf_lock is held, * so we must grab all the old locks *and* the new locks up to oldcnt. * (Locks beyond the end of oldcnt aren't visible until we store * the new fi_nfiles, which is the last thing we do before dropping * all the locks, so there's no need to acquire these locks). * Holding the new locks is necessary because when fi_list changes * to point to the new list, fi_nfiles won't have been stored yet. * If we *didn't* hold the new locks, someone doing a UF_ENTER() * could see the new fi_list, grab the new uf_lock, and then see * fi_nfiles change while the lock is held -- in violation of * UF_ENTER() semantics. */ for (src = oldlist; src < oldend; src++) mutex_enter(&src->uf_lock); for (dst = newlist; dst < newend; dst++) mutex_enter(&dst->uf_lock); for (src = oldlist, dst = newlist; src < oldend; src++, dst++) { dst->uf_file = src->uf_file; dst->uf_fpollinfo = src->uf_fpollinfo; dst->uf_refcnt = src->uf_refcnt; dst->uf_alloc = src->uf_alloc; dst->uf_flag = src->uf_flag; dst->uf_busy = src->uf_busy; dst->uf_portfd = src->uf_portfd; } /* * As soon as we store the new flist, future locking operations * will use it. Therefore, we must ensure that all the state * we've just established reaches global visibility before the * new flist does. */ membar_producer(); fip->fi_list = newlist; /* * Routines like getf() make an optimistic check on the validity * of the supplied file descriptor: if it's less than the current * value of fi_nfiles -- examined without any locks -- then it's * safe to attempt a UF_ENTER() on that fd (which is a valid * assumption because fi_nfiles only increases). Therefore, it * is critical that the new value of fi_nfiles not reach global * visibility until after the new fi_list: if it happened the * other way around, getf() could see the new fi_nfiles and attempt * a UF_ENTER() on the old fi_list, which would write beyond its * end if the fd exceeded the old fi_nfiles. */ membar_producer(); fip->fi_nfiles = newcnt; /* * The new state is consistent now, so we can drop all the locks. */ for (dst = newlist; dst < newend; dst++) mutex_exit(&dst->uf_lock); for (src = oldlist; src < oldend; src++) { /* * If any threads are blocked on the old cvs, wake them. * This will force them to wake up, discover that fi_list * has changed, and go back to sleep on the new cvs. */ cv_broadcast(&src->uf_wanted_cv); cv_broadcast(&src->uf_closing_cv); mutex_exit(&src->uf_lock); } mutex_exit(&fip->fi_lock); /* * Retire the old flist. We can't actually kmem_free() it now * because someone may still have a pointer to it. Instead, * we link it onto a list of retired flists. The new flist * is at least double the size of the previous flist, so the * total size of all retired flists will be less than the size * of the current one (to prove, consider the sum of a geometric * series in powers of 2). exit() frees the retired flists. */ urp = kmem_zalloc(sizeof (uf_rlist_t), KM_SLEEP); urp->ur_list = oldlist; urp->ur_nfiles = oldcnt; mutex_enter(&fip->fi_lock); urp->ur_next = fip->fi_rlist; fip->fi_rlist = urp; mutex_exit(&fip->fi_lock); } /* * Utility functions for keeping track of the active file descriptors. */ void clear_stale_fd() /* called from post_syscall() */ { afd_t *afd = &curthread->t_activefd; int i; /* uninitialized is ok here, a_nfd is then zero */ for (i = 0; i < afd->a_nfd; i++) { /* assert that this should not be necessary */ ASSERT(afd->a_fd[i] == -1); afd->a_fd[i] = -1; } afd->a_stale = 0; } void free_afd(afd_t *afd) /* called below and from thread_free() */ { int i; /* free the buffer if it was kmem_alloc()ed */ if (afd->a_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) { COUNT(afd_free); kmem_free(afd->a_fd, afd->a_nfd * sizeof (afd->a_fd[0])); } /* (re)initialize the structure */ afd->a_fd = &afd->a_buf[0]; afd->a_nfd = sizeof (afd->a_buf) / sizeof (afd->a_buf[0]); afd->a_stale = 0; for (i = 0; i < afd->a_nfd; i++) afd->a_fd[i] = -1; } static void set_active_fd(int fd) { afd_t *afd = &curthread->t_activefd; int i; int *old_fd; int old_nfd; int *new_fd; int new_nfd; if (afd->a_nfd == 0) { /* first time initialization */ ASSERT(fd == -1); mutex_enter(&afd->a_fdlock); free_afd(afd); mutex_exit(&afd->a_fdlock); } /* insert fd into vacant slot, if any */ for (i = 0; i < afd->a_nfd; i++) { if (afd->a_fd[i] == -1) { afd->a_fd[i] = fd; return; } } /* * Reallocate the a_fd[] array to add one more slot. */ ASSERT(fd == -1); old_nfd = afd->a_nfd; old_fd = afd->a_fd; new_nfd = old_nfd + 1; new_fd = kmem_alloc(new_nfd * sizeof (afd->a_fd[0]), KM_SLEEP); MAXFD(new_nfd); COUNT(afd_alloc); mutex_enter(&afd->a_fdlock); afd->a_fd = new_fd; afd->a_nfd = new_nfd; for (i = 0; i < old_nfd; i++) afd->a_fd[i] = old_fd[i]; afd->a_fd[i] = fd; mutex_exit(&afd->a_fdlock); if (old_nfd > sizeof (afd->a_buf) / sizeof (afd->a_buf[0])) { COUNT(afd_free); kmem_free(old_fd, old_nfd * sizeof (afd->a_fd[0])); } } void clear_active_fd(int fd) /* called below and from aio.c */ { afd_t *afd = &curthread->t_activefd; int i; for (i = 0; i < afd->a_nfd; i++) { if (afd->a_fd[i] == fd) { afd->a_fd[i] = -1; break; } } ASSERT(i < afd->a_nfd); /* not found is not ok */ } /* * Does this thread have this fd active? */ static int is_active_fd(kthread_t *t, int fd) { afd_t *afd = &t->t_activefd; int i; ASSERT(t != curthread); mutex_enter(&afd->a_fdlock); /* uninitialized is ok here, a_nfd is then zero */ for (i = 0; i < afd->a_nfd; i++) { if (afd->a_fd[i] == fd) { mutex_exit(&afd->a_fdlock); return (1); } } mutex_exit(&afd->a_fdlock); return (0); } /* * Convert a user supplied file descriptor into a pointer to a file * structure. Only task is to check range of the descriptor (soft * resource limit was enforced at open time and shouldn't be checked * here). */ file_t * getf(int fd) { uf_info_t *fip = P_FINFO(curproc); uf_entry_t *ufp; file_t *fp; if ((uint_t)fd >= fip->fi_nfiles) return (NULL); /* * Reserve a slot in the active fd array now so we can call * set_active_fd(fd) for real below, while still inside UF_ENTER(). */ set_active_fd(-1); UF_ENTER(ufp, fip, fd); if ((fp = ufp->uf_file) == NULL) { UF_EXIT(ufp); if (fd == fip->fi_badfd && fip->fi_action > 0) tsignal(curthread, fip->fi_action); return (NULL); } ufp->uf_refcnt++; /* * archive per file audit data */ if (AU_AUDITING()) (void) audit_getf(fd); set_active_fd(fd); /* record the active file descriptor */ UF_EXIT(ufp); return (fp); } /* * Close whatever file currently occupies the file descriptor slot * and install the new file, usually NULL, in the file descriptor slot. * The close must complete before we release the file descriptor slot. * If newfp != NULL we only return an error if we can't allocate the * slot so the caller knows that it needs to free the filep; * in the other cases we return the error number from closef(). */ int closeandsetf(int fd, file_t *newfp) { proc_t *p = curproc; uf_info_t *fip = P_FINFO(p); uf_entry_t *ufp; file_t *fp; fpollinfo_t *fpip; portfd_t *pfd; int error; if ((uint_t)fd >= fip->fi_nfiles) { if (newfp == NULL) return (EBADF); flist_grow(fd); } if (newfp != NULL) { /* * If ufp is reserved but has no file pointer, it's in the * transition between ufalloc() and setf(). We must wait * for this transition to complete before assigning the * new non-NULL file pointer. */ mutex_enter(&fip->fi_lock); if (fd == fip->fi_badfd) { mutex_exit(&fip->fi_lock); if (fip->fi_action > 0) tsignal(curthread, fip->fi_action); return (EBADF); } UF_ENTER(ufp, fip, fd); while (ufp->uf_busy && ufp->uf_file == NULL) { mutex_exit(&fip->fi_lock); cv_wait_stop(&ufp->uf_wanted_cv, &ufp->uf_lock, 250); UF_EXIT(ufp); mutex_enter(&fip->fi_lock); UF_ENTER(ufp, fip, fd); } if ((fp = ufp->uf_file) == NULL) { ASSERT(ufp->uf_fpollinfo == NULL); ASSERT(ufp->uf_flag == 0); fd_reserve(fip, fd, 1); ufp->uf_file = newfp; UF_EXIT(ufp); mutex_exit(&fip->fi_lock); return (0); } mutex_exit(&fip->fi_lock); } else { UF_ENTER(ufp, fip, fd); if ((fp = ufp->uf_file) == NULL) { UF_EXIT(ufp); return (EBADF); } } /* * archive per file audit data */ if (AU_AUDITING()) (void) audit_getf(fd); ASSERT(ufp->uf_busy); ufp->uf_file = NULL; ufp->uf_flag = 0; /* * If the file descriptor reference count is non-zero, then * some other lwp in the process is performing system call * activity on the file. To avoid blocking here for a long * time (the other lwp might be in a long term sleep in its * system call), we scan all other lwps in the process to * find the ones with this fd as one of their active fds, * set their a_stale flag, and set them running if they * are in an interruptible sleep so they will emerge from * their system calls immediately. post_syscall() will * test the a_stale flag and set errno to EBADF. */ ASSERT(ufp->uf_refcnt == 0 || p->p_lwpcnt > 1); if (ufp->uf_refcnt > 0) { kthread_t *t; /* * We call sprlock_proc(p) to ensure that the thread * list will not change while we are scanning it. * To do this, we must drop ufp->uf_lock and then * reacquire it (so we are not holding both p->p_lock * and ufp->uf_lock at the same time). ufp->uf_lock * must be held for is_active_fd() to be correct * (set_active_fd() is called while holding ufp->uf_lock). * * This is a convoluted dance, but it is better than * the old brute-force method of stopping every thread * in the process by calling holdlwps(SHOLDFORK1). */ UF_EXIT(ufp); COUNT(afd_wait); mutex_enter(&p->p_lock); sprlock_proc(p); mutex_exit(&p->p_lock); UF_ENTER(ufp, fip, fd); ASSERT(ufp->uf_file == NULL); if (ufp->uf_refcnt > 0) { for (t = curthread->t_forw; t != curthread; t = t->t_forw) { if (is_active_fd(t, fd)) { thread_lock(t); t->t_activefd.a_stale = 1; t->t_post_sys = 1; if (ISWAKEABLE(t)) setrun_locked(t); thread_unlock(t); } } } UF_EXIT(ufp); mutex_enter(&p->p_lock); sprunlock(p); UF_ENTER(ufp, fip, fd); ASSERT(ufp->uf_file == NULL); } /* * Wait for other lwps to stop using this file descriptor. */ while (ufp->uf_refcnt > 0) { cv_wait_stop(&ufp->uf_closing_cv, &ufp->uf_lock, 250); /* * cv_wait_stop() drops ufp->uf_lock, so the file list * can change. Drop the lock on our (possibly) stale * ufp and let UF_ENTER() find and lock the current ufp. */ UF_EXIT(ufp); UF_ENTER(ufp, fip, fd); } #ifdef DEBUG /* * catch a watchfd on device's pollhead list but not on fpollinfo list */ if (ufp->uf_fpollinfo != NULL) checkwfdlist(fp->f_vnode, ufp->uf_fpollinfo); #endif /* DEBUG */ /* * We may need to cleanup some cached poll states in t_pollstate * before the fd can be reused. It is important that we don't * access a stale thread structure. We will do the cleanup in two * phases to avoid deadlock and holding uf_lock for too long. * In phase 1, hold the uf_lock and call pollblockexit() to set * state in t_pollstate struct so that a thread does not exit on * us. In phase 2, we drop the uf_lock and call pollcacheclean(). */ pfd = ufp->uf_portfd; ufp->uf_portfd = NULL; fpip = ufp->uf_fpollinfo; ufp->uf_fpollinfo = NULL; if (fpip != NULL) pollblockexit(fpip); UF_EXIT(ufp); if (fpip != NULL) pollcacheclean(fpip, fd); if (pfd) port_close_fd(pfd); /* * Keep the file descriptor entry reserved across the closef(). */ error = closef(fp); setf(fd, newfp); /* Only return closef() error when closing is all we do */ return (newfp == NULL ? error : 0); } /* * Decrement uf_refcnt; wakeup anyone waiting to close the file. */ void releasef(int fd) { uf_info_t *fip = P_FINFO(curproc); uf_entry_t *ufp; UF_ENTER(ufp, fip, fd); ASSERT(ufp->uf_refcnt > 0); clear_active_fd(fd); /* clear the active file descriptor */ if (--ufp->uf_refcnt == 0) cv_broadcast(&ufp->uf_closing_cv); UF_EXIT(ufp); } /* * Identical to releasef() but can be called from another process. */ void areleasef(int fd, uf_info_t *fip) { uf_entry_t *ufp; UF_ENTER(ufp, fip, fd); ASSERT(ufp->uf_refcnt > 0); if (--ufp->uf_refcnt == 0) cv_broadcast(&ufp->uf_closing_cv); UF_EXIT(ufp); } /* * Duplicate all file descriptors across a fork. */ void flist_fork(uf_info_t *pfip, uf_info_t *cfip) { int fd, nfiles; uf_entry_t *pufp, *cufp; mutex_init(&cfip->fi_lock, NULL, MUTEX_DEFAULT, NULL); cfip->fi_rlist = NULL; /* * We don't need to hold fi_lock because all other lwp's in the * parent have been held. */ cfip->fi_nfiles = nfiles = flist_minsize(pfip); cfip->fi_list = kmem_zalloc(nfiles * sizeof (uf_entry_t), KM_SLEEP); for (fd = 0, pufp = pfip->fi_list, cufp = cfip->fi_list; fd < nfiles; fd++, pufp++, cufp++) { cufp->uf_file = pufp->uf_file; cufp->uf_alloc = pufp->uf_alloc; cufp->uf_flag = pufp->uf_flag; cufp->uf_busy = pufp->uf_busy; if (pufp->uf_file == NULL) { ASSERT(pufp->uf_flag == 0); if (pufp->uf_busy) { /* * Grab locks to appease ASSERTs in fd_reserve */ mutex_enter(&cfip->fi_lock); mutex_enter(&cufp->uf_lock); fd_reserve(cfip, fd, -1); mutex_exit(&cufp->uf_lock); mutex_exit(&cfip->fi_lock); } } } } /* * Close all open file descriptors for the current process. * This is only called from exit(), which is single-threaded, * so we don't need any locking. */ void closeall(uf_info_t *fip) { int fd; file_t *fp; uf_entry_t *ufp; ufp = fip->fi_list; for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) { if ((fp = ufp->uf_file) != NULL) { ufp->uf_file = NULL; if (ufp->uf_portfd != NULL) { portfd_t *pfd; /* remove event port association */ pfd = ufp->uf_portfd; ufp->uf_portfd = NULL; port_close_fd(pfd); } ASSERT(ufp->uf_fpollinfo == NULL); (void) closef(fp); } } kmem_free(fip->fi_list, fip->fi_nfiles * sizeof (uf_entry_t)); fip->fi_list = NULL; fip->fi_nfiles = 0; while (fip->fi_rlist != NULL) { uf_rlist_t *urp = fip->fi_rlist; fip->fi_rlist = urp->ur_next; kmem_free(urp->ur_list, urp->ur_nfiles * sizeof (uf_entry_t)); kmem_free(urp, sizeof (uf_rlist_t)); } } /* * Internal form of close. Decrement reference count on file * structure. Decrement reference count on the vnode following * removal of the referencing file structure. */ int closef(file_t *fp) { vnode_t *vp; int error; int count; int flag; offset_t offset; /* * audit close of file (may be exit) */ if (AU_AUDITING()) audit_closef(fp); ASSERT(MUTEX_NOT_HELD(&P_FINFO(curproc)->fi_lock)); mutex_enter(&fp->f_tlock); ASSERT(fp->f_count > 0); count = fp->f_count--; flag = fp->f_flag; offset = fp->f_offset; vp = fp->f_vnode; error = VOP_CLOSE(vp, flag, count, offset, fp->f_cred, NULL); if (count > 1) { mutex_exit(&fp->f_tlock); return (error); } ASSERT(fp->f_count == 0); mutex_exit(&fp->f_tlock); VN_RELE(vp); /* * deallocate resources to audit_data */ if (audit_active) audit_unfalloc(fp); crfree(fp->f_cred); kmem_cache_free(file_cache, fp); return (error); } /* * This is a combination of ufalloc() and setf(). */ int ufalloc_file(int start, file_t *fp) { proc_t *p = curproc; uf_info_t *fip = P_FINFO(p); int filelimit; uf_entry_t *ufp; int nfiles; int fd; /* * Assertion is to convince the correctness of the following * assignment for filelimit after casting to int. */ ASSERT(p->p_fno_ctl <= INT_MAX); filelimit = (int)p->p_fno_ctl; for (;;) { mutex_enter(&fip->fi_lock); fd = fd_find(fip, start); if (fd >= 0 && fd == fip->fi_badfd) { start = fd + 1; mutex_exit(&fip->fi_lock); continue; } if ((uint_t)fd < filelimit) break; if (fd >= filelimit) { mutex_exit(&fip->fi_lock); mutex_enter(&p->p_lock); (void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE], p->p_rctls, p, RCA_SAFE); mutex_exit(&p->p_lock); return (-1); } /* fd_find() returned -1 */ nfiles = fip->fi_nfiles; mutex_exit(&fip->fi_lock); flist_grow(MAX(start, nfiles)); } UF_ENTER(ufp, fip, fd); fd_reserve(fip, fd, 1); ASSERT(ufp->uf_file == NULL); ufp->uf_file = fp; UF_EXIT(ufp); mutex_exit(&fip->fi_lock); return (fd); } /* * Allocate a user file descriptor greater than or equal to "start". */ int ufalloc(int start) { return (ufalloc_file(start, NULL)); } /* * Check that a future allocation of count fds on proc p has a good * chance of succeeding. If not, do rctl processing as if we'd failed * the allocation. * * Our caller must guarantee that p cannot disappear underneath us. */ int ufcanalloc(proc_t *p, uint_t count) { uf_info_t *fip = P_FINFO(p); int filelimit; int current; if (count == 0) return (1); ASSERT(p->p_fno_ctl <= INT_MAX); filelimit = (int)p->p_fno_ctl; mutex_enter(&fip->fi_lock); current = flist_nalloc(fip); /* # of in-use descriptors */ mutex_exit(&fip->fi_lock); /* * If count is a positive integer, the worst that can happen is * an overflow to a negative value, which is caught by the >= 0 check. */ current += count; if (count <= INT_MAX && current >= 0 && current <= filelimit) return (1); mutex_enter(&p->p_lock); (void) rctl_action(rctlproc_legacy[RLIMIT_NOFILE], p->p_rctls, p, RCA_SAFE); mutex_exit(&p->p_lock); return (0); } /* * Allocate a user file descriptor and a file structure. * Initialize the descriptor to point at the file structure. * If fdp is NULL, the user file descriptor will not be allocated. */ int falloc(vnode_t *vp, int flag, file_t **fpp, int *fdp) { file_t *fp; int fd; if (fdp) { if ((fd = ufalloc(0)) == -1) return (EMFILE); } fp = kmem_cache_alloc(file_cache, KM_SLEEP); /* * Note: falloc returns the fp locked */ mutex_enter(&fp->f_tlock); fp->f_count = 1; fp->f_flag = (ushort_t)flag; fp->f_vnode = vp; fp->f_offset = 0; fp->f_audit_data = 0; crhold(fp->f_cred = CRED()); /* * allocate resources to audit_data */ if (audit_active) audit_falloc(fp); *fpp = fp; if (fdp) *fdp = fd; return (0); } /*ARGSUSED*/ static int file_cache_constructor(void *buf, void *cdrarg, int kmflags) { file_t *fp = buf; mutex_init(&fp->f_tlock, NULL, MUTEX_DEFAULT, NULL); return (0); } /*ARGSUSED*/ static void file_cache_destructor(void *buf, void *cdrarg) { file_t *fp = buf; mutex_destroy(&fp->f_tlock); } void finit() { file_cache = kmem_cache_create("file_cache", sizeof (file_t), 0, file_cache_constructor, file_cache_destructor, NULL, NULL, NULL, 0); } void unfalloc(file_t *fp) { ASSERT(MUTEX_HELD(&fp->f_tlock)); if (--fp->f_count <= 0) { /* * deallocate resources to audit_data */ if (audit_active) audit_unfalloc(fp); crfree(fp->f_cred); mutex_exit(&fp->f_tlock); kmem_cache_free(file_cache, fp); } else mutex_exit(&fp->f_tlock); } /* * Given a file descriptor, set the user's * file pointer to the given parameter. */ void setf(int fd, file_t *fp) { uf_info_t *fip = P_FINFO(curproc); uf_entry_t *ufp; if (AU_AUDITING()) audit_setf(fp, fd); if (fp == NULL) { mutex_enter(&fip->fi_lock); UF_ENTER(ufp, fip, fd); fd_reserve(fip, fd, -1); mutex_exit(&fip->fi_lock); } else { UF_ENTER(ufp, fip, fd); ASSERT(ufp->uf_busy); } ASSERT(ufp->uf_fpollinfo == NULL); ASSERT(ufp->uf_flag == 0); ufp->uf_file = fp; cv_broadcast(&ufp->uf_wanted_cv); UF_EXIT(ufp); } /* * Given a file descriptor, return the file table flags, plus, * if this is a socket in asynchronous mode, the FASYNC flag. * getf() may or may not have been called before calling f_getfl(). */ int f_getfl(int fd, int *flagp) { uf_info_t *fip = P_FINFO(curproc); uf_entry_t *ufp; file_t *fp; int error; if ((uint_t)fd >= fip->fi_nfiles) error = EBADF; else { UF_ENTER(ufp, fip, fd); if ((fp = ufp->uf_file) == NULL) error = EBADF; else { vnode_t *vp = fp->f_vnode; int flag = fp->f_flag; /* * BSD fcntl() FASYNC compatibility. */ if (vp->v_type == VSOCK) flag |= sock_getfasync(vp); *flagp = flag; error = 0; } UF_EXIT(ufp); } return (error); } /* * Given a file descriptor, return the user's file flags. * Force the FD_CLOEXEC flag for writable self-open /proc files. * getf() may or may not have been called before calling f_getfd_error(). */ int f_getfd_error(int fd, int *flagp) { uf_info_t *fip = P_FINFO(curproc); uf_entry_t *ufp; file_t *fp; int flag; int error; if ((uint_t)fd >= fip->fi_nfiles) error = EBADF; else { UF_ENTER(ufp, fip, fd); if ((fp = ufp->uf_file) == NULL) error = EBADF; else { flag = ufp->uf_flag; if ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)) flag |= FD_CLOEXEC; *flagp = flag; error = 0; } UF_EXIT(ufp); } return (error); } /* * getf() must have been called before calling f_getfd(). */ char f_getfd(int fd) { int flag = 0; (void) f_getfd_error(fd, &flag); return ((char)flag); } /* * Given a file descriptor and file flags, set the user's file flags. * At present, the only valid flag is FD_CLOEXEC. * getf() may or may not have been called before calling f_setfd_error(). */ int f_setfd_error(int fd, int flags) { uf_info_t *fip = P_FINFO(curproc); uf_entry_t *ufp; int error; if ((uint_t)fd >= fip->fi_nfiles) error = EBADF; else { UF_ENTER(ufp, fip, fd); if (ufp->uf_file == NULL) error = EBADF; else { ufp->uf_flag = flags & FD_CLOEXEC; error = 0; } UF_EXIT(ufp); } return (error); } void f_setfd(int fd, char flags) { (void) f_setfd_error(fd, flags); } #define BADFD_MIN 3 #define BADFD_MAX 255 /* * Attempt to allocate a file descriptor which is bad and which * is "poison" to the application. It cannot be closed (except * on exec), allocated for a different use, etc. */ int f_badfd(int start, int *fdp, int action) { int fdr; int badfd; uf_info_t *fip = P_FINFO(curproc); #ifdef _LP64 /* No restrictions on 64 bit _file */ if (get_udatamodel() != DATAMODEL_ILP32) return (EINVAL); #endif if (start > BADFD_MAX || start < BADFD_MIN) return (EINVAL); if (action >= NSIG || action < 0) return (EINVAL); mutex_enter(&fip->fi_lock); badfd = fip->fi_badfd; mutex_exit(&fip->fi_lock); if (badfd != -1) return (EAGAIN); fdr = ufalloc(start); if (fdr > BADFD_MAX) { setf(fdr, NULL); return (EMFILE); } if (fdr < 0) return (EMFILE); mutex_enter(&fip->fi_lock); if (fip->fi_badfd != -1) { /* Lost race */ mutex_exit(&fip->fi_lock); setf(fdr, NULL); return (EAGAIN); } fip->fi_action = action; fip->fi_badfd = fdr; mutex_exit(&fip->fi_lock); setf(fdr, NULL); *fdp = fdr; return (0); } /* * Allocate a file descriptor and assign it to the vnode "*vpp", * performing the usual open protocol upon it and returning the * file descriptor allocated. It is the responsibility of the * caller to dispose of "*vpp" if any error occurs. */ int fassign(vnode_t **vpp, int mode, int *fdp) { file_t *fp; int error; int fd; if (error = falloc((vnode_t *)NULL, mode, &fp, &fd)) return (error); if (error = VOP_OPEN(vpp, mode, fp->f_cred, NULL)) { setf(fd, NULL); unfalloc(fp); return (error); } fp->f_vnode = *vpp; mutex_exit(&fp->f_tlock); /* * Fill in the slot falloc reserved. */ setf(fd, fp); *fdp = fd; return (0); } /* * When a process forks it must increment the f_count of all file pointers * since there is a new process pointing at them. fcnt_add(fip, 1) does this. * Since we are called when there is only 1 active lwp we don't need to * hold fi_lock or any uf_lock. If the fork fails, fork_fail() calls * fcnt_add(fip, -1) to restore the counts. */ void fcnt_add(uf_info_t *fip, int incr) { int i; uf_entry_t *ufp; file_t *fp; ufp = fip->fi_list; for (i = 0; i < fip->fi_nfiles; i++, ufp++) { if ((fp = ufp->uf_file) != NULL) { mutex_enter(&fp->f_tlock); ASSERT((incr == 1 && fp->f_count >= 1) || (incr == -1 && fp->f_count >= 2)); fp->f_count += incr; mutex_exit(&fp->f_tlock); } } } /* * This is called from exec to close all fd's that have the FD_CLOEXEC flag * set and also to close all self-open for write /proc file descriptors. */ void close_exec(uf_info_t *fip) { int fd; file_t *fp; fpollinfo_t *fpip; uf_entry_t *ufp; portfd_t *pfd; ufp = fip->fi_list; for (fd = 0; fd < fip->fi_nfiles; fd++, ufp++) { if ((fp = ufp->uf_file) != NULL && ((ufp->uf_flag & FD_CLOEXEC) || ((fp->f_flag & FWRITE) && pr_isself(fp->f_vnode)))) { fpip = ufp->uf_fpollinfo; mutex_enter(&fip->fi_lock); mutex_enter(&ufp->uf_lock); fd_reserve(fip, fd, -1); mutex_exit(&fip->fi_lock); ufp->uf_file = NULL; ufp->uf_fpollinfo = NULL; ufp->uf_flag = 0; /* * We may need to cleanup some cached poll states * in t_pollstate before the fd can be reused. It * is important that we don't access a stale thread * structure. We will do the cleanup in two * phases to avoid deadlock and holding uf_lock for * too long. In phase 1, hold the uf_lock and call * pollblockexit() to set state in t_pollstate struct * so that a thread does not exit on us. In phase 2, * we drop the uf_lock and call pollcacheclean(). */ pfd = ufp->uf_portfd; ufp->uf_portfd = NULL; if (fpip != NULL) pollblockexit(fpip); mutex_exit(&ufp->uf_lock); if (fpip != NULL) pollcacheclean(fpip, fd); if (pfd) port_close_fd(pfd); (void) closef(fp); } } /* Reset bad fd */ fip->fi_badfd = -1; fip->fi_action = -1; } /* * Common routine for modifying attributes of named files. */ int namesetattr(char *fnamep, enum symfollow followlink, vattr_t *vap, int flags) { vnode_t *vp; int error = 0; if (error = lookupname(fnamep, UIO_USERSPACE, followlink, NULLVPP, &vp)) return (set_errno(error)); if (error = vpsetattr(vp, vap, flags)) (void) set_errno(error); VN_RELE(vp); return (error); } /* * Common routine for modifying attributes of files referenced * by descriptor. */ int fdsetattr(int fd, vattr_t *vap) { file_t *fp; vnode_t *vp; int error = 0; if ((fp = getf(fd)) != NULL) { vp = fp->f_vnode; if (error = vpsetattr(vp, vap, 0)) { (void) set_errno(error); } releasef(fd); } else error = set_errno(EBADF); return (error); } /* * Common routine to set the attributes for the given vnode. * If the vnode is a file and the filesize is being manipulated, * this makes sure that there are no conflicting non-blocking * mandatory locks in that region. */ static int vpsetattr(vnode_t *vp, vattr_t *vap, int flags) { int error = 0; int in_crit = 0; u_offset_t begin; vattr_t vattr; ssize_t length; if (vn_is_readonly(vp)) { error = EROFS; } if (!error && (vap->va_mask & AT_SIZE) && nbl_need_check(vp)) { nbl_start_crit(vp, RW_READER); in_crit = 1; vattr.va_mask = AT_SIZE; if (!(error = VOP_GETATTR(vp, &vattr, 0, CRED(), NULL))) { begin = vap->va_size > vattr.va_size ? vattr.va_size : vap->va_size; length = vattr.va_size > vap->va_size ? vattr.va_size - vap->va_size : vap->va_size - vattr.va_size; if (nbl_conflict(vp, NBL_WRITE, begin, length, 0, NULL)) { error = EACCES; } } } if (!error) error = VOP_SETATTR(vp, vap, flags, CRED(), NULL); if (in_crit) nbl_end_crit(vp); return (error); } /* * Return true if the given vnode is referenced by any * entry in the current process's file descriptor table. */ int fisopen(vnode_t *vp) { int fd; file_t *fp; vnode_t *ovp; uf_info_t *fip = P_FINFO(curproc); uf_entry_t *ufp; mutex_enter(&fip->fi_lock); for (fd = 0; fd < fip->fi_nfiles; fd++) { UF_ENTER(ufp, fip, fd); if ((fp = ufp->uf_file) != NULL && (ovp = fp->f_vnode) != NULL && VN_CMP(vp, ovp)) { UF_EXIT(ufp); mutex_exit(&fip->fi_lock); return (1); } UF_EXIT(ufp); } mutex_exit(&fip->fi_lock); return (0); } /* * Return zero if at least one file currently open (by curproc) shouldn't be * allowed to change zones. */ int files_can_change_zones(void) { int fd; file_t *fp; uf_info_t *fip = P_FINFO(curproc); uf_entry_t *ufp; mutex_enter(&fip->fi_lock); for (fd = 0; fd < fip->fi_nfiles; fd++) { UF_ENTER(ufp, fip, fd); if ((fp = ufp->uf_file) != NULL && !vn_can_change_zones(fp->f_vnode)) { UF_EXIT(ufp); mutex_exit(&fip->fi_lock); return (0); } UF_EXIT(ufp); } mutex_exit(&fip->fi_lock); return (1); } #ifdef DEBUG /* * The following functions are only used in ASSERT()s elsewhere. * They do not modify the state of the system. */ /* * Return true (1) if the current thread is in the fpollinfo * list for this file descriptor, else false (0). */ static int curthread_in_plist(uf_entry_t *ufp) { fpollinfo_t *fpip; ASSERT(MUTEX_HELD(&ufp->uf_lock)); for (fpip = ufp->uf_fpollinfo; fpip; fpip = fpip->fp_next) if (fpip->fp_thread == curthread) return (1); return (0); } /* * Sanity check to make sure that after lwp_exit(), * curthread does not appear on any fd's fpollinfo list. */ void checkfpollinfo(void) { int fd; uf_info_t *fip = P_FINFO(curproc); uf_entry_t *ufp; mutex_enter(&fip->fi_lock); for (fd = 0; fd < fip->fi_nfiles; fd++) { UF_ENTER(ufp, fip, fd); ASSERT(!curthread_in_plist(ufp)); UF_EXIT(ufp); } mutex_exit(&fip->fi_lock); } /* * Return true (1) if the current thread is in the fpollinfo * list for this file descriptor, else false (0). * This is the same as curthread_in_plist(), * but is called w/o holding uf_lock. */ int infpollinfo(int fd) { uf_info_t *fip = P_FINFO(curproc); uf_entry_t *ufp; int rc; UF_ENTER(ufp, fip, fd); rc = curthread_in_plist(ufp); UF_EXIT(ufp); return (rc); } #endif /* DEBUG */ /* * Add the curthread to fpollinfo list, meaning this fd is currently in the * thread's poll cache. Each lwp polling this file descriptor should call * this routine once. */ void addfpollinfo(int fd) { struct uf_entry *ufp; fpollinfo_t *fpip; uf_info_t *fip = P_FINFO(curproc); fpip = kmem_zalloc(sizeof (fpollinfo_t), KM_SLEEP); fpip->fp_thread = curthread; UF_ENTER(ufp, fip, fd); /* * Assert we are not already on the list, that is, that * this lwp did not call addfpollinfo twice for the same fd. */ ASSERT(!curthread_in_plist(ufp)); /* * addfpollinfo is always done inside the getf/releasef pair. */ ASSERT(ufp->uf_refcnt >= 1); fpip->fp_next = ufp->uf_fpollinfo; ufp->uf_fpollinfo = fpip; UF_EXIT(ufp); } /* * delete curthread from fpollinfo list. */ /*ARGSUSED*/ void delfpollinfo(int fd) { struct uf_entry *ufp; struct fpollinfo *fpip; struct fpollinfo **fpipp; uf_info_t *fip = P_FINFO(curproc); UF_ENTER(ufp, fip, fd); if (ufp->uf_fpollinfo == NULL) { UF_EXIT(ufp); return; } ASSERT(ufp->uf_busy); /* * Find and delete curthread from the list. */ fpipp = &ufp->uf_fpollinfo; while ((fpip = *fpipp)->fp_thread != curthread) fpipp = &fpip->fp_next; *fpipp = fpip->fp_next; kmem_free(fpip, sizeof (fpollinfo_t)); /* * Assert that we are not still on the list, that is, that * this lwp did not call addfpollinfo twice for the same fd. */ ASSERT(!curthread_in_plist(ufp)); UF_EXIT(ufp); } /* * fd is associated with a port. pfd is a pointer to the fd entry in the * cache of the port. */ void addfd_port(int fd, portfd_t *pfd) { struct uf_entry *ufp; uf_info_t *fip = P_FINFO(curproc); UF_ENTER(ufp, fip, fd); /* * addfd_port is always done inside the getf/releasef pair. */ ASSERT(ufp->uf_refcnt >= 1); if (ufp->uf_portfd == NULL) { /* first entry */ ufp->uf_portfd = pfd; pfd->pfd_next = NULL; } else { pfd->pfd_next = ufp->uf_portfd; ufp->uf_portfd = pfd; pfd->pfd_next->pfd_prev = pfd; } UF_EXIT(ufp); } void delfd_port(int fd, portfd_t *pfd) { struct uf_entry *ufp; uf_info_t *fip = P_FINFO(curproc); UF_ENTER(ufp, fip, fd); /* * delfd_port is always done inside the getf/releasef pair. */ ASSERT(ufp->uf_refcnt >= 1); if (ufp->uf_portfd == pfd) { /* remove first entry */ ufp->uf_portfd = pfd->pfd_next; } else { pfd->pfd_prev->pfd_next = pfd->pfd_next; if (pfd->pfd_next != NULL) pfd->pfd_next->pfd_prev = pfd->pfd_prev; } UF_EXIT(ufp); } static void port_close_fd(portfd_t *pfd) { portfd_t *pfdn; /* * At this point, no other thread should access * the portfd_t list for this fd. The uf_file, uf_portfd * pointers in the uf_entry_t struct for this fd would * be set to NULL. */ for (; pfd != NULL; pfd = pfdn) { pfdn = pfd->pfd_next; port_close_pfd(pfd); } }