/* * CDDL HEADER START * * Copyright(c) 2007-2009 Intel Corporation. All rights reserved. * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at: * http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When using or redistributing this file, you may do so under the * License only. No other modification of this header is permitted. * * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* IntelVersion: 1.155 v2-7-8_2009-4-7 */ #include "ixgbe_type.h" #include "ixgbe_api.h" #include "ixgbe_common.h" #include "ixgbe_phy.h" s32 ixgbe_init_ops_82599(struct ixgbe_hw *hw); s32 ixgbe_get_link_capabilities_82599(struct ixgbe_hw *hw, ixgbe_link_speed *speed, bool *autoneg); enum ixgbe_media_type ixgbe_get_media_type_82599(struct ixgbe_hw *hw); s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw); s32 ixgbe_setup_mac_link_speed_multispeed_fiber(struct ixgbe_hw *hw, ixgbe_link_speed speed, bool autoneg, bool autoneg_wait_to_complete); s32 ixgbe_setup_mac_link_82599(struct ixgbe_hw *hw); s32 ixgbe_check_mac_link_82599(struct ixgbe_hw *hw, ixgbe_link_speed *speed, bool *link_up, bool link_up_wait_to_complete); s32 ixgbe_setup_mac_link_speed_82599(struct ixgbe_hw *hw, ixgbe_link_speed speed, bool autoneg, bool autoneg_wait_to_complete); static s32 ixgbe_setup_copper_link_82599(struct ixgbe_hw *hw); static s32 ixgbe_setup_copper_link_speed_82599(struct ixgbe_hw *hw, ixgbe_link_speed speed, bool autoneg, bool autoneg_wait_to_complete); s32 ixgbe_setup_sfp_modules_82599(struct ixgbe_hw *hw); void ixgbe_init_mac_link_ops_82599(struct ixgbe_hw *hw); s32 ixgbe_reset_hw_82599(struct ixgbe_hw *hw); s32 ixgbe_set_vmdq_82599(struct ixgbe_hw *hw, u32 rar, u32 vmdq); s32 ixgbe_clear_vmdq_82599(struct ixgbe_hw *hw, u32 rar, u32 vmdq); s32 ixgbe_insert_mac_addr_82599(struct ixgbe_hw *hw, u8 *addr, u32 vmdq); s32 ixgbe_set_vfta_82599(struct ixgbe_hw *hw, u32 vlan, u32 vind, bool vlan_on); s32 ixgbe_clear_vfta_82599(struct ixgbe_hw *hw); s32 ixgbe_init_uta_tables_82599(struct ixgbe_hw *hw); s32 ixgbe_read_analog_reg8_82599(struct ixgbe_hw *hw, u32 reg, u8 *val); s32 ixgbe_write_analog_reg8_82599(struct ixgbe_hw *hw, u32 reg, u8 val); s32 ixgbe_start_hw_rev_1_82599(struct ixgbe_hw *hw); s32 ixgbe_identify_phy_82599(struct ixgbe_hw *hw); s32 ixgbe_init_phy_ops_82599(struct ixgbe_hw *hw); u32 ixgbe_get_supported_physical_layer_82599(struct ixgbe_hw *hw); s32 ixgbe_enable_rx_dma_82599(struct ixgbe_hw *hw, u32 regval); s32 ixgbe_get_san_mac_addr_offset_82599(struct ixgbe_hw *hw, u16 *san_mac_offset); s32 ixgbe_get_san_mac_addr_82599(struct ixgbe_hw *hw, u8 *san_mac_addr); s32 ixgbe_set_san_mac_addr_82599(struct ixgbe_hw *hw, u8 *san_mac_addr); s32 ixgbe_get_device_caps_82599(struct ixgbe_hw *hw, u16 *device_caps); void ixgbe_init_mac_link_ops_82599(struct ixgbe_hw *hw) { struct ixgbe_mac_info *mac = &hw->mac; DEBUGFUNC("ixgbe_init_mac_link_ops_82599"); if (hw->phy.multispeed_fiber) { /* Set up dual speed SFP+ support */ mac->ops.setup_link = &ixgbe_setup_mac_link_multispeed_fiber; mac->ops.setup_link_speed = &ixgbe_setup_mac_link_speed_multispeed_fiber; } else { mac->ops.setup_link = &ixgbe_setup_mac_link_82599; mac->ops.setup_link_speed = &ixgbe_setup_mac_link_speed_82599; } } /* * ixgbe_init_phy_ops_82599 - PHY/SFP specific init * @hw: pointer to hardware structure * * Initialize any function pointers that were not able to be * set during init_shared_code because the PHY/SFP type was * not known. Perform the SFP init if necessary. * */ s32 ixgbe_init_phy_ops_82599(struct ixgbe_hw *hw) { struct ixgbe_mac_info *mac = &hw->mac; struct ixgbe_phy_info *phy = &hw->phy; s32 ret_val = IXGBE_SUCCESS; DEBUGFUNC("ixgbe_init_phy_ops_82599"); /* Identify the PHY or SFP module */ ret_val = phy->ops.identify(hw); /* Setup function pointers based on detected SFP module and speeds */ ixgbe_init_mac_link_ops_82599(hw); if (hw->phy.sfp_type != ixgbe_sfp_type_unknown) hw->phy.ops.reset = NULL; /* If copper media, overwrite with copper function pointers */ if (mac->ops.get_media_type(hw) == ixgbe_media_type_copper) { mac->ops.setup_link = &ixgbe_setup_copper_link_82599; mac->ops.setup_link_speed = &ixgbe_setup_copper_link_speed_82599; mac->ops.get_link_capabilities = &ixgbe_get_copper_link_capabilities_generic; } /* Set necessary function pointers based on phy type */ switch (hw->phy.type) { case ixgbe_phy_tn: phy->ops.check_link = &ixgbe_check_phy_link_tnx; phy->ops.get_firmware_version = &ixgbe_get_phy_firmware_version_tnx; break; default: break; } return (ret_val); } s32 ixgbe_setup_sfp_modules_82599(struct ixgbe_hw *hw) { s32 ret_val = IXGBE_SUCCESS; u16 list_offset, data_offset, data_value; DEBUGFUNC("ixgbe_setup_sfp_modules_82599"); if (hw->phy.sfp_type != ixgbe_sfp_type_unknown) { ixgbe_init_mac_link_ops_82599(hw); hw->phy.ops.reset = NULL; ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset, &data_offset); if (ret_val != IXGBE_SUCCESS) goto setup_sfp_out; hw->eeprom.ops.read(hw, ++data_offset, &data_value); while (data_value != 0xffff) { IXGBE_WRITE_REG(hw, IXGBE_CORECTL, data_value); IXGBE_WRITE_FLUSH(hw); hw->eeprom.ops.read(hw, ++data_offset, &data_value); } /* Now restart DSP */ IXGBE_WRITE_REG(hw, IXGBE_CORECTL, 0x00000102); IXGBE_WRITE_REG(hw, IXGBE_CORECTL, 0x00000b1d); IXGBE_WRITE_FLUSH(hw); } setup_sfp_out: return (ret_val); } /* * ixgbe_get_pcie_msix_count_82599 - Gets MSI-X vector count * @hw: pointer to hardware structure * * Read PCIe configuration space, and get the MSI-X vector count from * the capabilities table. */ u32 ixgbe_get_pcie_msix_count_82599(struct ixgbe_hw *hw) { u32 msix_count = 64; if (hw->mac.msix_vectors_from_pcie) { msix_count = IXGBE_READ_PCIE_WORD(hw, IXGBE_PCIE_MSIX_82599_CAPS); msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK; /* * MSI-X count is zero-based in HW, so increment to give * proper value */ msix_count++; } return (msix_count); } /* * ixgbe_init_ops_82599 - Inits func ptrs and MAC type * @hw: pointer to hardware structure * * Initialize the function pointers and assign the MAC type for 82599. * Does not touch the hardware. */ s32 ixgbe_init_ops_82599(struct ixgbe_hw *hw) { struct ixgbe_mac_info *mac = &hw->mac; struct ixgbe_phy_info *phy = &hw->phy; s32 ret_val; ret_val = ixgbe_init_phy_ops_generic(hw); ret_val = ixgbe_init_ops_generic(hw); /* PHY */ phy->ops.identify = &ixgbe_identify_phy_82599; phy->ops.init = &ixgbe_init_phy_ops_82599; /* MAC */ mac->ops.reset_hw = &ixgbe_reset_hw_82599; mac->ops.get_media_type = &ixgbe_get_media_type_82599; mac->ops.get_supported_physical_layer = &ixgbe_get_supported_physical_layer_82599; mac->ops.enable_rx_dma = &ixgbe_enable_rx_dma_82599; mac->ops.read_analog_reg8 = &ixgbe_read_analog_reg8_82599; mac->ops.write_analog_reg8 = &ixgbe_write_analog_reg8_82599; mac->ops.start_hw = &ixgbe_start_hw_rev_1_82599; mac->ops.get_san_mac_addr = &ixgbe_get_san_mac_addr_82599; mac->ops.set_san_mac_addr = &ixgbe_set_san_mac_addr_82599; mac->ops.get_device_caps = &ixgbe_get_device_caps_82599; /* RAR, Multicast, VLAN */ mac->ops.set_vmdq = &ixgbe_set_vmdq_82599; mac->ops.clear_vmdq = &ixgbe_clear_vmdq_82599; mac->ops.insert_mac_addr = &ixgbe_insert_mac_addr_82599; mac->rar_highwater = 1; mac->ops.set_vfta = &ixgbe_set_vfta_82599; mac->ops.clear_vfta = &ixgbe_clear_vfta_82599; mac->ops.init_uta_tables = &ixgbe_init_uta_tables_82599; mac->ops.setup_sfp = &ixgbe_setup_sfp_modules_82599; /* Link */ mac->ops.get_link_capabilities = &ixgbe_get_link_capabilities_82599; mac->ops.check_link = &ixgbe_check_mac_link_82599; ixgbe_init_mac_link_ops_82599(hw); mac->mcft_size = 128; mac->vft_size = 128; mac->num_rar_entries = 128; mac->max_tx_queues = 128; mac->max_rx_queues = 128; mac->max_msix_vectors = ixgbe_get_pcie_msix_count_82599(hw); return (ret_val); } /* * ixgbe_get_link_capabilities_82599 - Determines link capabilities * @hw: pointer to hardware structure * @speed: pointer to link speed * @negotiation: true when autoneg or autotry is enabled * * Determines the link capabilities by reading the AUTOC register. */ s32 ixgbe_get_link_capabilities_82599(struct ixgbe_hw *hw, ixgbe_link_speed *speed, bool *negotiation) { s32 status = IXGBE_SUCCESS; u32 autoc = 0; /* * Determine link capabilities based on the stored value of AUTOC, * which represents EEPROM defaults. If AUTOC value has not * been stored, use the current register values. */ if (hw->mac.orig_link_settings_stored) autoc = hw->mac.orig_autoc; else autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC); switch (autoc & IXGBE_AUTOC_LMS_MASK) { case IXGBE_AUTOC_LMS_1G_LINK_NO_AN: *speed = IXGBE_LINK_SPEED_1GB_FULL; *negotiation = false; break; case IXGBE_AUTOC_LMS_10G_LINK_NO_AN: *speed = IXGBE_LINK_SPEED_10GB_FULL; *negotiation = false; break; case IXGBE_AUTOC_LMS_1G_AN: *speed = IXGBE_LINK_SPEED_1GB_FULL; *negotiation = true; break; case IXGBE_AUTOC_LMS_10G_SERIAL: *speed = IXGBE_LINK_SPEED_10GB_FULL; *negotiation = false; break; case IXGBE_AUTOC_LMS_KX4_KX_KR: case IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN: *speed = IXGBE_LINK_SPEED_UNKNOWN; if (autoc & IXGBE_AUTOC_KR_SUPP) *speed |= IXGBE_LINK_SPEED_10GB_FULL; if (autoc & IXGBE_AUTOC_KX4_SUPP) *speed |= IXGBE_LINK_SPEED_10GB_FULL; if (autoc & IXGBE_AUTOC_KX_SUPP) *speed |= IXGBE_LINK_SPEED_1GB_FULL; *negotiation = true; break; case IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII: *speed = IXGBE_LINK_SPEED_100_FULL; if (autoc & IXGBE_AUTOC_KR_SUPP) *speed |= IXGBE_LINK_SPEED_10GB_FULL; if (autoc & IXGBE_AUTOC_KX4_SUPP) *speed |= IXGBE_LINK_SPEED_10GB_FULL; if (autoc & IXGBE_AUTOC_KX_SUPP) *speed |= IXGBE_LINK_SPEED_1GB_FULL; *negotiation = true; break; case IXGBE_AUTOC_LMS_SGMII_1G_100M: *speed = IXGBE_LINK_SPEED_1GB_FULL | IXGBE_LINK_SPEED_100_FULL; *negotiation = false; break; default: status = IXGBE_ERR_LINK_SETUP; goto out; } if (hw->phy.multispeed_fiber) { *speed |= IXGBE_LINK_SPEED_10GB_FULL | IXGBE_LINK_SPEED_1GB_FULL; *negotiation = true; } out: return (status); } /* * ixgbe_get_media_type_82599 - Get media type * @hw: pointer to hardware structure * * Returns the media type (fiber, copper, backplane) */ enum ixgbe_media_type ixgbe_get_media_type_82599(struct ixgbe_hw *hw) { enum ixgbe_media_type media_type; /* Detect if there is a copper PHY attached. */ if (hw->phy.type == ixgbe_phy_cu_unknown || hw->phy.type == ixgbe_phy_tn) { media_type = ixgbe_media_type_copper; goto out; } switch (hw->device_id) { case IXGBE_DEV_ID_82599_KX4: case IXGBE_DEV_ID_82599_KX4_SIK: /* Default device ID is mezzanine card KX/KX4 */ media_type = ixgbe_media_type_backplane; break; case IXGBE_DEV_ID_82599_SFP: case IXGBE_DEV_ID_82599_SPW: media_type = ixgbe_media_type_fiber; break; case IXGBE_DEV_ID_82599_CX4: media_type = ixgbe_media_type_fiber; break; default: media_type = ixgbe_media_type_unknown; break; } out: return (media_type); } /* * ixgbe_setup_mac_link_82599 - Setup MAC link settings * @hw: pointer to hardware structure * * Configures link settings based on values in the ixgbe_hw struct. * Restarts the link. Performs autonegotiation if needed. */ s32 ixgbe_setup_mac_link_82599(struct ixgbe_hw *hw) { u32 autoc_reg; u32 links_reg; u32 i; s32 status = IXGBE_SUCCESS; /* Restart link */ autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC); autoc_reg |= IXGBE_AUTOC_AN_RESTART; IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg); /* Only poll for autoneg to complete if specified to do so */ if (hw->phy.autoneg_wait_to_complete) { if ((autoc_reg & IXGBE_AUTOC_LMS_MASK) == IXGBE_AUTOC_LMS_KX4_KX_KR || (autoc_reg & IXGBE_AUTOC_LMS_MASK) == IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN || (autoc_reg & IXGBE_AUTOC_LMS_MASK) == IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII) { links_reg = 0; /* Just in case Autoneg time = 0 */ for (i = 0; i < IXGBE_AUTO_NEG_TIME; i++) { links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS); if (links_reg & IXGBE_LINKS_KX_AN_COMP) break; msec_delay(100); } if (!(links_reg & IXGBE_LINKS_KX_AN_COMP)) { status = IXGBE_ERR_AUTONEG_NOT_COMPLETE; DEBUGOUT("Autoneg did not complete.\n"); } } } /* Add delay to filter out noises during initial link setup */ msec_delay(50); return (status); } /* * ixgbe_setup_mac_link_multispeed_fiber - Setup MAC link settings * @hw: pointer to hardware structure * * Configures link settings based on values in the ixgbe_hw struct. * Restarts the link for multi-speed fiber at 1G speed, if link * fails at 10G. * Performs autonegotiation if needed. */ s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw) { s32 status = IXGBE_SUCCESS; ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_82599_AUTONEG; DEBUGFUNC("ixgbe_setup_mac_link_multispeed_fiber"); status = ixgbe_setup_mac_link_speed_multispeed_fiber(hw, link_speed, true, true); return (status); } /* * ixgbe_setup_mac_link_speed_multispeed_fiber - Set MAC link speed * @hw: pointer to hardware structure * @speed: new link speed * @autoneg: true if autonegotiation enabled * @autoneg_wait_to_complete: true when waiting for completion is needed * * Set the link speed in the AUTOC register and restarts link. */ s32 ixgbe_setup_mac_link_speed_multispeed_fiber(struct ixgbe_hw *hw, ixgbe_link_speed speed, bool autoneg, bool autoneg_wait_to_complete) { s32 status = IXGBE_SUCCESS; ixgbe_link_speed link_speed; ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN; u32 speedcnt = 0; u32 esdp_reg = IXGBE_READ_REG(hw, IXGBE_ESDP); bool link_up = false; bool negotiation; /* Mask off requested but non-supported speeds */ status = ixgbe_get_link_capabilities(hw, &link_speed, &negotiation); if (status != IXGBE_SUCCESS) goto out; speed &= link_speed; /* * Try each speed one by one, highest priority first. We do this in * software because 10gb fiber doesn't support speed autonegotiation. */ if (speed & IXGBE_LINK_SPEED_10GB_FULL) { speedcnt++; highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL; /* If we already have link at this speed, just jump out */ status = ixgbe_check_link(hw, &link_speed, &link_up, false); if (status != IXGBE_SUCCESS) goto out; if ((link_speed == IXGBE_LINK_SPEED_10GB_FULL) && link_up) goto out; /* Set hardware SDP's */ esdp_reg |= (IXGBE_ESDP_SDP5_DIR | IXGBE_ESDP_SDP5); IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg); /* Allow module to change analog characteristics (1G->10G) */ msec_delay(40); status = ixgbe_setup_mac_link_speed_82599( hw, IXGBE_LINK_SPEED_10GB_FULL, autoneg, autoneg_wait_to_complete); if (status != IXGBE_SUCCESS) goto out; msec_delay(100); /* If we have link, just jump out */ status = ixgbe_check_link(hw, &link_speed, &link_up, false); if (status != IXGBE_SUCCESS) goto out; if (link_up) goto out; } if (speed & IXGBE_LINK_SPEED_1GB_FULL) { speedcnt++; if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN) highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL; /* If we already have link at this speed, just jump out */ status = ixgbe_check_link(hw, &link_speed, &link_up, false); if (status != IXGBE_SUCCESS) goto out; if ((link_speed == IXGBE_LINK_SPEED_1GB_FULL) && link_up) goto out; /* Set hardware SDP's */ esdp_reg &= ~IXGBE_ESDP_SDP5; esdp_reg |= IXGBE_ESDP_SDP5_DIR; IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg); /* Allow module to change analog characteristics (10G->1G) */ msec_delay(40); status = ixgbe_setup_mac_link_speed_82599( hw, IXGBE_LINK_SPEED_1GB_FULL, autoneg, autoneg_wait_to_complete); if (status != IXGBE_SUCCESS) goto out; msec_delay(100); /* If we have link, just jump out */ status = ixgbe_check_link(hw, &link_speed, &link_up, false); if (status != IXGBE_SUCCESS) goto out; if (link_up) goto out; } /* * We didn't get link. Configure back to the highest speed we tried, * (if there was more than one). We call ourselves back with just the * single highest speed that the user requested. */ if (speedcnt > 1) status = ixgbe_setup_mac_link_speed_multispeed_fiber(hw, highest_link_speed, autoneg, autoneg_wait_to_complete); out: return (status); } /* * ixgbe_check_mac_link_82599 - Determine link and speed status * @hw: pointer to hardware structure * @speed: pointer to link speed * @link_up: true when link is up * @link_up_wait_to_complete: bool used to wait for link up or not * * Reads the links register to determine if link is up and the current speed */ s32 ixgbe_check_mac_link_82599(struct ixgbe_hw *hw, ixgbe_link_speed *speed, bool *link_up, bool link_up_wait_to_complete) { u32 links_reg; u32 i; links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS); if (link_up_wait_to_complete) { for (i = 0; i < IXGBE_LINK_UP_TIME; i++) { if (links_reg & IXGBE_LINKS_UP) { *link_up = true; break; } else { *link_up = false; } msec_delay(100); links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS); } } else { if (links_reg & IXGBE_LINKS_UP) *link_up = true; else *link_up = false; } if ((links_reg & IXGBE_LINKS_SPEED_82599) == IXGBE_LINKS_SPEED_10G_82599) *speed = IXGBE_LINK_SPEED_10GB_FULL; else if ((links_reg & IXGBE_LINKS_SPEED_82599) == IXGBE_LINKS_SPEED_1G_82599) *speed = IXGBE_LINK_SPEED_1GB_FULL; else *speed = IXGBE_LINK_SPEED_100_FULL; /* if link is down, zero out the current_mode */ if (*link_up == false) { hw->fc.current_mode = ixgbe_fc_none; hw->fc.fc_was_autonegged = false; } return (IXGBE_SUCCESS); } /* * ixgbe_setup_mac_link_speed_82599 - Set MAC link speed * @hw: pointer to hardware structure * @speed: new link speed * @autoneg: true if autonegotiation enabled * @autoneg_wait_to_complete: true when waiting for completion is needed * * Set the link speed in the AUTOC register and restarts link. */ s32 ixgbe_setup_mac_link_speed_82599(struct ixgbe_hw *hw, ixgbe_link_speed speed, bool autoneg, bool autoneg_wait_to_complete) { s32 status = IXGBE_SUCCESS; u32 autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC); u32 autoc2 = IXGBE_READ_REG(hw, IXGBE_AUTOC2); u32 link_mode = autoc & IXGBE_AUTOC_LMS_MASK; u32 pma_pmd_1g = autoc & IXGBE_AUTOC_1G_PMA_PMD_MASK; u32 pma_pmd_10g_serial = autoc2 & IXGBE_AUTOC2_10G_SERIAL_PMA_PMD_MASK; u32 links_reg; u32 i; ixgbe_link_speed link_capabilities = IXGBE_LINK_SPEED_UNKNOWN; /* Check to see if speed passed in is supported. */ status = ixgbe_get_link_capabilities(hw, &link_capabilities, &autoneg); if (status != IXGBE_SUCCESS) goto out; speed &= link_capabilities; if (speed == IXGBE_LINK_SPEED_UNKNOWN) { status = IXGBE_ERR_LINK_SETUP; } else if (link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR || link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN || link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII) { /* Set KX4/KX/KR support according to speed requested */ autoc &= ~(IXGBE_AUTOC_KX4_KX_SUPP_MASK | IXGBE_AUTOC_KR_SUPP); if (speed & IXGBE_LINK_SPEED_10GB_FULL) if (autoc & IXGBE_AUTOC_KX4_SUPP) autoc |= IXGBE_AUTOC_KX4_SUPP; if (autoc & IXGBE_AUTOC_KR_SUPP) autoc |= IXGBE_AUTOC_KR_SUPP; if (speed & IXGBE_LINK_SPEED_1GB_FULL) autoc |= IXGBE_AUTOC_KX_SUPP; } else if ((pma_pmd_1g == IXGBE_AUTOC_1G_SFI) && (link_mode == IXGBE_AUTOC_LMS_1G_LINK_NO_AN || link_mode == IXGBE_AUTOC_LMS_1G_AN)) { /* Switch from 1G SFI to 10G SFI if requested */ if ((speed == IXGBE_LINK_SPEED_10GB_FULL) && (pma_pmd_10g_serial == IXGBE_AUTOC2_10G_SFI)) { autoc &= ~IXGBE_AUTOC_LMS_MASK; autoc |= IXGBE_AUTOC_LMS_10G_SERIAL; } } else if ((pma_pmd_10g_serial == IXGBE_AUTOC2_10G_SFI) && (link_mode == IXGBE_AUTOC_LMS_10G_SERIAL)) { /* Switch from 10G SFI to 1G SFI if requested */ if ((speed == IXGBE_LINK_SPEED_1GB_FULL) && (pma_pmd_1g == IXGBE_AUTOC_1G_SFI)) { autoc &= ~IXGBE_AUTOC_LMS_MASK; if (autoneg) autoc |= IXGBE_AUTOC_LMS_1G_AN; else autoc |= IXGBE_AUTOC_LMS_1G_LINK_NO_AN; } } if (status == IXGBE_SUCCESS) { /* Restart link */ autoc |= IXGBE_AUTOC_AN_RESTART; IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc); /* Only poll for autoneg to complete if specified to do so */ if (autoneg_wait_to_complete) { if (link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR || link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN || link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII) { links_reg = 0; /* Just in case Autoneg time=0 */ for (i = 0; i < IXGBE_AUTO_NEG_TIME; i++) { links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS); if (links_reg & IXGBE_LINKS_KX_AN_COMP) break; msec_delay(100); } if (!(links_reg & IXGBE_LINKS_KX_AN_COMP)) { status = IXGBE_ERR_AUTONEG_NOT_COMPLETE; DEBUGOUT("Autoneg did not complete.\n"); } } } /* Add delay to filter out noises during initial link setup */ msec_delay(50); } out: return (status); } /* * ixgbe_setup_copper_link_82599 - Setup copper link settings * @hw: pointer to hardware structure * * Restarts the link on PHY and then MAC. Performs autonegotiation if needed. */ static s32 ixgbe_setup_copper_link_82599(struct ixgbe_hw *hw) { s32 status; /* Restart autonegotiation on PHY */ status = hw->phy.ops.setup_link(hw); /* Set up MAC */ (void) ixgbe_setup_mac_link_82599(hw); return (status); } /* * ixgbe_setup_copper_link_speed_82599 - Set the PHY autoneg advertised field * @hw: pointer to hardware structure * @speed: new link speed * @autoneg: true if autonegotiation enabled * @autoneg_wait_to_complete: true if waiting is needed to complete * * Restarts link on PHY and MAC based on settings passed in. */ static s32 ixgbe_setup_copper_link_speed_82599(struct ixgbe_hw *hw, ixgbe_link_speed speed, bool autoneg, bool autoneg_wait_to_complete) { s32 status; /* Setup the PHY according to input speed */ status = hw->phy.ops.setup_link_speed(hw, speed, autoneg, autoneg_wait_to_complete); /* Set up MAC */ (void) ixgbe_setup_mac_link_82599(hw); return (status); } /* * ixgbe_reset_hw_82599 - Perform hardware reset * @hw: pointer to hardware structure * * Resets the hardware by resetting the transmit and receive units, masks * and clears all interrupts, perform a PHY reset, and perform a link (MAC) * reset. */ s32 ixgbe_reset_hw_82599(struct ixgbe_hw *hw) { s32 status = IXGBE_SUCCESS; u32 ctrl, ctrl_ext; u32 i; u32 autoc; u32 autoc2; /* Call adapter stop to disable tx/rx and clear interrupts */ hw->mac.ops.stop_adapter(hw); /* PHY ops must be identified and initialized prior to reset */ /* Identify PHY and related function pointers */ status = hw->phy.ops.init(hw); /* Setup SFP module if there is one present. */ if (hw->phy.sfp_setup_needed) { status = hw->mac.ops.setup_sfp(hw); hw->phy.sfp_setup_needed = false; } /* Reset PHY */ if (hw->phy.reset_disable == false && hw->phy.ops.reset != NULL) hw->phy.ops.reset(hw); /* * Prevent the PCI-E bus from from hanging by disabling PCI-E master * access and verify no pending requests before reset */ status = ixgbe_disable_pcie_master(hw); if (status != IXGBE_SUCCESS) { status = IXGBE_ERR_MASTER_REQUESTS_PENDING; DEBUGOUT("PCI-E Master disable polling has failed.\n"); } /* * Issue global reset to the MAC. This needs to be a SW reset. * If link reset is used, it might reset the MAC when mng is using it */ ctrl = IXGBE_READ_REG(hw, IXGBE_CTRL); IXGBE_WRITE_REG(hw, IXGBE_CTRL, (ctrl | IXGBE_CTRL_RST)); IXGBE_WRITE_FLUSH(hw); /* Poll for reset bit to self-clear indicating reset is complete */ for (i = 0; i < 10; i++) { usec_delay(1); ctrl = IXGBE_READ_REG(hw, IXGBE_CTRL); if (!(ctrl & IXGBE_CTRL_RST)) { break; } } if (ctrl & IXGBE_CTRL_RST) { status = IXGBE_ERR_RESET_FAILED; DEBUGOUT("Reset polling failed to complete.\n"); } /* Clear PF Reset Done bit so PF/VF Mail Ops can work */ ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT); ctrl_ext |= IXGBE_CTRL_EXT_PFRSTD; IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext); msec_delay(50); /* * Store the original AUTOC/AUTOC2 values if they have not been * stored off yet. Otherwise restore the stored original * values since the reset operation sets back to defaults. */ autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC); autoc2 = IXGBE_READ_REG(hw, IXGBE_AUTOC2); if (hw->mac.orig_link_settings_stored == false) { hw->mac.orig_autoc = autoc; hw->mac.orig_autoc2 = autoc2; hw->mac.orig_link_settings_stored = true; } else { if (autoc != hw->mac.orig_autoc) { IXGBE_WRITE_REG(hw, IXGBE_AUTOC, (hw->mac.orig_autoc | IXGBE_AUTOC_AN_RESTART)); } if ((autoc2 & IXGBE_AUTOC2_UPPER_MASK) != (hw->mac.orig_autoc2 & IXGBE_AUTOC2_UPPER_MASK)) { autoc2 &= ~IXGBE_AUTOC2_UPPER_MASK; autoc2 |= (hw->mac.orig_autoc2 & IXGBE_AUTOC2_UPPER_MASK); IXGBE_WRITE_REG(hw, IXGBE_AUTOC2, autoc2); } } /* * Store MAC address from RAR0, clear receive address registers, and * clear the multicast table. Also reset num_rar_entries to 128, * since we modify this value when programming the SAN MAC address. */ hw->mac.num_rar_entries = 128; hw->mac.ops.init_rx_addrs(hw); /* Store the permanent mac address */ hw->mac.ops.get_mac_addr(hw, hw->mac.perm_addr); /* Add the SAN MAC address to the RAR only if it's a valid address */ if (ixgbe_validate_mac_addr(hw->mac.san_addr) == 0) { hw->mac.ops.set_rar(hw, hw->mac.num_rar_entries - 1, hw->mac.san_addr, 0, IXGBE_RAH_AV); /* Reserve the last RAR for the SAN MAC address */ hw->mac.num_rar_entries--; } return (status); } /* * ixgbe_insert_mac_addr_82599 - Find a RAR for this mac address * @hw: pointer to hardware structure * @addr: Address to put into receive address register * @vmdq: VMDq pool to assign * * Puts an ethernet address into a receive address register, or * finds the rar that it is aleady in; adds to the pool list */ s32 ixgbe_insert_mac_addr_82599(struct ixgbe_hw *hw, u8 *addr, u32 vmdq) { static const u32 NO_EMPTY_RAR_FOUND = 0xFFFFFFFF; u32 first_empty_rar = NO_EMPTY_RAR_FOUND; u32 rar; u32 rar_low, rar_high; u32 addr_low, addr_high; /* swap bytes for HW little endian */ addr_low = addr[0] | (addr[1] << 8) | (addr[2] << 16) | (addr[3] << 24); addr_high = addr[4] | (addr[5] << 8); /* * Either find the mac_id in rar or find the first empty space. * rar_highwater points to just after the highest currently used * rar in order to shorten the search. It grows when we add a new * rar to the top. */ for (rar = 0; rar < hw->mac.rar_highwater; rar++) { rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(rar)); if (((IXGBE_RAH_AV & rar_high) == 0) && first_empty_rar == NO_EMPTY_RAR_FOUND) { first_empty_rar = rar; } else if ((rar_high & 0xFFFF) == addr_high) { rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(rar)); if (rar_low == addr_low) break; /* found it already in the rars */ } } if (rar < hw->mac.rar_highwater) { /* already there so just add to the pool bits */ (void) ixgbe_set_vmdq(hw, rar, vmdq); } else if (first_empty_rar != NO_EMPTY_RAR_FOUND) { /* stick it into first empty RAR slot we found */ rar = first_empty_rar; (void) ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV); } else if (rar == hw->mac.rar_highwater) { /* add it to the top of the list and inc the highwater mark */ (void) ixgbe_set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV); hw->mac.rar_highwater++; } else if (rar >= hw->mac.num_rar_entries) { return (IXGBE_ERR_INVALID_MAC_ADDR); } /* * If we found rar[0], make sure the default pool bit (we use pool 0) * remains cleared to be sure default pool packets will get delivered */ if (rar == 0) (void) ixgbe_clear_vmdq(hw, rar, 0); return (rar); } /* * ixgbe_clear_vmdq_82599 - Disassociate a VMDq pool index from a rx address * @hw: pointer to hardware struct * @rar: receive address register index to disassociate * @vmdq: VMDq pool index to remove from the rar */ s32 ixgbe_clear_vmdq_82599(struct ixgbe_hw *hw, u32 rar, u32 vmdq) { u32 mpsar_lo, mpsar_hi; u32 rar_entries = hw->mac.num_rar_entries; if (rar < rar_entries) { mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar)); mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar)); if (!mpsar_lo && !mpsar_hi) { goto done; } if (vmdq == IXGBE_CLEAR_VMDQ_ALL) { if (mpsar_lo) { IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0); mpsar_lo = 0; } if (mpsar_hi) { IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0); mpsar_hi = 0; } } else if (vmdq < 32) { mpsar_lo &= ~(1 << vmdq); IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo); } else { mpsar_hi &= ~(1 << (vmdq - 32)); IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi); } /* was that the last pool using this rar? */ if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0) { hw->mac.ops.clear_rar(hw, rar); } } else { DEBUGOUT1("RAR index %d is out of range.\n", rar); } done: return (IXGBE_SUCCESS); } /* * ixgbe_set_vmdq_82599 - Associate a VMDq pool index with a rx address * @hw: pointer to hardware struct * @rar: receive address register index to associate with a VMDq index * @vmdq: VMDq pool index */ s32 ixgbe_set_vmdq_82599(struct ixgbe_hw *hw, u32 rar, u32 vmdq) { u32 mpsar; u32 rar_entries = hw->mac.num_rar_entries; if (rar < rar_entries) { if (vmdq < 32) { mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar)); mpsar |= 1 << vmdq; IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar); } else { mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar)); mpsar |= 1 << (vmdq - 32); IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar); } } else { DEBUGOUT1("RAR index %d is out of range.\n", rar); } return (IXGBE_SUCCESS); } /* * ixgbe_set_vfta_82599 - Set VLAN filter table * @hw: pointer to hardware structure * @vlan: VLAN id to write to VLAN filter * @vind: VMDq output index that maps queue to VLAN id in VFVFB * @vlan_on: boolean flag to turn on/off VLAN in VFVF * * Turn on/off specified VLAN in the VLAN filter table. */ s32 ixgbe_set_vfta_82599(struct ixgbe_hw *hw, u32 vlan, u32 vind, bool vlan_on) { u32 regindex; u32 bitindex; u32 bits; u32 first_empty_slot; if (vlan > 4095) { return (IXGBE_ERR_PARAM); } /* * this is a 2 part operation - first the VFTA, then the * VLVF and VLVFB if vind is set */ /* * Part 1 * The VFTA is a bitstring made up of 128 32-bit registers * that enable the particular VLAN id, much like the MTA: * bits[11-5]: which register * bits[4-0]: which bit in the register */ regindex = (vlan >> 5) & 0x7F; bitindex = vlan & 0x1F; bits = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex)); if (vlan_on) { bits |= (1 << bitindex); } else { bits &= ~(1 << bitindex); } IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), bits); /* * Part 2 * If the vind is set * Either vlan_on * make sure the vlan is in VLVF * set the vind bit in the matching VLVFB * Or !vlan_on * clear the pool bit and possibly the vind */ if (vind) { /* find the vlanid or the first empty slot */ first_empty_slot = 0; for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) { bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex)); if (!bits && !first_empty_slot) first_empty_slot = regindex; else if ((bits & 0x0FFF) == vlan) break; } if (regindex >= IXGBE_VLVF_ENTRIES) { if (first_empty_slot) regindex = first_empty_slot; else { DEBUGOUT("No space in VLVF.\n"); } } if (vlan_on) { /* set the pool bit */ if (vind < 32) { bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(regindex*2)); bits |= (1 << vind); IXGBE_WRITE_REG(hw, IXGBE_VLVFB(regindex*2), bits); } else { bits = IXGBE_READ_REG(hw, IXGBE_VLVFB((regindex*2)+1)); bits |= (1 << vind); IXGBE_WRITE_REG(hw, IXGBE_VLVFB((regindex*2)+1), bits); } } else { /* clear the pool bit */ if (vind < 32) { bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(regindex*2)); bits &= ~(1 << vind); IXGBE_WRITE_REG(hw, IXGBE_VLVFB(regindex*2), bits); bits |= IXGBE_READ_REG(hw, IXGBE_VLVFB((regindex*2)+1)); } else { bits = IXGBE_READ_REG(hw, IXGBE_VLVFB((regindex*2)+1)); bits &= ~(1 << vind); IXGBE_WRITE_REG(hw, IXGBE_VLVFB((regindex*2)+1), bits); bits |= IXGBE_READ_REG(hw, IXGBE_VLVFB(regindex*2)); } } if (bits) IXGBE_WRITE_REG(hw, IXGBE_VLVF(regindex), (IXGBE_VLVF_VIEN | vlan)); else IXGBE_WRITE_REG(hw, IXGBE_VLVF(regindex), 0); } return (IXGBE_SUCCESS); } /* * ixgbe_clear_vfta_82599 - Clear VLAN filter table * @hw: pointer to hardware structure * * Clears the VLAN filer table, and the VMDq index associated with the filter */ s32 ixgbe_clear_vfta_82599(struct ixgbe_hw *hw) { u32 offset; for (offset = 0; offset < hw->mac.vft_size; offset++) IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0); for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) { IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0); IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0); IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0); } return (IXGBE_SUCCESS); } /* * ixgbe_init_uta_tables_82599 - Initialize the Unicast Table Array * @hw: pointer to hardware structure */ s32 ixgbe_init_uta_tables_82599(struct ixgbe_hw *hw) { int i; DEBUGOUT(" Clearing UTA\n"); for (i = 0; i < 128; i++) IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0); return (IXGBE_SUCCESS); } /* * ixgbe_reinit_fdir_tables_82599 - Reinitialize Flow Director tables. * @hw: pointer to hardware structure */ s32 ixgbe_reinit_fdir_tables_82599(struct ixgbe_hw *hw) { u32 fdirctrl = IXGBE_READ_REG(hw, IXGBE_FDIRCTRL); fdirctrl &= ~IXGBE_FDIRCTRL_INIT_DONE; IXGBE_WRITE_REG(hw, IXGBE_FDIRFREE, 0); IXGBE_WRITE_FLUSH(hw); IXGBE_WRITE_REG(hw, IXGBE_FDIRCTRL, fdirctrl); return (IXGBE_SUCCESS); } #define IXGBE_FDIR_INIT_DONE_POLL 10 /* * ixgbe_init_fdir_signature_82599 - Initialize Flow Director signature filters * @hw: pointer to hardware structure * @pballoc: which mode to allocate filters with */ s32 ixgbe_init_fdir_signature_82599(struct ixgbe_hw *hw, u32 pballoc) { u32 fdirctrl = 0; u32 pbsize; int i; /* * Before enabling Flow Director, the Rx Packet Buffer size * must be reduced. The new value is the current size minus * flow director memory usage size. */ pbsize = (1 << (IXGBE_FDIR_PBALLOC_SIZE_SHIFT + pballoc)); IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(0), IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(0)) - pbsize); /* * The defaults in the HW for RX PB 1-7 are not zero and so should be * intialized to zero for non DCB mode otherwise actual total RX PB * would be bigger than programmed and filter space would run into * the PB 0 region. */ for (i = 1; i < 8; i++) IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0); /* Send interrupt when 64 filters are left */ fdirctrl |= 4 << IXGBE_FDIRCTRL_FULL_THRESH_SHIFT; /* Set the maximum length per hash bucket to 0xA filters */ fdirctrl |= 0xA << IXGBE_FDIRCTRL_MAX_LENGTH_SHIFT; switch (pballoc) { case IXGBE_FDIR_PBALLOC_64K: /* 8k - 1 signature filters */ fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_64K; break; case IXGBE_FDIR_PBALLOC_128K: /* 16k - 1 signature filters */ fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_128K; break; case IXGBE_FDIR_PBALLOC_256K: /* 32k - 1 signature filters */ fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_256K; break; default: /* bad value */ return (IXGBE_ERR_CONFIG); }; /* Move the flexible bytes to use the ethertype - shift 6 words */ fdirctrl |= (0x6 << IXGBE_FDIRCTRL_FLEX_SHIFT); /* Prime the keys for hashing */ IXGBE_WRITE_REG(hw, IXGBE_FDIRHKEY, IXGBE_HTONL(IXGBE_ATR_BUCKET_HASH_KEY)); IXGBE_WRITE_REG(hw, IXGBE_FDIRSKEY, IXGBE_HTONL(IXGBE_ATR_SIGNATURE_HASH_KEY)); /* * Poll init-done after we write the register. Estimated times: * 10G: PBALLOC = 11b, timing is 60us * 1G: PBALLOC = 11b, timing is 600us * 100M: PBALLOC = 11b, timing is 6ms * * Multiple these timings by 4 if under full Rx load * * So we'll poll for IXGBE_FDIR_INIT_DONE_POLL times, sleeping for * 1 msec per poll time. If we're at line rate and drop to 100M, then * this might not finish in our poll time, but we can live with that * for now. */ IXGBE_WRITE_REG(hw, IXGBE_FDIRCTRL, fdirctrl); IXGBE_WRITE_FLUSH(hw); for (i = 0; i < IXGBE_FDIR_INIT_DONE_POLL; i++) { if (IXGBE_READ_REG(hw, IXGBE_FDIRCTRL) & IXGBE_FDIRCTRL_INIT_DONE) break; msec_delay(1); } if (i >= IXGBE_FDIR_INIT_DONE_POLL) { DEBUGOUT("Flow Director Signature poll time exceeded!\n"); } return (IXGBE_SUCCESS); } /* * ixgbe_init_fdir_perfect_82599 - Initialize Flow Director perfect filters * @hw: pointer to hardware structure * @pballoc: which mode to allocate filters with */ s32 ixgbe_init_fdir_perfect_82599(struct ixgbe_hw *hw, u32 pballoc) { u32 fdirctrl = 0; u32 pbsize; int i; /* * Before enabling Flow Director, the Rx Packet Buffer size * must be reduced. The new value is the current size minus * flow director memory usage size. */ pbsize = (1 << (IXGBE_FDIR_PBALLOC_SIZE_SHIFT + pballoc)); IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(0), IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(0)) - pbsize); /* * The defaults in the HW for RX PB 1-7 are not zero and so should be * intialized to zero for non DCB mode otherwise actual total RX PB * would be bigger than programmed and filter space would run into * the PB 0 region. */ for (i = 1; i < 8; i++) IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0); /* Send interrupt when 64 filters are left */ fdirctrl |= 4 << IXGBE_FDIRCTRL_FULL_THRESH_SHIFT; switch (pballoc) { case IXGBE_FDIR_PBALLOC_64K: /* 2k - 1 perfect filters */ fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_64K; break; case IXGBE_FDIR_PBALLOC_128K: /* 4k - 1 perfect filters */ fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_128K; break; case IXGBE_FDIR_PBALLOC_256K: /* 8k - 1 perfect filters */ fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_256K; break; default: /* bad value */ return (IXGBE_ERR_CONFIG); }; /* Turn perfect match filtering on */ fdirctrl |= IXGBE_FDIRCTRL_PERFECT_MATCH; fdirctrl |= IXGBE_FDIRCTRL_REPORT_STATUS; /* Move the flexible bytes to use the ethertype - shift 6 words */ fdirctrl |= (0x6 << IXGBE_FDIRCTRL_FLEX_SHIFT); /* Prime the keys for hashing */ IXGBE_WRITE_REG(hw, IXGBE_FDIRHKEY, IXGBE_HTONL(IXGBE_ATR_BUCKET_HASH_KEY)); IXGBE_WRITE_REG(hw, IXGBE_FDIRSKEY, IXGBE_HTONL(IXGBE_ATR_SIGNATURE_HASH_KEY)); /* * Poll init-done after we write the register. Estimated times: * 10G: PBALLOC = 11b, timing is 60us * 1G: PBALLOC = 11b, timing is 600us * 100M: PBALLOC = 11b, timing is 6ms * * Multiple these timings by 4 if under full Rx load * * So we'll poll for IXGBE_FDIR_INIT_DONE_POLL times, sleeping for * 1 msec per poll time. If we're at line rate and drop to 100M, then * this might not finish in our poll time, but we can live with that * for now. */ /* Set the maximum length per hash bucket to 0xA filters */ fdirctrl |= (0xA << IXGBE_FDIRCTRL_MAX_LENGTH_SHIFT); IXGBE_WRITE_REG(hw, IXGBE_FDIRCTRL, fdirctrl); IXGBE_WRITE_FLUSH(hw); for (i = 0; i < IXGBE_FDIR_INIT_DONE_POLL; i++) { if (IXGBE_READ_REG(hw, IXGBE_FDIRCTRL) & IXGBE_FDIRCTRL_INIT_DONE) break; msec_delay(1); } if (i >= IXGBE_FDIR_INIT_DONE_POLL) { DEBUGOUT("Flow Director Perfect poll time exceeded!\n"); } return (IXGBE_SUCCESS); } /* * ixgbe_atr_compute_hash_82599 - Compute the hashes for SW ATR * @stream: input bitstream to compute the hash on * @key: 32-bit hash key */ u16 ixgbe_atr_compute_hash_82599(struct ixgbe_atr_input *atr_input, u32 key) { /* * The algorithm is as follows: * Hash[15:0] = Sum { S[n] x K[n+16] }, n = 0...350 * where Sum {A[n]}, n = 0...n is bitwise XOR of A[0], A[1]...A[n] * and A[n] x B[n] is bitwise AND between same length strings * * K[n] is 16 bits, defined as: * for n modulo 32 >= 15, K[n] = K[n % 32 : (n % 32) - 15] * for n modulo 32 < 15, K[n] = * K[(n % 32:0) | (31:31 - (14 - (n % 32)))] * * S[n] is 16 bits, defined as: * for n >= 15, S[n] = S[n:n - 15] * for n < 15, S[n] = S[(n:0) | (350:350 - (14 - n))] * * To simplify for programming, the algorithm is implemented * in software this way: * * Key[31:0], Stream[335:0] * * tmp_key[11 * 32 - 1:0] = 11{Key[31:0] = key concatenated 11 times * int_key[350:0] = tmp_key[351:1] * int_stream[365:0] = Stream[14:0] | Stream[335:0] | Stream[335:321] * * hash[15:0] = 0; * for (i = 0; i < 351; i++) { * if (int_key[i]) * hash ^= int_stream[(i + 15):i]; * } */ union { u32 key[11]; u8 key_stream[44]; } tmp_key; u8 *stream = (u8 *)atr_input; u8 int_key[44]; /* upper-most bit unused */ u8 hash_str[46]; /* upper-most 2 bits unused */ u16 hash_result = 0; u16 tmp = 0; int i, j, k, h; (void) memset(&tmp_key, 0, sizeof (tmp_key)); /* First load the temporary key stream */ for (i = 0; i < 11; i++) tmp_key.key[i] = key; /* * Set the interim key for the hashing. Bit 352 is unused, so we must * shift and compensate when building the key. */ int_key[0] = tmp_key.key_stream[0] >> 1; for (i = 1, j = 0; i < 44; i++) { int_key[i] = (tmp_key.key_stream[j] & 0x1) << 7; j++; int_key[i] |= tmp_key.key_stream[j] >> 1; } /* * Set the interim bit string for the hashing. Bits 368 and 367 are * unused, so shift and compensate when building the string. */ hash_str[0] = (stream[40] & 0x7f) >> 1; for (i = 1, j = 40; i < 46; i++) { hash_str[i] = (stream[j] & 0x1) << 7; j++; if (j > 41) j = 0; hash_str[i] |= stream[j] >> 1; } /* * Now compute the hash. i is the index into hash_str, j is into our * key stream, k is counting the number of bits, and h interates within * each byte. */ for (i = 45, j = 43, k = 0; k < 351 && i >= 2 && j >= 0; i--, j--) { for (h = 0; h < 8 && k < 351; h++, k++) { if ((int_key[j] >> h) & 0x1) { /* * Key bit is set, XOR in the current 16-bit * string. Example of processing: * h = 0, * tmp = (hash_str[i - 2] & 0 << 16) | * (hash_str[i - 1] & 0xff << 8) | * (hash_str[i] & 0xff >> 0) * So tmp = hash_str[15 + k:k], since the * i + 2 clause rolls off the 16-bit value * h = 7, * tmp = (hash_str[i - 2] & 0x7f << 9) | * (hash_str[i - 1] & 0xff << 1) | * (hash_str[i] & 0x80 >> 7) */ tmp = ((hash_str[i] & (0xff << h)) >> h); tmp |= ((hash_str[i - 1] & 0xff) << (8 - h)); tmp |= (hash_str[i - 2] & (0xff >> (8 - h))) << (16 - h); hash_result ^= tmp; } } } return (hash_result); } /* * ixgbe_atr_set_vlan_id_82599 - Sets the VLAN id in the ATR input stream * @input: input stream to modify * @vlan: the VLAN id to load */ s32 ixgbe_atr_set_vlan_id_82599(struct ixgbe_atr_input *input, u16 vlan) { input->byte_stream[IXGBE_ATR_VLAN_OFFSET + 1] = vlan >> 8; input->byte_stream[IXGBE_ATR_VLAN_OFFSET] = vlan & 0xff; return (IXGBE_SUCCESS); } /* * ixgbe_atr_set_src_ipv4_82599 - Sets the source IPv4 address * @input: input stream to modify * @src_addr: the IP address to load */ s32 ixgbe_atr_set_src_ipv4_82599(struct ixgbe_atr_input *input, u32 src_addr) { input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 3] = src_addr >> 24; input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 2] = (src_addr >> 16) & 0xff; input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 1] = (src_addr >> 8) & 0xff; input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET] = src_addr & 0xff; return (IXGBE_SUCCESS); } /* * ixgbe_atr_set_dst_ipv4_82599 - Sets the destination IPv4 address * @input: input stream to modify * @dst_addr: the IP address to load */ s32 ixgbe_atr_set_dst_ipv4_82599(struct ixgbe_atr_input *input, u32 dst_addr) { input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 3] = dst_addr >> 24; input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 2] = (dst_addr >> 16) & 0xff; input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 1] = (dst_addr >> 8) & 0xff; input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET] = dst_addr & 0xff; return (IXGBE_SUCCESS); } /* * ixgbe_atr_set_src_ipv6_82599 - Sets the source IPv6 address * @input: input stream to modify * @src_addr_1: the first 4 bytes of the IP address to load * @src_addr_2: the second 4 bytes of the IP address to load * @src_addr_3: the third 4 bytes of the IP address to load * @src_addr_4: the fourth 4 bytes of the IP address to load */ s32 ixgbe_atr_set_src_ipv6_82599(struct ixgbe_atr_input *input, u32 src_addr_1, u32 src_addr_2, u32 src_addr_3, u32 src_addr_4) { input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET] = src_addr_4 & 0xff; input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 1] = (src_addr_4 >> 8) & 0xff; input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 2] = (src_addr_4 >> 16) & 0xff; input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 3] = src_addr_4 >> 24; input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 4] = src_addr_3 & 0xff; input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 5] = (src_addr_3 >> 8) & 0xff; input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 6] = (src_addr_3 >> 16) & 0xff; input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 7] = src_addr_3 >> 24; input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 8] = src_addr_2 & 0xff; input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 9] = (src_addr_2 >> 8) & 0xff; input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 10] = (src_addr_2 >> 16) & 0xff; input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 11] = src_addr_2 >> 24; input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 12] = src_addr_1 & 0xff; input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 13] = (src_addr_1 >> 8) & 0xff; input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 14] = (src_addr_1 >> 16) & 0xff; input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 15] = src_addr_1 >> 24; return (IXGBE_SUCCESS); } /* * ixgbe_atr_set_dst_ipv6_82599 - Sets the destination IPv6 address * @input: input stream to modify * @dst_addr_1: the first 4 bytes of the IP address to load * @dst_addr_2: the second 4 bytes of the IP address to load * @dst_addr_3: the third 4 bytes of the IP address to load * @dst_addr_4: the fourth 4 bytes of the IP address to load */ s32 ixgbe_atr_set_dst_ipv6_82599(struct ixgbe_atr_input *input, u32 dst_addr_1, u32 dst_addr_2, u32 dst_addr_3, u32 dst_addr_4) { input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET] = dst_addr_4 & 0xff; input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 1] = (dst_addr_4 >> 8) & 0xff; input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 2] = (dst_addr_4 >> 16) & 0xff; input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 3] = dst_addr_4 >> 24; input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 4] = dst_addr_3 & 0xff; input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 5] = (dst_addr_3 >> 8) & 0xff; input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 6] = (dst_addr_3 >> 16) & 0xff; input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 7] = dst_addr_3 >> 24; input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 8] = dst_addr_2 & 0xff; input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 9] = (dst_addr_2 >> 8) & 0xff; input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 10] = (dst_addr_2 >> 16) & 0xff; input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 11] = dst_addr_2 >> 24; input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 12] = dst_addr_1 & 0xff; input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 13] = (dst_addr_1 >> 8) & 0xff; input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 14] = (dst_addr_1 >> 16) & 0xff; input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 15] = dst_addr_1 >> 24; return (IXGBE_SUCCESS); } /* * ixgbe_atr_set_src_port_82599 - Sets the source port * @input: input stream to modify * @src_port: the source port to load */ s32 ixgbe_atr_set_src_port_82599(struct ixgbe_atr_input *input, u16 src_port) { input->byte_stream[IXGBE_ATR_SRC_PORT_OFFSET + 1] = src_port >> 8; input->byte_stream[IXGBE_ATR_SRC_PORT_OFFSET] = src_port & 0xff; return (IXGBE_SUCCESS); } /* * ixgbe_atr_set_dst_port_82599 - Sets the destination port * @input: input stream to modify * @dst_port: the destination port to load */ s32 ixgbe_atr_set_dst_port_82599(struct ixgbe_atr_input *input, u16 dst_port) { input->byte_stream[IXGBE_ATR_DST_PORT_OFFSET + 1] = dst_port >> 8; input->byte_stream[IXGBE_ATR_DST_PORT_OFFSET] = dst_port & 0xff; return (IXGBE_SUCCESS); } /* * ixgbe_atr_set_flex_byte_82599 - Sets the flexible bytes * @input: input stream to modify * @flex_bytes: the flexible bytes to load */ s32 ixgbe_atr_set_flex_byte_82599(struct ixgbe_atr_input *input, u16 flex_byte) { input->byte_stream[IXGBE_ATR_FLEX_BYTE_OFFSET + 1] = flex_byte >> 8; input->byte_stream[IXGBE_ATR_FLEX_BYTE_OFFSET] = flex_byte & 0xff; return (IXGBE_SUCCESS); } /* * ixgbe_atr_set_vm_pool_82599 - Sets the Virtual Machine pool * @input: input stream to modify * @vm_pool: the Virtual Machine pool to load */ s32 ixgbe_atr_set_vm_pool_82599(struct ixgbe_atr_input *input, u8 vm_pool) { input->byte_stream[IXGBE_ATR_VM_POOL_OFFSET] = vm_pool; return (IXGBE_SUCCESS); } /* * ixgbe_atr_set_l4type_82599 - Sets the layer 4 packet type * @input: input stream to modify * @l4type: the layer 4 type value to load */ s32 ixgbe_atr_set_l4type_82599(struct ixgbe_atr_input *input, u8 l4type) { input->byte_stream[IXGBE_ATR_L4TYPE_OFFSET] = l4type; return (IXGBE_SUCCESS); } /* * ixgbe_atr_get_vlan_id_82599 - Gets the VLAN id from the ATR input stream * @input: input stream to search * @vlan: the VLAN id to load */ s32 ixgbe_atr_get_vlan_id_82599(struct ixgbe_atr_input *input, u16 *vlan) { *vlan = input->byte_stream[IXGBE_ATR_VLAN_OFFSET]; *vlan |= input->byte_stream[IXGBE_ATR_VLAN_OFFSET + 1] << 8; return (IXGBE_SUCCESS); } /* * ixgbe_atr_get_src_ipv4_82599 - Gets the source IPv4 address * @input: input stream to search * @src_addr: the IP address to load */ s32 ixgbe_atr_get_src_ipv4_82599(struct ixgbe_atr_input *input, u32 *src_addr) { *src_addr = input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET]; *src_addr |= input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 1] << 8; *src_addr |= input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 2] << 16; *src_addr |= input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 3] << 24; return (IXGBE_SUCCESS); } /* * ixgbe_atr_get_dst_ipv4_82599 - Gets the destination IPv4 address * @input: input stream to search * @dst_addr: the IP address to load */ s32 ixgbe_atr_get_dst_ipv4_82599(struct ixgbe_atr_input *input, u32 *dst_addr) { *dst_addr = input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET]; *dst_addr |= input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 1] << 8; *dst_addr |= input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 2] << 16; *dst_addr |= input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 3] << 24; return (IXGBE_SUCCESS); } /* * ixgbe_atr_get_src_ipv6_82599 - Gets the source IPv6 address * @input: input stream to search * @src_addr_1: the first 4 bytes of the IP address to load * @src_addr_2: the second 4 bytes of the IP address to load * @src_addr_3: the third 4 bytes of the IP address to load * @src_addr_4: the fourth 4 bytes of the IP address to load */ s32 ixgbe_atr_get_src_ipv6_82599(struct ixgbe_atr_input *input, u32 *src_addr_1, u32 *src_addr_2, u32 *src_addr_3, u32 *src_addr_4) { *src_addr_1 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 12]; *src_addr_1 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 13] << 8; *src_addr_1 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 14] << 16; *src_addr_1 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 15] << 24; *src_addr_2 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 8]; *src_addr_2 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 9] << 8; *src_addr_2 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 10] << 16; *src_addr_2 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 11] << 24; *src_addr_3 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 4]; *src_addr_3 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 5] << 8; *src_addr_3 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 6] << 16; *src_addr_3 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 7] << 24; *src_addr_4 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET]; *src_addr_4 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 1] << 8; *src_addr_4 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 2] << 16; *src_addr_4 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 3] << 24; return (IXGBE_SUCCESS); } /* * ixgbe_atr_get_dst_ipv6_82599 - Gets the destination IPv6 address * @input: input stream to search * @dst_addr_1: the first 4 bytes of the IP address to load * @dst_addr_2: the second 4 bytes of the IP address to load * @dst_addr_3: the third 4 bytes of the IP address to load * @dst_addr_4: the fourth 4 bytes of the IP address to load */ s32 ixgbe_atr_get_dst_ipv6_82599(struct ixgbe_atr_input *input, u32 *dst_addr_1, u32 *dst_addr_2, u32 *dst_addr_3, u32 *dst_addr_4) { *dst_addr_1 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 12]; *dst_addr_1 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 13] << 8; *dst_addr_1 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 14] << 16; *dst_addr_1 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 15] << 24; *dst_addr_2 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 8]; *dst_addr_2 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 9] << 8; *dst_addr_2 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 10] << 16; *dst_addr_2 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 11] << 24; *dst_addr_3 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 4]; *dst_addr_3 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 5] << 8; *dst_addr_3 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 6] << 16; *dst_addr_3 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 7] << 24; *dst_addr_4 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET]; *dst_addr_4 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 1] << 8; *dst_addr_4 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 2] << 16; *dst_addr_4 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 3] << 24; return (IXGBE_SUCCESS); } /* * ixgbe_atr_get_src_port_82599 - Gets the source port * @input: input stream to modify * @src_port: the source port to load * * Even though the input is given in big-endian, the FDIRPORT registers * expect the ports to be programmed in little-endian. Hence the need to swap * endianness when retrieving the data. This can be confusing since the * internal hash engine expects it to be big-endian. */ s32 ixgbe_atr_get_src_port_82599(struct ixgbe_atr_input *input, u16 *src_port) { *src_port = input->byte_stream[IXGBE_ATR_SRC_PORT_OFFSET] << 8; *src_port |= input->byte_stream[IXGBE_ATR_SRC_PORT_OFFSET + 1]; return (IXGBE_SUCCESS); } /* * ixgbe_atr_get_dst_port_82599 - Gets the destination port * @input: input stream to modify * @dst_port: the destination port to load * * Even though the input is given in big-endian, the FDIRPORT registers * expect the ports to be programmed in little-endian. Hence the need to swap * endianness when retrieving the data. This can be confusing since the * internal hash engine expects it to be big-endian. */ s32 ixgbe_atr_get_dst_port_82599(struct ixgbe_atr_input *input, u16 *dst_port) { *dst_port = input->byte_stream[IXGBE_ATR_DST_PORT_OFFSET] << 8; *dst_port |= input->byte_stream[IXGBE_ATR_DST_PORT_OFFSET + 1]; return (IXGBE_SUCCESS); } /* * ixgbe_atr_get_flex_byte_82599 - Gets the flexible bytes * @input: input stream to modify * @flex_bytes: the flexible bytes to load */ s32 ixgbe_atr_get_flex_byte_82599(struct ixgbe_atr_input *input, u16 *flex_byte) { *flex_byte = input->byte_stream[IXGBE_ATR_FLEX_BYTE_OFFSET]; *flex_byte |= input->byte_stream[IXGBE_ATR_FLEX_BYTE_OFFSET + 1] << 8; return (IXGBE_SUCCESS); } /* * ixgbe_atr_get_vm_pool_82599 - Gets the Virtual Machine pool * @input: input stream to modify * @vm_pool: the Virtual Machine pool to load */ s32 ixgbe_atr_get_vm_pool_82599(struct ixgbe_atr_input *input, u8 *vm_pool) { *vm_pool = input->byte_stream[IXGBE_ATR_VM_POOL_OFFSET]; return (IXGBE_SUCCESS); } /* * ixgbe_atr_get_l4type_82599 - Gets the layer 4 packet type * @input: input stream to modify * @l4type: the layer 4 type value to load */ s32 ixgbe_atr_get_l4type_82599(struct ixgbe_atr_input *input, u8 *l4type) { *l4type = input->byte_stream[IXGBE_ATR_L4TYPE_OFFSET]; return (IXGBE_SUCCESS); } /* * ixgbe_atr_add_signature_filter_82599 - Adds a signature hash filter * @hw: pointer to hardware structure * @stream: input bitstream * @queue: queue index to direct traffic to */ s32 ixgbe_fdir_add_signature_filter_82599(struct ixgbe_hw *hw, struct ixgbe_atr_input *input, u8 queue) { u64 fdirhashcmd; u64 fdircmd; u32 fdirhash; u16 bucket_hash, sig_hash; u8 l4type; bucket_hash = ixgbe_atr_compute_hash_82599(input, IXGBE_ATR_BUCKET_HASH_KEY); /* bucket_hash is only 15 bits */ bucket_hash &= IXGBE_ATR_HASH_MASK; sig_hash = ixgbe_atr_compute_hash_82599(input, IXGBE_ATR_SIGNATURE_HASH_KEY); /* Get the l4type in order to program FDIRCMD properly */ /* lowest 2 bits are FDIRCMD.L4TYPE, third lowest bit is FDIRCMD.IPV6 */ (void) ixgbe_atr_get_l4type_82599(input, &l4type); /* * The lower 32-bits of fdirhashcmd is for FDIRHASH, the upper 32-bits * is for FDIRCMD. Then do a 64-bit register write from FDIRHASH. */ fdirhash = sig_hash << IXGBE_FDIRHASH_SIG_SW_INDEX_SHIFT | bucket_hash; fdircmd = (IXGBE_FDIRCMD_CMD_ADD_FLOW | IXGBE_FDIRCMD_FILTER_UPDATE | IXGBE_FDIRCMD_LAST | IXGBE_FDIRCMD_QUEUE_EN); switch (l4type & IXGBE_ATR_L4TYPE_MASK) { case IXGBE_ATR_L4TYPE_TCP: fdircmd |= IXGBE_FDIRCMD_L4TYPE_TCP; break; case IXGBE_ATR_L4TYPE_UDP: fdircmd |= IXGBE_FDIRCMD_L4TYPE_UDP; break; case IXGBE_ATR_L4TYPE_SCTP: fdircmd |= IXGBE_FDIRCMD_L4TYPE_SCTP; break; default: DEBUGOUT(" Error on l4type input\n"); return (IXGBE_ERR_CONFIG); } if (l4type & IXGBE_ATR_L4TYPE_IPV6_MASK) fdircmd |= IXGBE_FDIRCMD_IPV6; fdircmd |= ((u64)queue << IXGBE_FDIRCMD_RX_QUEUE_SHIFT); fdirhashcmd = ((fdircmd << 32) | fdirhash); DEBUGOUT2("Tx Queue=%x hash=%x\n", queue, fdirhash & 0x7FFF7FFF); IXGBE_WRITE_REG64(hw, IXGBE_FDIRHASH, fdirhashcmd); return (IXGBE_SUCCESS); } /* * ixgbe_fdir_add_perfect_filter_82599 - Adds a perfect filter * @hw: pointer to hardware structure * @input: input bitstream * @queue: queue index to direct traffic to * * Note that the caller to this function must lock before calling, since the * hardware writes must be protected from one another. */ s32 ixgbe_fdir_add_perfect_filter_82599(struct ixgbe_hw *hw, struct ixgbe_atr_input *input, u16 soft_id, u8 queue) { u32 fdircmd = 0; u32 fdirhash; u32 src_ipv4, dst_ipv4; u32 src_ipv6_1, src_ipv6_2, src_ipv6_3, src_ipv6_4; u16 src_port, dst_port, vlan_id, flex_bytes; u16 bucket_hash; u8 l4type; /* Get our input values */ (void) ixgbe_atr_get_l4type_82599(input, &l4type); /* * Check l4type formatting, and bail out before we touch the hardware * if there's a configuration issue */ switch (l4type & IXGBE_ATR_L4TYPE_MASK) { case IXGBE_ATR_L4TYPE_TCP: fdircmd |= IXGBE_FDIRCMD_L4TYPE_TCP; break; case IXGBE_ATR_L4TYPE_UDP: fdircmd |= IXGBE_FDIRCMD_L4TYPE_UDP; break; case IXGBE_ATR_L4TYPE_SCTP: fdircmd |= IXGBE_FDIRCMD_L4TYPE_SCTP; break; default: DEBUGOUT(" Error on l4type input\n"); return (IXGBE_ERR_CONFIG); } bucket_hash = ixgbe_atr_compute_hash_82599(input, IXGBE_ATR_BUCKET_HASH_KEY); /* bucket_hash is only 15 bits */ bucket_hash &= IXGBE_ATR_HASH_MASK; (void) ixgbe_atr_get_vlan_id_82599(input, &vlan_id); (void) ixgbe_atr_get_src_port_82599(input, &src_port); (void) ixgbe_atr_get_dst_port_82599(input, &dst_port); (void) ixgbe_atr_get_flex_byte_82599(input, &flex_bytes); fdirhash = soft_id << IXGBE_FDIRHASH_SIG_SW_INDEX_SHIFT | bucket_hash; /* Now figure out if we're IPv4 or IPv6 */ if (l4type & IXGBE_ATR_L4TYPE_IPV6_MASK) { /* IPv6 */ (void) ixgbe_atr_get_src_ipv6_82599(input, &src_ipv6_1, &src_ipv6_2, &src_ipv6_3, &src_ipv6_4); IXGBE_WRITE_REG(hw, IXGBE_FDIRSIPv6(0), src_ipv6_1); IXGBE_WRITE_REG(hw, IXGBE_FDIRSIPv6(1), src_ipv6_2); IXGBE_WRITE_REG(hw, IXGBE_FDIRSIPv6(2), src_ipv6_3); /* The last 4 bytes is the same register as IPv4 */ IXGBE_WRITE_REG(hw, IXGBE_FDIRIPSA, src_ipv6_4); fdircmd |= IXGBE_FDIRCMD_IPV6; fdircmd |= IXGBE_FDIRCMD_IPv6DMATCH; } else { /* IPv4 */ (void) ixgbe_atr_get_src_ipv4_82599(input, &src_ipv4); IXGBE_WRITE_REG(hw, IXGBE_FDIRIPSA, src_ipv4); } (void) ixgbe_atr_get_dst_ipv4_82599(input, &dst_ipv4); IXGBE_WRITE_REG(hw, IXGBE_FDIRIPDA, dst_ipv4); IXGBE_WRITE_REG(hw, IXGBE_FDIRVLAN, (vlan_id | (flex_bytes << IXGBE_FDIRVLAN_FLEX_SHIFT))); IXGBE_WRITE_REG(hw, IXGBE_FDIRPORT, (src_port | (dst_port << IXGBE_FDIRPORT_DESTINATION_SHIFT))); fdircmd |= IXGBE_FDIRCMD_CMD_ADD_FLOW; fdircmd |= IXGBE_FDIRCMD_FILTER_UPDATE; fdircmd |= IXGBE_FDIRCMD_LAST; fdircmd |= IXGBE_FDIRCMD_QUEUE_EN; fdircmd |= queue << IXGBE_FDIRCMD_RX_QUEUE_SHIFT; IXGBE_WRITE_REG(hw, IXGBE_FDIRHASH, fdirhash); IXGBE_WRITE_REG(hw, IXGBE_FDIRCMD, fdircmd); return (IXGBE_SUCCESS); } /* * ixgbe_read_analog_reg8_82599 - Reads 8 bit Omer analog register * @hw: pointer to hardware structure * @reg: analog register to read * @val: read value * * Performs read operation to Omer analog register specified. */ s32 ixgbe_read_analog_reg8_82599(struct ixgbe_hw *hw, u32 reg, u8 *val) { u32 core_ctl; IXGBE_WRITE_REG(hw, IXGBE_CORECTL, IXGBE_CORECTL_WRITE_CMD | (reg << 8)); IXGBE_WRITE_FLUSH(hw); usec_delay(10); core_ctl = IXGBE_READ_REG(hw, IXGBE_CORECTL); *val = (u8)core_ctl; return (IXGBE_SUCCESS); } /* * ixgbe_write_analog_reg8_82599 - Writes 8 bit Omer analog register * @hw: pointer to hardware structure * @reg: atlas register to write * @val: value to write * * Performs write operation to Omer analog register specified. */ s32 ixgbe_write_analog_reg8_82599(struct ixgbe_hw *hw, u32 reg, u8 val) { u32 core_ctl; core_ctl = (reg << 8) | val; IXGBE_WRITE_REG(hw, IXGBE_CORECTL, core_ctl); IXGBE_WRITE_FLUSH(hw); usec_delay(10); return (IXGBE_SUCCESS); } /* * ixgbe_start_hw_rev_1_82599 - Prepare hardware for Tx/Rx * @hw: pointer to hardware structure * * Starts the hardware using the generic start_hw function. * Then performs revision-specific operations: * Clears the rate limiter registers. */ s32 ixgbe_start_hw_rev_1_82599(struct ixgbe_hw *hw) { u32 q_num; s32 ret_val = IXGBE_SUCCESS; ret_val = ixgbe_start_hw_generic(hw); /* Clear the rate limiters */ for (q_num = 0; q_num < hw->mac.max_tx_queues; q_num++) { IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, q_num); IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0); } IXGBE_WRITE_FLUSH(hw); return (ret_val); } /* * ixgbe_identify_phy_82599 - Get physical layer module * @hw: pointer to hardware structure * * Determines the physical layer module found on the current adapter. * If PHY already detected, maintains current PHY type in hw struct, * otherwise executes the PHY detection routine. */ s32 ixgbe_identify_phy_82599(struct ixgbe_hw *hw) { s32 status = IXGBE_ERR_PHY_ADDR_INVALID; /* Detect PHY if not unknown - returns success if already detected. */ status = ixgbe_identify_phy_generic(hw); if (status != IXGBE_SUCCESS) status = ixgbe_identify_sfp_module_generic(hw); /* Set PHY type none if no PHY detected */ if (hw->phy.type == ixgbe_phy_unknown) { hw->phy.type = ixgbe_phy_none; status = IXGBE_SUCCESS; } /* Return error if SFP module has been detected but is not supported */ if (hw->phy.type == ixgbe_phy_sfp_unsupported) status = IXGBE_ERR_SFP_NOT_SUPPORTED; return (status); } /* * ixgbe_get_supported_physical_layer_82599 - Returns physical layer type * @hw: pointer to hardware structure * * Determines physical layer capabilities of the current configuration. */ u32 ixgbe_get_supported_physical_layer_82599(struct ixgbe_hw *hw) { u32 physical_layer = IXGBE_PHYSICAL_LAYER_UNKNOWN; u32 autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC); u32 autoc2 = IXGBE_READ_REG(hw, IXGBE_AUTOC2); u32 pma_pmd_10g_serial = autoc2 & IXGBE_AUTOC2_10G_SERIAL_PMA_PMD_MASK; u32 pma_pmd_10g_parallel = autoc & IXGBE_AUTOC_10G_PMA_PMD_MASK; u32 pma_pmd_1g = autoc & IXGBE_AUTOC_1G_PMA_PMD_MASK; u16 ext_ability = 0; u8 comp_codes_10g = 0; hw->phy.ops.identify(hw); if (hw->phy.type == ixgbe_phy_tn || hw->phy.type == ixgbe_phy_cu_unknown) { hw->phy.ops.read_reg(hw, IXGBE_MDIO_PHY_EXT_ABILITY, IXGBE_MDIO_PMA_PMD_DEV_TYPE, &ext_ability); if (ext_ability & IXGBE_MDIO_PHY_10GBASET_ABILITY) physical_layer |= IXGBE_PHYSICAL_LAYER_10GBASE_T; if (ext_ability & IXGBE_MDIO_PHY_1000BASET_ABILITY) physical_layer |= IXGBE_PHYSICAL_LAYER_1000BASE_T; if (ext_ability & IXGBE_MDIO_PHY_100BASETX_ABILITY) physical_layer |= IXGBE_PHYSICAL_LAYER_100BASE_TX; goto out; } switch (autoc & IXGBE_AUTOC_LMS_MASK) { case IXGBE_AUTOC_LMS_1G_AN: case IXGBE_AUTOC_LMS_1G_LINK_NO_AN: if (pma_pmd_1g == IXGBE_AUTOC_1G_KX_BX) { physical_layer = IXGBE_PHYSICAL_LAYER_1000BASE_KX | IXGBE_PHYSICAL_LAYER_1000BASE_BX; goto out; } else /* SFI mode so read SFP module */ goto sfp_check; case IXGBE_AUTOC_LMS_10G_LINK_NO_AN: if (pma_pmd_10g_parallel == IXGBE_AUTOC_10G_CX4) physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_CX4; else if (pma_pmd_10g_parallel == IXGBE_AUTOC_10G_KX4) physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_KX4; goto out; case IXGBE_AUTOC_LMS_10G_SERIAL: if (pma_pmd_10g_serial == IXGBE_AUTOC2_10G_KR) { physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_KR; goto out; } else if (pma_pmd_10g_serial == IXGBE_AUTOC2_10G_SFI) goto sfp_check; break; case IXGBE_AUTOC_LMS_KX4_KX_KR: case IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN: if (autoc & IXGBE_AUTOC_KX_SUPP) physical_layer |= IXGBE_PHYSICAL_LAYER_1000BASE_KX; if (autoc & IXGBE_AUTOC_KX4_SUPP) physical_layer |= IXGBE_PHYSICAL_LAYER_10GBASE_KX4; if (autoc & IXGBE_AUTOC_KR_SUPP) physical_layer |= IXGBE_PHYSICAL_LAYER_10GBASE_KR; goto out; default: goto out; } sfp_check: /* * SFP check must be done last since DA modules are sometimes used to * test KR mode - we need to id KR mode correctly before SFP module. * Call identify_sfp because the pluggable module may have changed */ hw->phy.ops.identify_sfp(hw); if (hw->phy.sfp_type == ixgbe_sfp_type_not_present) goto out; switch (hw->phy.type) { case ixgbe_phy_tw_tyco: case ixgbe_phy_tw_unknown: physical_layer = IXGBE_PHYSICAL_LAYER_SFP_PLUS_CU; break; case ixgbe_phy_sfp_avago: case ixgbe_phy_sfp_ftl: case ixgbe_phy_sfp_intel: case ixgbe_phy_sfp_unknown: hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_10GBE_COMP_CODES, &comp_codes_10g); if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE) physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_SR; else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE) physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_LR; break; default: break; } out: return (physical_layer); } /* * ixgbe_enable_rx_dma_82599 - Enable the Rx DMA unit on 82599 * @hw: pointer to hardware structure * @regval: register value to write to RXCTRL * * Enables the Rx DMA unit for 82599 */ s32 ixgbe_enable_rx_dma_82599(struct ixgbe_hw *hw, u32 regval) { #define IXGBE_MAX_SECRX_POLL 30 int i; int secrxreg; /* * Workaround for 82599 silicon errata when enabling the Rx datapath. * If traffic is incoming before we enable the Rx unit, it could hang * the Rx DMA unit. Therefore, make sure the security engine is * completely disabled prior to enabling the Rx unit. */ secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL); secrxreg |= IXGBE_SECRXCTRL_RX_DIS; IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg); for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) { secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT); if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY) break; else /* Use interrupt-safe sleep just in case */ usec_delay(10); } /* For informational purposes only */ if (i >= IXGBE_MAX_SECRX_POLL) DEBUGOUT("Rx unit being enabled before security " "path fully disabled. Continuing with init.\n"); IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval); secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL); secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS; IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg); IXGBE_WRITE_FLUSH(hw); return (IXGBE_SUCCESS); } /* * ixgbe_get_device_caps_82599 - Get additional device capabilities * @hw: pointer to hardware structure * @device_caps: the EEPROM word with the extra device capabilities * * This function will read the EEPROM location for the device capabilities, * and return the word through device_caps. */ s32 ixgbe_get_device_caps_82599(struct ixgbe_hw *hw, u16 *device_caps) { hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps); return (IXGBE_SUCCESS); } /* * ixgbe_get_san_mac_addr_offset_82599 - SAN MAC address offset for 82599 * @hw: pointer to hardware structure * @san_mac_offset: SAN MAC address offset * * This function will read the EEPROM location for the SAN MAC address * pointer, and returns the value at that location. This is used in both * get and set mac_addr routines. */ s32 ixgbe_get_san_mac_addr_offset_82599(struct ixgbe_hw *hw, u16 *san_mac_offset) { /* * First read the EEPROM pointer to see if the MAC addresses are * available. */ hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset); return (IXGBE_SUCCESS); } /* * ixgbe_get_san_mac_addr_82599 - SAN MAC address retrieval for 82599 * @hw: pointer to hardware structure * @san_mac_addr: SAN MAC address * * Reads the SAN MAC address from the EEPROM, if it's available. This is * per-port, so set_lan_id() must be called before reading the addresses. * set_lan_id() is called by identify_sfp(), but this cannot be relied * upon for non-SFP connections, so we must call it here. */ s32 ixgbe_get_san_mac_addr_82599(struct ixgbe_hw *hw, u8 *san_mac_addr) { u16 san_mac_data, san_mac_offset; u8 i; /* * First read the EEPROM pointer to see if the MAC addresses are * available. If they're not, no point in calling set_lan_id() here. */ (void) ixgbe_get_san_mac_addr_offset_82599(hw, &san_mac_offset); if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) { /* * No addresses available in this EEPROM. It's not an * error though, so just wipe the local address and return. */ for (i = 0; i < 6; i++) san_mac_addr[i] = 0xFF; goto san_mac_addr_out; } /* make sure we know which port we need to program */ hw->mac.ops.set_lan_id(hw); /* apply the port offset to the address offset */ (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) : (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET); for (i = 0; i < 3; i++) { hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data); san_mac_addr[i * 2] = (u8)(san_mac_data); san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8); san_mac_offset++; } san_mac_addr_out: return (IXGBE_SUCCESS); } /* * ixgbe_set_san_mac_addr_82599 - Write the SAN MAC address to the EEPROM * @hw: pointer to hardware structure * @san_mac_addr: SAN MAC address * * Write a SAN MAC address to the EEPROM. */ s32 ixgbe_set_san_mac_addr_82599(struct ixgbe_hw *hw, u8 *san_mac_addr) { s32 status = IXGBE_SUCCESS; u16 san_mac_data, san_mac_offset; u8 i; /* Look for SAN mac address pointer. If not defined, return */ (void) ixgbe_get_san_mac_addr_offset_82599(hw, &san_mac_offset); if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) { status = IXGBE_ERR_NO_SAN_ADDR_PTR; goto san_mac_addr_out; } /* Make sure we know which port we need to write */ hw->mac.ops.set_lan_id(hw); /* Apply the port offset to the address offset */ (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) : (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET); for (i = 0; i < 3; i++) { san_mac_data = (u16)((u16)(san_mac_addr[i * 2 + 1]) << 8); san_mac_data |= (u16)(san_mac_addr[i * 2]); hw->eeprom.ops.write(hw, san_mac_offset, san_mac_data); san_mac_offset++; } san_mac_addr_out: return (status); }