/* * CDDL HEADER START * * Copyright(c) 2007-2008 Intel Corporation. All rights reserved. * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at: * http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When using or redistributing this file, you may do so under the * License only. No other modification of this header is permitted. * * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms of the CDDL. */ #pragma ident "%Z%%M% %I% %E% SMI" #include "igb_sw.h" static char ident[] = "Intel 1Gb Ethernet 1.1.1"; /* * Local function protoypes */ static int igb_register_mac(igb_t *); static int igb_identify_hardware(igb_t *); static int igb_regs_map(igb_t *); static void igb_init_properties(igb_t *); static int igb_init_driver_settings(igb_t *); static void igb_init_locks(igb_t *); static void igb_destroy_locks(igb_t *); static int igb_init(igb_t *); static int igb_chip_start(igb_t *); static void igb_chip_stop(igb_t *); static int igb_reset(igb_t *); static void igb_tx_clean(igb_t *); static boolean_t igb_tx_drain(igb_t *); static boolean_t igb_rx_drain(igb_t *); static int igb_alloc_rings(igb_t *); static int igb_init_rings(igb_t *); static void igb_free_rings(igb_t *); static void igb_fini_rings(igb_t *); static void igb_setup_rings(igb_t *); static void igb_setup_rx(igb_t *); static void igb_setup_tx(igb_t *); static void igb_setup_rx_ring(igb_rx_ring_t *); static void igb_setup_tx_ring(igb_tx_ring_t *); static void igb_setup_rss(igb_t *); static void igb_init_unicst(igb_t *); static void igb_setup_multicst(igb_t *); static void igb_get_phy_state(igb_t *); static void igb_get_conf(igb_t *); static int igb_get_prop(igb_t *, char *, int, int, int); static boolean_t igb_is_link_up(igb_t *); static boolean_t igb_link_check(igb_t *); static void igb_local_timer(void *); static void igb_arm_watchdog_timer(igb_t *); static void igb_start_watchdog_timer(igb_t *); static void igb_restart_watchdog_timer(igb_t *); static void igb_stop_watchdog_timer(igb_t *); static void igb_disable_adapter_interrupts(igb_t *); static void igb_enable_adapter_interrupts(igb_t *); static boolean_t is_valid_mac_addr(uint8_t *); static boolean_t igb_stall_check(igb_t *); static boolean_t igb_set_loopback_mode(igb_t *, uint32_t); static void igb_set_external_loopback(igb_t *); static void igb_set_internal_mac_loopback(igb_t *); static void igb_set_internal_phy_loopback(igb_t *); static void igb_set_internal_serdes_loopback(igb_t *); static boolean_t igb_find_mac_address(igb_t *); static int igb_alloc_intrs(igb_t *); static int igb_alloc_intrs_msix(igb_t *); static int igb_alloc_intrs_msi(igb_t *); static int igb_alloc_intrs_legacy(igb_t *); static int igb_add_intr_handlers(igb_t *); static void igb_rem_intr_handlers(igb_t *); static void igb_rem_intrs(igb_t *); static int igb_enable_intrs(igb_t *); static int igb_disable_intrs(igb_t *); static void igb_setup_adapter_msix(igb_t *); static uint_t igb_intr_legacy(void *, void *); static uint_t igb_intr_msi(void *, void *); static uint_t igb_intr_rx(void *, void *); static uint_t igb_intr_tx_other(void *, void *); static void igb_intr_rx_work(igb_rx_ring_t *); static void igb_intr_tx_work(igb_tx_ring_t *); static void igb_intr_other_work(igb_t *); static void igb_get_driver_control(struct e1000_hw *); static void igb_release_driver_control(struct e1000_hw *); static int igb_attach(dev_info_t *, ddi_attach_cmd_t); static int igb_detach(dev_info_t *, ddi_detach_cmd_t); static int igb_resume(dev_info_t *); static int igb_suspend(dev_info_t *); static void igb_unconfigure(dev_info_t *, igb_t *); static struct cb_ops igb_cb_ops = { nulldev, /* cb_open */ nulldev, /* cb_close */ nodev, /* cb_strategy */ nodev, /* cb_print */ nodev, /* cb_dump */ nodev, /* cb_read */ nodev, /* cb_write */ nodev, /* cb_ioctl */ nodev, /* cb_devmap */ nodev, /* cb_mmap */ nodev, /* cb_segmap */ nochpoll, /* cb_chpoll */ ddi_prop_op, /* cb_prop_op */ NULL, /* cb_stream */ D_MP | D_HOTPLUG, /* cb_flag */ CB_REV, /* cb_rev */ nodev, /* cb_aread */ nodev /* cb_awrite */ }; static struct dev_ops igb_dev_ops = { DEVO_REV, /* devo_rev */ 0, /* devo_refcnt */ NULL, /* devo_getinfo */ nulldev, /* devo_identify */ nulldev, /* devo_probe */ igb_attach, /* devo_attach */ igb_detach, /* devo_detach */ nodev, /* devo_reset */ &igb_cb_ops, /* devo_cb_ops */ NULL, /* devo_bus_ops */ ddi_power /* devo_power */ }; static struct modldrv igb_modldrv = { &mod_driverops, /* Type of module. This one is a driver */ ident, /* Discription string */ &igb_dev_ops, /* driver ops */ }; static struct modlinkage igb_modlinkage = { MODREV_1, &igb_modldrv, NULL }; /* Access attributes for register mapping */ ddi_device_acc_attr_t igb_regs_acc_attr = { DDI_DEVICE_ATTR_V0, DDI_STRUCTURE_LE_ACC, DDI_STRICTORDER_ACC, }; #define IGB_M_CALLBACK_FLAGS (MC_IOCTL | MC_GETCAPAB) static mac_callbacks_t igb_m_callbacks = { IGB_M_CALLBACK_FLAGS, igb_m_stat, igb_m_start, igb_m_stop, igb_m_promisc, igb_m_multicst, igb_m_unicst, igb_m_tx, NULL, igb_m_ioctl, igb_m_getcapab }; /* * Module Initialization Functions */ int _init(void) { int status; mac_init_ops(&igb_dev_ops, MODULE_NAME); status = mod_install(&igb_modlinkage); if (status != DDI_SUCCESS) { mac_fini_ops(&igb_dev_ops); } return (status); } int _fini(void) { int status; status = mod_remove(&igb_modlinkage); if (status == DDI_SUCCESS) { mac_fini_ops(&igb_dev_ops); } return (status); } int _info(struct modinfo *modinfop) { int status; status = mod_info(&igb_modlinkage, modinfop); return (status); } /* * igb_attach - driver attach * * This function is the device specific initialization entry * point. This entry point is required and must be written. * The DDI_ATTACH command must be provided in the attach entry * point. When attach() is called with cmd set to DDI_ATTACH, * all normal kernel services (such as kmem_alloc(9F)) are * available for use by the driver. * * The attach() function will be called once for each instance * of the device on the system with cmd set to DDI_ATTACH. * Until attach() succeeds, the only driver entry points which * may be called are open(9E) and getinfo(9E). */ static int igb_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd) { igb_t *igb; struct igb_osdep *osdep; struct e1000_hw *hw; int instance; /* * Check the command and perform corresponding operations */ switch (cmd) { default: return (DDI_FAILURE); case DDI_RESUME: return (igb_resume(devinfo)); case DDI_ATTACH: break; } /* Get the device instance */ instance = ddi_get_instance(devinfo); /* Allocate memory for the instance data structure */ igb = kmem_zalloc(sizeof (igb_t), KM_SLEEP); igb->dip = devinfo; igb->instance = instance; hw = &igb->hw; osdep = &igb->osdep; hw->back = osdep; osdep->igb = igb; /* Attach the instance pointer to the dev_info data structure */ ddi_set_driver_private(devinfo, igb); /* * Map PCI config space registers */ if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) { igb_error(igb, "Failed to map PCI configurations"); goto attach_fail; } igb->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG; /* * Identify the chipset family */ if (igb_identify_hardware(igb) != IGB_SUCCESS) { igb_error(igb, "Failed to identify hardware"); goto attach_fail; } /* * Map device registers */ if (igb_regs_map(igb) != IGB_SUCCESS) { igb_error(igb, "Failed to map device registers"); goto attach_fail; } igb->attach_progress |= ATTACH_PROGRESS_REGS_MAP; /* * Initialize driver parameters */ igb_init_properties(igb); igb->attach_progress |= ATTACH_PROGRESS_PROPS; /* * Allocate interrupts */ if (igb_alloc_intrs(igb) != IGB_SUCCESS) { igb_error(igb, "Failed to allocate interrupts"); goto attach_fail; } igb->attach_progress |= ATTACH_PROGRESS_ALLOC_INTR; /* * Allocate rx/tx rings based on the ring numbers. * The actual numbers of rx/tx rings are decided by the number of * allocated interrupt vectors, so we should allocate the rings after * interrupts are allocated. */ if (igb_alloc_rings(igb) != IGB_SUCCESS) { igb_error(igb, "Failed to allocate rx and tx rings"); goto attach_fail; } igb->attach_progress |= ATTACH_PROGRESS_ALLOC_RINGS; /* * Add interrupt handlers */ if (igb_add_intr_handlers(igb) != IGB_SUCCESS) { igb_error(igb, "Failed to add interrupt handlers"); goto attach_fail; } igb->attach_progress |= ATTACH_PROGRESS_ADD_INTR; /* * Initialize driver parameters */ if (igb_init_driver_settings(igb) != IGB_SUCCESS) { igb_error(igb, "Failed to initialize driver settings"); goto attach_fail; } /* * Initialize mutexes for this device. * Do this before enabling the interrupt handler and * register the softint to avoid the condition where * interrupt handler can try using uninitialized mutex */ igb_init_locks(igb); igb->attach_progress |= ATTACH_PROGRESS_LOCKS; /* * Initialize chipset hardware */ if (igb_init(igb) != IGB_SUCCESS) { igb_error(igb, "Failed to initialize adapter"); goto attach_fail; } igb->attach_progress |= ATTACH_PROGRESS_INIT; /* * Initialize DMA and hardware settings for rx/tx rings */ if (igb_init_rings(igb) != IGB_SUCCESS) { igb_error(igb, "Failed to initialize rings"); goto attach_fail; } igb->attach_progress |= ATTACH_PROGRESS_INIT_RINGS; /* * Initialize statistics */ if (igb_init_stats(igb) != IGB_SUCCESS) { igb_error(igb, "Failed to initialize statistics"); goto attach_fail; } igb->attach_progress |= ATTACH_PROGRESS_STATS; /* * Initialize NDD parameters */ if (igb_nd_init(igb) != IGB_SUCCESS) { igb_error(igb, "Failed to initialize ndd"); goto attach_fail; } igb->attach_progress |= ATTACH_PROGRESS_NDD; /* * Register the driver to the MAC */ if (igb_register_mac(igb) != IGB_SUCCESS) { igb_error(igb, "Failed to register MAC"); goto attach_fail; } igb->attach_progress |= ATTACH_PROGRESS_MAC; /* * Now that mutex locks are initialized, and the chip is also * initialized, enable interrupts. */ if (igb_enable_intrs(igb) != IGB_SUCCESS) { igb_error(igb, "Failed to enable DDI interrupts"); goto attach_fail; } igb->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR; igb->igb_state |= IGB_INITIALIZED; return (DDI_SUCCESS); attach_fail: igb_unconfigure(devinfo, igb); return (DDI_FAILURE); } /* * igb_detach - driver detach * * The detach() function is the complement of the attach routine. * If cmd is set to DDI_DETACH, detach() is used to remove the * state associated with a given instance of a device node * prior to the removal of that instance from the system. * * The detach() function will be called once for each instance * of the device for which there has been a successful attach() * once there are no longer any opens on the device. * * Interrupts routine are disabled, All memory allocated by this * driver are freed. */ static int igb_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd) { igb_t *igb; /* * Check detach command */ switch (cmd) { default: return (DDI_FAILURE); case DDI_SUSPEND: return (igb_suspend(devinfo)); case DDI_DETACH: break; } /* * Get the pointer to the driver private data structure */ igb = (igb_t *)ddi_get_driver_private(devinfo); if (igb == NULL) return (DDI_FAILURE); /* * Unregister MAC. If failed, we have to fail the detach */ if (mac_unregister(igb->mac_hdl) != 0) { igb_error(igb, "Failed to unregister MAC"); return (DDI_FAILURE); } igb->attach_progress &= ~ATTACH_PROGRESS_MAC; /* * If the device is still running, it needs to be stopped first. * This check is necessary because under some specific circumstances, * the detach routine can be called without stopping the interface * first. */ mutex_enter(&igb->gen_lock); if (igb->igb_state & IGB_STARTED) { igb->igb_state &= ~IGB_STARTED; igb_stop(igb); mutex_exit(&igb->gen_lock); /* Disable and stop the watchdog timer */ igb_disable_watchdog_timer(igb); } else mutex_exit(&igb->gen_lock); /* * Check if there are still rx buffers held by the upper layer. * If so, fail the detach. */ if (!igb_rx_drain(igb)) return (DDI_FAILURE); /* * Do the remaining unconfigure routines */ igb_unconfigure(devinfo, igb); return (DDI_SUCCESS); } static void igb_unconfigure(dev_info_t *devinfo, igb_t *igb) { /* * Disable interrupt */ if (igb->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) { (void) igb_disable_intrs(igb); } /* * Unregister MAC */ if (igb->attach_progress & ATTACH_PROGRESS_MAC) { (void) mac_unregister(igb->mac_hdl); } /* * Free ndd parameters */ if (igb->attach_progress & ATTACH_PROGRESS_NDD) { igb_nd_cleanup(igb); } /* * Free statistics */ if (igb->attach_progress & ATTACH_PROGRESS_STATS) { kstat_delete((kstat_t *)igb->igb_ks); } /* * Remove interrupt handlers */ if (igb->attach_progress & ATTACH_PROGRESS_ADD_INTR) { igb_rem_intr_handlers(igb); } /* * Remove interrupts */ if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_INTR) { igb_rem_intrs(igb); } /* * Remove driver properties */ if (igb->attach_progress & ATTACH_PROGRESS_PROPS) { (void) ddi_prop_remove_all(devinfo); } /* * Release the DMA resources of rx/tx rings */ if (igb->attach_progress & ATTACH_PROGRESS_INIT_RINGS) { igb_fini_rings(igb); } /* * Stop the chipset */ if (igb->attach_progress & ATTACH_PROGRESS_INIT) { mutex_enter(&igb->gen_lock); igb_chip_stop(igb); mutex_exit(&igb->gen_lock); } /* * Free register handle */ if (igb->attach_progress & ATTACH_PROGRESS_REGS_MAP) { if (igb->osdep.reg_handle != NULL) ddi_regs_map_free(&igb->osdep.reg_handle); } /* * Free PCI config handle */ if (igb->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) { if (igb->osdep.cfg_handle != NULL) pci_config_teardown(&igb->osdep.cfg_handle); } /* * Free locks */ if (igb->attach_progress & ATTACH_PROGRESS_LOCKS) { igb_destroy_locks(igb); } /* * Free the rx/tx rings */ if (igb->attach_progress & ATTACH_PROGRESS_ALLOC_RINGS) { igb_free_rings(igb); } /* * Free device specific structure */ e1000_remove_device(&igb->hw); /* * Free the driver data structure */ kmem_free(igb, sizeof (igb_t)); ddi_set_driver_private(devinfo, NULL); } /* * igb_register_mac - Register the driver and its function pointers with * the GLD interface */ static int igb_register_mac(igb_t *igb) { struct e1000_hw *hw = &igb->hw; mac_register_t *mac; int status; if ((mac = mac_alloc(MAC_VERSION)) == NULL) return (IGB_FAILURE); mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER; mac->m_driver = igb; mac->m_dip = igb->dip; mac->m_src_addr = hw->mac.addr; mac->m_callbacks = &igb_m_callbacks; mac->m_min_sdu = 0; mac->m_max_sdu = igb->max_frame_size - sizeof (struct ether_vlan_header) - ETHERFCSL; status = mac_register(mac, &igb->mac_hdl); mac_free(mac); return ((status == 0) ? IGB_SUCCESS : IGB_FAILURE); } /* * igb_identify_hardware - Identify the type of the chipset */ static int igb_identify_hardware(igb_t *igb) { struct e1000_hw *hw = &igb->hw; struct igb_osdep *osdep = &igb->osdep; /* * Get the device id */ hw->vendor_id = pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID); hw->device_id = pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID); hw->revision_id = pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID); hw->subsystem_device_id = pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID); hw->subsystem_vendor_id = pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID); /* * Set the mac type of the adapter based on the device id */ if (e1000_set_mac_type(hw) != E1000_SUCCESS) { return (IGB_FAILURE); } return (IGB_SUCCESS); } /* * igb_regs_map - Map the device registers */ static int igb_regs_map(igb_t *igb) { dev_info_t *devinfo = igb->dip; struct e1000_hw *hw = &igb->hw; struct igb_osdep *osdep = &igb->osdep; off_t mem_size; /* * First get the size of device registers to be mapped. */ if (ddi_dev_regsize(devinfo, 1, &mem_size) != DDI_SUCCESS) { return (IGB_FAILURE); } /* * Call ddi_regs_map_setup() to map registers */ if ((ddi_regs_map_setup(devinfo, 1, (caddr_t *)&hw->hw_addr, 0, mem_size, &igb_regs_acc_attr, &osdep->reg_handle)) != DDI_SUCCESS) { return (IGB_FAILURE); } return (IGB_SUCCESS); } /* * igb_init_properties - Initialize driver properties */ static void igb_init_properties(igb_t *igb) { /* * Get conf file properties, including link settings * jumbo frames, ring number, descriptor number, etc. */ igb_get_conf(igb); } /* * igb_init_driver_settings - Initialize driver settings * * The settings include hardware function pointers, bus information, * rx/tx rings settings, link state, and any other parameters that * need to be setup during driver initialization. */ static int igb_init_driver_settings(igb_t *igb) { struct e1000_hw *hw = &igb->hw; igb_rx_ring_t *rx_ring; igb_tx_ring_t *tx_ring; uint32_t rx_size; uint32_t tx_size; int i; /* * Initialize chipset specific hardware function pointers */ if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) { return (IGB_FAILURE); } /* * Get bus information */ if (e1000_get_bus_info(hw) != E1000_SUCCESS) { return (IGB_FAILURE); } /* * Set rx buffer size * The IP header alignment room is counted in the calculation. * The rx buffer size is in unit of 1K that is required by the * chipset hardware. */ rx_size = igb->max_frame_size + IPHDR_ALIGN_ROOM; igb->rx_buf_size = ((rx_size >> 10) + ((rx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10; /* * Set tx buffer size */ tx_size = igb->max_frame_size; igb->tx_buf_size = ((tx_size >> 10) + ((tx_size & (((uint32_t)1 << 10) - 1)) > 0 ? 1 : 0)) << 10; /* * Initialize rx/tx rings parameters */ for (i = 0; i < igb->num_rx_rings; i++) { rx_ring = &igb->rx_rings[i]; rx_ring->index = i; rx_ring->igb = igb; rx_ring->ring_size = igb->rx_ring_size; rx_ring->free_list_size = igb->rx_ring_size; rx_ring->copy_thresh = igb->rx_copy_thresh; rx_ring->limit_per_intr = igb->rx_limit_per_intr; } for (i = 0; i < igb->num_tx_rings; i++) { tx_ring = &igb->tx_rings[i]; tx_ring->index = i; tx_ring->igb = igb; if (igb->tx_head_wb_enable) tx_ring->tx_recycle = igb_tx_recycle_head_wb; else tx_ring->tx_recycle = igb_tx_recycle_legacy; tx_ring->ring_size = igb->tx_ring_size; tx_ring->free_list_size = igb->tx_ring_size + (igb->tx_ring_size >> 1); tx_ring->copy_thresh = igb->tx_copy_thresh; tx_ring->recycle_thresh = igb->tx_recycle_thresh; tx_ring->overload_thresh = igb->tx_overload_thresh; tx_ring->resched_thresh = igb->tx_resched_thresh; } /* * Initialize values of interrupt throttling rate */ for (i = 1; i < MAX_NUM_EITR; i++) igb->intr_throttling[i] = igb->intr_throttling[0]; /* * The initial link state should be "unknown" */ igb->link_state = LINK_STATE_UNKNOWN; return (IGB_SUCCESS); } /* * igb_init_locks - Initialize locks */ static void igb_init_locks(igb_t *igb) { igb_rx_ring_t *rx_ring; igb_tx_ring_t *tx_ring; int i; for (i = 0; i < igb->num_rx_rings; i++) { rx_ring = &igb->rx_rings[i]; mutex_init(&rx_ring->rx_lock, NULL, MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri)); mutex_init(&rx_ring->recycle_lock, NULL, MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri)); } for (i = 0; i < igb->num_tx_rings; i++) { tx_ring = &igb->tx_rings[i]; mutex_init(&tx_ring->tx_lock, NULL, MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri)); mutex_init(&tx_ring->recycle_lock, NULL, MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri)); mutex_init(&tx_ring->tcb_head_lock, NULL, MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri)); mutex_init(&tx_ring->tcb_tail_lock, NULL, MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri)); } mutex_init(&igb->gen_lock, NULL, MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri)); mutex_init(&igb->watchdog_lock, NULL, MUTEX_DRIVER, DDI_INTR_PRI(igb->intr_pri)); } /* * igb_destroy_locks - Destroy locks */ static void igb_destroy_locks(igb_t *igb) { igb_rx_ring_t *rx_ring; igb_tx_ring_t *tx_ring; int i; for (i = 0; i < igb->num_rx_rings; i++) { rx_ring = &igb->rx_rings[i]; mutex_destroy(&rx_ring->rx_lock); mutex_destroy(&rx_ring->recycle_lock); } for (i = 0; i < igb->num_tx_rings; i++) { tx_ring = &igb->tx_rings[i]; mutex_destroy(&tx_ring->tx_lock); mutex_destroy(&tx_ring->recycle_lock); mutex_destroy(&tx_ring->tcb_head_lock); mutex_destroy(&tx_ring->tcb_tail_lock); } mutex_destroy(&igb->gen_lock); mutex_destroy(&igb->watchdog_lock); } static int igb_resume(dev_info_t *devinfo) { igb_t *igb; igb = (igb_t *)ddi_get_driver_private(devinfo); if (igb == NULL) return (DDI_FAILURE); mutex_enter(&igb->gen_lock); if (igb->igb_state & IGB_STARTED) { if (igb_start(igb) != IGB_SUCCESS) { mutex_exit(&igb->gen_lock); return (DDI_FAILURE); } /* * Enable and start the watchdog timer */ igb_enable_watchdog_timer(igb); } igb->igb_state &= ~IGB_SUSPENDED; mutex_exit(&igb->gen_lock); return (DDI_SUCCESS); } static int igb_suspend(dev_info_t *devinfo) { igb_t *igb; igb = (igb_t *)ddi_get_driver_private(devinfo); if (igb == NULL) return (DDI_FAILURE); mutex_enter(&igb->gen_lock); igb->igb_state |= IGB_SUSPENDED; igb_stop(igb); mutex_exit(&igb->gen_lock); /* * Disable and stop the watchdog timer */ igb_disable_watchdog_timer(igb); return (DDI_SUCCESS); } /* * igb_init - Initialize the device */ static int igb_init(igb_t *igb) { struct e1000_hw *hw = &igb->hw; uint32_t pba; uint32_t high_water; mutex_enter(&igb->gen_lock); /* * Reset chipset to put the hardware in a known state * before we try to do anything with the eeprom */ (void) e1000_reset_hw(hw); /* * NVM validation */ if (e1000_validate_nvm_checksum(hw) < 0) { /* * Some PCI-E parts fail the first check due to * the link being in sleep state. Call it again, * if it fails a second time its a real issue. */ if (e1000_validate_nvm_checksum(hw) < 0) { igb_error(igb, "Invalid NVM checksum. Please contact " "the vendor to update the NVM."); goto init_fail; } } /* * Set the FIFO size */ pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */ E1000_WRITE_REG(hw, E1000_PBA, pba); /* * Setup flow control * * These parameters set thresholds for the adapter's generation(Tx) * and response(Rx) to Ethernet PAUSE frames. These are just threshold * settings. Flow control is enabled or disabled in the configuration * file. * High-water mark is set down from the top of the rx fifo (not * sensitive to max_frame_size) and low-water is set just below * high-water mark. * The high water mark must be low enough to fit one full frame above * it in the rx FIFO. Should be the lower of: * 90% of the Rx FIFO size, or the full Rx FIFO size minus one full * frame. */ high_water = min(((pba << 10) * 9 / 10), ((pba << 10) - igb->max_frame_size)); hw->fc.high_water = high_water & 0xFFF8; hw->fc.low_water = hw->fc.high_water - 8; hw->fc.pause_time = E1000_FC_PAUSE_TIME; hw->fc.send_xon = B_TRUE; /* * Reset the chipset hardware the second time to validate * the PBA setting. */ (void) e1000_reset_hw(hw); /* * Don't wait for auto-negotiation to complete */ hw->phy.autoneg_wait_to_complete = B_FALSE; /* * Copper options */ if (hw->phy.media_type == e1000_media_type_copper) { hw->phy.mdix = 0; /* AUTO_ALL_MODES */ hw->phy.disable_polarity_correction = B_FALSE; hw->phy.ms_type = e1000_ms_hw_default; /* E1000_MASTER_SLAVE */ } /* * Initialize link settings */ (void) igb_setup_link(igb, B_FALSE); /* * Initialize the chipset hardware */ if (igb_chip_start(igb) != IGB_SUCCESS) { goto init_fail; } mutex_exit(&igb->gen_lock); return (IGB_SUCCESS); init_fail: /* * Reset PHY if possible */ if (e1000_check_reset_block(hw) == E1000_SUCCESS) (void) e1000_phy_hw_reset(hw); mutex_exit(&igb->gen_lock); return (IGB_FAILURE); } /* * igb_init_rings - Allocate DMA resources for all rx/tx rings and * initialize relevant hardware settings. */ static int igb_init_rings(igb_t *igb) { int i; /* * Allocate buffers for all the rx/tx rings */ if (igb_alloc_dma(igb) != IGB_SUCCESS) return (IGB_FAILURE); /* * Setup the rx/tx rings */ mutex_enter(&igb->gen_lock); for (i = 0; i < igb->num_rx_rings; i++) mutex_enter(&igb->rx_rings[i].rx_lock); for (i = 0; i < igb->num_tx_rings; i++) mutex_enter(&igb->tx_rings[i].tx_lock); igb_setup_rings(igb); for (i = igb->num_tx_rings - 1; i >= 0; i--) mutex_exit(&igb->tx_rings[i].tx_lock); for (i = igb->num_rx_rings - 1; i >= 0; i--) mutex_exit(&igb->rx_rings[i].rx_lock); mutex_exit(&igb->gen_lock); return (IGB_SUCCESS); } /* * igb_fini_rings - Release DMA resources of all rx/tx rings */ static void igb_fini_rings(igb_t *igb) { /* * Release the DMA/memory resources of rx/tx rings */ igb_free_dma(igb); } /* * igb_chip_start - Initialize and start the chipset hardware */ static int igb_chip_start(igb_t *igb) { struct e1000_hw *hw = &igb->hw; int i; ASSERT(mutex_owned(&igb->gen_lock)); /* * Get the mac address * This function should handle SPARC case correctly. */ if (!igb_find_mac_address(igb)) { igb_error(igb, "Failed to get the mac address"); return (IGB_FAILURE); } /* Validate mac address */ if (!is_valid_mac_addr(hw->mac.addr)) { igb_error(igb, "Invalid mac address"); return (IGB_FAILURE); } /* Disable wakeup control by default */ E1000_WRITE_REG(hw, E1000_WUC, 0); /* * Configure/Initialize hardware */ if (e1000_init_hw(hw) != E1000_SUCCESS) { igb_error(igb, "Failed to initialize hardware"); return (IGB_FAILURE); } /* * Make sure driver has control */ igb_get_driver_control(hw); /* * Setup MSI-X interrupts */ if (igb->intr_type == DDI_INTR_TYPE_MSIX) igb_setup_adapter_msix(igb); /* * Initialize unicast addresses. */ igb_init_unicst(igb); /* * Setup and initialize the mctable structures. */ igb_setup_multicst(igb); /* * Set interrupt throttling rate */ for (i = 0; i < igb->intr_cnt; i++) E1000_WRITE_REG(hw, E1000_EITR(i), igb->intr_throttling[i]); /* Enable PCI-E master */ if (hw->bus.type == e1000_bus_type_pci_express) { e1000_enable_pciex_master(hw); } /* * Save the state of the phy */ igb_get_phy_state(igb); return (IGB_SUCCESS); } /* * igb_chip_stop - Stop the chipset hardware */ static void igb_chip_stop(igb_t *igb) { struct e1000_hw *hw = &igb->hw; ASSERT(mutex_owned(&igb->gen_lock)); /* Tell firmware driver is no longer in control */ igb_release_driver_control(hw); /* * Reset the chipset */ (void) e1000_reset_hw(hw); /* * Reset PHY if possible */ if (e1000_check_reset_block(hw) == E1000_SUCCESS) (void) e1000_phy_hw_reset(hw); } /* * igb_reset - Reset the chipset and restart the driver. * * It involves stopping and re-starting the chipset, * and re-configuring the rx/tx rings. */ static int igb_reset(igb_t *igb) { int i; mutex_enter(&igb->gen_lock); ASSERT(igb->igb_state & IGB_STARTED); /* * Disable the adapter interrupts to stop any rx/tx activities * before draining pending data and resetting hardware. */ igb_disable_adapter_interrupts(igb); /* * Drain the pending transmit packets */ (void) igb_tx_drain(igb); for (i = 0; i < igb->num_rx_rings; i++) mutex_enter(&igb->rx_rings[i].rx_lock); for (i = 0; i < igb->num_tx_rings; i++) mutex_enter(&igb->tx_rings[i].tx_lock); /* * Stop the chipset hardware */ igb_chip_stop(igb); /* * Clean the pending tx data/resources */ igb_tx_clean(igb); /* * Start the chipset hardware */ if (igb_chip_start(igb) != IGB_SUCCESS) { goto reset_failure; } /* * Setup the rx/tx rings */ igb_setup_rings(igb); /* * Enable adapter interrupts * The interrupts must be enabled after the driver state is START */ igb_enable_adapter_interrupts(igb); for (i = igb->num_tx_rings - 1; i >= 0; i--) mutex_exit(&igb->tx_rings[i].tx_lock); for (i = igb->num_rx_rings - 1; i >= 0; i--) mutex_exit(&igb->rx_rings[i].rx_lock); mutex_exit(&igb->gen_lock); return (IGB_SUCCESS); reset_failure: for (i = igb->num_tx_rings - 1; i >= 0; i--) mutex_exit(&igb->tx_rings[i].tx_lock); for (i = igb->num_rx_rings - 1; i >= 0; i--) mutex_exit(&igb->rx_rings[i].rx_lock); mutex_exit(&igb->gen_lock); return (IGB_FAILURE); } /* * igb_tx_clean - Clean the pending transmit packets and DMA resources */ static void igb_tx_clean(igb_t *igb) { igb_tx_ring_t *tx_ring; tx_control_block_t *tcb; link_list_t pending_list; uint32_t desc_num; int i, j; LINK_LIST_INIT(&pending_list); for (i = 0; i < igb->num_tx_rings; i++) { tx_ring = &igb->tx_rings[i]; mutex_enter(&tx_ring->recycle_lock); /* * Clean the pending tx data - the pending packets in the * work_list that have no chances to be transmitted again. * * We must ensure the chipset is stopped or the link is down * before cleaning the transmit packets. */ desc_num = 0; for (j = 0; j < tx_ring->ring_size; j++) { tcb = tx_ring->work_list[j]; if (tcb != NULL) { desc_num += tcb->desc_num; tx_ring->work_list[j] = NULL; igb_free_tcb(tcb); LIST_PUSH_TAIL(&pending_list, &tcb->link); } } if (desc_num > 0) { atomic_add_32(&tx_ring->tbd_free, desc_num); ASSERT(tx_ring->tbd_free == tx_ring->ring_size); /* * Reset the head and tail pointers of the tbd ring */ tx_ring->tbd_head = 0; tx_ring->tbd_tail = 0; E1000_WRITE_REG(&igb->hw, E1000_TDH(tx_ring->index), 0); E1000_WRITE_REG(&igb->hw, E1000_TDT(tx_ring->index), 0); } mutex_exit(&tx_ring->recycle_lock); /* * Add the tx control blocks in the pending list to * the free list. */ igb_put_free_list(tx_ring, &pending_list); } } /* * igb_tx_drain - Drain the tx rings to allow pending packets to be transmitted */ static boolean_t igb_tx_drain(igb_t *igb) { igb_tx_ring_t *tx_ring; boolean_t done; int i, j; /* * Wait for a specific time to allow pending tx packets * to be transmitted. * * Check the counter tbd_free to see if transmission is done. * No lock protection is needed here. * * Return B_TRUE if all pending packets have been transmitted; * Otherwise return B_FALSE; */ for (i = 0; i < TX_DRAIN_TIME; i++) { done = B_TRUE; for (j = 0; j < igb->num_tx_rings; j++) { tx_ring = &igb->tx_rings[j]; done = done && (tx_ring->tbd_free == tx_ring->ring_size); } if (done) break; msec_delay(1); } return (done); } /* * igb_rx_drain - Wait for all rx buffers to be released by upper layer */ static boolean_t igb_rx_drain(igb_t *igb) { igb_rx_ring_t *rx_ring; boolean_t done; int i, j; /* * Polling the rx free list to check if those rx buffers held by * the upper layer are released. * * Check the counter rcb_free to see if all pending buffers are * released. No lock protection is needed here. * * Return B_TRUE if all pending buffers have been released; * Otherwise return B_FALSE; */ for (i = 0; i < RX_DRAIN_TIME; i++) { done = B_TRUE; for (j = 0; j < igb->num_rx_rings; j++) { rx_ring = &igb->rx_rings[j]; done = done && (rx_ring->rcb_free == rx_ring->free_list_size); } if (done) break; msec_delay(1); } return (done); } /* * igb_start - Start the driver/chipset */ int igb_start(igb_t *igb) { int i; ASSERT(mutex_owned(&igb->gen_lock)); for (i = 0; i < igb->num_rx_rings; i++) mutex_enter(&igb->rx_rings[i].rx_lock); for (i = 0; i < igb->num_tx_rings; i++) mutex_enter(&igb->tx_rings[i].tx_lock); /* * Start the chipset hardware */ if (igb_chip_start(igb) != IGB_SUCCESS) { goto start_failure; } /* * Setup the rx/tx rings */ igb_setup_rings(igb); /* * Enable adapter interrupts * The interrupts must be enabled after the driver state is START */ igb_enable_adapter_interrupts(igb); for (i = igb->num_tx_rings - 1; i >= 0; i--) mutex_exit(&igb->tx_rings[i].tx_lock); for (i = igb->num_rx_rings - 1; i >= 0; i--) mutex_exit(&igb->rx_rings[i].rx_lock); return (IGB_SUCCESS); start_failure: for (i = igb->num_tx_rings - 1; i >= 0; i--) mutex_exit(&igb->tx_rings[i].tx_lock); for (i = igb->num_rx_rings - 1; i >= 0; i--) mutex_exit(&igb->rx_rings[i].rx_lock); return (IGB_FAILURE); } /* * igb_stop - Stop the driver/chipset */ void igb_stop(igb_t *igb) { int i; ASSERT(mutex_owned(&igb->gen_lock)); /* * Disable the adapter interrupts */ igb_disable_adapter_interrupts(igb); /* * Drain the pending tx packets */ (void) igb_tx_drain(igb); for (i = 0; i < igb->num_rx_rings; i++) mutex_enter(&igb->rx_rings[i].rx_lock); for (i = 0; i < igb->num_tx_rings; i++) mutex_enter(&igb->tx_rings[i].tx_lock); /* * Stop the chipset hardware */ igb_chip_stop(igb); /* * Clean the pending tx data/resources */ igb_tx_clean(igb); for (i = igb->num_tx_rings - 1; i >= 0; i--) mutex_exit(&igb->tx_rings[i].tx_lock); for (i = igb->num_rx_rings - 1; i >= 0; i--) mutex_exit(&igb->rx_rings[i].rx_lock); } /* * igb_alloc_rings - Allocate memory space for rx/tx rings */ static int igb_alloc_rings(igb_t *igb) { /* * Allocate memory space for rx rings */ igb->rx_rings = kmem_zalloc( sizeof (igb_rx_ring_t) * igb->num_rx_rings, KM_NOSLEEP); if (igb->rx_rings == NULL) { return (IGB_FAILURE); } /* * Allocate memory space for tx rings */ igb->tx_rings = kmem_zalloc( sizeof (igb_tx_ring_t) * igb->num_tx_rings, KM_NOSLEEP); if (igb->tx_rings == NULL) { kmem_free(igb->rx_rings, sizeof (igb_rx_ring_t) * igb->num_rx_rings); igb->rx_rings = NULL; return (IGB_FAILURE); } return (IGB_SUCCESS); } /* * igb_free_rings - Free the memory space of rx/tx rings. */ static void igb_free_rings(igb_t *igb) { if (igb->rx_rings != NULL) { kmem_free(igb->rx_rings, sizeof (igb_rx_ring_t) * igb->num_rx_rings); igb->rx_rings = NULL; } if (igb->tx_rings != NULL) { kmem_free(igb->tx_rings, sizeof (igb_tx_ring_t) * igb->num_tx_rings); igb->tx_rings = NULL; } } /* * igb_setup_rings - Setup rx/tx rings */ static void igb_setup_rings(igb_t *igb) { /* * Setup the rx/tx rings, including the following: * * 1. Setup the descriptor ring and the control block buffers; * 2. Initialize necessary registers for receive/transmit; * 3. Initialize software pointers/parameters for receive/transmit; */ igb_setup_rx(igb); igb_setup_tx(igb); } static void igb_setup_rx_ring(igb_rx_ring_t *rx_ring) { igb_t *igb = rx_ring->igb; struct e1000_hw *hw = &igb->hw; rx_control_block_t *rcb; union e1000_adv_rx_desc *rbd; uint32_t size; uint32_t buf_low; uint32_t buf_high; uint32_t reg_val; int i; ASSERT(mutex_owned(&rx_ring->rx_lock)); ASSERT(mutex_owned(&igb->gen_lock)); for (i = 0; i < igb->rx_ring_size; i++) { rcb = rx_ring->work_list[i]; rbd = &rx_ring->rbd_ring[i]; rbd->read.pkt_addr = rcb->rx_buf.dma_address; rbd->read.hdr_addr = NULL; } /* * Initialize the length register */ size = rx_ring->ring_size * sizeof (union e1000_adv_rx_desc); E1000_WRITE_REG(hw, E1000_RDLEN(rx_ring->index), size); /* * Initialize the base address registers */ buf_low = (uint32_t)rx_ring->rbd_area.dma_address; buf_high = (uint32_t)(rx_ring->rbd_area.dma_address >> 32); E1000_WRITE_REG(hw, E1000_RDBAH(rx_ring->index), buf_high); E1000_WRITE_REG(hw, E1000_RDBAL(rx_ring->index), buf_low); /* * Setup head & tail pointers */ E1000_WRITE_REG(hw, E1000_RDT(rx_ring->index), rx_ring->ring_size - 1); E1000_WRITE_REG(hw, E1000_RDH(rx_ring->index), 0); rx_ring->rbd_next = 0; /* * Note: Considering the case that the chipset is being reset * and there are still some buffers held by the upper layer, * we should not reset the values of rcb_head, rcb_tail and * rcb_free; */ if (igb->igb_state == IGB_UNKNOWN) { rx_ring->rcb_head = 0; rx_ring->rcb_tail = 0; rx_ring->rcb_free = rx_ring->free_list_size; } /* * Setup the Receive Descriptor Control Register (RXDCTL) */ reg_val = E1000_READ_REG(hw, E1000_RXDCTL(rx_ring->index)); reg_val |= E1000_RXDCTL_QUEUE_ENABLE; reg_val &= 0xFFF00000; reg_val |= 16; /* pthresh */ reg_val |= 8 << 8; /* hthresh */ reg_val |= 1 << 16; /* wthresh */ E1000_WRITE_REG(hw, E1000_RXDCTL(rx_ring->index), reg_val); /* * Setup the Split and Replication Receive Control Register. * Set the rx buffer size and the advanced descriptor type. */ reg_val = (igb->rx_buf_size >> E1000_SRRCTL_BSIZEPKT_SHIFT) | E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; E1000_WRITE_REG(hw, E1000_SRRCTL(rx_ring->index), reg_val); } static void igb_setup_rx(igb_t *igb) { igb_rx_ring_t *rx_ring; struct e1000_hw *hw = &igb->hw; uint32_t reg_val; int i; /* * Setup the Receive Control Register (RCTL), and ENABLE the * receiver. The initial configuration is to: Enable the receiver, * accept broadcasts, discard bad packets (and long packets), * disable VLAN filter checking, set the receive descriptor * minimum threshold size to 1/2, and the receive buffer size to * 2k. */ reg_val = E1000_RCTL_EN | /* Enable Receive Unit */ E1000_RCTL_BAM | /* Accept Broadcast Packets */ E1000_RCTL_LPE | /* Large Packet Enable bit */ (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT) | E1000_RCTL_RDMTS_HALF | E1000_RCTL_SECRC | /* Strip Ethernet CRC */ E1000_RCTL_LBM_NO; /* Loopback Mode = none */ E1000_WRITE_REG(hw, E1000_RCTL, reg_val); /* * igb_setup_rx_ring must be called after configuring RCTL */ for (i = 0; i < igb->num_rx_rings; i++) { rx_ring = &igb->rx_rings[i]; igb_setup_rx_ring(rx_ring); } /* * Setup the Rx Long Packet Max Length register */ E1000_WRITE_REG(hw, E1000_RLPML, igb->max_frame_size); /* * Hardware checksum settings */ if (igb->rx_hcksum_enable) { reg_val = E1000_RXCSUM_TUOFL | /* TCP/UDP checksum */ E1000_RXCSUM_IPOFL; /* IP checksum */ E1000_WRITE_REG(hw, E1000_RXCSUM, reg_val); } /* * Setup RSS for multiple receive queues */ if (igb->num_rx_rings > 1) igb_setup_rss(igb); } static void igb_setup_tx_ring(igb_tx_ring_t *tx_ring) { igb_t *igb = tx_ring->igb; struct e1000_hw *hw = &igb->hw; uint32_t size; uint32_t buf_low; uint32_t buf_high; uint32_t reg_val; ASSERT(mutex_owned(&tx_ring->tx_lock)); ASSERT(mutex_owned(&igb->gen_lock)); /* * Initialize the length register */ size = tx_ring->ring_size * sizeof (union e1000_adv_tx_desc); E1000_WRITE_REG(hw, E1000_TDLEN(tx_ring->index), size); /* * Initialize the base address registers */ buf_low = (uint32_t)tx_ring->tbd_area.dma_address; buf_high = (uint32_t)(tx_ring->tbd_area.dma_address >> 32); E1000_WRITE_REG(hw, E1000_TDBAL(tx_ring->index), buf_low); E1000_WRITE_REG(hw, E1000_TDBAH(tx_ring->index), buf_high); /* * Setup head & tail pointers */ E1000_WRITE_REG(hw, E1000_TDH(tx_ring->index), 0); E1000_WRITE_REG(hw, E1000_TDT(tx_ring->index), 0); /* * Setup head write-back */ if (igb->tx_head_wb_enable) { /* * The memory of the head write-back is allocated using * the extra tbd beyond the tail of the tbd ring. */ tx_ring->tbd_head_wb = (uint32_t *) ((uintptr_t)tx_ring->tbd_area.address + size); buf_low = (uint32_t) (tx_ring->tbd_area.dma_address + size); buf_high = (uint32_t) ((tx_ring->tbd_area.dma_address + size) >> 32); /* Set the head write-back enable bit */ buf_low |= E1000_TX_HEAD_WB_ENABLE; E1000_WRITE_REG(hw, E1000_TDWBAL(tx_ring->index), buf_low); E1000_WRITE_REG(hw, E1000_TDWBAH(tx_ring->index), buf_high); /* * Turn off relaxed ordering for head write back or it will * cause problems with the tx recycling */ reg_val = E1000_READ_REG(hw, E1000_DCA_TXCTRL(tx_ring->index)); reg_val &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN; E1000_WRITE_REG(hw, E1000_DCA_TXCTRL(tx_ring->index), reg_val); } else { tx_ring->tbd_head_wb = NULL; } tx_ring->tbd_head = 0; tx_ring->tbd_tail = 0; tx_ring->tbd_free = tx_ring->ring_size; /* * Note: Considering the case that the chipset is being reset, * and there are still some buffers held by the upper layer, * we should not reset the values of tcb_head, tcb_tail. */ if (igb->igb_state == IGB_UNKNOWN) { tx_ring->tcb_head = 0; tx_ring->tcb_tail = 0; tx_ring->tcb_free = tx_ring->free_list_size; } else { ASSERT(tx_ring->tcb_free == tx_ring->free_list_size); } /* * Initialize hardware checksum offload settings */ tx_ring->hcksum_context.hcksum_flags = 0; tx_ring->hcksum_context.ip_hdr_len = 0; tx_ring->hcksum_context.mac_hdr_len = 0; tx_ring->hcksum_context.l4_proto = 0; } static void igb_setup_tx(igb_t *igb) { igb_tx_ring_t *tx_ring; struct e1000_hw *hw = &igb->hw; uint32_t reg_val; int i; for (i = 0; i < igb->num_tx_rings; i++) { tx_ring = &igb->tx_rings[i]; igb_setup_tx_ring(tx_ring); } /* * Setup the Transmit Control Register (TCTL) */ reg_val = E1000_TCTL_PSP | E1000_TCTL_EN | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT) | (E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT) | E1000_TCTL_RTLC; /* Enable the MULR bit */ if (hw->bus.type == e1000_bus_type_pci_express) reg_val |= E1000_TCTL_MULR; E1000_WRITE_REG(hw, E1000_TCTL, reg_val); /* * Set the default values for the Tx Inter Packet Gap timer */ if (hw->phy.media_type == e1000_media_type_fiber) reg_val = DEFAULT_82543_TIPG_IPGT_FIBER; else reg_val = DEFAULT_82543_TIPG_IPGT_COPPER; reg_val |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; reg_val |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; E1000_WRITE_REG(hw, E1000_TIPG, reg_val); } /* * igb_setup_rss - Setup receive-side scaling feature */ static void igb_setup_rss(igb_t *igb) { struct e1000_hw *hw = &igb->hw; uint32_t i, mrqc, rxcsum; int shift; uint32_t random; union e1000_reta { uint32_t dword; uint8_t bytes[4]; } reta; /* Setup the Redirection Table */ shift = 6; for (i = 0; i < (32 * 4); i++) { reta.bytes[i & 3] = (i % igb->num_rx_rings) << shift; if ((i & 3) == 3) { E1000_WRITE_REG(hw, (E1000_RETA(0) + (i & ~3)), reta.dword); } } /* Fill out hash function seeds */ for (i = 0; i < 10; i++) { (void) random_get_pseudo_bytes((uint8_t *)&random, sizeof (uint32_t)); E1000_WRITE_REG(hw, E1000_RSSRK(i), random); } /* Setup the Multiple Receive Queue Control register */ mrqc = E1000_MRQC_ENABLE_RSS_4Q; mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 | E1000_MRQC_RSS_FIELD_IPV4_TCP | E1000_MRQC_RSS_FIELD_IPV6 | E1000_MRQC_RSS_FIELD_IPV6_TCP | E1000_MRQC_RSS_FIELD_IPV4_UDP | E1000_MRQC_RSS_FIELD_IPV6_UDP | E1000_MRQC_RSS_FIELD_IPV6_UDP_EX | E1000_MRQC_RSS_FIELD_IPV6_TCP_EX); E1000_WRITE_REG(hw, E1000_MRQC, mrqc); /* * Disable Packet Checksum to enable RSS for multiple receive queues. * * The Packet Checksum is not ethernet CRC. It is another kind of * checksum offloading provided by the 82575 chipset besides the IP * header checksum offloading and the TCP/UDP checksum offloading. * The Packet Checksum is by default computed over the entire packet * from the first byte of the DA through the last byte of the CRC, * including the Ethernet and IP headers. * * It is a hardware limitation that Packet Checksum is mutually * exclusive with RSS. */ rxcsum = E1000_READ_REG(hw, E1000_RXCSUM); rxcsum |= E1000_RXCSUM_PCSD; E1000_WRITE_REG(hw, E1000_RXCSUM, rxcsum); } /* * igb_init_unicst - Initialize the unicast addresses */ static void igb_init_unicst(igb_t *igb) { struct e1000_hw *hw = &igb->hw; int slot; /* * Here we should consider two situations: * * 1. Chipset is initialized the first time * Initialize the multiple unicast addresses, and * save the default mac address. * * 2. Chipset is reset * Recover the multiple unicast addresses from the * software data structure to the RAR registers. */ if (!igb->unicst_init) { /* Initialize the multiple unicast addresses */ igb->unicst_total = MAX_NUM_UNICAST_ADDRESSES; igb->unicst_avail = igb->unicst_total - 1; /* Store the default mac address */ e1000_rar_set(hw, hw->mac.addr, 0); bcopy(hw->mac.addr, igb->unicst_addr[0].mac.addr, ETHERADDRL); igb->unicst_addr[0].mac.set = 1; for (slot = 1; slot < igb->unicst_total; slot++) igb->unicst_addr[slot].mac.set = 0; igb->unicst_init = B_TRUE; } else { /* Recover the default mac address */ bcopy(igb->unicst_addr[0].mac.addr, hw->mac.addr, ETHERADDRL); /* Store the default mac address */ e1000_rar_set(hw, hw->mac.addr, 0); /* Re-configure the RAR registers */ for (slot = 1; slot < igb->unicst_total; slot++) e1000_rar_set(hw, igb->unicst_addr[slot].mac.addr, slot); } } /* * igb_unicst_set - Set the unicast address to the specified slot */ int igb_unicst_set(igb_t *igb, const uint8_t *mac_addr, mac_addr_slot_t slot) { struct e1000_hw *hw = &igb->hw; ASSERT(mutex_owned(&igb->gen_lock)); /* * Save the unicast address in the software data structure */ bcopy(mac_addr, igb->unicst_addr[slot].mac.addr, ETHERADDRL); /* * Set the unicast address to the RAR register */ e1000_rar_set(hw, (uint8_t *)mac_addr, slot); return (0); } /* * igb_multicst_add - Add a multicst address */ int igb_multicst_add(igb_t *igb, const uint8_t *multiaddr) { ASSERT(mutex_owned(&igb->gen_lock)); if ((multiaddr[0] & 01) == 0) { return (EINVAL); } if (igb->mcast_count >= MAX_NUM_MULTICAST_ADDRESSES) { return (ENOENT); } bcopy(multiaddr, &igb->mcast_table[igb->mcast_count], ETHERADDRL); igb->mcast_count++; /* * Update the multicast table in the hardware */ igb_setup_multicst(igb); return (0); } /* * igb_multicst_remove - Remove a multicst address */ int igb_multicst_remove(igb_t *igb, const uint8_t *multiaddr) { int i; ASSERT(mutex_owned(&igb->gen_lock)); for (i = 0; i < igb->mcast_count; i++) { if (bcmp(multiaddr, &igb->mcast_table[i], ETHERADDRL) == 0) { for (i++; i < igb->mcast_count; i++) { igb->mcast_table[i - 1] = igb->mcast_table[i]; } igb->mcast_count--; break; } } /* * Update the multicast table in the hardware */ igb_setup_multicst(igb); return (0); } /* * igb_setup_multicast - setup multicast data structures * * This routine initializes all of the multicast related structures * and save them in the hardware registers. */ static void igb_setup_multicst(igb_t *igb) { uint8_t *mc_addr_list; uint32_t mc_addr_count; struct e1000_hw *hw = &igb->hw; ASSERT(mutex_owned(&igb->gen_lock)); ASSERT(igb->mcast_count <= MAX_NUM_MULTICAST_ADDRESSES); mc_addr_list = (uint8_t *)igb->mcast_table; mc_addr_count = igb->mcast_count; /* * Update the multicase addresses to the MTA registers */ e1000_update_mc_addr_list(hw, mc_addr_list, mc_addr_count, igb->unicst_total, hw->mac.rar_entry_count); } /* * igb_get_conf - Get driver configurations set in driver.conf * * This routine gets user-configured values out of the configuration * file igb.conf. * * For each configurable value, there is a minimum, a maximum, and a * default. * If user does not configure a value, use the default. * If user configures below the minimum, use the minumum. * If user configures above the maximum, use the maxumum. */ static void igb_get_conf(igb_t *igb) { struct e1000_hw *hw = &igb->hw; uint32_t default_mtu; uint32_t flow_control; /* * igb driver supports the following user configurations: * * Link configurations: * adv_autoneg_cap * adv_1000fdx_cap * adv_100fdx_cap * adv_100hdx_cap * adv_10fdx_cap * adv_10hdx_cap * Note: 1000hdx is not supported. * * Jumbo frame configuration: * default_mtu * * Ethernet flow control configuration: * flow_control * * Multiple rings configurations: * tx_queue_number * tx_ring_size * rx_queue_number * rx_ring_size * * Call igb_get_prop() to get the value for a specific * configuration parameter. */ /* * Link configurations */ igb->param_adv_autoneg_cap = igb_get_prop(igb, PROP_ADV_AUTONEG_CAP, 0, 1, 1); igb->param_adv_1000fdx_cap = igb_get_prop(igb, PROP_ADV_1000FDX_CAP, 0, 1, 1); igb->param_adv_100fdx_cap = igb_get_prop(igb, PROP_ADV_100FDX_CAP, 0, 1, 1); igb->param_adv_100hdx_cap = igb_get_prop(igb, PROP_ADV_100HDX_CAP, 0, 1, 1); igb->param_adv_10fdx_cap = igb_get_prop(igb, PROP_ADV_10FDX_CAP, 0, 1, 1); igb->param_adv_10hdx_cap = igb_get_prop(igb, PROP_ADV_10HDX_CAP, 0, 1, 1); /* * Jumbo frame configurations */ default_mtu = igb_get_prop(igb, PROP_DEFAULT_MTU, MIN_MTU, MAX_MTU, DEFAULT_MTU); igb->max_frame_size = default_mtu + sizeof (struct ether_vlan_header) + ETHERFCSL; /* * Ethernet flow control configuration */ flow_control = igb_get_prop(igb, PROP_FLOW_CONTROL, e1000_fc_none, 4, e1000_fc_full); if (flow_control == 4) flow_control = e1000_fc_default; hw->fc.type = flow_control; /* * Multiple rings configurations */ igb->num_tx_rings = igb_get_prop(igb, PROP_TX_QUEUE_NUM, MIN_TX_QUEUE_NUM, MAX_TX_QUEUE_NUM, DEFAULT_TX_QUEUE_NUM); igb->tx_ring_size = igb_get_prop(igb, PROP_TX_RING_SIZE, MIN_TX_RING_SIZE, MAX_TX_RING_SIZE, DEFAULT_TX_RING_SIZE); igb->num_rx_rings = igb_get_prop(igb, PROP_RX_QUEUE_NUM, MIN_RX_QUEUE_NUM, MAX_RX_QUEUE_NUM, DEFAULT_RX_QUEUE_NUM); igb->rx_ring_size = igb_get_prop(igb, PROP_RX_RING_SIZE, MIN_RX_RING_SIZE, MAX_RX_RING_SIZE, DEFAULT_RX_RING_SIZE); /* * Tunable used to force an interrupt type. The only use is * for testing of the lesser interrupt types. * 0 = don't force interrupt type * 1 = force interrupt type MSIX * 2 = force interrupt type MSI * 3 = force interrupt type Legacy */ igb->intr_force = igb_get_prop(igb, PROP_INTR_FORCE, IGB_INTR_NONE, IGB_INTR_LEGACY, IGB_INTR_NONE); igb->tx_hcksum_enable = igb_get_prop(igb, PROP_TX_HCKSUM_ENABLE, 0, 1, 1); igb->rx_hcksum_enable = igb_get_prop(igb, PROP_RX_HCKSUM_ENABLE, 0, 1, 1); igb->lso_enable = igb_get_prop(igb, PROP_LSO_ENABLE, 0, 1, 0); igb->tx_head_wb_enable = igb_get_prop(igb, PROP_TX_HEAD_WB_ENABLE, 0, 1, 1); igb->tx_copy_thresh = igb_get_prop(igb, PROP_TX_COPY_THRESHOLD, MIN_TX_COPY_THRESHOLD, MAX_TX_COPY_THRESHOLD, DEFAULT_TX_COPY_THRESHOLD); igb->tx_recycle_thresh = igb_get_prop(igb, PROP_TX_RECYCLE_THRESHOLD, MIN_TX_RECYCLE_THRESHOLD, MAX_TX_RECYCLE_THRESHOLD, DEFAULT_TX_RECYCLE_THRESHOLD); igb->tx_overload_thresh = igb_get_prop(igb, PROP_TX_OVERLOAD_THRESHOLD, MIN_TX_OVERLOAD_THRESHOLD, MAX_TX_OVERLOAD_THRESHOLD, DEFAULT_TX_OVERLOAD_THRESHOLD); igb->tx_resched_thresh = igb_get_prop(igb, PROP_TX_RESCHED_THRESHOLD, MIN_TX_RESCHED_THRESHOLD, MAX_TX_RESCHED_THRESHOLD, DEFAULT_TX_RESCHED_THRESHOLD); igb->rx_copy_thresh = igb_get_prop(igb, PROP_RX_COPY_THRESHOLD, MIN_RX_COPY_THRESHOLD, MAX_RX_COPY_THRESHOLD, DEFAULT_RX_COPY_THRESHOLD); igb->rx_limit_per_intr = igb_get_prop(igb, PROP_RX_LIMIT_PER_INTR, MIN_RX_LIMIT_PER_INTR, MAX_RX_LIMIT_PER_INTR, DEFAULT_RX_LIMIT_PER_INTR); igb->intr_throttling[0] = igb_get_prop(igb, PROP_INTR_THROTTLING, MIN_INTR_THROTTLING, MAX_INTR_THROTTLING, DEFAULT_INTR_THROTTLING); } /* * igb_get_prop - Get a property value out of the configuration file igb.conf * * Caller provides the name of the property, a default value, a minimum * value, and a maximum value. * * Return configured value of the property, with default, minimum and * maximum properly applied. */ static int igb_get_prop(igb_t *igb, char *propname, /* name of the property */ int minval, /* minimum acceptable value */ int maxval, /* maximim acceptable value */ int defval) /* default value */ { int value; /* * Call ddi_prop_get_int() to read the conf settings */ value = ddi_prop_get_int(DDI_DEV_T_ANY, igb->dip, DDI_PROP_DONTPASS, propname, defval); if (value > maxval) value = maxval; if (value < minval) value = minval; return (value); } /* * igb_setup_link - Using the link properties to setup the link */ int igb_setup_link(igb_t *igb, boolean_t setup_hw) { struct e1000_mac_info *mac; struct e1000_phy_info *phy; boolean_t invalid; mac = &igb->hw.mac; phy = &igb->hw.phy; invalid = B_FALSE; if (igb->param_adv_autoneg_cap == 1) { mac->autoneg = B_TRUE; phy->autoneg_advertised = 0; /* * 1000hdx is not supported for autonegotiation */ if (igb->param_adv_1000fdx_cap == 1) phy->autoneg_advertised |= ADVERTISE_1000_FULL; if (igb->param_adv_100fdx_cap == 1) phy->autoneg_advertised |= ADVERTISE_100_FULL; if (igb->param_adv_100hdx_cap == 1) phy->autoneg_advertised |= ADVERTISE_100_HALF; if (igb->param_adv_10fdx_cap == 1) phy->autoneg_advertised |= ADVERTISE_10_FULL; if (igb->param_adv_10hdx_cap == 1) phy->autoneg_advertised |= ADVERTISE_10_HALF; if (phy->autoneg_advertised == 0) invalid = B_TRUE; } else { mac->autoneg = B_FALSE; /* * 1000fdx and 1000hdx are not supported for forced link */ if (igb->param_adv_100fdx_cap == 1) mac->forced_speed_duplex = ADVERTISE_100_FULL; else if (igb->param_adv_100hdx_cap == 1) mac->forced_speed_duplex = ADVERTISE_100_HALF; else if (igb->param_adv_10fdx_cap == 1) mac->forced_speed_duplex = ADVERTISE_10_FULL; else if (igb->param_adv_10hdx_cap == 1) mac->forced_speed_duplex = ADVERTISE_10_HALF; else invalid = B_TRUE; } if (invalid) { igb_notice(igb, "Invalid link settings. Setup link to " "autonegotiation with full link capabilities."); mac->autoneg = B_TRUE; phy->autoneg_advertised = ADVERTISE_1000_FULL | ADVERTISE_100_FULL | ADVERTISE_100_HALF | ADVERTISE_10_FULL | ADVERTISE_10_HALF; } if (setup_hw) { if (e1000_setup_link(&igb->hw) != E1000_SUCCESS) return (IGB_FAILURE); } return (IGB_SUCCESS); } /* * igb_is_link_up - Check if the link is up */ static boolean_t igb_is_link_up(igb_t *igb) { struct e1000_hw *hw = &igb->hw; boolean_t link_up; ASSERT(mutex_owned(&igb->gen_lock)); (void) e1000_check_for_link(hw); if ((E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU) || ((hw->phy.media_type == e1000_media_type_internal_serdes) && (hw->mac.serdes_has_link))) { link_up = B_TRUE; } else { link_up = B_FALSE; } return (link_up); } /* * igb_link_check - Link status processing */ static boolean_t igb_link_check(igb_t *igb) { struct e1000_hw *hw = &igb->hw; uint16_t speed = 0, duplex = 0; boolean_t link_changed = B_FALSE; ASSERT(mutex_owned(&igb->gen_lock)); if (igb_is_link_up(igb)) { /* * The Link is up, check whether it was marked as down earlier */ if (igb->link_state != LINK_STATE_UP) { (void) e1000_get_speed_and_duplex(hw, &speed, &duplex); igb->link_speed = speed; igb->link_duplex = duplex; igb->link_state = LINK_STATE_UP; igb->link_down_timeout = 0; link_changed = B_TRUE; } } else { if (igb->link_state != LINK_STATE_DOWN) { igb->link_speed = 0; igb->link_duplex = 0; igb->link_state = LINK_STATE_DOWN; link_changed = B_TRUE; } if (igb->igb_state & IGB_STARTED) { if (igb->link_down_timeout < MAX_LINK_DOWN_TIMEOUT) { igb->link_down_timeout++; } else if (igb->link_down_timeout == MAX_LINK_DOWN_TIMEOUT) { igb_tx_clean(igb); igb->link_down_timeout++; } } } return (link_changed); } /* * igb_local_timer - driver watchdog function * * This function will handle the transmit stall check, link status check and * other routines. */ static void igb_local_timer(void *arg) { igb_t *igb = (igb_t *)arg; struct e1000_hw *hw = &igb->hw; boolean_t link_changed; if (igb_stall_check(igb)) { igb->reset_count++; (void) igb_reset(igb); } mutex_enter(&igb->gen_lock); link_changed = igb_link_check(igb); mutex_exit(&igb->gen_lock); if (link_changed) mac_link_update(igb->mac_hdl, igb->link_state); /* * Set Timer Interrupts */ if (igb->intr_type != DDI_INTR_TYPE_MSIX) E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0); igb_restart_watchdog_timer(igb); } /* * igb_stall_check - check for transmit stall * * This function checks if the adapter is stalled (in transmit). * * It is called each time the watchdog timeout is invoked. * If the transmit descriptor reclaim continuously fails, * the watchdog value will increment by 1. If the watchdog * value exceeds the threshold, the igb is assumed to * have stalled and need to be reset. */ static boolean_t igb_stall_check(igb_t *igb) { igb_tx_ring_t *tx_ring; boolean_t result; int i; if (igb->link_state != LINK_STATE_UP) return (B_FALSE); /* * If any tx ring is stalled, we'll reset the chipset */ result = B_FALSE; for (i = 0; i < igb->num_tx_rings; i++) { tx_ring = &igb->tx_rings[i]; if (tx_ring->recycle_fail > 0) tx_ring->stall_watchdog++; else tx_ring->stall_watchdog = 0; if (tx_ring->stall_watchdog >= STALL_WATCHDOG_TIMEOUT) { result = B_TRUE; break; } } if (result) { tx_ring->stall_watchdog = 0; tx_ring->recycle_fail = 0; } return (result); } /* * is_valid_mac_addr - Check if the mac address is valid */ static boolean_t is_valid_mac_addr(uint8_t *mac_addr) { const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 }; const uint8_t addr_test2[6] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) || !(bcmp(addr_test2, mac_addr, ETHERADDRL))) return (B_FALSE); return (B_TRUE); } static boolean_t igb_find_mac_address(igb_t *igb) { struct e1000_hw *hw = &igb->hw; #ifdef __sparc uchar_t *bytes; struct ether_addr sysaddr; uint_t nelts; int err; boolean_t found = B_FALSE; /* * The "vendor's factory-set address" may already have * been extracted from the chip, but if the property * "local-mac-address" is set we use that instead. * * We check whether it looks like an array of 6 * bytes (which it should, if OBP set it). If we can't * make sense of it this way, we'll ignore it. */ err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip, DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts); if (err == DDI_PROP_SUCCESS) { if (nelts == ETHERADDRL) { while (nelts--) hw->mac.addr[nelts] = bytes[nelts]; found = B_TRUE; } ddi_prop_free(bytes); } /* * Look up the OBP property "local-mac-address?". If the user has set * 'local-mac-address? = false', use "the system address" instead. */ if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip, 0, "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) { if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) { if (localetheraddr(NULL, &sysaddr) != 0) { bcopy(&sysaddr, hw->mac.addr, ETHERADDRL); found = B_TRUE; } } ddi_prop_free(bytes); } /* * Finally(!), if there's a valid "mac-address" property (created * if we netbooted from this interface), we must use this instead * of any of the above to ensure that the NFS/install server doesn't * get confused by the address changing as Solaris takes over! */ err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, igb->dip, DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts); if (err == DDI_PROP_SUCCESS) { if (nelts == ETHERADDRL) { while (nelts--) hw->mac.addr[nelts] = bytes[nelts]; found = B_TRUE; } ddi_prop_free(bytes); } if (found) { bcopy(hw->mac.addr, hw->mac.perm_addr, ETHERADDRL); return (B_TRUE); } #endif /* * Read the device MAC address from the EEPROM */ if (e1000_read_mac_addr(hw) != E1000_SUCCESS) return (B_FALSE); return (B_TRUE); } #pragma inline(igb_arm_watchdog_timer) static void igb_arm_watchdog_timer(igb_t *igb) { /* * Fire a watchdog timer */ igb->watchdog_tid = timeout(igb_local_timer, (void *)igb, 1 * drv_usectohz(1000000)); } /* * igb_enable_watchdog_timer - Enable and start the driver watchdog timer */ void igb_enable_watchdog_timer(igb_t *igb) { mutex_enter(&igb->watchdog_lock); if (!igb->watchdog_enable) { igb->watchdog_enable = B_TRUE; igb->watchdog_start = B_TRUE; igb_arm_watchdog_timer(igb); } mutex_exit(&igb->watchdog_lock); } /* * igb_disable_watchdog_timer - Disable and stop the driver watchdog timer */ void igb_disable_watchdog_timer(igb_t *igb) { timeout_id_t tid; mutex_enter(&igb->watchdog_lock); igb->watchdog_enable = B_FALSE; igb->watchdog_start = B_FALSE; tid = igb->watchdog_tid; igb->watchdog_tid = 0; mutex_exit(&igb->watchdog_lock); if (tid != 0) (void) untimeout(tid); } /* * igb_start_watchdog_timer - Start the driver watchdog timer */ static void igb_start_watchdog_timer(igb_t *igb) { mutex_enter(&igb->watchdog_lock); if (igb->watchdog_enable) { if (!igb->watchdog_start) { igb->watchdog_start = B_TRUE; igb_arm_watchdog_timer(igb); } } mutex_exit(&igb->watchdog_lock); } /* * igb_restart_watchdog_timer - Restart the driver watchdog timer */ static void igb_restart_watchdog_timer(igb_t *igb) { mutex_enter(&igb->watchdog_lock); if (igb->watchdog_start) igb_arm_watchdog_timer(igb); mutex_exit(&igb->watchdog_lock); } /* * igb_stop_watchdog_timer - Stop the driver watchdog timer */ static void igb_stop_watchdog_timer(igb_t *igb) { timeout_id_t tid; mutex_enter(&igb->watchdog_lock); igb->watchdog_start = B_FALSE; tid = igb->watchdog_tid; igb->watchdog_tid = 0; mutex_exit(&igb->watchdog_lock); if (tid != 0) (void) untimeout(tid); } /* * igb_disable_adapter_interrupts - Clear/disable all hardware interrupts */ static void igb_disable_adapter_interrupts(igb_t *igb) { struct e1000_hw *hw = &igb->hw; /* * Set the IMC register to mask all the interrupts, * including the tx interrupts. */ E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff); /* * Additional disabling for MSI-X */ if (igb->intr_type == DDI_INTR_TYPE_MSIX) { E1000_WRITE_REG(hw, E1000_EIMC, 0xffffffff); E1000_WRITE_REG(hw, E1000_EIAC, 0x0); } E1000_WRITE_FLUSH(hw); } /* * igb_enable_adapter_interrupts - Mask/enable all hardware interrupts */ static void igb_enable_adapter_interrupts(igb_t *igb) { struct e1000_hw *hw = &igb->hw; uint32_t reg; if (igb->intr_type == DDI_INTR_TYPE_MSIX) { /* Interrupt enabling for MSI-X */ E1000_WRITE_REG(hw, E1000_EIMS, igb->eims_mask); E1000_WRITE_REG(hw, E1000_EIAC, igb->eims_mask); E1000_WRITE_REG(hw, E1000_IMS, E1000_IMS_LSC); /* Enable MSI-X PBA support */ reg = E1000_READ_REG(hw, E1000_CTRL_EXT); reg |= E1000_CTRL_EXT_PBA_CLR; /* Non-selective interrupt clear-on-read */ reg |= E1000_CTRL_EXT_IRCA; /* Called NSICR in the EAS */ E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg); } else { /* Interrupt enabling for MSI and legacy */ E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK); } E1000_WRITE_FLUSH(hw); } /* * Loopback Support */ static lb_property_t lb_normal = { normal, "normal", IGB_LB_NONE }; static lb_property_t lb_external = { external, "External", IGB_LB_EXTERNAL }; static lb_property_t lb_mac = { internal, "MAC", IGB_LB_INTERNAL_MAC }; static lb_property_t lb_phy = { internal, "PHY", IGB_LB_INTERNAL_PHY }; static lb_property_t lb_serdes = { internal, "SerDes", IGB_LB_INTERNAL_SERDES }; enum ioc_reply igb_loopback_ioctl(igb_t *igb, struct iocblk *iocp, mblk_t *mp) { lb_info_sz_t *lbsp; lb_property_t *lbpp; struct e1000_hw *hw; uint32_t *lbmp; uint32_t size; uint32_t value; hw = &igb->hw; if (mp->b_cont == NULL) return (IOC_INVAL); switch (iocp->ioc_cmd) { default: return (IOC_INVAL); case LB_GET_INFO_SIZE: size = sizeof (lb_info_sz_t); if (iocp->ioc_count != size) return (IOC_INVAL); value = sizeof (lb_normal); value += sizeof (lb_mac); if (hw->phy.media_type == e1000_media_type_copper) value += sizeof (lb_phy); else value += sizeof (lb_serdes); value += sizeof (lb_external); lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr; *lbsp = value; break; case LB_GET_INFO: value = sizeof (lb_normal); value += sizeof (lb_mac); if (hw->phy.media_type == e1000_media_type_copper) value += sizeof (lb_phy); else value += sizeof (lb_serdes); value += sizeof (lb_external); size = value; if (iocp->ioc_count != size) return (IOC_INVAL); value = 0; lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr; lbpp[value++] = lb_normal; lbpp[value++] = lb_mac; if (hw->phy.media_type == e1000_media_type_copper) lbpp[value++] = lb_phy; else lbpp[value++] = lb_serdes; lbpp[value++] = lb_external; break; case LB_GET_MODE: size = sizeof (uint32_t); if (iocp->ioc_count != size) return (IOC_INVAL); lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr; *lbmp = igb->loopback_mode; break; case LB_SET_MODE: size = 0; if (iocp->ioc_count != sizeof (uint32_t)) return (IOC_INVAL); lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr; if (!igb_set_loopback_mode(igb, *lbmp)) return (IOC_INVAL); break; } iocp->ioc_count = size; iocp->ioc_error = 0; return (IOC_REPLY); } /* * igb_set_loopback_mode - Setup loopback based on the loopback mode */ static boolean_t igb_set_loopback_mode(igb_t *igb, uint32_t mode) { struct e1000_hw *hw; if (mode == igb->loopback_mode) return (B_TRUE); hw = &igb->hw; igb->loopback_mode = mode; if (mode == IGB_LB_NONE) { /* Reset the chip */ hw->phy.autoneg_wait_to_complete = B_TRUE; (void) igb_reset(igb); hw->phy.autoneg_wait_to_complete = B_FALSE; return (B_TRUE); } mutex_enter(&igb->gen_lock); switch (mode) { default: mutex_exit(&igb->gen_lock); return (B_FALSE); case IGB_LB_EXTERNAL: igb_set_external_loopback(igb); break; case IGB_LB_INTERNAL_MAC: igb_set_internal_mac_loopback(igb); break; case IGB_LB_INTERNAL_PHY: igb_set_internal_phy_loopback(igb); break; case IGB_LB_INTERNAL_SERDES: igb_set_internal_serdes_loopback(igb); break; } mutex_exit(&igb->gen_lock); return (B_TRUE); } /* * igb_set_external_loopback - Set the external loopback mode */ static void igb_set_external_loopback(igb_t *igb) { struct e1000_hw *hw; hw = &igb->hw; /* Set phy to known state */ (void) e1000_phy_hw_reset(hw); (void) e1000_write_phy_reg(hw, 0x0, 0x0140); (void) e1000_write_phy_reg(hw, 0x9, 0x1b00); (void) e1000_write_phy_reg(hw, 0x12, 0x1610); (void) e1000_write_phy_reg(hw, 0x1f37, 0x3f1c); } /* * igb_set_internal_mac_loopback - Set the internal MAC loopback mode */ static void igb_set_internal_mac_loopback(igb_t *igb) { struct e1000_hw *hw; uint32_t ctrl; uint32_t rctl; hw = &igb->hw; /* Set the Receive Control register */ rctl = E1000_READ_REG(hw, E1000_RCTL); rctl &= ~E1000_RCTL_LBM_TCVR; rctl |= E1000_RCTL_LBM_MAC; E1000_WRITE_REG(hw, E1000_RCTL, rctl); /* Set the Device Control register */ ctrl = E1000_READ_REG(hw, E1000_CTRL); ctrl &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ ctrl |= (E1000_CTRL_SLU | /* Force link up */ E1000_CTRL_FRCSPD | /* Force speed */ E1000_CTRL_FRCDPX | /* Force duplex */ E1000_CTRL_SPD_1000 | /* Force speed to 1000 */ E1000_CTRL_FD); /* Force full duplex */ ctrl &= ~E1000_CTRL_ILOS; /* Clear ILOS when there's a link */ E1000_WRITE_REG(hw, E1000_CTRL, ctrl); } /* * igb_set_internal_phy_loopback - Set the internal PHY loopback mode */ static void igb_set_internal_phy_loopback(igb_t *igb) { struct e1000_hw *hw; uint32_t ctrl_ext; uint16_t phy_ctrl; uint16_t phy_pconf; hw = &igb->hw; /* Set link mode to PHY (00b) in the Extended Control register */ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK; E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); /* * Set PHY control register (0x4140): * Set full duplex mode * Set loopback bit * Clear auto-neg enable bit * Set PHY speed */ phy_ctrl = MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000 | MII_CR_LOOPBACK; (void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl); /* Set the link disable bit in the Port Configuration register */ (void) e1000_read_phy_reg(hw, 0x10, &phy_pconf); phy_pconf |= (uint16_t)1 << 14; (void) e1000_write_phy_reg(hw, 0x10, phy_pconf); } /* * igb_set_internal_serdes_loopback - Set the internal SerDes loopback mode */ static void igb_set_internal_serdes_loopback(igb_t *igb) { struct e1000_hw *hw; uint32_t ctrl_ext; uint32_t ctrl; uint32_t pcs_lctl; uint32_t connsw; hw = &igb->hw; /* Set link mode to SerDes (11b) in the Extended Control register */ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); /* Configure the SerDes to loopback */ E1000_WRITE_REG(hw, E1000_SCTL, 0x410); /* Set Device Control register */ ctrl = E1000_READ_REG(hw, E1000_CTRL); ctrl |= (E1000_CTRL_FD | /* Force full duplex */ E1000_CTRL_SLU); /* Force link up */ ctrl &= ~(E1000_CTRL_RFCE | /* Disable receive flow control */ E1000_CTRL_TFCE | /* Disable transmit flow control */ E1000_CTRL_LRST); /* Clear link reset */ E1000_WRITE_REG(hw, E1000_CTRL, ctrl); /* Set PCS Link Control register */ pcs_lctl = E1000_READ_REG(hw, E1000_PCS_LCTL); pcs_lctl |= (E1000_PCS_LCTL_FORCE_LINK | E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FDV_FULL | E1000_PCS_LCTL_FLV_LINK_UP); pcs_lctl &= ~E1000_PCS_LCTL_AN_ENABLE; E1000_WRITE_REG(hw, E1000_PCS_LCTL, pcs_lctl); /* Set the Copper/Fiber Switch Control - CONNSW register */ connsw = E1000_READ_REG(hw, E1000_CONNSW); connsw &= ~E1000_CONNSW_ENRGSRC; E1000_WRITE_REG(hw, E1000_CONNSW, connsw); } #pragma inline(igb_intr_rx_work) /* * igb_intr_rx_work - rx processing of ISR */ static void igb_intr_rx_work(igb_rx_ring_t *rx_ring) { mblk_t *mp; mutex_enter(&rx_ring->rx_lock); mp = igb_rx(rx_ring); mutex_exit(&rx_ring->rx_lock); if (mp != NULL) mac_rx(rx_ring->igb->mac_hdl, NULL, mp); } #pragma inline(igb_intr_tx_work) /* * igb_intr_tx_work - tx processing of ISR */ static void igb_intr_tx_work(igb_tx_ring_t *tx_ring) { /* Recycle the tx descriptors */ tx_ring->tx_recycle(tx_ring); /* Schedule the re-transmit */ if (tx_ring->reschedule && (tx_ring->tbd_free >= tx_ring->resched_thresh)) { tx_ring->reschedule = B_FALSE; mac_tx_update(tx_ring->igb->mac_hdl); IGB_DEBUG_STAT(tx_ring->stat_reschedule); } } #pragma inline(igb_intr_other_work) /* * igb_intr_other_work - other processing of ISR */ static void igb_intr_other_work(igb_t *igb) { boolean_t link_changed; igb_stop_watchdog_timer(igb); mutex_enter(&igb->gen_lock); /* * Because we got a link-status-change interrupt, force * e1000_check_for_link() to look at phy */ igb->hw.mac.get_link_status = B_TRUE; /* igb_link_check takes care of link status change */ link_changed = igb_link_check(igb); /* Get new phy state */ igb_get_phy_state(igb); mutex_exit(&igb->gen_lock); if (link_changed) mac_link_update(igb->mac_hdl, igb->link_state); igb_start_watchdog_timer(igb); } /* * igb_intr_legacy - Interrupt handler for legacy interrupts */ static uint_t igb_intr_legacy(void *arg1, void *arg2) { igb_t *igb = (igb_t *)arg1; igb_tx_ring_t *tx_ring; uint32_t icr; mblk_t *mp; boolean_t tx_reschedule; boolean_t link_changed; uint_t result; _NOTE(ARGUNUSED(arg2)); mutex_enter(&igb->gen_lock); if (igb->igb_state & IGB_SUSPENDED) { mutex_exit(&igb->gen_lock); return (DDI_INTR_UNCLAIMED); } mp = NULL; tx_reschedule = B_FALSE; link_changed = B_FALSE; icr = E1000_READ_REG(&igb->hw, E1000_ICR); if (icr & E1000_ICR_INT_ASSERTED) { /* * E1000_ICR_INT_ASSERTED bit was set: * Read(Clear) the ICR, claim this interrupt, * look for work to do. */ ASSERT(igb->num_rx_rings == 1); ASSERT(igb->num_tx_rings == 1); if (icr & E1000_ICR_RXT0) { mp = igb_rx(&igb->rx_rings[0]); } if (icr & E1000_ICR_TXDW) { tx_ring = &igb->tx_rings[0]; /* Recycle the tx descriptors */ tx_ring->tx_recycle(tx_ring); /* Schedule the re-transmit */ tx_reschedule = (tx_ring->reschedule && (tx_ring->tbd_free >= tx_ring->resched_thresh)); } if (icr & E1000_ICR_LSC) { /* * Because we got a link-status-change interrupt, force * e1000_check_for_link() to look at phy */ igb->hw.mac.get_link_status = B_TRUE; /* igb_link_check takes care of link status change */ link_changed = igb_link_check(igb); /* Get new phy state */ igb_get_phy_state(igb); } result = DDI_INTR_CLAIMED; } else { /* * E1000_ICR_INT_ASSERTED bit was not set: * Don't claim this interrupt. */ result = DDI_INTR_UNCLAIMED; } mutex_exit(&igb->gen_lock); /* * Do the following work outside of the gen_lock */ if (mp != NULL) mac_rx(igb->mac_hdl, NULL, mp); if (tx_reschedule) { tx_ring->reschedule = B_FALSE; mac_tx_update(igb->mac_hdl); IGB_DEBUG_STAT(tx_ring->stat_reschedule); } if (link_changed) mac_link_update(igb->mac_hdl, igb->link_state); return (result); } /* * igb_intr_msi - Interrupt handler for MSI */ static uint_t igb_intr_msi(void *arg1, void *arg2) { igb_t *igb = (igb_t *)arg1; uint32_t icr; _NOTE(ARGUNUSED(arg2)); icr = E1000_READ_REG(&igb->hw, E1000_ICR); /* * For MSI interrupt, we have only one vector, * so we have only one rx ring and one tx ring enabled. */ ASSERT(igb->num_rx_rings == 1); ASSERT(igb->num_tx_rings == 1); if (icr & E1000_ICR_RXT0) { igb_intr_rx_work(&igb->rx_rings[0]); } if (icr & E1000_ICR_TXDW) { igb_intr_tx_work(&igb->tx_rings[0]); } if (icr & E1000_ICR_LSC) { igb_intr_other_work(igb); } return (DDI_INTR_CLAIMED); } /* * igb_intr_rx - Interrupt handler for rx */ static uint_t igb_intr_rx(void *arg1, void *arg2) { igb_rx_ring_t *rx_ring = (igb_rx_ring_t *)arg1; _NOTE(ARGUNUSED(arg2)); /* * Only used via MSI-X vector so don't check cause bits * and only clean the given ring. */ igb_intr_rx_work(rx_ring); return (DDI_INTR_CLAIMED); } /* * igb_intr_tx_other - Interrupt handler for both tx and other * * Always look for Tx cleanup work. Only look for other work if the right * bits are set in the Interrupt Cause Register. */ static uint_t igb_intr_tx_other(void *arg1, void *arg2) { igb_t *igb = (igb_t *)arg1; uint32_t icr; _NOTE(ARGUNUSED(arg2)); icr = E1000_READ_REG(&igb->hw, E1000_ICR); /* * Always look for Tx cleanup work. We don't have separate * transmit vectors, so we have only one tx ring enabled. */ ASSERT(igb->num_tx_rings == 1); igb_intr_tx_work(&igb->tx_rings[0]); /* * Check for "other" causes. */ if (icr & E1000_ICR_LSC) { igb_intr_other_work(igb); } return (DDI_INTR_CLAIMED); } /* * igb_alloc_intrs - Allocate interrupts for the driver * * Normal sequence is to try MSI-X; if not sucessful, try MSI; * if not successful, try Legacy. * igb->intr_force can be used to force sequence to start with * any of the 3 types. * If MSI-X is not used, number of tx/rx rings is forced to 1. */ static int igb_alloc_intrs(igb_t *igb) { dev_info_t *devinfo; int intr_types; int rc; devinfo = igb->dip; /* Get supported interrupt types */ rc = ddi_intr_get_supported_types(devinfo, &intr_types); if (rc != DDI_SUCCESS) { igb_log(igb, "Get supported interrupt types failed: %d", rc); return (IGB_FAILURE); } IGB_DEBUGLOG_1(igb, "Supported interrupt types: %x", intr_types); igb->intr_type = 0; /* Install MSI-X interrupts */ if ((intr_types & DDI_INTR_TYPE_MSIX) && (igb->intr_force <= IGB_INTR_MSIX)) { rc = igb_alloc_intrs_msix(igb); if (rc == IGB_SUCCESS) return (IGB_SUCCESS); igb_log(igb, "Allocate MSI-X failed, trying MSI interrupts..."); } /* MSI-X not used, force rings to 1 */ igb->num_rx_rings = 1; igb->num_tx_rings = 1; igb_log(igb, "MSI-X not used, force rx and tx queue number to 1"); /* Install MSI interrupts */ if ((intr_types & DDI_INTR_TYPE_MSI) && (igb->intr_force <= IGB_INTR_MSI)) { rc = igb_alloc_intrs_msi(igb); if (rc == IGB_SUCCESS) return (IGB_SUCCESS); igb_log(igb, "Allocate MSI failed, trying Legacy interrupts..."); } /* Install legacy interrupts */ if (intr_types & DDI_INTR_TYPE_FIXED) { rc = igb_alloc_intrs_legacy(igb); if (rc == IGB_SUCCESS) return (IGB_SUCCESS); igb_log(igb, "Allocate Legacy interrupts failed"); } /* If none of the 3 types succeeded, return failure */ return (IGB_FAILURE); } /* * igb_alloc_intrs_msix - Allocate the MSIX interrupts * * If fewer than 2 vectors are available, return failure. * Upon success, this sets the number of Rx rings to a number that * matches the vectors available for Rx interrupts. */ static int igb_alloc_intrs_msix(igb_t *igb) { dev_info_t *devinfo; int request, count, avail, actual; int rx_rings; int rc; devinfo = igb->dip; /* * Currently only 1 tx ring is supported. More tx rings * will be supported with future enhancement. */ if (igb->num_tx_rings > 1) { igb->num_tx_rings = 1; igb_log(igb, "Use only 1 MSI-X vector for tx, " "force tx queue number to 1"); } /* * Best number of vectors for the adapter is * # rx rings + # tx rings + 1 for other * But currently we only support number of vectors of * # rx rings + 1 for tx & other */ request = igb->num_rx_rings + 1; IGB_DEBUGLOG_1(igb, "MSI-X interrupts requested: %d", request); /* Get number of supported interrupts */ rc = ddi_intr_get_nintrs(devinfo, DDI_INTR_TYPE_MSIX, &count); if ((rc != DDI_SUCCESS) || (count == 0)) { igb_log(igb, "Get interrupt number failed. Return: %d, count: %d", rc, count); return (IGB_FAILURE); } IGB_DEBUGLOG_1(igb, "MSI-X interrupts supported: %d", count); /* Get number of available interrupts */ rc = ddi_intr_get_navail(devinfo, DDI_INTR_TYPE_MSIX, &avail); if ((rc != DDI_SUCCESS) || (avail == 0)) { igb_log(igb, "Get interrupt available number failed. " "Return: %d, available: %d", rc, avail); return (IGB_FAILURE); } IGB_DEBUGLOG_1(igb, "MSI-X interrupts available: %d", avail); if (avail < request) { igb_log(igb, "Request %d MSI-X vectors, %d available", request, avail); request = avail; } actual = 0; igb->intr_cnt = 0; /* Allocate an array of interrupt handles */ igb->intr_size = request * sizeof (ddi_intr_handle_t); igb->htable = kmem_alloc(igb->intr_size, KM_SLEEP); /* Call ddi_intr_alloc() */ rc = ddi_intr_alloc(devinfo, igb->htable, DDI_INTR_TYPE_MSIX, 0, request, &actual, DDI_INTR_ALLOC_NORMAL); if (rc != DDI_SUCCESS) { igb_log(igb, "Allocate MSI-X interrupts failed. " "return: %d, request: %d, actual: %d", rc, request, actual); goto alloc_msix_fail; } IGB_DEBUGLOG_1(igb, "MSI-X interrupts actually allocated: %d", actual); igb->intr_cnt = actual; /* * Now we know the actual number of vectors. Here we assume that * tx and other will share 1 vector and all remaining (must be at * least 1 remaining) will be used for rx. */ if (actual < 2) { igb_log(igb, "Insufficient MSI-X interrupts available: %d", actual); goto alloc_msix_fail; } rx_rings = actual - 1; if (rx_rings < igb->num_rx_rings) { igb_log(igb, "MSI-X vectors force Rx queue number to %d", rx_rings); igb->num_rx_rings = rx_rings; } /* Get priority for first vector, assume remaining are all the same */ rc = ddi_intr_get_pri(igb->htable[0], &igb->intr_pri); if (rc != DDI_SUCCESS) { igb_log(igb, "Get interrupt priority failed: %d", rc); goto alloc_msix_fail; } rc = ddi_intr_get_cap(igb->htable[0], &igb->intr_cap); if (rc != DDI_SUCCESS) { igb_log(igb, "Get interrupt cap failed: %d", rc); goto alloc_msix_fail; } igb->intr_type = DDI_INTR_TYPE_MSIX; return (IGB_SUCCESS); alloc_msix_fail: igb_rem_intrs(igb); return (IGB_FAILURE); } /* * igb_alloc_intrs_msi - Allocate the MSI interrupts */ static int igb_alloc_intrs_msi(igb_t *igb) { dev_info_t *devinfo; int request, count, avail, actual; int rc; devinfo = igb->dip; /* Request 1 MSI interrupt vector */ request = 1; IGB_DEBUGLOG_1(igb, "MSI interrupts requested: %d", request); /* Get number of supported interrupts */ rc = ddi_intr_get_nintrs(devinfo, DDI_INTR_TYPE_MSI, &count); if ((rc != DDI_SUCCESS) || (count == 0)) { igb_log(igb, "Get MSI supported number failed. Return: %d, count: %d", rc, count); return (IGB_FAILURE); } IGB_DEBUGLOG_1(igb, "MSI interrupts supported: %d", count); /* Get number of available interrupts */ rc = ddi_intr_get_navail(devinfo, DDI_INTR_TYPE_MSI, &avail); if ((rc != DDI_SUCCESS) || (avail == 0)) { igb_log(igb, "Get MSI available number failed. " "Return: %d, available: %d", rc, avail); return (IGB_FAILURE); } IGB_DEBUGLOG_1(igb, "MSI interrupts available: %d", avail); actual = 0; igb->intr_cnt = 0; /* Allocate an array of interrupt handles */ igb->intr_size = request * sizeof (ddi_intr_handle_t); igb->htable = kmem_alloc(igb->intr_size, KM_SLEEP); /* Call ddi_intr_alloc() */ rc = ddi_intr_alloc(devinfo, igb->htable, DDI_INTR_TYPE_MSI, 0, request, &actual, DDI_INTR_ALLOC_NORMAL); if ((rc != DDI_SUCCESS) || (actual == 0)) { igb_log(igb, "Allocate MSI interrupts failed: %d", rc); goto alloc_msi_fail; } ASSERT(actual == 1); igb->intr_cnt = actual; /* Get priority for first msi, assume remaining are all the same */ rc = ddi_intr_get_pri(igb->htable[0], &igb->intr_pri); if (rc != DDI_SUCCESS) { igb_log(igb, "Get interrupt priority failed: %d", rc); goto alloc_msi_fail; } rc = ddi_intr_get_cap(igb->htable[0], &igb->intr_cap); if (rc != DDI_SUCCESS) { igb_log(igb, "Get interrupt cap failed: %d\n", rc); goto alloc_msi_fail; } igb->intr_type = DDI_INTR_TYPE_MSI; return (IGB_SUCCESS); alloc_msi_fail: igb_rem_intrs(igb); return (IGB_FAILURE); } /* * igb_alloc_intrs_legacy - Allocate the Legacy interrupts */ static int igb_alloc_intrs_legacy(igb_t *igb) { dev_info_t *devinfo; int request, count, avail, actual; int rc; devinfo = igb->dip; /* Request 1 Legacy interrupt vector */ request = 1; IGB_DEBUGLOG_1(igb, "Legacy interrupts requested: %d", request); /* Get number of supported interrupts */ rc = ddi_intr_get_nintrs(devinfo, DDI_INTR_TYPE_FIXED, &count); if ((rc != DDI_SUCCESS) || (count == 0)) { igb_log(igb, "Get Legacy supported number failed. Return: %d, count: %d", rc, count); return (IGB_FAILURE); } IGB_DEBUGLOG_1(igb, "Legacy interrupts supported: %d", count); /* Get number of available interrupts */ rc = ddi_intr_get_navail(devinfo, DDI_INTR_TYPE_FIXED, &avail); if ((rc != DDI_SUCCESS) || (avail == 0)) { igb_log(igb, "Get Legacy available number failed. " "Return: %d, available: %d", rc, avail); return (IGB_FAILURE); } IGB_DEBUGLOG_1(igb, "Legacy interrupts available: %d", avail); actual = 0; igb->intr_cnt = 0; /* Allocate an array of interrupt handles */ igb->intr_size = request * sizeof (ddi_intr_handle_t); igb->htable = kmem_alloc(igb->intr_size, KM_SLEEP); /* Call ddi_intr_alloc() */ rc = ddi_intr_alloc(devinfo, igb->htable, DDI_INTR_TYPE_FIXED, 0, request, &actual, DDI_INTR_ALLOC_NORMAL); if ((rc != DDI_SUCCESS) || (actual == 0)) { igb_log(igb, "Allocate Legacy interrupts failed: %d", rc); goto alloc_legacy_fail; } ASSERT(actual == 1); igb->intr_cnt = actual; /* Get priority for first msi, assume remaining are all the same */ rc = ddi_intr_get_pri(igb->htable[0], &igb->intr_pri); if (rc != DDI_SUCCESS) { igb_log(igb, "Get interrupt priority failed: %d", rc); goto alloc_legacy_fail; } rc = ddi_intr_get_cap(igb->htable[0], &igb->intr_cap); if (rc != DDI_SUCCESS) { igb_log(igb, "Get interrupt cap failed: %d\n", rc); goto alloc_legacy_fail; } igb->intr_type = DDI_INTR_TYPE_FIXED; return (IGB_SUCCESS); alloc_legacy_fail: igb_rem_intrs(igb); return (IGB_FAILURE); } /* * igb_add_intr_handlers - Add interrupt handlers based on the interrupt type * * Before adding the interrupt handlers, the interrupt vectors have * been allocated, and the rx/tx rings have also been allocated. */ static int igb_add_intr_handlers(igb_t *igb) { igb_rx_ring_t *rx_ring; int vector; int rc; int i; vector = 0; switch (igb->intr_type) { case DDI_INTR_TYPE_MSIX: /* Add interrupt handler for tx + other */ rc = ddi_intr_add_handler(igb->htable[vector], (ddi_intr_handler_t *)igb_intr_tx_other, (void *)igb, NULL); if (rc != DDI_SUCCESS) { igb_log(igb, "Add tx/other interrupt handler failed: %d", rc); return (IGB_FAILURE); } vector++; /* Add interrupt handler for each rx ring */ for (i = 0; i < igb->num_rx_rings; i++) { rx_ring = &igb->rx_rings[i]; rc = ddi_intr_add_handler(igb->htable[vector], (ddi_intr_handler_t *)igb_intr_rx, (void *)rx_ring, NULL); if (rc != DDI_SUCCESS) { igb_log(igb, "Add rx interrupt handler failed. " "return: %d, rx ring: %d", rc, i); for (vector--; vector >= 0; vector--) { (void) ddi_intr_remove_handler( igb->htable[vector]); } return (IGB_FAILURE); } rx_ring->intr_vector = vector; vector++; } break; case DDI_INTR_TYPE_MSI: /* Add interrupt handlers for the only vector */ rc = ddi_intr_add_handler(igb->htable[vector], (ddi_intr_handler_t *)igb_intr_msi, (void *)igb, NULL); if (rc != DDI_SUCCESS) { igb_log(igb, "Add MSI interrupt handler failed: %d", rc); return (IGB_FAILURE); } rx_ring = &igb->rx_rings[0]; rx_ring->intr_vector = vector; vector++; break; case DDI_INTR_TYPE_FIXED: /* Add interrupt handlers for the only vector */ rc = ddi_intr_add_handler(igb->htable[vector], (ddi_intr_handler_t *)igb_intr_legacy, (void *)igb, NULL); if (rc != DDI_SUCCESS) { igb_log(igb, "Add legacy interrupt handler failed: %d", rc); return (IGB_FAILURE); } rx_ring = &igb->rx_rings[0]; rx_ring->intr_vector = vector; vector++; break; default: return (IGB_FAILURE); } ASSERT(vector == igb->intr_cnt); return (IGB_SUCCESS); } /* * igb_setup_adapter_msix - setup the adapter to use MSI-X interrupts * * For each vector enabled on the adapter, Set the MSIXBM register accordingly */ static void igb_setup_adapter_msix(igb_t *igb) { uint32_t eims = 0; int i, vector; struct e1000_hw *hw = &igb->hw; /* * Set vector for Tx + Other causes * NOTE assumption that there is only one of these and it is vector 0 */ vector = 0; igb->eims_mask = E1000_EICR_TX_QUEUE0 | E1000_EICR_OTHER; E1000_WRITE_REG(hw, E1000_MSIXBM(vector), igb->eims_mask); vector++; for (i = 0; i < igb->num_rx_rings; i++) { /* * Set vector for each rx ring */ eims = (E1000_EICR_RX_QUEUE0 << i); E1000_WRITE_REG(hw, E1000_MSIXBM(vector), eims); /* * Accumulate bits to enable in igb_enable_adapter_interrupts() */ igb->eims_mask |= eims; vector++; } ASSERT(vector == igb->intr_cnt); /* * Disable IAM for ICR interrupt bits */ E1000_WRITE_REG(hw, E1000_IAM, 0); E1000_WRITE_FLUSH(hw); } /* * igb_rem_intr_handlers - remove the interrupt handlers */ static void igb_rem_intr_handlers(igb_t *igb) { int i; int rc; for (i = 0; i < igb->intr_cnt; i++) { rc = ddi_intr_remove_handler(igb->htable[i]); if (rc != DDI_SUCCESS) { IGB_DEBUGLOG_1(igb, "Remove intr handler failed: %d", rc); } } } /* * igb_rem_intrs - remove the allocated interrupts */ static void igb_rem_intrs(igb_t *igb) { int i; int rc; for (i = 0; i < igb->intr_cnt; i++) { rc = ddi_intr_free(igb->htable[i]); if (rc != DDI_SUCCESS) { IGB_DEBUGLOG_1(igb, "Free intr failed: %d", rc); } } kmem_free(igb->htable, igb->intr_size); igb->htable = NULL; } /* * igb_enable_intrs - enable all the ddi interrupts */ static int igb_enable_intrs(igb_t *igb) { int i; int rc; /* Enable interrupts */ if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) { /* Call ddi_intr_block_enable() for MSI */ rc = ddi_intr_block_enable(igb->htable, igb->intr_cnt); if (rc != DDI_SUCCESS) { igb_log(igb, "Enable block intr failed: %d", rc); return (IGB_FAILURE); } } else { /* Call ddi_intr_enable() for Legacy/MSI non block enable */ for (i = 0; i < igb->intr_cnt; i++) { rc = ddi_intr_enable(igb->htable[i]); if (rc != DDI_SUCCESS) { igb_log(igb, "Enable intr failed: %d", rc); return (IGB_FAILURE); } } } return (IGB_SUCCESS); } /* * igb_disable_intrs - disable all the ddi interrupts */ static int igb_disable_intrs(igb_t *igb) { int i; int rc; /* Disable all interrupts */ if (igb->intr_cap & DDI_INTR_FLAG_BLOCK) { rc = ddi_intr_block_disable(igb->htable, igb->intr_cnt); if (rc != DDI_SUCCESS) { igb_log(igb, "Disable block intr failed: %d", rc); return (IGB_FAILURE); } } else { for (i = 0; i < igb->intr_cnt; i++) { rc = ddi_intr_disable(igb->htable[i]); if (rc != DDI_SUCCESS) { igb_log(igb, "Disable intr failed: %d", rc); return (IGB_FAILURE); } } } return (IGB_SUCCESS); } /* * igb_get_phy_state - Get and save the parameters read from PHY registers */ static void igb_get_phy_state(igb_t *igb) { struct e1000_hw *hw = &igb->hw; uint16_t phy_ctrl; uint16_t phy_status; uint16_t phy_an_adv; uint16_t phy_an_exp; uint16_t phy_ext_status; uint16_t phy_1000t_ctrl; uint16_t phy_1000t_status; uint16_t phy_lp_able; ASSERT(mutex_owned(&igb->gen_lock)); (void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl); (void) e1000_read_phy_reg(hw, PHY_STATUS, &phy_status); (void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &phy_an_adv); (void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_an_exp); (void) e1000_read_phy_reg(hw, PHY_EXT_STATUS, &phy_ext_status); (void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_1000t_ctrl); (void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_1000t_status); (void) e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_lp_able); igb->param_autoneg_cap = (phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0; igb->param_pause_cap = (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0; igb->param_asym_pause_cap = (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0; igb->param_1000fdx_cap = ((phy_ext_status & IEEE_ESR_1000T_FD_CAPS) || (phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0; igb->param_1000hdx_cap = ((phy_ext_status & IEEE_ESR_1000T_HD_CAPS) || (phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0; igb->param_100t4_cap = (phy_status & MII_SR_100T4_CAPS) ? 1 : 0; igb->param_100fdx_cap = ((phy_status & MII_SR_100X_FD_CAPS) || (phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0; igb->param_100hdx_cap = ((phy_status & MII_SR_100X_HD_CAPS) || (phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0; igb->param_10fdx_cap = (phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0; igb->param_10hdx_cap = (phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0; igb->param_rem_fault = (phy_status & MII_SR_REMOTE_FAULT) ? 1 : 0; igb->param_adv_autoneg_cap = hw->mac.autoneg; igb->param_adv_pause_cap = (phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0; igb->param_adv_asym_pause_cap = (phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0; igb->param_adv_1000hdx_cap = (phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0; igb->param_adv_100t4_cap = (phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0; igb->param_adv_rem_fault = (phy_an_adv & NWAY_AR_REMOTE_FAULT) ? 1 : 0; if (igb->param_adv_autoneg_cap == 1) { igb->param_adv_1000fdx_cap = (phy_1000t_ctrl & CR_1000T_FD_CAPS) ? 1 : 0; igb->param_adv_100fdx_cap = (phy_an_adv & NWAY_AR_100TX_FD_CAPS) ? 1 : 0; igb->param_adv_100hdx_cap = (phy_an_adv & NWAY_AR_100TX_HD_CAPS) ? 1 : 0; igb->param_adv_10fdx_cap = (phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0; igb->param_adv_10hdx_cap = (phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0; } igb->param_lp_autoneg_cap = (phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0; igb->param_lp_pause_cap = (phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0; igb->param_lp_asym_pause_cap = (phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0; igb->param_lp_1000fdx_cap = (phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0; igb->param_lp_1000hdx_cap = (phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0; igb->param_lp_100t4_cap = (phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0; igb->param_lp_100fdx_cap = (phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0; igb->param_lp_100hdx_cap = (phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0; igb->param_lp_10fdx_cap = (phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0; igb->param_lp_10hdx_cap = (phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0; igb->param_lp_rem_fault = (phy_lp_able & NWAY_LPAR_REMOTE_FAULT) ? 1 : 0; } /* * igb_get_driver_control */ static void igb_get_driver_control(struct e1000_hw *hw) { uint32_t ctrl_ext; /* Notify firmware that driver is in control of device */ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); ctrl_ext |= E1000_CTRL_EXT_DRV_LOAD; E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); } /* * igb_release_driver_control */ static void igb_release_driver_control(struct e1000_hw *hw) { uint32_t ctrl_ext; /* Notify firmware that driver is no longer in control of device */ ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT); ctrl_ext &= ~E1000_CTRL_EXT_DRV_LOAD; E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext); } /* * igb_atomic_reserve - Atomic decrease operation */ int igb_atomic_reserve(uint32_t *count_p, uint32_t n) { uint32_t oldval; uint32_t newval; /* ATOMICALLY */ do { oldval = *count_p; if (oldval < n) return (-1); newval = oldval - n; } while (atomic_cas_32(count_p, oldval, newval) != oldval); return (newval); }