/* * CDDL HEADER START * * Copyright(c) 2007-2008 Intel Corporation. All rights reserved. * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at: * http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When using or redistributing this file, you may do so under the * License only. No other modification of this header is permitted. * * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms of the CDDL. */ #pragma ident "%Z%%M% %I% %E% SMI" #include "igb_sw.h" int igb_m_stat(void *arg, uint_t stat, uint64_t *val) { igb_t *igb = (igb_t *)arg; struct e1000_hw *hw = &igb->hw; igb_stat_t *igb_ks; uint32_t low_val, high_val; igb_ks = (igb_stat_t *)igb->igb_ks->ks_data; mutex_enter(&igb->gen_lock); if (igb->igb_state & IGB_SUSPENDED) { mutex_exit(&igb->gen_lock); return (ECANCELED); } switch (stat) { case MAC_STAT_IFSPEED: *val = igb->link_speed * 1000000ull; break; case MAC_STAT_MULTIRCV: igb_ks->mprc.value.ui64 += E1000_READ_REG(hw, E1000_MPRC); *val = igb_ks->mprc.value.ui64; break; case MAC_STAT_BRDCSTRCV: igb_ks->bprc.value.ui64 += E1000_READ_REG(hw, E1000_BPRC); *val = igb_ks->bprc.value.ui64; break; case MAC_STAT_MULTIXMT: igb_ks->mptc.value.ui64 += E1000_READ_REG(hw, E1000_MPTC); *val = igb_ks->mptc.value.ui64; break; case MAC_STAT_BRDCSTXMT: igb_ks->bptc.value.ui64 += E1000_READ_REG(hw, E1000_BPTC); *val = igb_ks->bptc.value.ui64; break; case MAC_STAT_NORCVBUF: igb_ks->rnbc.value.ui64 += E1000_READ_REG(hw, E1000_RNBC); *val = igb_ks->rnbc.value.ui64; break; case MAC_STAT_IERRORS: igb_ks->rxerrc.value.ui64 += E1000_READ_REG(hw, E1000_RXERRC); igb_ks->algnerrc.value.ui64 += E1000_READ_REG(hw, E1000_ALGNERRC); igb_ks->rlec.value.ui64 += E1000_READ_REG(hw, E1000_RLEC); igb_ks->crcerrs.value.ui64 += E1000_READ_REG(hw, E1000_CRCERRS); igb_ks->cexterr.value.ui64 += E1000_READ_REG(hw, E1000_CEXTERR); *val = igb_ks->rxerrc.value.ui64 + igb_ks->algnerrc.value.ui64 + igb_ks->rlec.value.ui64 + igb_ks->crcerrs.value.ui64 + igb_ks->cexterr.value.ui64; break; case MAC_STAT_NOXMTBUF: *val = 0; break; case MAC_STAT_OERRORS: igb_ks->ecol.value.ui64 += E1000_READ_REG(hw, E1000_ECOL); *val = igb_ks->ecol.value.ui64; break; case MAC_STAT_COLLISIONS: igb_ks->colc.value.ui64 += E1000_READ_REG(hw, E1000_COLC); *val = igb_ks->colc.value.ui64; break; case MAC_STAT_RBYTES: /* * The 64-bit register will reset whenever the upper * 32 bits are read. So we need to read the lower * 32 bits first, then read the upper 32 bits. */ low_val = E1000_READ_REG(hw, E1000_TORL); high_val = E1000_READ_REG(hw, E1000_TORH); igb_ks->tor.value.ui64 += (uint64_t)high_val << 32 | (uint64_t)low_val; *val = igb_ks->tor.value.ui64; break; case MAC_STAT_IPACKETS: igb_ks->tpr.value.ui64 += E1000_READ_REG(hw, E1000_TPR); *val = igb_ks->tpr.value.ui64; break; case MAC_STAT_OBYTES: /* * The 64-bit register will reset whenever the upper * 32 bits are read. So we need to read the lower * 32 bits first, then read the upper 32 bits. */ low_val = E1000_READ_REG(hw, E1000_TOTL); high_val = E1000_READ_REG(hw, E1000_TOTH); igb_ks->tot.value.ui64 += (uint64_t)high_val << 32 | (uint64_t)low_val; *val = igb_ks->tot.value.ui64; break; case MAC_STAT_OPACKETS: igb_ks->tpt.value.ui64 += E1000_READ_REG(hw, E1000_TPT); *val = igb_ks->tpt.value.ui64; break; /* RFC 1643 stats */ case ETHER_STAT_ALIGN_ERRORS: igb_ks->algnerrc.value.ui64 += E1000_READ_REG(hw, E1000_ALGNERRC); *val = igb_ks->algnerrc.value.ui64; break; case ETHER_STAT_FCS_ERRORS: igb_ks->crcerrs.value.ui64 += E1000_READ_REG(hw, E1000_CRCERRS); *val = igb_ks->crcerrs.value.ui64; break; case ETHER_STAT_FIRST_COLLISIONS: igb_ks->scc.value.ui64 += E1000_READ_REG(hw, E1000_SCC); *val = igb_ks->scc.value.ui64; break; case ETHER_STAT_MULTI_COLLISIONS: igb_ks->mcc.value.ui64 += E1000_READ_REG(hw, E1000_MCC); *val = igb_ks->mcc.value.ui64; break; case ETHER_STAT_SQE_ERRORS: igb_ks->sec.value.ui64 += E1000_READ_REG(hw, E1000_SEC); *val = igb_ks->sec.value.ui64; break; case ETHER_STAT_DEFER_XMTS: igb_ks->dc.value.ui64 += E1000_READ_REG(hw, E1000_DC); *val = igb_ks->dc.value.ui64; break; case ETHER_STAT_TX_LATE_COLLISIONS: igb_ks->latecol.value.ui64 += E1000_READ_REG(hw, E1000_LATECOL); *val = igb_ks->latecol.value.ui64; break; case ETHER_STAT_EX_COLLISIONS: igb_ks->ecol.value.ui64 += E1000_READ_REG(hw, E1000_ECOL); *val = igb_ks->ecol.value.ui64; break; case ETHER_STAT_MACXMT_ERRORS: igb_ks->ecol.value.ui64 += E1000_READ_REG(hw, E1000_ECOL); *val = igb_ks->ecol.value.ui64; break; case ETHER_STAT_CARRIER_ERRORS: igb_ks->cexterr.value.ui64 += E1000_READ_REG(hw, E1000_CEXTERR); *val = igb_ks->cexterr.value.ui64; break; case ETHER_STAT_TOOLONG_ERRORS: igb_ks->roc.value.ui64 += E1000_READ_REG(hw, E1000_ROC); *val = igb_ks->roc.value.ui64; break; case ETHER_STAT_MACRCV_ERRORS: igb_ks->rxerrc.value.ui64 += E1000_READ_REG(hw, E1000_RXERRC); *val = igb_ks->rxerrc.value.ui64; break; /* MII/GMII stats */ case ETHER_STAT_XCVR_ADDR: /* The Internal PHY's MDI address for each MAC is 1 */ *val = 1; break; case ETHER_STAT_XCVR_ID: *val = hw->phy.id | hw->phy.revision; break; case ETHER_STAT_XCVR_INUSE: switch (igb->link_speed) { case SPEED_1000: *val = (hw->phy.media_type == e1000_media_type_copper) ? XCVR_1000T : XCVR_1000X; break; case SPEED_100: *val = (hw->phy.media_type == e1000_media_type_copper) ? (igb->param_100t4_cap == 1) ? XCVR_100T4 : XCVR_100T2 : XCVR_100X; break; case SPEED_10: *val = XCVR_10; break; default: *val = XCVR_NONE; break; } break; case ETHER_STAT_CAP_1000FDX: *val = igb->param_1000fdx_cap; break; case ETHER_STAT_CAP_1000HDX: *val = igb->param_1000hdx_cap; break; case ETHER_STAT_CAP_100FDX: *val = igb->param_100fdx_cap; break; case ETHER_STAT_CAP_100HDX: *val = igb->param_100hdx_cap; break; case ETHER_STAT_CAP_10FDX: *val = igb->param_10fdx_cap; break; case ETHER_STAT_CAP_10HDX: *val = igb->param_10hdx_cap; break; case ETHER_STAT_CAP_ASMPAUSE: *val = igb->param_asym_pause_cap; break; case ETHER_STAT_CAP_PAUSE: *val = igb->param_pause_cap; break; case ETHER_STAT_CAP_AUTONEG: *val = igb->param_autoneg_cap; break; case ETHER_STAT_ADV_CAP_1000FDX: *val = igb->param_adv_1000fdx_cap; break; case ETHER_STAT_ADV_CAP_1000HDX: *val = igb->param_adv_1000hdx_cap; break; case ETHER_STAT_ADV_CAP_100FDX: *val = igb->param_adv_100fdx_cap; break; case ETHER_STAT_ADV_CAP_100HDX: *val = igb->param_adv_100hdx_cap; break; case ETHER_STAT_ADV_CAP_10FDX: *val = igb->param_adv_10fdx_cap; break; case ETHER_STAT_ADV_CAP_10HDX: *val = igb->param_adv_10hdx_cap; break; case ETHER_STAT_ADV_CAP_ASMPAUSE: *val = igb->param_adv_asym_pause_cap; break; case ETHER_STAT_ADV_CAP_PAUSE: *val = igb->param_adv_pause_cap; break; case ETHER_STAT_ADV_CAP_AUTONEG: *val = hw->mac.autoneg; break; case ETHER_STAT_LP_CAP_1000FDX: *val = igb->param_lp_1000fdx_cap; break; case ETHER_STAT_LP_CAP_1000HDX: *val = igb->param_lp_1000hdx_cap; break; case ETHER_STAT_LP_CAP_100FDX: *val = igb->param_lp_100fdx_cap; break; case ETHER_STAT_LP_CAP_100HDX: *val = igb->param_lp_100hdx_cap; break; case ETHER_STAT_LP_CAP_10FDX: *val = igb->param_lp_10fdx_cap; break; case ETHER_STAT_LP_CAP_10HDX: *val = igb->param_lp_10hdx_cap; break; case ETHER_STAT_LP_CAP_ASMPAUSE: *val = igb->param_lp_asym_pause_cap; break; case ETHER_STAT_LP_CAP_PAUSE: *val = igb->param_lp_pause_cap; break; case ETHER_STAT_LP_CAP_AUTONEG: *val = igb->param_lp_autoneg_cap; break; case ETHER_STAT_LINK_ASMPAUSE: *val = igb->param_asym_pause_cap; break; case ETHER_STAT_LINK_PAUSE: *val = igb->param_pause_cap; break; case ETHER_STAT_LINK_AUTONEG: *val = hw->mac.autoneg; break; case ETHER_STAT_LINK_DUPLEX: *val = (igb->link_duplex == FULL_DUPLEX) ? LINK_DUPLEX_FULL : LINK_DUPLEX_HALF; break; case ETHER_STAT_TOOSHORT_ERRORS: igb_ks->ruc.value.ui64 += E1000_READ_REG(hw, E1000_RUC); *val = igb_ks->ruc.value.ui64; break; case ETHER_STAT_CAP_REMFAULT: *val = igb->param_rem_fault; break; case ETHER_STAT_ADV_REMFAULT: *val = igb->param_adv_rem_fault; break; case ETHER_STAT_LP_REMFAULT: *val = igb->param_lp_rem_fault; break; case ETHER_STAT_JABBER_ERRORS: igb_ks->rjc.value.ui64 += E1000_READ_REG(hw, E1000_RJC); *val = igb_ks->rjc.value.ui64; break; case ETHER_STAT_CAP_100T4: *val = igb->param_100t4_cap; break; case ETHER_STAT_ADV_CAP_100T4: *val = igb->param_adv_100t4_cap; break; case ETHER_STAT_LP_CAP_100T4: *val = igb->param_lp_100t4_cap; break; default: mutex_exit(&igb->gen_lock); return (ENOTSUP); } mutex_exit(&igb->gen_lock); if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) ddi_fm_service_impact(igb->dip, DDI_SERVICE_UNAFFECTED); return (0); } /* * Bring the device out of the reset/quiesced state that it * was in when the interface was registered. */ int igb_m_start(void *arg) { igb_t *igb = (igb_t *)arg; mutex_enter(&igb->gen_lock); if (igb->igb_state & IGB_SUSPENDED) { mutex_exit(&igb->gen_lock); return (ECANCELED); } if (igb_start(igb) != IGB_SUCCESS) { mutex_exit(&igb->gen_lock); return (EIO); } igb->igb_state |= IGB_STARTED; mutex_exit(&igb->gen_lock); /* * Enable and start the watchdog timer */ igb_enable_watchdog_timer(igb); return (0); } /* * Stop the device and put it in a reset/quiesced state such * that the interface can be unregistered. */ void igb_m_stop(void *arg) { igb_t *igb = (igb_t *)arg; mutex_enter(&igb->gen_lock); if (igb->igb_state & IGB_SUSPENDED) { mutex_exit(&igb->gen_lock); return; } igb->igb_state &= ~IGB_STARTED; igb_stop(igb); mutex_exit(&igb->gen_lock); /* * Disable and stop the watchdog timer */ igb_disable_watchdog_timer(igb); } /* * Set the promiscuity of the device. */ int igb_m_promisc(void *arg, boolean_t on) { igb_t *igb = (igb_t *)arg; uint32_t reg_val; mutex_enter(&igb->gen_lock); if (igb->igb_state & IGB_SUSPENDED) { mutex_exit(&igb->gen_lock); return (ECANCELED); } reg_val = E1000_READ_REG(&igb->hw, E1000_RCTL); if (on) reg_val |= (E1000_RCTL_UPE | E1000_RCTL_MPE); else reg_val &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE)); E1000_WRITE_REG(&igb->hw, E1000_RCTL, reg_val); mutex_exit(&igb->gen_lock); if (igb_check_acc_handle(igb->osdep.reg_handle) != DDI_FM_OK) { ddi_fm_service_impact(igb->dip, DDI_SERVICE_DEGRADED); return (EIO); } return (0); } /* * Add/remove the addresses to/from the set of multicast * addresses for which the device will receive packets. */ int igb_m_multicst(void *arg, boolean_t add, const uint8_t *mcst_addr) { igb_t *igb = (igb_t *)arg; int result; mutex_enter(&igb->gen_lock); if (igb->igb_state & IGB_SUSPENDED) { mutex_exit(&igb->gen_lock); return (ECANCELED); } result = (add) ? igb_multicst_add(igb, mcst_addr) : igb_multicst_remove(igb, mcst_addr); mutex_exit(&igb->gen_lock); return (result); } /* * Set a new device unicast address. */ int igb_m_unicst(void *arg, const uint8_t *mac_addr) { igb_t *igb = (igb_t *)arg; int result; mutex_enter(&igb->gen_lock); if (igb->igb_state & IGB_SUSPENDED) { mutex_exit(&igb->gen_lock); return (ECANCELED); } /* * Store the new MAC address. */ bcopy(mac_addr, igb->hw.mac.addr, ETHERADDRL); /* * Set MAC address in address slot 0, which is the default address. */ result = igb_unicst_set(igb, mac_addr, 0); mutex_exit(&igb->gen_lock); return (result); } /* * Pass on M_IOCTL messages passed to the DLD, and support * private IOCTLs for debugging and ndd. */ void igb_m_ioctl(void *arg, queue_t *q, mblk_t *mp) { igb_t *igb = (igb_t *)arg; struct iocblk *iocp; enum ioc_reply status; iocp = (struct iocblk *)(uintptr_t)mp->b_rptr; iocp->ioc_error = 0; switch (iocp->ioc_cmd) { case LB_GET_INFO_SIZE: case LB_GET_INFO: case LB_GET_MODE: case LB_SET_MODE: status = igb_loopback_ioctl(igb, iocp, mp); break; case ND_GET: case ND_SET: status = igb_nd_ioctl(igb, q, mp, iocp); break; default: status = IOC_INVAL; break; } /* * Decide how to reply */ switch (status) { default: case IOC_INVAL: /* * Error, reply with a NAK and EINVAL or the specified error */ miocnak(q, mp, 0, iocp->ioc_error == 0 ? EINVAL : iocp->ioc_error); break; case IOC_DONE: /* * OK, reply already sent */ break; case IOC_ACK: /* * OK, reply with an ACK */ miocack(q, mp, 0, 0); break; case IOC_REPLY: /* * OK, send prepared reply as ACK or NAK */ mp->b_datap->db_type = iocp->ioc_error == 0 ? M_IOCACK : M_IOCNAK; qreply(q, mp); break; } } /* * Find an unused address slot, set the address to it, reserve * this slot and enable the device to start filtering on the * new address. */ int igb_m_unicst_add(void *arg, mac_multi_addr_t *maddr) { igb_t *igb = (igb_t *)arg; mac_addr_slot_t slot; int err; mutex_enter(&igb->gen_lock); if (igb->igb_state & IGB_SUSPENDED) { mutex_exit(&igb->gen_lock); return (ECANCELED); } if (mac_unicst_verify(igb->mac_hdl, maddr->mma_addr, maddr->mma_addrlen) == B_FALSE) { mutex_exit(&igb->gen_lock); return (EINVAL); } if (igb->unicst_avail == 0) { /* no slots available */ mutex_exit(&igb->gen_lock); return (ENOSPC); } /* * Primary/default address is in slot 0. The next addresses * are the multiple MAC addresses. So multiple MAC address 0 * is in slot 1, 1 in slot 2, and so on. So the first multiple * MAC address resides in slot 1. */ for (slot = 1; slot < igb->unicst_total; slot++) { if (igb->unicst_addr[slot].mac.set == 0) { igb->unicst_addr[slot].mac.set = 1; break; } } ASSERT((slot > 0) && (slot < igb->unicst_total)); igb->unicst_avail--; mutex_exit(&igb->gen_lock); maddr->mma_slot = slot; if ((err = igb_unicst_set(igb, maddr->mma_addr, slot)) != 0) { mutex_enter(&igb->gen_lock); igb->unicst_addr[slot].mac.set = 0; igb->unicst_avail++; mutex_exit(&igb->gen_lock); } return (err); } /* * Removes a MAC address that was added before. */ int igb_m_unicst_remove(void *arg, mac_addr_slot_t slot) { igb_t *igb = (igb_t *)arg; int err; mutex_enter(&igb->gen_lock); if (igb->igb_state & IGB_SUSPENDED) { mutex_exit(&igb->gen_lock); return (ECANCELED); } if ((slot <= 0) || (slot >= igb->unicst_total)) { mutex_exit(&igb->gen_lock); return (EINVAL); } if (igb->unicst_addr[slot].mac.set == 1) { igb->unicst_addr[slot].mac.set = 0; igb->unicst_avail++; /* Copy the default address to the passed slot */ if ((err = igb_unicst_set(igb, igb->unicst_addr[0].mac.addr, slot)) != 0) { igb->unicst_addr[slot].mac.set = 1; igb->unicst_avail--; } mutex_exit(&igb->gen_lock); return (err); } mutex_exit(&igb->gen_lock); return (EINVAL); } /* * Modifies the value of an address that has been added before. * The new address length and the slot number that was returned * in the call to add should be passed in. mma_flags should be * set to 0. * Returns 0 on success. */ int igb_m_unicst_modify(void *arg, mac_multi_addr_t *maddr) { igb_t *igb = (igb_t *)arg; mac_addr_slot_t slot; mutex_enter(&igb->gen_lock); if (igb->igb_state & IGB_SUSPENDED) { mutex_exit(&igb->gen_lock); return (ECANCELED); } if (mac_unicst_verify(igb->mac_hdl, maddr->mma_addr, maddr->mma_addrlen) == B_FALSE) { mutex_exit(&igb->gen_lock); return (EINVAL); } slot = maddr->mma_slot; if ((slot <= 0) || (slot >= igb->unicst_total)) { mutex_exit(&igb->gen_lock); return (EINVAL); } if (igb->unicst_addr[slot].mac.set == 1) { mutex_exit(&igb->gen_lock); return (igb_unicst_set(igb, maddr->mma_addr, slot)); } mutex_exit(&igb->gen_lock); return (EINVAL); } /* * Get the MAC address and all other information related to * the address slot passed in mac_multi_addr_t. * mma_flags should be set to 0 in the call. * On return, mma_flags can take the following values: * 1) MMAC_SLOT_UNUSED * 2) MMAC_SLOT_USED | MMAC_VENDOR_ADDR * 3) MMAC_SLOT_UNUSED | MMAC_VENDOR_ADDR * 4) MMAC_SLOT_USED */ int igb_m_unicst_get(void *arg, mac_multi_addr_t *maddr) { igb_t *igb = (igb_t *)arg; mac_addr_slot_t slot; mutex_enter(&igb->gen_lock); if (igb->igb_state & IGB_SUSPENDED) { mutex_exit(&igb->gen_lock); return (ECANCELED); } slot = maddr->mma_slot; if ((slot <= 0) || (slot >= igb->unicst_total)) { mutex_exit(&igb->gen_lock); return (EINVAL); } if (igb->unicst_addr[slot].mac.set == 1) { bcopy(igb->unicst_addr[slot].mac.addr, maddr->mma_addr, ETHERADDRL); maddr->mma_flags = MMAC_SLOT_USED; } else { maddr->mma_flags = MMAC_SLOT_UNUSED; } mutex_exit(&igb->gen_lock); return (0); } /* * Obtain the MAC's capabilities and associated data from * the driver. */ boolean_t igb_m_getcapab(void *arg, mac_capab_t cap, void *cap_data) { igb_t *igb = (igb_t *)arg; switch (cap) { case MAC_CAPAB_HCKSUM: { uint32_t *tx_hcksum_flags = cap_data; /* * We advertise our capabilities only if tx hcksum offload is * enabled. On receive, the stack will accept checksummed * packets anyway, even if we haven't said we can deliver * them. */ if (!igb->tx_hcksum_enable) return (B_FALSE); *tx_hcksum_flags = HCKSUM_INET_PARTIAL | HCKSUM_IPHDRCKSUM; break; } case MAC_CAPAB_MULTIADDRESS: { multiaddress_capab_t *mmacp = cap_data; /* * The number of MAC addresses made available by * this capability is one less than the total as * the primary address in slot 0 is counted in * the total. */ mmacp->maddr_naddr = igb->unicst_total - 1; mmacp->maddr_naddrfree = igb->unicst_avail; /* No multiple factory addresses, set mma_flag to 0 */ mmacp->maddr_flag = 0; mmacp->maddr_handle = igb; mmacp->maddr_add = igb_m_unicst_add; mmacp->maddr_remove = igb_m_unicst_remove; mmacp->maddr_modify = igb_m_unicst_modify; mmacp->maddr_get = igb_m_unicst_get; mmacp->maddr_reserve = NULL; break; } default: return (B_FALSE); } return (B_TRUE); }