/* * Copyright 2010 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Frank van der Linden. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "elxl.h" static boolean_t elxl_add_intr(elxl_t *); static void elxl_probe_media(elxl_t *); static void elxl_set_rxfilter(elxl_t *); static void elxl_set_media(elxl_t *); static uint16_t elxl_read_eeprom(elxl_t *, int); static void elxl_init(elxl_t *); static void elxl_stop(elxl_t *); static void elxl_reset(elxl_t *); static void elxl_getstats(elxl_t *); static int elxl_eeprom_busy(elxl_t *); static void elxl_setup_tx(elxl_t *); static uint16_t elxl_mii_read(void *, uint8_t, uint8_t); static void elxl_mii_write(void *, uint8_t, uint8_t, uint16_t); static void elxl_mii_notify(void *, link_state_t); static int elxl_m_stat(void *, uint_t, uint64_t *); static int elxl_m_start(void *); static void elxl_m_stop(void *); static mblk_t *elxl_m_tx(void *, mblk_t *); static int elxl_m_promisc(void *, boolean_t); static int elxl_m_multicst(void *, boolean_t, const uint8_t *); static int elxl_m_unicst(void *, const uint8_t *); static int elxl_m_getprop(void *, const char *, mac_prop_id_t, uint_t, uint_t, void *, uint_t *); static int elxl_m_setprop(void *, const char *, mac_prop_id_t, uint_t, const void *); static boolean_t elxl_m_getcapab(void *, mac_capab_t cap, void *); static uint_t elxl_intr(caddr_t, caddr_t); static void elxl_error(elxl_t *, char *, ...); static void elxl_linkcheck(void *); static int elxl_attach(dev_info_t *); static void elxl_detach(elxl_t *); static void elxl_suspend(elxl_t *); static void elxl_resume(dev_info_t *); static int elxl_ddi_attach(dev_info_t *, ddi_attach_cmd_t); static int elxl_ddi_detach(dev_info_t *, ddi_detach_cmd_t); static int elxl_ddi_quiesce(dev_info_t *); static ddi_device_acc_attr_t ex_dev_acc_attr = { DDI_DEVICE_ATTR_V0, DDI_STRUCTURE_LE_ACC, DDI_STRICTORDER_ACC }; static ddi_device_acc_attr_t ex_buf_acc_attr = { DDI_DEVICE_ATTR_V0, DDI_NEVERSWAP_ACC, DDI_STORECACHING_OK_ACC }; /* * In theory buffers can have more flexible DMA attributes, but since * we're just using a preallocated region with bcopy, there is little * reason to allow for rougher alignment. (Further, the 8-byte * alignment can allow for more efficient bcopy and similar operations * from the buffer.) */ static ddi_dma_attr_t ex_dma_attr = { DMA_ATTR_V0, /* dma_attr_version */ 0, /* dma_attr_addr_lo */ 0xFFFFFFFFU, /* dma_attr_addr_hi */ 0x00FFFFFFU, /* dma_attr_count_max */ 8, /* dma_attr_align */ 0x7F, /* dma_attr_burstsizes */ 1, /* dma_attr_minxfer */ 0xFFFFFFFFU, /* dma_attr_maxxfer */ 0xFFFFFFFFU, /* dma_attr_seg */ 1, /* dma_attr_sgllen */ 1, /* dma_attr_granular */ 0 /* dma_attr_flags */ }; static uint8_t ex_broadcast[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; /* * Structure to map media-present bits in boards to ifmedia codes and * printable media names. Used for table-driven ifmedia initialization. */ typedef struct ex_media { int exm_mpbit; /* media present bit */ int exm_xcvr; /* XCVR_SEL_* constant */ } ex_media_t; /* * Media table for 3c90x chips. Note that chips with MII have no * `native' media. This is sorted in "reverse preference". */ static ex_media_t ex_native_media[] = { { MEDIAOPT_AUI, XCVR_SEL_AUI }, { MEDIAOPT_BNC, XCVR_SEL_BNC }, { MEDIAOPT_10T, XCVR_SEL_10T }, { MEDIAOPT_100TX, XCVR_SEL_AUTO }, /* only 90XB */ { MEDIAOPT_100FX, XCVR_SEL_100FX }, { MEDIAOPT_MII, XCVR_SEL_MII }, { MEDIAOPT_100T4, XCVR_SEL_MII }, { 0, 0 }, }; /* * NB: There are lots of other models that *could* be supported. * Specifically there are cardbus and miniPCI variants that could be * easily added here, but they require special hacks and I have no * access to the hardware required to verify them. Especially they * seem to require some extra work in another register window, and I * have no supporting documentation. */ static const struct ex_product { uint16_t epp_prodid; /* PCI product ID */ const char *epp_name; /* device name */ unsigned epp_flags; /* initial softc flags */ } ex_products[] = { { 0x4500, "3c450-TX", 0 }, { 0x7646, "3cSOHO100-TX", 0 }, { 0x9000, "3c900-TPO", 0 }, { 0x9001, "3c900-COMBO", 0 }, { 0x9004, "3c900B-TPO", 0 }, { 0x9005, "3c900B-COMBO", 0 }, { 0x9006, "3c900B-TPC", 0 }, { 0x900a, "3c900B-FL", 0 }, { 0x9050, "3c905-TX", 0 }, { 0x9051, "3c905-T4", 0 }, { 0x9055, "3c905B-TX", 0 }, { 0x9056, "3c905B-T4", 0 }, { 0x9058, "3c905B-COMBO", 0 }, { 0x905a, "3c905B-FX", 0 }, { 0x9200, "3c905C-TX", 0 }, { 0x9201, "3c920B-EMB", 0 }, { 0x9202, "3c920B-EMB-WNM", 0 }, { 0x9800, "3c980", 0 }, { 0x9805, "3c980C-TXM", 0 }, { 0, NULL, 0 }, }; mac_priv_prop_t ex_priv_prop[] = { { "_media", MAC_PROP_PERM_RW }, { "_available_media", MAC_PROP_PERM_READ }, }; static mii_ops_t ex_mii_ops = { MII_OPS_VERSION, elxl_mii_read, elxl_mii_write, elxl_mii_notify, }; static mac_callbacks_t elxl_m_callbacks = { MC_GETCAPAB | MC_SETPROP | MC_GETPROP, elxl_m_stat, elxl_m_start, elxl_m_stop, elxl_m_promisc, elxl_m_multicst, elxl_m_unicst, elxl_m_tx, NULL, elxl_m_getcapab, NULL, NULL, elxl_m_setprop, elxl_m_getprop }; /* * Stream information */ DDI_DEFINE_STREAM_OPS(ex_devops, nulldev, nulldev, elxl_ddi_attach, elxl_ddi_detach, nodev, NULL, D_MP, NULL, elxl_ddi_quiesce); /* * Module linkage information. */ static struct modldrv ex_modldrv = { &mod_driverops, /* drv_modops */ "3Com EtherLink XL", /* drv_linkinfo */ &ex_devops /* drv_dev_ops */ }; static struct modlinkage ex_modlinkage = { MODREV_1, /* ml_rev */ { &ex_modldrv, NULL } /* ml_linkage */ }; int _init(void) { int rv; mac_init_ops(&ex_devops, "elxl"); if ((rv = mod_install(&ex_modlinkage)) != DDI_SUCCESS) { mac_fini_ops(&ex_devops); } return (rv); } int _fini(void) { int rv; if ((rv = mod_remove(&ex_modlinkage)) == DDI_SUCCESS) { mac_fini_ops(&ex_devops); } return (rv); } int _info(struct modinfo *modinfop) { return (mod_info(&ex_modlinkage, modinfop)); } static void ex_free_ring(ex_ring_t *r) { for (int i = 0; i < r->r_count; i++) { ex_desc_t *ed = &r->r_desc[i]; if (ed->ed_bufaddr) (void) ddi_dma_unbind_handle(ed->ed_dmah); if (ed->ed_acch) ddi_dma_mem_free(&ed->ed_acch); if (ed->ed_dmah) ddi_dma_free_handle(&ed->ed_dmah); } if (r->r_paddr) (void) ddi_dma_unbind_handle(r->r_dmah); if (r->r_acch) ddi_dma_mem_free(&r->r_acch); if (r->r_dmah) ddi_dma_free_handle(&r->r_dmah); kmem_free(r->r_desc, sizeof (ex_desc_t) * r->r_count); r->r_desc = NULL; } static void elxl_reset_ring(ex_ring_t *r, uint_t dir) { ex_desc_t *ed; ex_pd_t *pd; if (dir == DDI_DMA_WRITE) { /* transmit ring, not linked yet */ for (int i = 0; i < r->r_count; i++) { ed = &r->r_desc[i]; pd = ed->ed_pd; PUT_PD(r, pd->pd_link, 0); PUT_PD(r, pd->pd_fsh, 0); PUT_PD(r, pd->pd_len, EX_FR_LAST); PUT_PD(r, pd->pd_addr, ed->ed_bufaddr); } r->r_head = NULL; r->r_tail = NULL; r->r_avail = r->r_count; } else { /* receive is linked into a list */ for (int i = 0; i < r->r_count; i++) { ed = &r->r_desc[i]; pd = ed->ed_pd; PUT_PD(r, pd->pd_link, ed->ed_next->ed_descaddr); PUT_PD(r, pd->pd_status, 0); PUT_PD(r, pd->pd_len, EX_BUFSZ | EX_FR_LAST); PUT_PD(r, pd->pd_addr, ed->ed_bufaddr); } r->r_head = &r->r_desc[0]; r->r_tail = NULL; r->r_avail = 0; } (void) ddi_dma_sync(r->r_dmah, 0, 0, DDI_DMA_SYNC_FORDEV); } static boolean_t ex_alloc_ring(elxl_t *sc, int count, ex_ring_t *r, uint_t dir) { dev_info_t *dip = sc->ex_dip; int i; int rv; size_t len; ddi_dma_cookie_t dmac; unsigned ndmac; r->r_count = count; r->r_desc = kmem_zalloc(sizeof (ex_desc_t) * count, KM_SLEEP); rv = ddi_dma_alloc_handle(dip, &ex_dma_attr, DDI_DMA_DONTWAIT, NULL, &r->r_dmah); if (rv != DDI_SUCCESS) { elxl_error(sc, "unable to allocate descriptor dma handle"); return (B_FALSE); } rv = ddi_dma_mem_alloc(r->r_dmah, count * sizeof (struct ex_pd), &ex_dev_acc_attr, DDI_DMA_CONSISTENT, DDI_DMA_DONTWAIT, NULL, (caddr_t *)&r->r_pd, &len, &r->r_acch); if (rv != DDI_SUCCESS) { elxl_error(sc, "unable to allocate descriptor memory"); return (B_FALSE); } bzero(r->r_pd, len); rv = ddi_dma_addr_bind_handle(r->r_dmah, NULL, (caddr_t)r->r_pd, len, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, DDI_DMA_DONTWAIT, NULL, &dmac, &ndmac); if (rv != DDI_DMA_MAPPED) { elxl_error(sc, "unable to map descriptor memory"); return (B_FALSE); } r->r_paddr = dmac.dmac_address; for (i = 0; i < count; i++) { ex_desc_t *ed = &r->r_desc[i]; ex_pd_t *pd = &r->r_pd[i]; ed->ed_pd = pd; ed->ed_off = (i * sizeof (ex_pd_t)); ed->ed_descaddr = r->r_paddr + (i * sizeof (ex_pd_t)); /* Link the high level descriptors into a ring. */ ed->ed_next = &r->r_desc[(i + 1) % count]; ed->ed_next->ed_prev = ed; rv = ddi_dma_alloc_handle(dip, &ex_dma_attr, DDI_DMA_DONTWAIT, NULL, &ed->ed_dmah); if (rv != 0) { elxl_error(sc, "can't allocate buf dma handle"); return (B_FALSE); } rv = ddi_dma_mem_alloc(ed->ed_dmah, EX_BUFSZ, &ex_buf_acc_attr, DDI_DMA_STREAMING, DDI_DMA_DONTWAIT, NULL, &ed->ed_buf, &len, &ed->ed_acch); if (rv != DDI_SUCCESS) { elxl_error(sc, "unable to allocate buf memory"); return (B_FALSE); } bzero(ed->ed_buf, len); rv = ddi_dma_addr_bind_handle(ed->ed_dmah, NULL, ed->ed_buf, len, dir | DDI_DMA_STREAMING, DDI_DMA_DONTWAIT, NULL, &dmac, &ndmac); if (rv != DDI_DMA_MAPPED) { elxl_error(sc, "unable to map buf memory"); return (B_FALSE); } ed->ed_bufaddr = dmac.dmac_address; } elxl_reset_ring(r, dir); return (B_TRUE); } static boolean_t elxl_add_intr(elxl_t *sc) { dev_info_t *dip; int actual; uint_t ipri; int rv; dip = sc->ex_dip; rv = ddi_intr_alloc(dip, &sc->ex_intrh, DDI_INTR_TYPE_FIXED, 0, 1, &actual, DDI_INTR_ALLOC_STRICT); if ((rv != DDI_SUCCESS) || (actual != 1)) { elxl_error(sc, "Unable to allocate interrupt, %d, count %d", rv, actual); return (B_FALSE); } if (ddi_intr_get_pri(sc->ex_intrh, &ipri) != DDI_SUCCESS) { elxl_error(sc, "Unable to get interrupt priority"); return (B_FALSE); } if (ddi_intr_add_handler(sc->ex_intrh, elxl_intr, sc, NULL) != DDI_SUCCESS) { elxl_error(sc, "Can't add interrupt handler"); (void) ddi_intr_free(sc->ex_intrh); sc->ex_intrh = NULL; return (B_FALSE); } mutex_init(&sc->ex_intrlock, NULL, MUTEX_DRIVER, DDI_INTR_PRI(ipri)); mutex_init(&sc->ex_txlock, NULL, MUTEX_DRIVER, DDI_INTR_PRI(ipri)); return (B_TRUE); } static int elxl_attach(dev_info_t *dip) { elxl_t *sc; mac_register_t *macp; uint16_t val; uint16_t venid; uint16_t devid; int i; sc = kmem_zalloc(sizeof (*sc), KM_SLEEP); ddi_set_driver_private(dip, sc); sc->ex_dip = dip; if (pci_config_setup(dip, &sc->ex_pcih) != DDI_SUCCESS) { elxl_error(sc, "unable to setup PCI config handle"); goto fail; } venid = pci_config_get16(sc->ex_pcih, PCI_CONF_VENID); devid = pci_config_get16(sc->ex_pcih, PCI_CONF_DEVID); if (venid != 0x10b7) { /* Not a 3Com part! */ elxl_error(sc, "Unsupported vendor id (0x%x)", venid); goto fail; } for (i = 0; ex_products[i].epp_name; i++) { if (devid == ex_products[i].epp_prodid) { cmn_err(CE_CONT, "?%s%d: 3Com %s", ddi_driver_name(dip), ddi_get_instance(dip), ex_products[i].epp_name); sc->ex_conf = ex_products[i].epp_flags; break; } } if (ex_products[i].epp_name == NULL) { /* Not a produce we know how to support */ elxl_error(sc, "Unsupported device id (0x%x)", devid); elxl_error(sc, "Driver may or may not function."); } pci_config_put16(sc->ex_pcih, PCI_CONF_COMM, pci_config_get16(sc->ex_pcih, PCI_CONF_COMM) | PCI_COMM_IO | PCI_COMM_MAE | PCI_COMM_ME); if (ddi_regs_map_setup(dip, 1, &sc->ex_regsva, 0, 0, &ex_dev_acc_attr, &sc->ex_regsh) != DDI_SUCCESS) { elxl_error(sc, "Unable to map device registers"); goto fail; } if (!elxl_add_intr(sc)) { goto fail; } elxl_reset(sc); val = elxl_read_eeprom(sc, EE_OEM_ADDR_0); sc->ex_factaddr[0] = val >> 8; sc->ex_factaddr[1] = val & 0xff; val = elxl_read_eeprom(sc, EE_OEM_ADDR_1); sc->ex_factaddr[2] = val >> 8; sc->ex_factaddr[3] = val & 0xff; val = elxl_read_eeprom(sc, EE_OEM_ADDR_2); sc->ex_factaddr[4] = val >> 8; sc->ex_factaddr[5] = val & 0xff; bcopy(sc->ex_factaddr, sc->ex_curraddr, 6); sc->ex_capab = elxl_read_eeprom(sc, EE_CAPABILITIES); /* * Is this a 90XB? If bit 2 (supportsLargePackets) is set, or * bit (supportsNoTxLength) is clear, then its a 90X. * Otherwise its a 90XB. */ if ((sc->ex_capab & (1 << 2)) || !(sc->ex_capab & (1 << 9))) { sc->ex_conf &= ~CONF_90XB; } else { sc->ex_conf |= CONF_90XB; } if (!ex_alloc_ring(sc, EX_NRX, &sc->ex_rxring, DDI_DMA_READ)) { goto fail; } if (!ex_alloc_ring(sc, EX_NTX, &sc->ex_txring, DDI_DMA_WRITE)) { goto fail; } elxl_probe_media(sc); /* * The probe may have indicated MII! */ if (sc->ex_mediaopt & (MEDIAOPT_MII | MEDIAOPT_100TX)) { sc->ex_miih = mii_alloc(sc, sc->ex_dip, &ex_mii_ops); if (sc->ex_miih == NULL) { goto fail; } /* * Note: The 90XB models can in theory support pause, * but we're not enabling now due to lack of units for * testing with. If this is changed, make sure to * update the code in elxl_mii_notify to set the flow * control field in the W3_MAC_CONTROL register. */ mii_set_pauseable(sc->ex_miih, B_FALSE, B_FALSE); } if ((macp = mac_alloc(MAC_VERSION)) == NULL) { elxl_error(sc, "MAC register allocation failed"); goto fail; } macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER; macp->m_driver = sc; macp->m_dip = dip; macp->m_src_addr = sc->ex_curraddr; macp->m_callbacks = &elxl_m_callbacks; macp->m_min_sdu = 0; macp->m_max_sdu = ETHERMTU; macp->m_margin = VLAN_TAGSZ; macp->m_priv_props = ex_priv_prop; macp->m_priv_prop_count = 2; (void) ddi_intr_enable(sc->ex_intrh); if (mac_register(macp, &sc->ex_mach) == DDI_SUCCESS) { /* * Note: we don't want to start link checking * until *after* we have added the MAC handle. */ if (sc->ex_mediaopt & (MEDIAOPT_MASK & ~(MEDIAOPT_MII | MEDIAOPT_100TX))) { /* Check non-MII link state once per second. */ sc->ex_linkcheck = ddi_periodic_add(elxl_linkcheck, sc, 10000000, 0); } mac_free(macp); return (DDI_SUCCESS); } mac_free(macp); fail: elxl_detach(sc); return (DDI_FAILURE); } /* * Find the media present on non-MII chips, and select the one to use. */ static void elxl_probe_media(elxl_t *sc) { ex_media_t *exm; uint32_t config; uint32_t default_media; uint16_t media_options; SET_WIN(3); config = GET32(W3_INTERNAL_CONFIG); media_options = GET16(W3_MEDIAOPT); /* * We modify the media_options field so that we have a * consistent view of the media available, without worrying * about the version of ASIC, etc. */ /* * 100BASE-TX is handled differently on 90XB from 90X. Older * parts use the external MII to provide this support. */ if (sc->ex_conf & CONF_90XB) { if (media_options & MEDIAOPT_100TX) { /* * 3Com advises that we should only ever use the * auto mode. Notably, it seems that there should * never be a 90XB board with the MEDIAOPT_10T bit set * without this bit. If it happens, the driver will * run in compatible 10BASE-T only mode. */ media_options &= ~MEDIAOPT_10T; } } else { if (media_options & MEDIAOPT_100TX) { /* * If this occurs, we really want to use it like * an MII device. Generally in this situation we * want to use the MII exclusively, and there ought * not be a 10bT transceiver. */ media_options |= MEDIAOPT_MII; media_options &= ~MEDIAOPT_100TX; media_options &= ~MEDIAOPT_10T; /* * Additionally, some of these devices map all * internal PHY register at *every* address, not * just the "allowed" address 24. */ sc->ex_conf |= CONF_INTPHY; } /* * Early versions didn't have 10FL models, and used this * bit for something else (VCO). */ media_options &= ~MEDIAOPT_10FL; } if (media_options & MEDIAOPT_100T4) { /* 100BASE-T4 units all use the MII bus. */ media_options |= MEDIAOPT_MII; media_options &= ~MEDIAOPT_100T4; } /* Save our media options. */ sc->ex_mediaopt = media_options; #define APPEND_MEDIA(str, bit, name) \ if (media_options & (bit)) { \ (void) strlcat(str, *str ? "," : "", sizeof (str)); \ (void) strlcat(str, name, sizeof (str)); \ } APPEND_MEDIA(sc->ex_medias, (MEDIAOPT_MII|MEDIAOPT_100TX), "mii"); APPEND_MEDIA(sc->ex_medias, MEDIAOPT_10T, "tp-hdx,tp-fdx"); APPEND_MEDIA(sc->ex_medias, MEDIAOPT_100FX, "fx-hdx,fx-fdx"); APPEND_MEDIA(sc->ex_medias, MEDIAOPT_BNC, "bnc"); APPEND_MEDIA(sc->ex_medias, MEDIAOPT_AUI, "aui"); APPEND_MEDIA(sc->ex_medias, MEDIAOPT_10FL, "fl-hdx,fl-fdx"); if (config & XCVR_SEL_100TX) { /* Only found on 90XB. Don't use this, use AUTO instead! */ config |= XCVR_SEL_AUTO; config &= ~XCVR_SEL_100TX; } default_media = (config & XCVR_SEL_MASK); /* Sanity check that there are any media! */ if ((media_options & MEDIAOPT_MASK) == 0) { elxl_error(sc, "No media present? Attempting to use default."); /* * This "default" may be non-sensical. At worst it should * cause a busted link. */ sc->ex_xcvr = default_media; } for (exm = ex_native_media; exm->exm_mpbit != 0; exm++) { if (media_options & exm->exm_mpbit) { if (exm->exm_xcvr == default_media) { /* preferred default is present, just use it */ sc->ex_xcvr = default_media; return; } sc->ex_xcvr = exm->exm_xcvr; /* but keep trying for other more preferred options */ } } } /* * Setup transmitter parameters. */ static void elxl_setup_tx(elxl_t *sc) { /* * Disable reclaim threshold for 90xB, set free threshold to * 6 * 256 = 1536 for 90x. */ if (sc->ex_conf & CONF_90XB) PUT_CMD(CMD_SET_TXRECLAIM | 255); else PUT8(REG_TXFREETHRESH, 6); /* * We've seen underflows at the root cause of NIC hangs on * older cards. Use a store-and-forward model to prevent that. */ PUT_CMD(CMD_SET_TXSTART | EX_BUFSZ >> 2); } /* * Bring device up. */ static void elxl_init(elxl_t *sc) { if (sc->ex_suspended) return; WAIT_CMD(sc); elxl_stop(sc); PUT_CMD(CMD_RX_RESET); WAIT_CMD(sc); PUT_CMD(CMD_TX_RESET); WAIT_CMD(sc); /* Load Tx parameters. */ elxl_setup_tx(sc); PUT32(REG_DMACTRL, GET32(REG_DMACTRL) | DMACTRL_UPRXEAREN); PUT_CMD(CMD_IND_ENABLE | INT_WATCHED); PUT_CMD(CMD_INT_ENABLE | INT_WATCHED); PUT_CMD(CMD_INT_ACK | 0xff); elxl_set_media(sc); elxl_set_rxfilter(sc); /* Configure for VLAN tag sizing. */ SET_WIN(3); if (sc->ex_conf & CONF_90XB) { PUT16(W3_MAX_PKT_SIZE, EX_BUFSZ); } else { PUT16(W3_MAC_CONTROL, GET16(W3_MAC_CONTROL) | MAC_CONTROL_ALLOW_LARGE); } PUT_CMD(CMD_SET_RXEARLY | (EX_BUFSZ >> 2)); PUT_CMD(CMD_STATS_ENABLE); PUT_CMD(CMD_TX_ENABLE); PUT32(REG_UPLISTPTR, sc->ex_rxring.r_paddr); PUT_CMD(CMD_RX_ENABLE); PUT_CMD(CMD_UP_UNSTALL); } /* * Set multicast receive filter. Also take care of promiscuous mode. * Note that *some* of this hardware is fully capable of either a 256 * or 64 bit multicast hash. However, we can't determine what the * size of the hash table is easily, and so we are expected to be able * to resubmit the entire list of addresses each time. This puts an * onerous burden on the driver to maintain its list of multicast * addresses. Since multicast stuff is usually not that performance * sensitive, and since we don't usually have much of it, we are just * going to skip it. We allow the upper layers to filter it, as * needed, by setting the all-multicast bit if the hardware can do it. * This also reduces our test burden. */ static void elxl_set_rxfilter(elxl_t *sc) { uint16_t mask = FILTER_UNICAST | FILTER_ALLBCAST; if (sc->ex_suspended) return; /* * Set the station address and clear the station mask. The latter * is needed for 90x cards, 0 is the default for 90xB cards. */ SET_WIN(2); for (int i = 0; i < ETHERADDRL; i++) { PUT8(W2_STATION_ADDRESS + i, sc->ex_curraddr[i]); PUT8(W2_STATION_MASK + i, 0); } if (sc->ex_mccount) { mask |= FILTER_ALLMULTI; } if (sc->ex_promisc) { mask |= FILTER_PROMISC; } PUT_CMD(CMD_SET_FILTER | mask); } static void elxl_set_media(elxl_t *sc) { uint32_t configreg; SET_WIN(4); PUT16(W4_MEDIASTAT, 0); PUT_CMD(CMD_BNC_DISABLE); drv_usecwait(800); /* * Now turn on the selected media/transceiver. */ switch (sc->ex_xcvr) { case XCVR_SEL_10T: sc->ex_mii_active = B_FALSE; PUT16(W4_MEDIASTAT, MEDIASTAT_JABGUARD_EN | MEDIASTAT_LINKBEAT_EN); drv_usecwait(800); break; case XCVR_SEL_BNC: sc->ex_mii_active = B_FALSE; PUT_CMD(CMD_BNC_ENABLE); drv_usecwait(800); break; case XCVR_SEL_100FX: sc->ex_mii_active = B_FALSE; /* Is this really true? */ PUT16(W4_MEDIASTAT, MEDIASTAT_LINKBEAT_EN); drv_usecwait(800); break; case XCVR_SEL_AUI: sc->ex_mii_active = B_FALSE; PUT16(W4_MEDIASTAT, MEDIASTAT_SQE_EN); drv_usecwait(800); break; case XCVR_SEL_AUTO: case XCVR_SEL_MII: /* * This is due to paranoia. If a card claims * to default to MII, but doesn't have it set in * media options, then we don't want to leave * the MII active or we'll have problems derferencing * the "mii handle". */ if (sc->ex_miih) { sc->ex_mii_active = B_TRUE; } else { sc->ex_mii_active = B_FALSE; } break; default: sc->ex_mii_active = B_FALSE; elxl_error(sc, "Impossible media setting!"); break; } SET_WIN(3); configreg = GET32(W3_INTERNAL_CONFIG); configreg &= ~(XCVR_SEL_MASK); configreg |= (sc->ex_xcvr); PUT32(W3_INTERNAL_CONFIG, configreg); /* * If we're not using MII, force the full-duplex setting. MII * based modes handle the full-duplex setting via the MII * notify callback. */ if (!sc->ex_mii_active) { uint16_t mctl; mctl = GET16(W3_MAC_CONTROL); if (sc->ex_fdx) { mctl |= MAC_CONTROL_FDX; } else { mctl &= ~MAC_CONTROL_FDX; } PUT16(W3_MAC_CONTROL, mctl); } } /* * Get currently-selected media from card. * (if_media callback, may be called before interface is brought up). */ static void elxl_linkcheck(void *arg) { elxl_t *sc = arg; uint16_t stat; link_state_t link; mutex_enter(&sc->ex_txlock); if (sc->ex_mii_active) { mutex_exit(&sc->ex_txlock); return; } if (sc->ex_running && !sc->ex_suspended) { switch (sc->ex_xcvr) { case XCVR_SEL_100FX: /* these media we can detect link on */ SET_WIN(4); stat = GET16(W4_MEDIASTAT); if (stat & MEDIASTAT_LINKDETECT) { sc->ex_link = LINK_STATE_UP; sc->ex_speed = 100000000; } else { sc->ex_link = LINK_STATE_DOWN; sc->ex_speed = 0; } break; case XCVR_SEL_10T: /* these media we can detect link on */ SET_WIN(4); stat = GET16(W4_MEDIASTAT); if (stat & MEDIASTAT_LINKDETECT) { sc->ex_link = LINK_STATE_UP; sc->ex_speed = 10000000; } else { sc->ex_link = LINK_STATE_DOWN; sc->ex_speed = 0; } break; case XCVR_SEL_BNC: case XCVR_SEL_AUI: default: /* * For these we don't really know the answer, * but if we lie then at least it won't cause * ifconfig to turn off the RUNNING flag. * This is necessary because we might * transition from LINK_STATE_DOWN when * switching media. */ sc->ex_speed = 10000000; sc->ex_link = LINK_STATE_UP; break; } SET_WIN(3); sc->ex_duplex = GET16(W3_MAC_CONTROL) & MAC_CONTROL_FDX ? LINK_DUPLEX_FULL : LINK_DUPLEX_HALF; } else { sc->ex_speed = 0; sc->ex_duplex = LINK_DUPLEX_UNKNOWN; sc->ex_link = LINK_STATE_UNKNOWN; } link = sc->ex_link; mutex_exit(&sc->ex_txlock); mac_link_update(sc->ex_mach, link); } static int elxl_m_promisc(void *arg, boolean_t on) { elxl_t *sc = arg; mutex_enter(&sc->ex_intrlock); mutex_enter(&sc->ex_txlock); sc->ex_promisc = on; elxl_set_rxfilter(sc); mutex_exit(&sc->ex_txlock); mutex_exit(&sc->ex_intrlock); return (0); } static int elxl_m_multicst(void *arg, boolean_t add, const uint8_t *addr) { elxl_t *sc = arg; _NOTE(ARGUNUSED(addr)); mutex_enter(&sc->ex_intrlock); mutex_enter(&sc->ex_txlock); if (add) { sc->ex_mccount++; if (sc->ex_mccount == 1) { elxl_set_rxfilter(sc); } } else { sc->ex_mccount--; if (sc->ex_mccount == 0) { elxl_set_rxfilter(sc); } } mutex_exit(&sc->ex_txlock); mutex_exit(&sc->ex_intrlock); return (0); } static int elxl_m_unicst(void *arg, const uint8_t *addr) { elxl_t *sc = arg; mutex_enter(&sc->ex_intrlock); mutex_enter(&sc->ex_txlock); bcopy(addr, sc->ex_curraddr, ETHERADDRL); elxl_set_rxfilter(sc); mutex_exit(&sc->ex_txlock); mutex_exit(&sc->ex_intrlock); return (0); } static mblk_t * elxl_m_tx(void *arg, mblk_t *mp) { elxl_t *sc = arg; ex_desc_t *txd; ex_desc_t *first; ex_desc_t *tail; size_t len; ex_ring_t *r; ex_pd_t *pd; uint32_t cflags; mblk_t *nmp; boolean_t reenable = B_FALSE; boolean_t reset = B_FALSE; uint32_t paddr; r = &sc->ex_txring; mutex_enter(&sc->ex_txlock); if (sc->ex_suspended) { while (mp != NULL) { sc->ex_nocarrier++; nmp = mp->b_next; freemsg(mp); mp = nmp; } mutex_exit(&sc->ex_txlock); return (NULL); } for (int limit = (EX_NTX * 2); limit; limit--) { uint8_t stat = GET8(REG_TXSTATUS); if ((stat & TXSTATUS_COMPLETE) == 0) { break; } if (stat & TXSTATUS_MAXCOLLISIONS) { reenable = B_TRUE; sc->ex_excoll++; } if ((stat & TXSTATUS_ERRS) != 0) { reset = B_TRUE; if (stat & TXSTATUS_JABBER) { sc->ex_jabber++; } if (stat & TXSTATUS_RECLAIM_ERR) { sc->ex_txerr++; } if (stat & TXSTATUS_UNDERRUN) { sc->ex_uflo++; } } PUT8(REG_TXSTATUS, 0); } if (reset || reenable) { paddr = GET32(REG_DNLISTPTR); if (reset) { WAIT_CMD(sc); PUT_CMD(CMD_TX_RESET); WAIT_CMD(sc); elxl_setup_tx(sc); } PUT_CMD(CMD_TX_ENABLE); if (paddr) { PUT32(REG_DNLISTPTR, paddr); } } /* first reclaim any free descriptors */ while (r->r_avail < r->r_count) { paddr = GET32(REG_DNLISTPTR); txd = r->r_head; if (paddr == txd->ed_descaddr) { /* still processing this one, we're done */ break; } if (paddr == 0) { /* done processing the entire list! */ r->r_head = NULL; r->r_tail = NULL; r->r_avail = r->r_count; break; } r->r_avail++; r->r_head = txd->ed_next; } if ((r->r_avail < r->r_count) && (GET32(REG_DNLISTPTR) != 0)) { PUT_CMD(CMD_DN_STALL); WAIT_CMD(sc); } first = NULL; tail = r->r_tail; /* * If there is already a tx list, select the next desc on the list. * Otherwise, just pick the first descriptor. */ txd = tail ? tail->ed_next : &r->r_desc[0]; while ((mp != NULL) && (r->r_avail)) { nmp = mp->b_next; len = msgsize(mp); if (len > (ETHERMAX + VLAN_TAGSZ)) { sc->ex_txerr++; freemsg(mp); mp = nmp; continue; } cflags = 0; if ((sc->ex_conf & CONF_90XB) != 0) { uint32_t pflags; hcksum_retrieve(mp, NULL, NULL, NULL, NULL, NULL, NULL, &pflags); if (pflags & HCK_IPV4_HDRCKSUM) { cflags |= EX_DPD_IPCKSUM; } if (pflags & HCK_FULLCKSUM) { cflags |= (EX_DPD_TCPCKSUM | EX_DPD_UDPCKSUM); } } /* Mark this descriptor is in use. We're committed now. */ mcopymsg(mp, txd->ed_buf); /* frees the mblk! */ r->r_avail--; mp = nmp; /* Accounting stuff. */ sc->ex_opackets++; sc->ex_obytes += len; if (txd->ed_buf[0] & 0x1) { if (bcmp(txd->ed_buf, ex_broadcast, ETHERADDRL) != 0) { sc->ex_multixmt++; } else { sc->ex_brdcstxmt++; } } pd = txd->ed_pd; /* * Zero pad the frame if its too short. This * also avoids a checksum offload bug. */ if (len < 30) { bzero(txd->ed_buf + len, ETHERMIN - len); len = ETHERMIN; } /* * If this our first packet so far, record the head * of the list. */ if (first == NULL) { first = txd; } (void) ddi_dma_sync(txd->ed_dmah, 0, 0, DDI_DMA_SYNC_FORDEV); PUT_PD(r, pd->pd_link, 0); PUT_PD(r, pd->pd_fsh, len | cflags); PUT_PD(r, pd->pd_addr, txd->ed_bufaddr); PUT_PD(r, pd->pd_len, len | EX_FR_LAST); /* * Write the link into the previous descriptor. Note that * if this is the first packet (so no previous queued), this * will be benign because the previous descriptor won't be * on any tx list. (Furthermore, we'll clear its link field * when we do later use it.) */ PUT_PD(r, txd->ed_prev->ed_pd->pd_link, txd->ed_descaddr); } /* * Are we submitting any packets? */ if (first != NULL) { /* Interrupt on the last packet. */ PUT_PD(r, pd->pd_fsh, len | cflags | EX_DPD_DNIND); if (tail == NULL) { /* No packets pending, so its a new list head! */ r->r_head = first; } else { pd = tail->ed_pd; /* We've added frames, so don't interrupt mid-list. */ PUT_PD(r, pd->pd_fsh, GET_PD(r, pd->pd_fsh) & ~(EX_DPD_DNIND)); } /* Record the last descriptor. */ r->r_tail = txd; /* flush the entire ring - we're stopped so its safe */ (void) ddi_dma_sync(r->r_dmah, 0, 0, DDI_DMA_SYNC_FORDEV); } /* Restart transmitter. */ if (sc->ex_txring.r_head) { PUT32(REG_DNLISTPTR, sc->ex_txring.r_head->ed_descaddr); } PUT_CMD(CMD_DN_UNSTALL); mutex_exit(&sc->ex_txlock); return (mp); } static mblk_t * elxl_recv(elxl_t *sc, ex_desc_t *rxd, uint32_t stat) { mblk_t *mp = NULL; uint32_t len; len = stat & EX_UPD_PKTLENMASK; if (stat & (EX_UPD_ERR_VLAN | EX_UPD_OVERFLOW)) { if (stat & EX_UPD_RUNT) { sc->ex_runt++; } if (stat & EX_UPD_OVERRUN) { sc->ex_oflo++; } if (stat & EX_UPD_CRCERR) { sc->ex_fcs++; } if (stat & EX_UPD_ALIGNERR) { sc->ex_align++; } if (stat & EX_UPD_OVERFLOW) { sc->ex_toolong++; } return (NULL); } if (len < sizeof (struct ether_header)) { sc->ex_runt++; return (NULL); } if (len > (ETHERMAX + VLAN_TAGSZ)) { /* Allow four bytes for the VLAN header */ sc->ex_toolong++; return (NULL); } if ((mp = allocb(len + 14, BPRI_HI)) == NULL) { sc->ex_allocbfail++; return (NULL); } (void) ddi_dma_sync(rxd->ed_dmah, 0, 0, DDI_DMA_SYNC_FORKERNEL); mp->b_rptr += 14; mp->b_wptr = mp->b_rptr + len; bcopy(rxd->ed_buf, mp->b_rptr, len); sc->ex_ipackets++; sc->ex_ibytes += len; if (rxd->ed_buf[0] & 0x1) { if (bcmp(rxd->ed_buf, ex_broadcast, ETHERADDRL) != 0) { sc->ex_multircv++; } else { sc->ex_brdcstrcv++; } } /* * Set the incoming checksum information for the packet. */ if (((sc->ex_conf & CONF_90XB) != 0) && ((stat & EX_UPD_IPCHECKED) != 0) && ((stat & (EX_UPD_CKSUMERR)) == 0)) { uint32_t pflags = 0; if (stat & EX_UPD_IPCHECKED) { pflags |= HCK_IPV4_HDRCKSUM; } if (stat & (EX_UPD_TCPCHECKED | EX_UPD_UDPCHECKED)) { pflags |= (HCK_FULLCKSUM | HCK_FULLCKSUM_OK); } (void) hcksum_assoc(mp, NULL, NULL, 0, 0, 0, 0, pflags, 0); } return (mp); } static int elxl_m_start(void *arg) { elxl_t *sc = arg; mutex_enter(&sc->ex_intrlock); mutex_enter(&sc->ex_txlock); elxl_init(sc); sc->ex_running = B_TRUE; mutex_exit(&sc->ex_txlock); mutex_exit(&sc->ex_intrlock); if (sc->ex_miih) { mii_start(sc->ex_miih); } return (0); } static void elxl_m_stop(void *arg) { elxl_t *sc = arg; if (sc->ex_miih) { mii_stop(sc->ex_miih); } mutex_enter(&sc->ex_intrlock); mutex_enter(&sc->ex_txlock); elxl_stop(sc); sc->ex_running = B_FALSE; mutex_exit(&sc->ex_txlock); mutex_exit(&sc->ex_intrlock); } static boolean_t elxl_m_getcapab(void *arg, mac_capab_t cap, void *data) { elxl_t *sc = arg; switch (cap) { case MAC_CAPAB_HCKSUM: { uint32_t *flags = data; if (sc->ex_conf & CONF_90XB) { *flags = HCKSUM_IPHDRCKSUM | HCKSUM_INET_FULL_V4; return (B_TRUE); } return (B_FALSE); } default: return (B_FALSE); } } static int elxl_m_getprop(void *arg, const char *name, mac_prop_id_t num, uint_t flags, uint_t sz, void *val, uint_t *perm) { elxl_t *sc = arg; int rv; boolean_t isdef = (flags & MAC_PROP_DEFAULT); if (sc->ex_mii_active) { rv = mii_m_getprop(sc->ex_miih, name, num, flags, sz, val, perm); if (rv != ENOTSUP) return (rv); } switch (num) { case MAC_PROP_DUPLEX: *perm = MAC_PROP_PERM_READ; *(uint8_t *)val = isdef ? LINK_DUPLEX_HALF : sc->ex_duplex; break; case MAC_PROP_SPEED: *perm = MAC_PROP_PERM_READ; *(uint8_t *)val = sc->ex_speed; break; case MAC_PROP_STATUS: *perm = MAC_PROP_PERM_READ; bcopy(&sc->ex_link, val, sizeof (link_state_t)); break; case MAC_PROP_PRIVATE: if (strcmp(name, "_media") == 0) { char *str; *perm = MAC_PROP_PERM_RW; switch (sc->ex_xcvr) { case XCVR_SEL_AUTO: case XCVR_SEL_MII: str = "mii"; break; case XCVR_SEL_10T: str = sc->ex_fdx ? "tp-fdx" : "tp-hdx"; break; case XCVR_SEL_BNC: str = "bnc"; break; case XCVR_SEL_AUI: if (sc->ex_mediaopt & MEDIAOPT_10FL) { str = sc->ex_fdx ? "fl-fdx" : "fl-hdx"; } else { str = "aui"; } break; case XCVR_SEL_100FX: str = sc->ex_fdx ? "fx-fdx" : "fx-hdx"; break; default: str = "unknown"; break; } (void) snprintf(val, sz, "%s", str); return (0); } /* * This available media property is a hack, and should * be removed when we can provide proper support for * querying it as proposed in PSARC 2009/235. (At the * moment the implementation lacks support for using * MAC_PROP_POSSIBLE with private properties.) */ if (strcmp(name, "_available_media") == 0) { *perm = MAC_PROP_PERM_READ; (void) snprintf(val, sz, "%s", sc->ex_medias); return (0); } break; } return (ENOTSUP); } static int elxl_m_setprop(void *arg, const char *name, mac_prop_id_t num, uint_t sz, const void *val) { elxl_t *sc = arg; int rv; if (sc->ex_mii_active) { rv = mii_m_setprop(sc->ex_miih, name, num, sz, val); if (rv != ENOTSUP) { return (rv); } } switch (num) { case MAC_PROP_PRIVATE: if (strcmp(name, "_media") == 0) { uint32_t mopt = sc->ex_mediaopt; if (strcmp(val, "mii") == 0) { if (mopt & MEDIAOPT_100TX) { sc->ex_xcvr = XCVR_SEL_AUTO; } else if (mopt & MEDIAOPT_MII) { sc->ex_xcvr = XCVR_SEL_MII; } else { return (EINVAL); } } else if (strcmp(val, "tp-fdx") == 0) { /* select media option */ if (mopt & MEDIAOPT_10T) { sc->ex_xcvr = XCVR_SEL_10T; sc->ex_fdx = B_TRUE; } else { return (EINVAL); } } else if (strcmp(val, "tp-hdx") == 0) { /* select media option */ if (mopt & MEDIAOPT_10T) { sc->ex_xcvr = XCVR_SEL_10T; sc->ex_fdx = B_FALSE; } else { return (EINVAL); } } else if (strcmp(val, "fx-fdx") == 0) { if (mopt & MEDIAOPT_100FX) { sc->ex_xcvr = XCVR_SEL_100FX; sc->ex_fdx = B_TRUE; } else { return (EINVAL); } } else if (strcmp(val, "fx-hdx") == 0) { if (mopt & MEDIAOPT_100FX) { sc->ex_xcvr = XCVR_SEL_100FX; sc->ex_fdx = B_FALSE; } else { return (EINVAL); } } else if (strcmp(val, "bnc") == 0) { if (mopt & MEDIAOPT_BNC) { sc->ex_xcvr = XCVR_SEL_BNC; sc->ex_fdx = B_FALSE; } else { return (EINVAL); } } else if (strcmp(val, "aui") == 0) { if (mopt & MEDIAOPT_AUI) { sc->ex_xcvr = XCVR_SEL_AUI; sc->ex_fdx = B_FALSE; } else { return (EINVAL); } } else if (strcmp(val, "fl-fdx") == 0) { if (mopt & MEDIAOPT_10FL) { sc->ex_xcvr = XCVR_SEL_AUI; sc->ex_fdx = B_TRUE; } else { return (EINVAL); } } else if (strcmp(val, "fl-hdx") == 0) { if (mopt & MEDIAOPT_10FL) { sc->ex_xcvr = XCVR_SEL_AUI; sc->ex_fdx = B_FALSE; } else { return (EINVAL); } } else { return (EINVAL); } goto reset; } break; default: break; } return (ENOTSUP); reset: mutex_enter(&sc->ex_intrlock); mutex_enter(&sc->ex_txlock); if (!sc->ex_suspended) { elxl_reset(sc); if (sc->ex_running) { elxl_init(sc); } } mutex_exit(&sc->ex_txlock); mutex_exit(&sc->ex_intrlock); return (0); } static int elxl_m_stat(void *arg, uint_t stat, uint64_t *val) { elxl_t *sc = arg; if (stat == MAC_STAT_IFSPEED) { elxl_getstats(sc); } if ((sc->ex_mii_active) && (mii_m_getstat(sc->ex_miih, stat, val) == 0)) { return (0); } switch (stat) { case MAC_STAT_IFSPEED: *val = sc->ex_speed; break; case ETHER_STAT_LINK_DUPLEX: *val = sc->ex_duplex; break; case MAC_STAT_MULTIRCV: *val = sc->ex_multircv; break; case MAC_STAT_BRDCSTRCV: *val = sc->ex_brdcstrcv; break; case MAC_STAT_MULTIXMT: *val = sc->ex_multixmt; break; case MAC_STAT_BRDCSTXMT: *val = sc->ex_brdcstxmt; break; case MAC_STAT_IPACKETS: *val = sc->ex_ipackets; break; case MAC_STAT_OPACKETS: *val = sc->ex_opackets; break; case MAC_STAT_RBYTES: *val = sc->ex_ibytes; break; case MAC_STAT_OBYTES: *val = sc->ex_obytes; break; case MAC_STAT_COLLISIONS: case ETHER_STAT_FIRST_COLLISIONS: *val = sc->ex_singlecol + sc->ex_multcol; break; case ETHER_STAT_MULTI_COLLISIONS: *val = sc->ex_multcol; break; case ETHER_STAT_TX_LATE_COLLISIONS: *val = sc->ex_latecol; break; case ETHER_STAT_ALIGN_ERRORS: *val = sc->ex_align; break; case ETHER_STAT_FCS_ERRORS: *val = sc->ex_fcs; break; case ETHER_STAT_SQE_ERRORS: *val = sc->ex_sqe; break; case ETHER_STAT_DEFER_XMTS: *val = sc->ex_defer; break; case ETHER_STAT_CARRIER_ERRORS: *val = sc->ex_nocarrier; break; case ETHER_STAT_TOOLONG_ERRORS: *val = sc->ex_toolong; break; case ETHER_STAT_EX_COLLISIONS: *val = sc->ex_excoll; break; case MAC_STAT_OVERFLOWS: *val = sc->ex_oflo; break; case MAC_STAT_UNDERFLOWS: *val = sc->ex_uflo; break; case ETHER_STAT_TOOSHORT_ERRORS: *val = sc->ex_runt; break; case ETHER_STAT_JABBER_ERRORS: *val = sc->ex_jabber; break; case MAC_STAT_NORCVBUF: *val = sc->ex_allocbfail; break; case MAC_STAT_OERRORS: *val = sc->ex_jabber + sc->ex_latecol + sc->ex_uflo; break; case MAC_STAT_IERRORS: *val = sc->ex_align + sc->ex_fcs + sc->ex_runt + sc->ex_toolong + sc->ex_oflo + sc->ex_allocbfail; break; default: return (ENOTSUP); } return (0); } static uint_t elxl_intr(caddr_t arg, caddr_t dontcare) { elxl_t *sc = (void *)arg; uint16_t stat; mblk_t *mphead = NULL; mblk_t **mpp = &mphead; _NOTE(ARGUNUSED(dontcare)); mutex_enter(&sc->ex_intrlock); if (sc->ex_suspended) { mutex_exit(&sc->ex_intrlock); return (DDI_INTR_UNCLAIMED); } stat = GET16(REG_CMD_STAT); if ((stat & INT_LATCH) == 0) { mutex_exit(&sc->ex_intrlock); return (DDI_INTR_UNCLAIMED); } /* * Acknowledge interrupts. */ PUT_CMD(CMD_INT_ACK | (stat & INT_WATCHED) | INT_LATCH); if (stat & INT_HOST_ERROR) { /* XXX: Potentially a good spot for FMA */ elxl_error(sc, "Adapter failure (%x)", stat); mutex_enter(&sc->ex_txlock); elxl_reset(sc); if (sc->ex_running) elxl_init(sc); mutex_exit(&sc->ex_txlock); mutex_exit(&sc->ex_intrlock); return (DDI_INTR_CLAIMED); } if (stat & INT_UP_COMPLETE) { ex_ring_t *r; ex_desc_t *rxd; ex_pd_t *pd; mblk_t *mp; uint32_t pktstat; r = &sc->ex_rxring; for (;;) { rxd = r->r_head; pd = rxd->ed_pd; (void) ddi_dma_sync(r->r_dmah, rxd->ed_off, sizeof (ex_pd_t), DDI_DMA_SYNC_FORKERNEL); pktstat = GET_PD(r, pd->pd_status); if ((pktstat & EX_UPD_COMPLETE) == 0) { break; } /* Advance head to next packet. */ r->r_head = r->r_head->ed_next; if ((mp = elxl_recv(sc, rxd, pktstat)) != NULL) { *mpp = mp; mpp = &mp->b_next; } /* clear the upComplete status, reset other fields */ PUT_PD(r, pd->pd_status, 0); PUT_PD(r, pd->pd_len, EX_BUFSZ | EX_FR_LAST); PUT_PD(r, pd->pd_addr, rxd->ed_bufaddr); (void) ddi_dma_sync(r->r_dmah, rxd->ed_off, sizeof (ex_pd_t), DDI_DMA_SYNC_FORDEV); } /* * If the engine stalled processing (due to * insufficient UPDs usually), restart it. */ if (GET32(REG_UPLISTPTR) == 0) { /* * This seems that it can happen in an RX overrun * situation. */ mutex_enter(&sc->ex_txlock); if (sc->ex_running) elxl_init(sc); mutex_exit(&sc->ex_txlock); } PUT_CMD(CMD_UP_UNSTALL); } mutex_exit(&sc->ex_intrlock); if (mphead) { mac_rx(sc->ex_mach, NULL, mphead); } if (stat & INT_STATS) { elxl_getstats(sc); } if (stat & INT_DN_COMPLETE) { mac_tx_update(sc->ex_mach); } return (DDI_INTR_CLAIMED); } static void elxl_getstats(elxl_t *sc) { mutex_enter(&sc->ex_txlock); if (sc->ex_suspended) { mutex_exit(&sc->ex_txlock); return; } SET_WIN(6); /* * We count the packets and bytes elsewhere, but we need to * read the registers to clear them. */ (void) GET8(W6_RX_FRAMES); (void) GET8(W6_TX_FRAMES); (void) GET8(W6_UPPER_FRAMES); (void) GET8(W6_RX_OVERRUNS); /* counted by elxl_recv */ (void) GET16(W6_RX_BYTES); (void) GET16(W6_TX_BYTES); sc->ex_defer += GET8(W6_DEFER); sc->ex_latecol += GET8(W6_TX_LATE_COL); sc->ex_singlecol += GET8(W6_SINGLE_COL); sc->ex_multcol += GET8(W6_MULT_COL); sc->ex_sqe += GET8(W6_SQE_ERRORS); sc->ex_nocarrier += GET8(W6_NO_CARRIER); SET_WIN(4); /* Note: we ought to report this somewhere... */ (void) GET8(W4_BADSSD); mutex_exit(&sc->ex_txlock); } static void elxl_reset(elxl_t *sc) { PUT_CMD(CMD_GLOBAL_RESET); /* * Some ASICs need a longer time (20 ms) to come properly out * of reset. Do not reduce this value. * * Note that this occurs only during attach and failure recovery, * so it should be mostly harmless. */ drv_usecwait(20000); WAIT_CMD(sc); } static void elxl_stop(elxl_t *sc) { ASSERT(mutex_owned(&sc->ex_intrlock)); ASSERT(mutex_owned(&sc->ex_txlock)); if (sc->ex_suspended) return; PUT_CMD(CMD_RX_DISABLE); PUT_CMD(CMD_TX_DISABLE); PUT_CMD(CMD_BNC_DISABLE); elxl_reset_ring(&sc->ex_rxring, DDI_DMA_READ); elxl_reset_ring(&sc->ex_txring, DDI_DMA_WRITE); PUT_CMD(CMD_INT_ACK | INT_LATCH); /* Disable all interrupts. (0 means "none".) */ PUT_CMD(CMD_INT_ENABLE | 0); } static void elxl_suspend(elxl_t *sc) { if (sc->ex_miih) { mii_suspend(sc->ex_miih); } mutex_enter(&sc->ex_intrlock); mutex_enter(&sc->ex_txlock); elxl_stop(sc); sc->ex_suspended = B_TRUE; mutex_exit(&sc->ex_txlock); mutex_exit(&sc->ex_intrlock); } static void elxl_resume(dev_info_t *dip) { elxl_t *sc; /* This should always succeed. */ sc = ddi_get_driver_private(dip); ASSERT(sc); mutex_enter(&sc->ex_intrlock); mutex_enter(&sc->ex_txlock); sc->ex_suspended = B_FALSE; elxl_reset(sc); if (sc->ex_running) elxl_init(sc); mutex_exit(&sc->ex_txlock); mutex_exit(&sc->ex_intrlock); if (sc->ex_miih) { mii_resume(sc->ex_miih); } } static void elxl_detach(elxl_t *sc) { if (sc->ex_miih) { /* Detach all PHYs */ mii_free(sc->ex_miih); } if (sc->ex_linkcheck) { ddi_periodic_delete(sc->ex_linkcheck); } if (sc->ex_intrh != NULL) { (void) ddi_intr_disable(sc->ex_intrh); (void) ddi_intr_remove_handler(sc->ex_intrh); (void) ddi_intr_free(sc->ex_intrh); mutex_destroy(&sc->ex_intrlock); mutex_destroy(&sc->ex_txlock); } if (sc->ex_pcih) { pci_config_teardown(&sc->ex_pcih); } if (sc->ex_regsh) { ddi_regs_map_free(&sc->ex_regsh); } ex_free_ring(&sc->ex_txring); ex_free_ring(&sc->ex_rxring); kmem_free(sc, sizeof (*sc)); } /* * Read EEPROM data. If we can't unbusy the EEPROM, then zero will be * returned. This will probably result in a bogus node address. */ static uint16_t elxl_read_eeprom(elxl_t *sc, int offset) { uint16_t data = 0; SET_WIN(0); if (elxl_eeprom_busy(sc)) goto out; PUT16(W0_EE_CMD, EE_CMD_READ | (offset & 0x3f)); if (elxl_eeprom_busy(sc)) goto out; data = GET16(W0_EE_DATA); out: return (data); } static int elxl_eeprom_busy(elxl_t *sc) { int i = 2000; while (i--) { if (!(GET16(W0_EE_CMD) & EE_CMD_BUSY)) return (0); drv_usecwait(100); } elxl_error(sc, "Eeprom stays busy."); return (1); } static void ex_mii_send_bits(struct ex_softc *sc, uint16_t bits, int cnt) { uint16_t val; ASSERT(cnt > 0); PUT16(W4_PHYSMGMT, PHYSMGMT_DIR); drv_usecwait(1); for (int i = (1 << (cnt - 1)); i; i >>= 1) { if (bits & i) { val = PHYSMGMT_DIR | PHYSMGMT_DATA; } else { val = PHYSMGMT_DIR; } PUT16(W4_PHYSMGMT, val); drv_usecwait(1); PUT16(W4_PHYSMGMT, val | PHYSMGMT_CLK); drv_usecwait(1); PUT16(W4_PHYSMGMT, val); drv_usecwait(1); } } static void ex_mii_sync(struct ex_softc *sc) { /* * We set the data bit output, and strobe the clock 32 times. */ PUT16(W4_PHYSMGMT, PHYSMGMT_DATA | PHYSMGMT_DIR); drv_usecwait(1); for (int i = 0; i < 32; i++) { PUT16(W4_PHYSMGMT, PHYSMGMT_DATA | PHYSMGMT_DIR | PHYSMGMT_CLK); drv_usecwait(1); PUT16(W4_PHYSMGMT, PHYSMGMT_DATA | PHYSMGMT_DIR); drv_usecwait(1); } } static uint16_t elxl_mii_read(void *arg, uint8_t phy, uint8_t reg) { elxl_t *sc = arg; uint16_t data; int val; if ((sc->ex_conf & CONF_INTPHY) && phy != INTPHY_ID) return (0xffff); mutex_enter(&sc->ex_txlock); SET_WIN(4); ex_mii_sync(sc); ex_mii_send_bits(sc, 1, 2); /* start */ ex_mii_send_bits(sc, 2, 2); /* read command */ ex_mii_send_bits(sc, phy, 5); ex_mii_send_bits(sc, reg, 5); PUT16(W4_PHYSMGMT, 0); /* switch to input */ drv_usecwait(1); PUT16(W4_PHYSMGMT, PHYSMGMT_CLK); /* turnaround time */ drv_usecwait(1); PUT16(W4_PHYSMGMT, 0); drv_usecwait(1); PUT16(W4_PHYSMGMT, PHYSMGMT_CLK); /* idle time */ drv_usecwait(1); PUT16(W4_PHYSMGMT, 0); drv_usecwait(1); for (data = 0, val = 0x8000; val; val >>= 1) { if (GET16(W4_PHYSMGMT) & PHYSMGMT_DATA) { data |= val; } /* strobe the clock */ PUT16(W4_PHYSMGMT, PHYSMGMT_CLK); drv_usecwait(1); PUT16(W4_PHYSMGMT, 0); drv_usecwait(1); } /* return to output mode */ PUT16(W4_PHYSMGMT, PHYSMGMT_DIR); drv_usecwait(1); mutex_exit(&sc->ex_txlock); return (data); } static void elxl_mii_write(void *arg, uint8_t phy, uint8_t reg, uint16_t data) { elxl_t *sc = arg; if ((sc->ex_conf & CONF_INTPHY) && phy != INTPHY_ID) return; mutex_enter(&sc->ex_txlock); SET_WIN(4); ex_mii_sync(sc); ex_mii_send_bits(sc, 1, 2); /* start */ ex_mii_send_bits(sc, 1, 2); /* write */ ex_mii_send_bits(sc, phy, 5); ex_mii_send_bits(sc, reg, 5); ex_mii_send_bits(sc, 2, 2); /* ack/turnaround */ ex_mii_send_bits(sc, data, 16); /* return to output mode */ PUT16(W4_PHYSMGMT, PHYSMGMT_DIR); drv_usecwait(1); mutex_exit(&sc->ex_txlock); } static void elxl_mii_notify(void *arg, link_state_t link) { elxl_t *sc = arg; int mctl; link_duplex_t duplex; duplex = mii_get_duplex(sc->ex_miih); mutex_enter(&sc->ex_txlock); if (!sc->ex_mii_active) { /* If we're using some other legacy media, bail out now */ mutex_exit(&sc->ex_txlock); return; } if (!sc->ex_suspended) { SET_WIN(3); mctl = GET16(W3_MAC_CONTROL); if (duplex == LINK_DUPLEX_FULL) mctl |= MAC_CONTROL_FDX; else mctl &= ~MAC_CONTROL_FDX; PUT16(W3_MAC_CONTROL, mctl); } mutex_exit(&sc->ex_txlock); mac_link_update(sc->ex_mach, link); } static int elxl_ddi_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) { switch (cmd) { case DDI_ATTACH: return (elxl_attach(dip)); case DDI_RESUME: elxl_resume(dip); return (DDI_SUCCESS); default: return (DDI_FAILURE); } } static int elxl_ddi_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) { elxl_t *sc; sc = ddi_get_driver_private(dip); ASSERT(sc); switch (cmd) { case DDI_DETACH: if (mac_disable(sc->ex_mach) != 0) { return (DDI_FAILURE); } (void) mac_unregister(sc->ex_mach); elxl_detach(sc); return (DDI_SUCCESS); case DDI_SUSPEND: elxl_suspend(sc); return (DDI_SUCCESS); default: return (DDI_FAILURE); } } static int elxl_ddi_quiesce(dev_info_t *dip) { elxl_t *sc; sc = ddi_get_driver_private(dip); ASSERT(sc); if (!sc->ex_suspended) elxl_reset(sc); return (DDI_SUCCESS); } static void elxl_error(elxl_t *sc, char *fmt, ...) { va_list ap; char buf[256]; va_start(ap, fmt); (void) vsnprintf(buf, sizeof (buf), fmt, ap); va_end(ap); cmn_err(CE_WARN, "%s%d: %s", ddi_driver_name(sc->ex_dip), ddi_get_instance(sc->ex_dip), buf); }