/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #if defined(DEBUG) #define BUSRA_DEBUG #endif /* * This module provides a set of resource management interfaces * to manage bus resources globally in the system. * * The bus nexus drivers are typically responsible to setup resource * maps for the bus resources available for a bus instance. However * this module also provides resource setup functions for PCI bus * (used by both SPARC and X86 platforms) and ISA bus instances (used * only for X86 platforms). */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(BUSRA_DEBUG) int busra_debug = 0; #define DEBUGPRT \ if (busra_debug) cmn_err #else #define DEBUGPRT \ if (0) cmn_err #endif /* * global mutex that protects the global list of resource maps. */ kmutex_t ra_lock; /* * basic resource element */ struct ra_resource { struct ra_resource *ra_next; uint64_t ra_base; uint64_t ra_len; }; /* * link list element for the list of dips (and their resource ranges) * for a particular resource type. * ra_rangeset points to the list of resources available * for this type and this dip. */ struct ra_dip_type { struct ra_dip_type *ra_next; struct ra_resource *ra_rangeset; dev_info_t *ra_dip; }; /* * link list element for list of types resources. Each element * has all resources for a particular type. */ struct ra_type_map { struct ra_type_map *ra_next; struct ra_dip_type *ra_dip_list; char *type; }; /* * place holder to keep the head of the whole global list. * the address of the first typemap would be stored in it. */ static struct ra_type_map *ra_map_list_head = NULL; /* * This is the loadable module wrapper. * It is essentially boilerplate so isn't documented */ extern struct mod_ops mod_miscops; #ifdef BUSRA_DEBUG void ra_dump_all(); #endif /* internal function prototypes */ static struct ra_dip_type *find_dip_map_resources(dev_info_t *dip, char *type, struct ra_dip_type ***backdip, struct ra_type_map ***backtype, uint32_t flag); static int isnot_pow2(uint64_t value); static int claim_pci_busnum(dev_info_t *dip, void *arg); static int ra_map_exist(dev_info_t *dip, char *type); #define RA_INSERT(prev, el) \ el->ra_next = *prev; \ *prev = el; #define RA_REMOVE(prev, el) \ *prev = el->ra_next; static struct modlmisc modlmisc = { &mod_miscops, /* Type of module. This one is a module */ "Bus Resource Allocator (BUSRA) %I%", /* Name of the module. */ }; static struct modlinkage modlinkage = { MODREV_1, (void *)&modlmisc, NULL }; int _init() { int ret; mutex_init(&ra_lock, NULL, MUTEX_DRIVER, (void *)(intptr_t)__ipltospl(SPL7 - 1)); if ((ret = mod_install(&modlinkage)) != 0) { mutex_destroy(&ra_lock); } return (ret); } int _fini() { int ret; mutex_enter(&ra_lock); if (ra_map_list_head != NULL) { mutex_exit(&ra_lock); return (EBUSY); } ret = mod_remove(&modlinkage); mutex_exit(&ra_lock); if (ret == 0) mutex_destroy(&ra_lock); return (ret); } int _info(struct modinfo *modinfop) { return (mod_info(&modlinkage, modinfop)); } /* * set up an empty resource map for a given type and dip */ int ndi_ra_map_setup(dev_info_t *dip, char *type) { struct ra_type_map *typemapp; struct ra_dip_type *dipmap; struct ra_dip_type **backdip; struct ra_type_map **backtype; mutex_enter(&ra_lock); dipmap = find_dip_map_resources(dip, type, &backdip, &backtype, 0); if (dipmap == NULL) { if (backtype == NULL) { typemapp = (struct ra_type_map *) kmem_zalloc(sizeof (*typemapp), KM_SLEEP); typemapp->type = (char *)kmem_zalloc(strlen(type) + 1, KM_SLEEP); (void) strcpy(typemapp->type, type); RA_INSERT(&ra_map_list_head, typemapp); } else { typemapp = *backtype; } if (backdip == NULL) { /* allocate and insert in list of dips for this type */ dipmap = (struct ra_dip_type *) kmem_zalloc(sizeof (*dipmap), KM_SLEEP); dipmap->ra_dip = dip; RA_INSERT(&typemapp->ra_dip_list, dipmap); } } mutex_exit(&ra_lock); return (NDI_SUCCESS); } /* * destroys a resource map for a given dip and type */ int ndi_ra_map_destroy(dev_info_t *dip, char *type) { struct ra_dip_type *dipmap; struct ra_dip_type **backdip; struct ra_type_map **backtype, *typemap; struct ra_resource *range; mutex_enter(&ra_lock); dipmap = find_dip_map_resources(dip, type, &backdip, &backtype, 0); if (dipmap == NULL) { mutex_exit(&ra_lock); return (NDI_FAILURE); } /* * destroy all resources for this dip * remove dip from type list */ ASSERT((backdip != NULL) && (backtype != NULL)); while (dipmap->ra_rangeset != NULL) { range = dipmap->ra_rangeset; RA_REMOVE(&dipmap->ra_rangeset, range); kmem_free((caddr_t)range, sizeof (*range)); } /* remove from dip list */ RA_REMOVE(backdip, dipmap); kmem_free((caddr_t)dipmap, sizeof (*dipmap)); if ((*backtype)->ra_dip_list == NULL) { /* * This was the last dip with this resource type. * Remove the type from the global list. */ typemap = *backtype; RA_REMOVE(backtype, (*backtype)); kmem_free((caddr_t)typemap->type, strlen(typemap->type) + 1); kmem_free((caddr_t)typemap, sizeof (*typemap)); } mutex_exit(&ra_lock); return (NDI_SUCCESS); } static int ra_map_exist(dev_info_t *dip, char *type) { struct ra_dip_type **backdip; struct ra_type_map **backtype; mutex_enter(&ra_lock); if (find_dip_map_resources(dip, type, &backdip, &backtype, 0) == NULL) { mutex_exit(&ra_lock); return (NDI_FAILURE); } mutex_exit(&ra_lock); return (NDI_SUCCESS); } /* * Find a dip map for the specified type, if NDI_RA_PASS will go up on dev tree * if found, backdip and backtype will be updated to point to the previous * dip in the list and previous type for this dip in the list. * If no such type at all in the resource list both backdip and backtype * will be null. If the type found but no dip, back dip will be null. */ static struct ra_dip_type * find_dip_map_resources(dev_info_t *dip, char *type, struct ra_dip_type ***backdip, struct ra_type_map ***backtype, uint32_t flag) { struct ra_type_map **prevmap; struct ra_dip_type *dipmap, **prevdip; ASSERT(mutex_owned(&ra_lock)); prevdip = NULL; dipmap = NULL; prevmap = &ra_map_list_head; while (*prevmap) { if (strcmp((*prevmap)->type, type) == 0) break; prevmap = &(*prevmap)->ra_next; } if (*prevmap) { for (; dip != NULL; dip = ddi_get_parent(dip)) { prevdip = &(*prevmap)->ra_dip_list; dipmap = *prevdip; while (dipmap) { if (dipmap->ra_dip == dip) break; prevdip = &dipmap->ra_next; dipmap = dipmap->ra_next; } if (dipmap != NULL) { /* found it */ break; } if (!(flag & NDI_RA_PASS)) { break; } } } *backtype = (*prevmap == NULL) ? NULL: prevmap; *backdip = (dipmap == NULL) ? NULL: prevdip; return (dipmap); } int ndi_ra_free(dev_info_t *dip, uint64_t base, uint64_t len, char *type, uint32_t flag) { struct ra_dip_type *dipmap; struct ra_resource *newmap, *overlapmap, *oldmap = NULL; struct ra_resource *mapp, **backp; uint64_t newend, mapend; struct ra_dip_type **backdip; struct ra_type_map **backtype; if (len == 0) { return (NDI_SUCCESS); } mutex_enter(&ra_lock); if ((dipmap = find_dip_map_resources(dip, type, &backdip, &backtype, flag)) == NULL) { mutex_exit(&ra_lock); return (NDI_FAILURE); } mapp = dipmap->ra_rangeset; backp = &dipmap->ra_rangeset; /* now find where range lies and fix things up */ newend = base + len; for (; mapp != NULL; backp = &(mapp->ra_next), mapp = mapp->ra_next) { mapend = mapp->ra_base + mapp->ra_len; /* check for overlap first */ if ((base <= mapp->ra_base && newend > mapp->ra_base) || (base > mapp->ra_base && base < mapend)) { /* overlap with mapp */ overlapmap = mapp; goto overlap; } else if ((base == mapend && mapp->ra_next) && (newend > mapp->ra_next->ra_base)) { /* overlap with mapp->ra_next */ overlapmap = mapp->ra_next; goto overlap; } if (newend == mapp->ra_base) { /* simple - on front */ mapp->ra_base = base; mapp->ra_len += len; /* * don't need to check if it merges with * previous since that would match on on end */ break; } else if (base == mapend) { /* simple - on end */ mapp->ra_len += len; if (mapp->ra_next && (newend == mapp->ra_next->ra_base)) { /* merge with next node */ oldmap = mapp->ra_next; mapp->ra_len += oldmap->ra_len; RA_REMOVE(&mapp->ra_next, oldmap); kmem_free((caddr_t)oldmap, sizeof (*oldmap)); } break; } else if (base < mapp->ra_base) { /* somewhere in between so just an insert */ newmap = (struct ra_resource *) kmem_zalloc(sizeof (*newmap), KM_SLEEP); newmap->ra_base = base; newmap->ra_len = len; RA_INSERT(backp, newmap); break; } } if (mapp == NULL) { /* stick on end */ newmap = (struct ra_resource *) kmem_zalloc(sizeof (*newmap), KM_SLEEP); newmap->ra_base = base; newmap->ra_len = len; RA_INSERT(backp, newmap); } mutex_exit(&ra_lock); return (NDI_SUCCESS); overlap: /* * Bad free may happen on some x86 platforms with BIOS exporting * incorrect resource maps. The system is otherwise functioning * normally. We send such messages to syslog only. */ cmn_err(CE_NOTE, "!ndi_ra_free: bad free, dip %p, resource type %s \n", (void *)dip, type); cmn_err(CE_NOTE, "!ndi_ra_free: freeing base 0x%" PRIx64 ", len 0x%" PRIX64 " overlaps with existing resource base 0x%" PRIx64 ", len 0x%" PRIx64 "\n", base, len, overlapmap->ra_base, overlapmap->ra_len); mutex_exit(&ra_lock); return (NDI_FAILURE); } /* check to see if value is power of 2 or not. */ static int isnot_pow2(uint64_t value) { uint32_t low; uint32_t hi; low = value & 0xffffffff; hi = value >> 32; /* * ddi_ffs and ddi_fls gets long values, so in 32bit environment * won't work correctly for 64bit values */ if ((ddi_ffs(low) == ddi_fls(low)) && (ddi_ffs(hi) == ddi_fls(hi))) return (0); return (1); } static void adjust_link(struct ra_resource **backp, struct ra_resource *mapp, uint64_t base, uint64_t len) { struct ra_resource *newmap; uint64_t newlen; if (base != mapp->ra_base) { /* in the middle or end */ newlen = base - mapp->ra_base; if ((mapp->ra_len - newlen) == len) { /* on the end */ mapp->ra_len = newlen; } else { /* in the middle */ newmap = (struct ra_resource *) kmem_zalloc(sizeof (*newmap), KM_SLEEP); newmap->ra_base = base + len; newmap->ra_len = mapp->ra_len - (len + newlen); mapp->ra_len = newlen; RA_INSERT(&(mapp->ra_next), newmap); } } else { /* at the beginning */ mapp->ra_base += len; mapp->ra_len -= len; if (mapp->ra_len == 0) { /* remove the whole node */ RA_REMOVE(backp, mapp); kmem_free((caddr_t)mapp, sizeof (*mapp)); } } } int ndi_ra_alloc(dev_info_t *dip, ndi_ra_request_t *req, uint64_t *retbasep, uint64_t *retlenp, char *type, uint32_t flag) { struct ra_dip_type *dipmap; struct ra_resource *mapp, **backp, **backlargestp; uint64_t mask = 0; uint64_t len, remlen, largestbase, largestlen; uint64_t base, oldbase, lower, upper; struct ra_dip_type **backdip; struct ra_type_map **backtype; int rval = NDI_FAILURE; len = req->ra_len; if (req->ra_flags & NDI_RA_ALIGN_SIZE) { if (isnot_pow2(req->ra_len)) { DEBUGPRT(CE_WARN, "ndi_ra_alloc: bad length(pow2) 0x%" PRIx64, req->ra_len); *retbasep = 0; *retlenp = 0; return (NDI_FAILURE); } } mask = (req->ra_flags & NDI_RA_ALIGN_SIZE) ? (len - 1) : req->ra_align_mask; mutex_enter(&ra_lock); dipmap = find_dip_map_resources(dip, type, &backdip, &backtype, flag); if ((dipmap == NULL) || ((mapp = dipmap->ra_rangeset) == NULL)) { mutex_exit(&ra_lock); DEBUGPRT(CE_CONT, "ndi_ra_alloc no map found for this type\n"); return (NDI_FAILURE); } DEBUGPRT(CE_CONT, "ndi_ra_alloc: mapp = %p len=%" PRIx64 ", mask=%" PRIx64 "\n", (void *)mapp, len, mask); backp = &(dipmap->ra_rangeset); backlargestp = NULL; largestbase = 0; largestlen = 0; lower = 0; upper = ~(uint64_t)0; if (req->ra_flags & NDI_RA_ALLOC_BOUNDED) { /* bounded so skip to first possible */ lower = req->ra_boundbase; upper = req->ra_boundlen + lower; if ((upper == 0) || (upper < req->ra_boundlen)) upper = ~(uint64_t)0; DEBUGPRT(CE_CONT, "ndi_ra_alloc: ra_len = %" PRIx64 ", len = %" PRIx64 " ra_base=%" PRIx64 ", mask=%" PRIx64 "\n", mapp->ra_len, len, mapp->ra_base, mask); for (; mapp != NULL && (mapp->ra_base + mapp->ra_len) < lower; backp = &(mapp->ra_next), mapp = mapp->ra_next) { if (((mapp->ra_len + mapp->ra_base) == 0) || ((mapp->ra_len + mapp->ra_base) < mapp->ra_len)) /* * This elements end goes beyond max uint64_t. * potential candidate, check end against lower * would not be precise. */ break; DEBUGPRT(CE_CONT, " ra_len = %" PRIx64 ", ra_base=%" PRIx64 "\n", mapp->ra_len, mapp->ra_base); } } if (!(req->ra_flags & NDI_RA_ALLOC_SPECIFIED)) { /* first fit - not user specified */ DEBUGPRT(CE_CONT, "ndi_ra_alloc(unspecified request)" "lower=%" PRIx64 ", upper=%" PRIx64 "\n", lower, upper); for (; mapp != NULL && mapp->ra_base <= upper; backp = &(mapp->ra_next), mapp = mapp->ra_next) { DEBUGPRT(CE_CONT, "ndi_ra_alloc: ra_len = %" PRIx64 ", len = %" PRIx64 "", mapp->ra_len, len); base = mapp->ra_base; if (base < lower) { base = lower; DEBUGPRT(CE_CONT, "\tbase=%" PRIx64 ", ra_base=%" PRIx64 ", mask=%" PRIx64, base, mapp->ra_base, mask); } if ((base & mask) != 0) { oldbase = base; /* * failed a critical constraint * adjust and see if it still fits */ base = base & ~mask; base += (mask + 1); DEBUGPRT(CE_CONT, "\tnew base=%" PRIx64 "\n", base); /* * Check to see if the new base is past * the end of the resource. */ if (base >= (oldbase + mapp->ra_len + 1)) { continue; } } if (req->ra_flags & NDI_RA_ALLOC_PARTIAL_OK) { if ((upper - mapp->ra_base) < mapp->ra_len) remlen = upper - base; else remlen = mapp->ra_len - (base - mapp->ra_base); if ((backlargestp == NULL) || (largestlen < remlen)) { backlargestp = backp; largestbase = base; largestlen = remlen; } } if (mapp->ra_len >= len) { /* a candidate -- apply constraints */ if ((len > (mapp->ra_len - (base - mapp->ra_base))) || ((len - 1 + base) > upper)) { continue; } /* we have a fit */ DEBUGPRT(CE_CONT, "\thave a fit\n"); adjust_link(backp, mapp, base, len); rval = NDI_SUCCESS; break; } } } else { /* want an exact value/fit */ base = req->ra_addr; len = req->ra_len; for (; mapp != NULL && mapp->ra_base <= upper; backp = &(mapp->ra_next), mapp = mapp->ra_next) { if (base >= mapp->ra_base && ((base - mapp->ra_base) < mapp->ra_len)) { /* * This is the node with he requested base in * its range */ if ((len > mapp->ra_len) || (base - mapp->ra_base > mapp->ra_len - len)) { /* length requirement not satisfied */ if (req->ra_flags & NDI_RA_ALLOC_PARTIAL_OK) { if ((upper - mapp->ra_base) < mapp->ra_len) remlen = upper - base; else remlen = mapp->ra_len - (base - mapp->ra_base); } backlargestp = backp; largestbase = base; largestlen = remlen; base = 0; } else { /* We have a match */ adjust_link(backp, mapp, base, len); rval = NDI_SUCCESS; } break; } } } if ((rval != NDI_SUCCESS) && (req->ra_flags & NDI_RA_ALLOC_PARTIAL_OK) && (backlargestp != NULL)) { adjust_link(backlargestp, *backlargestp, largestbase, largestlen); base = largestbase; len = largestlen; rval = NDI_RA_PARTIAL_REQ; } mutex_exit(&ra_lock); if (rval == NDI_FAILURE) { *retbasep = 0; *retlenp = 0; } else { *retbasep = base; *retlenp = len; } return (rval); } /* * isa_resource_setup * check for /used-resources and initialize * based on info there. If no /used-resources, * fail. */ int isa_resource_setup() { dev_info_t *used, *usedpdip; /* * note that at this time bootconf creates 32 bit properties for * io-space and device-memory */ struct iorange { uint32_t base; uint32_t len; } *iorange; struct memrange { uint32_t base; uint32_t len; } *memrange; uint32_t *irq; int proplen; int i, len; int maxrange; ndi_ra_request_t req; uint64_t retbase; uint64_t retlen; used = ddi_find_devinfo("used-resources", -1, 0); if (used == NULL) { DEBUGPRT(CE_CONT, "isa_resource_setup: used-resources not found"); return (NDI_FAILURE); } /* * initialize to all resources being present * and then remove the ones in use. */ usedpdip = ddi_root_node(); DEBUGPRT(CE_CONT, "isa_resource_setup: used = %p usedpdip = %p\n", (void *)used, (void *)usedpdip); if (ndi_ra_map_setup(usedpdip, NDI_RA_TYPE_IO) == NDI_FAILURE) { return (NDI_FAILURE); } /* initialize io space, highest end base is 0xffff */ /* note that length is highest addr + 1 since starts from 0 */ (void) ndi_ra_free(usedpdip, 0, 0xffff + 1, NDI_RA_TYPE_IO, 0); if (ddi_getlongprop(DDI_DEV_T_ANY, used, DDI_PROP_DONTPASS, "io-space", (caddr_t)&iorange, &proplen) == DDI_SUCCESS) { maxrange = proplen / sizeof (struct iorange); /* remove the "used" I/O resources */ for (i = 0; i < maxrange; i++) { bzero((caddr_t)&req, sizeof (req)); req.ra_addr = (uint64_t)iorange[i].base; req.ra_len = (uint64_t)iorange[i].len; req.ra_flags = NDI_RA_ALLOC_SPECIFIED; (void) ndi_ra_alloc(usedpdip, &req, &retbase, &retlen, NDI_RA_TYPE_IO, 0); } kmem_free((caddr_t)iorange, proplen); } if (ndi_ra_map_setup(usedpdip, NDI_RA_TYPE_MEM) == NDI_FAILURE) { return (NDI_FAILURE); } /* initialize memory space where highest end base is 0xffffffff */ /* note that length is highest addr + 1 since starts from 0 */ (void) ndi_ra_free(usedpdip, 0, ((uint64_t)((uint32_t)~0)) + 1, NDI_RA_TYPE_MEM, 0); if (ddi_getlongprop(DDI_DEV_T_ANY, used, DDI_PROP_DONTPASS, "device-memory", (caddr_t)&memrange, &proplen) == DDI_SUCCESS) { maxrange = proplen / sizeof (struct memrange); /* remove the "used" memory resources */ for (i = 0; i < maxrange; i++) { bzero((caddr_t)&req, sizeof (req)); req.ra_addr = (uint64_t)memrange[i].base; req.ra_len = (uint64_t)memrange[i].len; req.ra_flags = NDI_RA_ALLOC_SPECIFIED; (void) ndi_ra_alloc(usedpdip, &req, &retbase, &retlen, NDI_RA_TYPE_MEM, 0); } kmem_free((caddr_t)memrange, proplen); } if (ndi_ra_map_setup(usedpdip, NDI_RA_TYPE_INTR) == NDI_FAILURE) { return (NDI_FAILURE); } /* initialize the interrupt space */ (void) ndi_ra_free(usedpdip, 0, 16, NDI_RA_TYPE_INTR, 0); #if defined(__i386) || defined(__amd64) bzero(&req, sizeof (req)); req.ra_addr = 2; /* 2 == 9 so never allow */ req.ra_len = 1; req.ra_flags = NDI_RA_ALLOC_SPECIFIED; (void) ndi_ra_alloc(usedpdip, &req, &retbase, &retlen, NDI_RA_TYPE_INTR, 0); #endif if (ddi_getlongprop(DDI_DEV_T_ANY, used, DDI_PROP_DONTPASS, "interrupts", (caddr_t)&irq, &proplen) == DDI_SUCCESS) { /* Initialize available interrupts by negating the used */ len = (proplen / sizeof (uint32_t)); for (i = 0; i < len; i++) { bzero((caddr_t)&req, sizeof (req)); req.ra_addr = (uint64_t)irq[i]; req.ra_len = 1; req.ra_flags = NDI_RA_ALLOC_SPECIFIED; (void) ndi_ra_alloc(usedpdip, &req, &retbase, &retlen, NDI_RA_TYPE_INTR, 0); } kmem_free((caddr_t)irq, proplen); } #ifdef BUSRA_DEBUG if (busra_debug) { (void) ra_dump_all(NULL, usedpdip); } #endif return (NDI_SUCCESS); } #ifdef BUSRA_DEBUG void ra_dump_all(char *type, dev_info_t *dip) { struct ra_type_map *typemap; struct ra_dip_type *dipmap; struct ra_resource *res; typemap = (struct ra_type_map *)ra_map_list_head; for (; typemap != NULL; typemap = typemap->ra_next) { if (type != NULL) { if (strcmp(typemap->type, type) != 0) continue; } cmn_err(CE_CONT, "type is %s\n", typemap->type); for (dipmap = typemap->ra_dip_list; dipmap != NULL; dipmap = dipmap->ra_next) { if (dip != NULL) { if ((dipmap->ra_dip) != dip) continue; } cmn_err(CE_CONT, " dip is %p\n", (void *)dipmap->ra_dip); for (res = dipmap->ra_rangeset; res != NULL; res = res->ra_next) { cmn_err(CE_CONT, "\t range is %" PRIx64 " %" PRIx64 "\n", res->ra_base, res->ra_len); } if (dip != NULL) break; } if (type != NULL) break; } } #endif struct bus_range { /* 1275 "bus-range" property definition */ uint32_t lo; uint32_t hi; } pci_bus_range; struct busnum_ctrl { int rv; dev_info_t *dip; struct bus_range *range; }; /* * Setup resource map for the pci bus node based on the "available" * property and "bus-range" property. */ int pci_resource_setup(dev_info_t *dip) { pci_regspec_t *regs; int rlen, rcount, i; char bus_type[16] = "(unknown)"; int len; struct busnum_ctrl ctrl; int circular_count; int rval = NDI_SUCCESS; /* * If this is a pci bus node then look for "available" property * to find the available resources on this bus. */ len = sizeof (bus_type); if (ddi_prop_op(DDI_DEV_T_ANY, dip, PROP_LEN_AND_VAL_BUF, DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "device_type", (caddr_t)&bus_type, &len) != DDI_SUCCESS) return (NDI_FAILURE); /* it is not a pci/pci-ex bus type */ if ((strcmp(bus_type, "pci") != 0) && (strcmp(bus_type, "pciex") != 0)) return (NDI_FAILURE); /* * The pci-hotplug project addresses adding the call * to pci_resource_setup from pci nexus driver. * However that project would initially be only for x86, * so for sparc pcmcia-pci support we still need to call * pci_resource_setup in pcic driver. Once all pci nexus drivers * are updated to call pci_resource_setup this portion of the * code would really become an assert to make sure this * function is not called for the same dip twice. */ { if (ra_map_exist(dip, NDI_RA_TYPE_MEM) == NDI_SUCCESS) { return (NDI_FAILURE); } } /* * Create empty resource maps first. * * NOTE: If all the allocated resources are already assigned to * device(s) in the hot plug slot then "available" property may not * be present. But, subsequent hot plug operation may unconfigure * the device in the slot and try to free up it's resources. So, * at the minimum we should create empty maps here. */ if (ndi_ra_map_setup(dip, NDI_RA_TYPE_MEM) == NDI_FAILURE) { return (NDI_FAILURE); } if (ndi_ra_map_setup(dip, NDI_RA_TYPE_IO) == NDI_FAILURE) { return (NDI_FAILURE); } if (ndi_ra_map_setup(dip, NDI_RA_TYPE_PCI_BUSNUM) == NDI_FAILURE) { return (NDI_FAILURE); } if (ndi_ra_map_setup(dip, NDI_RA_TYPE_PCI_PREFETCH_MEM) == NDI_FAILURE) { return (NDI_FAILURE); } /* read the "available" property if it is available */ if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "available", (caddr_t)®s, &rlen) == DDI_SUCCESS) { /* * create the available resource list for both memory and * io space */ rcount = rlen / sizeof (pci_regspec_t); for (i = 0; i < rcount; i++) { switch (PCI_REG_ADDR_G(regs[i].pci_phys_hi)) { case PCI_REG_ADDR_G(PCI_ADDR_MEM32): (void) ndi_ra_free(dip, (uint64_t)regs[i].pci_phys_low, (uint64_t)regs[i].pci_size_low, (regs[i].pci_phys_hi & PCI_REG_PF_M) ? NDI_RA_TYPE_PCI_PREFETCH_MEM : NDI_RA_TYPE_MEM, 0); break; case PCI_REG_ADDR_G(PCI_ADDR_MEM64): (void) ndi_ra_free(dip, ((uint64_t)(regs[i].pci_phys_mid) << 32) | ((uint64_t)(regs[i].pci_phys_low)), ((uint64_t)(regs[i].pci_size_hi) << 32) | ((uint64_t)(regs[i].pci_size_low)), (regs[i].pci_phys_hi & PCI_REG_PF_M) ? NDI_RA_TYPE_PCI_PREFETCH_MEM : NDI_RA_TYPE_MEM, 0); break; case PCI_REG_ADDR_G(PCI_ADDR_IO): (void) ndi_ra_free(dip, (uint64_t)regs[i].pci_phys_low, (uint64_t)regs[i].pci_size_low, NDI_RA_TYPE_IO, 0); break; case PCI_REG_ADDR_G(PCI_ADDR_CONFIG): break; default: cmn_err(CE_WARN, "pci_resource_setup: bad addr type: %x\n", PCI_REG_ADDR_G(regs[i].pci_phys_hi)); break; } } kmem_free(regs, rlen); } /* * update resource map for available bus numbers if the node * has available-bus-range or bus-range property. */ len = sizeof (struct bus_range); if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "available-bus-range", (caddr_t)&pci_bus_range, &len) == DDI_SUCCESS) { /* * Add bus numbers in the range to the free list. */ (void) ndi_ra_free(dip, (uint64_t)pci_bus_range.lo, (uint64_t)pci_bus_range.hi - (uint64_t)pci_bus_range.lo + 1, NDI_RA_TYPE_PCI_BUSNUM, 0); } else { /* * We don't have an available-bus-range property. If, instead, * we have a bus-range property we add all the bus numbers * in that range to the free list but we must then scan * for pci-pci bridges on this bus to find out the if there * are any of those bus numbers already in use. If so, we can * reclaim them. */ len = sizeof (struct bus_range); if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "bus-range", (caddr_t)&pci_bus_range, &len) == DDI_SUCCESS) { if (pci_bus_range.lo != pci_bus_range.hi) { /* * Add bus numbers other than the secondary * bus number to the free list. */ (void) ndi_ra_free(dip, (uint64_t)pci_bus_range.lo + 1, (uint64_t)pci_bus_range.hi - (uint64_t)pci_bus_range.lo, NDI_RA_TYPE_PCI_BUSNUM, 0); /* scan for pci-pci bridges */ ctrl.rv = DDI_SUCCESS; ctrl.dip = dip; ctrl.range = &pci_bus_range; ndi_devi_enter(dip, &circular_count); ddi_walk_devs(ddi_get_child(dip), claim_pci_busnum, (void *)&ctrl); ndi_devi_exit(dip, circular_count); if (ctrl.rv != DDI_SUCCESS) { /* failed to create the map */ (void) ndi_ra_map_destroy(dip, NDI_RA_TYPE_PCI_BUSNUM); rval = NDI_FAILURE; } } } } #ifdef BUSRA_DEBUG if (busra_debug) { (void) ra_dump_all(NULL, dip); } #endif return (rval); } /* * If the device is a PCI bus device (i.e bus-range property exists) then * claim the bus numbers used by the device from the specified bus * resource map. */ static int claim_pci_busnum(dev_info_t *dip, void *arg) { struct bus_range pci_bus_range; struct busnum_ctrl *ctrl; ndi_ra_request_t req; char bus_type[16] = "(unknown)"; int len; uint64_t base; uint64_t retlen; ctrl = (struct busnum_ctrl *)arg; /* check if this is a PCI bus node */ len = sizeof (bus_type); if (ddi_prop_op(DDI_DEV_T_ANY, dip, PROP_LEN_AND_VAL_BUF, DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "device_type", (caddr_t)&bus_type, &len) != DDI_SUCCESS) return (DDI_WALK_PRUNECHILD); /* it is not a pci/pci-ex bus type */ if ((strcmp(bus_type, "pci") != 0) && (strcmp(bus_type, "pciex") != 0)) return (DDI_WALK_PRUNECHILD); /* look for the bus-range property */ len = sizeof (struct bus_range); if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "bus-range", (caddr_t)&pci_bus_range, &len) == DDI_SUCCESS) { if ((pci_bus_range.lo >= ctrl->range->lo) && (pci_bus_range.hi <= ctrl->range->hi)) { /* claim the bus range from the bus resource map */ bzero((caddr_t)&req, sizeof (req)); req.ra_addr = (uint64_t)pci_bus_range.lo; req.ra_flags |= NDI_RA_ALLOC_SPECIFIED; req.ra_len = (uint64_t)pci_bus_range.hi - (uint64_t)pci_bus_range.lo + 1; if (ndi_ra_alloc(ctrl->dip, &req, &base, &retlen, NDI_RA_TYPE_PCI_BUSNUM, 0) == NDI_SUCCESS) return (DDI_WALK_PRUNECHILD); } } /* * Error return. */ ctrl->rv = DDI_FAILURE; return (DDI_WALK_TERMINATE); } void pci_resource_destroy(dev_info_t *dip) { (void) ndi_ra_map_destroy(dip, NDI_RA_TYPE_IO); (void) ndi_ra_map_destroy(dip, NDI_RA_TYPE_MEM); (void) ndi_ra_map_destroy(dip, NDI_RA_TYPE_PCI_BUSNUM); (void) ndi_ra_map_destroy(dip, NDI_RA_TYPE_PCI_PREFETCH_MEM); } int pci_resource_setup_avail(dev_info_t *dip, pci_regspec_t *avail_p, int entries) { int i; if (ndi_ra_map_setup(dip, NDI_RA_TYPE_MEM) == NDI_FAILURE) return (NDI_FAILURE); if (ndi_ra_map_setup(dip, NDI_RA_TYPE_IO) == NDI_FAILURE) return (NDI_FAILURE); if (ndi_ra_map_setup(dip, NDI_RA_TYPE_PCI_PREFETCH_MEM) == NDI_FAILURE) return (NDI_FAILURE); /* for each entry in the PCI "available" property */ for (i = 0; i < entries; i++, avail_p++) { if (avail_p->pci_phys_hi == -1u) goto err; switch (PCI_REG_ADDR_G(avail_p->pci_phys_hi)) { case PCI_REG_ADDR_G(PCI_ADDR_MEM32): { (void) ndi_ra_free(dip, (uint64_t)avail_p->pci_phys_low, (uint64_t)avail_p->pci_size_low, (avail_p->pci_phys_hi & PCI_REG_PF_M) ? NDI_RA_TYPE_PCI_PREFETCH_MEM : NDI_RA_TYPE_MEM, 0); } break; case PCI_REG_ADDR_G(PCI_ADDR_IO): (void) ndi_ra_free(dip, (uint64_t)avail_p->pci_phys_low, (uint64_t)avail_p->pci_size_low, NDI_RA_TYPE_IO, 0); break; default: goto err; } } #ifdef BUSRA_DEBUG if (busra_debug) { (void) ra_dump_all(NULL, dip); } #endif return (NDI_SUCCESS); err: cmn_err(CE_WARN, "pci_resource_setup_avail: bad entry[%d]=%x\n", i, avail_p->pci_phys_hi); return (NDI_FAILURE); }