/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include "bge_impl.h" /* * The transmit-side code uses an allocation process which is similar * to some theme park roller-coaster rides, where riders sit in cars * that can go individually, but work better in a train. * * 1) RESERVE a place - this doesn't refer to any specific car or * seat, just that you will get a ride. The attempt to RESERVE a * place can fail if all spaces in all cars are already committed. * * 2) Prepare yourself; this may take an arbitrary (but not unbounded) * time, and you can back out at this stage, in which case you must * give up (RENOUNCE) your place. * * 3) CLAIM your space - a specific car (the next sequentially * numbered one) is allocated at this stage, and is guaranteed * to be part of the next train to depart. Once you've done * this, you can't back out, nor wait for any external event * or resource. * * 4) Occupy your car - when all CLAIMED cars are OCCUPIED, they * all depart together as a single train! * * 5) At the end of the ride, you climb out of the car and RENOUNCE * your right to it, so that it can be recycled for another rider. * * For each rider, these have to occur in this order, but the riders * don't have to stay in the same order at each stage. In particular, * they may overtake each other between RESERVING a place and CLAIMING * it, or between CLAIMING and OCCUPYING a space. * * Once a car is CLAIMED, the train currently being assembled can't go * without that car (this guarantees that the cars in a single train * make up a consecutively-numbered set). Therefore, when any train * leaves, we know there can't be any riders in transit between CLAIMING * and OCCUPYING their cars. There can be some who have RESERVED but * not yet CLAIMED their places. That's OK, though, because they'll go * into the next train. */ #define BGE_DBG BGE_DBG_SEND /* debug flag for this code */ /* * ========== Send-side recycle routines ========== */ /* * Recycle all the completed buffers in the specified send ring up to * (but not including) the consumer index in the status block. * * This function must advance (srp->tc_next) AND adjust (srp->tx_free) * to account for the packets it has recycled. * * This is a trivial version that just does that and nothing more, but * it suffices while there's only one method for sending messages (by * copying) and that method doesn't need any special per-buffer action * for recycling. */ static void bge_recycle_ring(bge_t *bgep, send_ring_t *srp); #pragma inline(bge_recycle_ring) static void bge_recycle_ring(bge_t *bgep, send_ring_t *srp) { sw_sbd_t *ssbdp; bge_queue_item_t *buf_item; bge_queue_item_t *buf_item_head; bge_queue_item_t *buf_item_tail; bge_queue_t *txbuf_queue; uint64_t slot; uint64_t n; ASSERT(mutex_owned(srp->tc_lock)); /* * We're about to release one or more places :-) * These ASSERTions check that our invariants still hold: * there must always be at least one free place * at this point, there must be at least one place NOT free * we're not about to free more places than were claimed! */ ASSERT(srp->tx_free > 0); ASSERT(srp->tx_free < srp->desc.nslots); buf_item_head = buf_item_tail = NULL; for (n = 0, slot = srp->tc_next; slot != *srp->cons_index_p; slot = NEXT(slot, srp->desc.nslots)) { ssbdp = &srp->sw_sbds[slot]; ASSERT(ssbdp->pbuf != NULL); buf_item = ssbdp->pbuf; if (buf_item_head == NULL) buf_item_head = buf_item_tail = buf_item; else { buf_item_tail->next = buf_item; buf_item_tail = buf_item; } ssbdp->pbuf = NULL; n++; } if (n == 0) return; /* * Update recycle index and free tx BD number */ srp->tc_next = slot; ASSERT(srp->tx_free + n <= srp->desc.nslots); bge_atomic_renounce(&srp->tx_free, n); /* * Reset the watchdog count: to 0 if all buffers are * now free, or to 1 if some are still outstanding. * Note: non-synchonised access here means we may get * the "wrong" answer, but only in a harmless fashion * (i.e. we deactivate the watchdog because all buffers * are apparently free, even though another thread may * have claimed one before we leave here; in this case * the watchdog will restart on the next send() call). */ bgep->watchdog = srp->tx_free == srp->desc.nslots ? 0 : 1; /* * Return tx buffers to buffer push queue */ txbuf_queue = srp->txbuf_push_queue; mutex_enter(txbuf_queue->lock); buf_item_tail->next = txbuf_queue->head; txbuf_queue->head = buf_item_head; txbuf_queue->count += n; mutex_exit(txbuf_queue->lock); /* * Check if we need exchange the tx buffer push and pop queue */ if ((srp->txbuf_pop_queue->count < srp->tx_buffers_low) && (srp->txbuf_pop_queue->count < txbuf_queue->count)) { srp->txbuf_push_queue = srp->txbuf_pop_queue; srp->txbuf_pop_queue = txbuf_queue; } if (srp->tx_flow != 0 || bgep->tx_resched_needed) ddi_trigger_softintr(bgep->drain_id); } /* * Recycle all returned slots in all rings. * * To give priority to low-numbered rings, whenever we have recycled any * slots in any ring except 0, we restart scanning again from ring 0. * Thus, for example, if rings 0, 3, and 10 are carrying traffic, the * pattern of recycles might go 0, 3, 10, 3, 0, 10, 0: * * 0 found some - recycle them * 1..2 none found * 3 found some - recycle them and restart scan * 0..9 none found * 10 found some - recycle them and restart scan * 0..2 none found * 3 found some more - recycle them and restart scan * 0 found some more - recycle them * 0..9 none found * 10 found some more - recycle them and restart scan * 0 found some more - recycle them * 1..15 none found * * The routine returns only when a complete scan has been performed * without finding any slots to recycle. * * Note: the expression (BGE_SEND_RINGS_USED > 1) yields a compile-time * constant and allows the compiler to optimise away the outer do-loop * if only one send ring is being used. */ void bge_recycle(bge_t *bgep, bge_status_t *bsp); #pragma no_inline(bge_recycle) void bge_recycle(bge_t *bgep, bge_status_t *bsp) { send_ring_t *srp; uint64_t ring; uint64_t tx_rings = bgep->chipid.tx_rings; restart: ring = 0; srp = &bgep->send[ring]; do { /* * For each ring, (srp->cons_index_p) points to the * proper index within the status block (which has * already been sync'd by the caller). */ ASSERT(srp->cons_index_p == SEND_INDEX_P(bsp, ring)); if (*srp->cons_index_p == srp->tc_next) continue; /* no slots to recycle */ if (mutex_tryenter(srp->tc_lock) == 0) continue; /* already in process */ bge_recycle_ring(bgep, srp); mutex_exit(srp->tc_lock); /* * Restart from ring 0, if we're not on ring 0 already. * As H/W selects send BDs totally based on priority and * available BDs on the higher priority ring are always * selected first, driver should keep consistence with H/W * and gives lower-numbered ring with higher priority. */ if (tx_rings > 1 && ring > 0) goto restart; /* * Loop over all rings (if there *are* multiple rings) */ } while (++srp, ++ring < tx_rings); } /* * ========== Send-side transmit routines ========== */ #define TCP_CKSUM_OFFSET 16 #define UDP_CKSUM_OFFSET 6 static void bge_pseudo_cksum(uint8_t *buf) { uint32_t cksum; uint16_t iphl; uint16_t proto; /* * Point it to the ip header. */ buf += sizeof (struct ether_header); /* * Calculate the pseudo-header checksum. */ iphl = 4 * (buf[0] & 0xF); cksum = (((uint16_t)buf[2])<<8) + buf[3] - iphl; cksum += proto = buf[9]; cksum += (((uint16_t)buf[12])<<8) + buf[13]; cksum += (((uint16_t)buf[14])<<8) + buf[15]; cksum += (((uint16_t)buf[16])<<8) + buf[17]; cksum += (((uint16_t)buf[18])<<8) + buf[19]; cksum = (cksum>>16) + (cksum & 0xFFFF); cksum = (cksum>>16) + (cksum & 0xFFFF); /* * Point it to the TCP/UDP header, and * update the checksum field. */ buf += iphl + ((proto == IPPROTO_TCP) ? TCP_CKSUM_OFFSET : UDP_CKSUM_OFFSET); /* * A real possibility that pointer cast is a problem. * Should be fixed when we know the code better. * E_BAD_PTR_CAST_ALIGN is added to make it temporarily clean. */ *(uint16_t *)buf = htons((uint16_t)cksum); } static bge_queue_item_t * bge_get_txbuf(bge_t *bgep, send_ring_t *srp) { bge_queue_item_t *txbuf_item; bge_queue_t *txbuf_queue; txbuf_queue = srp->txbuf_pop_queue; mutex_enter(txbuf_queue->lock); if (txbuf_queue->count == 0) { mutex_exit(txbuf_queue->lock); txbuf_queue = srp->txbuf_push_queue; mutex_enter(txbuf_queue->lock); if (txbuf_queue->count == 0) { mutex_exit(txbuf_queue->lock); /* Try to allocate more tx buffers */ if (srp->tx_array < srp->tx_array_max) { mutex_enter(srp->tx_lock); txbuf_item = bge_alloc_txbuf_array(bgep, srp); mutex_exit(srp->tx_lock); } else txbuf_item = NULL; return (txbuf_item); } } txbuf_item = txbuf_queue->head; txbuf_queue->head = (bge_queue_item_t *)txbuf_item->next; txbuf_queue->count--; mutex_exit(txbuf_queue->lock); txbuf_item->next = NULL; return (txbuf_item); } static void bge_send_fill_txbd(send_ring_t *srp, send_pkt_t *pktp); #pragma inline(bge_send_fill_txbd) static void bge_send_fill_txbd(send_ring_t *srp, send_pkt_t *pktp) { bge_sbd_t *hw_sbd_p; sw_sbd_t *ssbdp; bge_queue_item_t *txbuf_item; sw_txbuf_t *txbuf; uint64_t slot; ASSERT(mutex_owned(srp->tx_lock)); /* * Go straight to claiming our already-reserved places * on the train! */ ASSERT(pktp->txbuf_item != NULL); txbuf_item = pktp->txbuf_item; txbuf = txbuf_item->item; slot = srp->tx_next; ssbdp = &srp->sw_sbds[slot]; hw_sbd_p = DMA_VPTR(ssbdp->desc); hw_sbd_p->flags = 0; ASSERT(txbuf->copy_len != 0); (void) ddi_dma_sync(txbuf->buf.dma_hdl, 0, txbuf->copy_len, DDI_DMA_SYNC_FORDEV); ASSERT(ssbdp->pbuf == NULL); ssbdp->pbuf = txbuf_item; srp->tx_next = NEXT(slot, srp->desc.nslots); pktp->txbuf_item = NULL; /* * Setting hardware send buffer descriptor */ hw_sbd_p->host_buf_addr = txbuf->buf.cookie.dmac_laddress; hw_sbd_p->len = txbuf->copy_len; if (pktp->vlan_tci != 0) { hw_sbd_p->vlan_tci = pktp->vlan_tci; hw_sbd_p->host_buf_addr += VLAN_TAGSZ; hw_sbd_p->flags |= SBD_FLAG_VLAN_TAG; } if (pktp->pflags & HCK_IPV4_HDRCKSUM) hw_sbd_p->flags |= SBD_FLAG_IP_CKSUM; if (pktp->pflags & HCK_FULLCKSUM) hw_sbd_p->flags |= SBD_FLAG_TCP_UDP_CKSUM; hw_sbd_p->flags |= SBD_FLAG_PACKET_END; } /* * Send a message by copying it into a preallocated (and premapped) buffer */ static void bge_send_copy(bge_t *bgep, sw_txbuf_t *txbuf, mblk_t *mp); #pragma inline(bge_send_copy) static void bge_send_copy(bge_t *bgep, sw_txbuf_t *txbuf, mblk_t *mp) { mblk_t *bp; uint32_t mblen; char *pbuf; txbuf->copy_len = 0; pbuf = DMA_VPTR(txbuf->buf); for (bp = mp; bp != NULL; bp = bp->b_cont) { if ((mblen = MBLKL(bp)) == 0) continue; ASSERT(txbuf->copy_len + mblen <= bgep->chipid.snd_buff_size); bcopy(bp->b_rptr, pbuf, mblen); pbuf += mblen; txbuf->copy_len += mblen; } } /* * Fill the Tx buffer descriptors and trigger the h/w transmission */ static void bge_send_serial(bge_t *bgep, send_ring_t *srp) { send_pkt_t *pktp; uint64_t txfill_next; uint32_t count; uint32_t tx_next; sw_sbd_t *ssbdp; bge_status_t *bsp; /* * Try to hold the tx lock: * If we are in an interrupt context, use mutex_enter() to * ensure quick response for tx in interrupt context; * Otherwise, use mutex_tryenter() to serialize this h/w tx * BD filling and transmission triggering task. */ if (servicing_interrupt() != 0) mutex_enter(srp->tx_lock); else if (mutex_tryenter(srp->tx_lock) == 0) return; /* already in process */ bsp = DMA_VPTR(bgep->status_block); txfill_next = srp->txfill_next; start_tx: tx_next = srp->tx_next; ssbdp = &srp->sw_sbds[tx_next]; for (count = 0; count < bgep->param_drain_max; ++count) { pktp = &srp->pktp[txfill_next]; if (!pktp->tx_ready) { if (count == 0) srp->tx_block++; break; } /* * If there are no enough BDs: try to recycle more */ if (srp->tx_free <= 1) bge_recycle(bgep, bsp); /* * Reserved required BDs: 1 is enough */ if (!bge_atomic_reserve(&srp->tx_free, 1)) { srp->tx_nobd++; break; } /* * Filling the tx BD */ bge_send_fill_txbd(srp, pktp); txfill_next = NEXT(txfill_next, BGE_SEND_BUF_MAX); pktp->tx_ready = B_FALSE; } /* * Trigger h/w to start transmission. */ if (count != 0) { bge_atomic_sub64(&srp->tx_flow, count); if (tx_next + count > srp->desc.nslots) { (void) ddi_dma_sync(ssbdp->desc.dma_hdl, 0, (srp->desc.nslots - tx_next) * sizeof (bge_sbd_t), DDI_DMA_SYNC_FORDEV); count -= srp->desc.nslots - tx_next; ssbdp = &srp->sw_sbds[0]; } (void) ddi_dma_sync(ssbdp->desc.dma_hdl, 0, count*sizeof (bge_sbd_t), DDI_DMA_SYNC_FORDEV); bge_mbx_put(bgep, srp->chip_mbx_reg, srp->tx_next); srp->txfill_next = txfill_next; bgep->watchdog++; if (srp->tx_flow != 0 && srp->tx_free > 1) goto start_tx; } mutex_exit(srp->tx_lock); } mblk_t * bge_ring_tx(void *arg, mblk_t *mp) { send_ring_t *srp = arg; bge_t *bgep = srp->bgep; struct ether_vlan_header *ehp; bge_queue_item_t *txbuf_item; sw_txbuf_t *txbuf; send_pkt_t *pktp; uint64_t pkt_slot; uint16_t vlan_tci; uint32_t pflags; char *pbuf; ASSERT(mp->b_next == NULL); /* * Get a s/w tx buffer first */ txbuf_item = bge_get_txbuf(bgep, srp); if (txbuf_item == NULL) { /* no tx buffer available */ srp->tx_nobuf++; bgep->tx_resched_needed = B_TRUE; bge_send_serial(bgep, srp); return (mp); } /* * Copy all mp fragments to the pkt buffer */ txbuf = txbuf_item->item; bge_send_copy(bgep, txbuf, mp); /* * Determine if the packet is VLAN tagged. */ ASSERT(txbuf->copy_len >= sizeof (struct ether_header)); pbuf = DMA_VPTR(txbuf->buf); ehp = (void *)pbuf; if (ehp->ether_tpid == htons(ETHERTYPE_VLAN)) { /* Strip the vlan tag */ vlan_tci = ntohs(ehp->ether_tci); pbuf = memmove(pbuf + VLAN_TAGSZ, pbuf, 2 * ETHERADDRL); txbuf->copy_len -= VLAN_TAGSZ; } else vlan_tci = 0; /* * Retrieve checksum offloading info. */ hcksum_retrieve(mp, NULL, NULL, NULL, NULL, NULL, NULL, &pflags); /* * Calculate pseudo checksum if needed. */ if ((pflags & HCK_FULLCKSUM) && (bgep->chipid.flags & CHIP_FLAG_PARTIAL_CSUM)) bge_pseudo_cksum((uint8_t *)pbuf); /* * Packet buffer is ready to send: get and fill pkt info */ pkt_slot = bge_atomic_next(&srp->txpkt_next, BGE_SEND_BUF_MAX); pktp = &srp->pktp[pkt_slot]; ASSERT(pktp->txbuf_item == NULL); pktp->txbuf_item = txbuf_item; pktp->vlan_tci = vlan_tci; pktp->pflags = pflags; atomic_inc_64(&srp->tx_flow); ASSERT(pktp->tx_ready == B_FALSE); pktp->tx_ready = B_TRUE; /* * Filling the h/w bd and trigger the h/w to start transmission */ bge_send_serial(bgep, srp); srp->pushed_bytes += MBLKL(mp); /* * We've copied the contents, the message can be freed right away */ freemsg(mp); return (NULL); } static mblk_t * bge_send(bge_t *bgep, mblk_t *mp) { send_ring_t *ring; ring = &bgep->send[0]; /* ring 0 */ return (bge_ring_tx(ring, mp)); } uint_t bge_send_drain(caddr_t arg) { uint_t ring = 0; /* use ring 0 */ bge_t *bgep; send_ring_t *srp; bgep = (void *)arg; BGE_TRACE(("bge_send_drain($%p)", (void *)bgep)); srp = &bgep->send[ring]; bge_send_serial(bgep, srp); if (bgep->tx_resched_needed && (srp->tx_flow < srp->tx_buffers_low) && (bgep->bge_mac_state == BGE_MAC_STARTED)) { mac_tx_update(bgep->mh); bgep->tx_resched_needed = B_FALSE; bgep->tx_resched++; } return (DDI_INTR_CLAIMED); } /* * bge_m_tx() - send a chain of packets */ mblk_t * bge_m_tx(void *arg, mblk_t *mp) { bge_t *bgep = arg; /* private device info */ mblk_t *next; BGE_TRACE(("bge_m_tx($%p, $%p)", arg, (void *)mp)); ASSERT(mp != NULL); ASSERT(bgep->bge_mac_state == BGE_MAC_STARTED); rw_enter(bgep->errlock, RW_READER); if (bgep->bge_chip_state != BGE_CHIP_RUNNING) { BGE_DEBUG(("bge_m_tx: chip not running")); freemsgchain(mp); mp = NULL; } while (mp != NULL) { next = mp->b_next; mp->b_next = NULL; if ((mp = bge_send(bgep, mp)) != NULL) { mp->b_next = next; break; } mp = next; } rw_exit(bgep->errlock); return (mp); }