/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include "bge_impl.h" #define PIO_ADDR(bgep, offset) ((void *)((caddr_t)(bgep)->io_regs+(offset))) /* * Future features ... ? */ #define BGE_CFG_IO8 1 /* 8/16-bit cfg space BIS/BIC */ #define BGE_IND_IO32 0 /* indirect access code */ #define BGE_SEE_IO32 1 /* SEEPROM access code */ #define BGE_FLASH_IO32 1 /* FLASH access code */ /* * BGE MSI tunable: * * By default MSI is enabled on all supported platforms but it is disabled * for some Broadcom chips due to known MSI hardware issues. Currently MSI * is enabled only for 5714C A2 and 5715C A2 broadcom chips. */ #if defined(__sparc) boolean_t bge_enable_msi = B_TRUE; #else boolean_t bge_enable_msi = B_FALSE; #endif /* * PCI-X/PCI-E relaxed ordering tunable for OS/Nexus driver */ boolean_t bge_relaxed_ordering = B_TRUE; /* * Property names */ static char knownids_propname[] = "bge-known-subsystems"; /* * Patchable globals: * * bge_autorecover * Enables/disables automatic recovery after fault detection * * bge_mlcr_default * Value to program into the MLCR; controls the chip's GPIO pins * * bge_dma_{rd,wr}prio * Relative priorities of DMA reads & DMA writes respectively. * These may each be patched to any value 0-3. Equal values * will give "fair" (round-robin) arbitration for PCI access. * Unequal values will give one or the other function priority. * * bge_dma_rwctrl * Value to put in the Read/Write DMA control register. See * the Broadcom PRM for things you can fiddle with in this * register ... * * bge_{tx,rx}_{count,ticks}_{norm,intr} * Send/receive interrupt coalescing parameters. Counts are * #s of descriptors, ticks are in microseconds. *norm* values * apply between status updates/interrupts; the *intr* values * refer to the 'during-interrupt' versions - see the PRM. * * NOTE: these values have been determined by measurement. They * differ significantly from the values recommended in the PRM. */ static uint32_t bge_autorecover = 1; static uint32_t bge_mlcr_default = MLCR_DEFAULT; static uint32_t bge_mlcr_default_5714 = MLCR_DEFAULT_5714; static uint32_t bge_dma_rdprio = 1; static uint32_t bge_dma_wrprio = 0; static uint32_t bge_dma_rwctrl = PDRWCR_VAR_DEFAULT; static uint32_t bge_dma_rwctrl_5721 = PDRWCR_VAR_5721; static uint32_t bge_dma_rwctrl_5714 = PDRWCR_VAR_5714; static uint32_t bge_dma_rwctrl_5715 = PDRWCR_VAR_5715; uint32_t bge_rx_ticks_norm = 128; uint32_t bge_tx_ticks_norm = 2048; /* 8 for FJ2+ !?!? */ uint32_t bge_rx_count_norm = 8; uint32_t bge_tx_count_norm = 128; static uint32_t bge_rx_ticks_intr = 128; static uint32_t bge_tx_ticks_intr = 0; /* 8 for FJ2+ !?!? */ static uint32_t bge_rx_count_intr = 2; static uint32_t bge_tx_count_intr = 0; /* * Memory pool configuration parameters. * * These are generally specific to each member of the chip family, since * each one may have a different memory size/configuration. * * Setting the mbuf pool length for a specific type of chip to 0 inhibits * the driver from programming the various registers; instead they are left * at their hardware defaults. This is the preferred option for later chips * (5705+), whereas the older chips *required* these registers to be set, * since the h/w default was 0 ;-( */ static uint32_t bge_mbuf_pool_base = MBUF_POOL_BASE_DEFAULT; static uint32_t bge_mbuf_pool_base_5704 = MBUF_POOL_BASE_5704; static uint32_t bge_mbuf_pool_base_5705 = MBUF_POOL_BASE_5705; static uint32_t bge_mbuf_pool_base_5721 = MBUF_POOL_BASE_5721; static uint32_t bge_mbuf_pool_len = MBUF_POOL_LENGTH_DEFAULT; static uint32_t bge_mbuf_pool_len_5704 = MBUF_POOL_LENGTH_5704; static uint32_t bge_mbuf_pool_len_5705 = 0; /* use h/w default */ static uint32_t bge_mbuf_pool_len_5721 = 0; /* * Various high and low water marks, thresholds, etc ... * * Note: these are taken from revision 7 of the PRM, and some are different * from both the values in earlier PRMs *and* those determined experimentally * and used in earlier versions of this driver ... */ static uint32_t bge_mbuf_hi_water = MBUF_HIWAT_DEFAULT; static uint32_t bge_mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_DEFAULT; static uint32_t bge_mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_DEFAULT; static uint32_t bge_dmad_lo_water = DMAD_POOL_LOWAT_DEFAULT; static uint32_t bge_dmad_hi_water = DMAD_POOL_HIWAT_DEFAULT; static uint32_t bge_lowat_recv_frames = LOWAT_MAX_RECV_FRAMES_DEFAULT; static uint32_t bge_replenish_std = STD_RCV_BD_REPLENISH_DEFAULT; static uint32_t bge_replenish_mini = MINI_RCV_BD_REPLENISH_DEFAULT; static uint32_t bge_replenish_jumbo = JUMBO_RCV_BD_REPLENISH_DEFAULT; static uint32_t bge_watchdog_count = 1 << 16; static uint16_t bge_dma_miss_limit = 20; static uint32_t bge_stop_start_on_sync = 0; boolean_t bge_jumbo_enable = B_TRUE; static uint32_t bge_default_jumbo_size = BGE_JUMBO_BUFF_SIZE; /* * ========== Low-level chip & ring buffer manipulation ========== */ #define BGE_DBG BGE_DBG_REGS /* debug flag for this code */ /* * Config space read-modify-write routines */ #if BGE_CFG_IO8 /* * 8- and 16-bit set/clr operations are not used; all the config registers * that we need to do bit-twiddling on are 32 bits wide. I'll leave the * code here, though, in case we ever find that we do want it after all ... */ static void bge_cfg_set8(bge_t *bgep, bge_regno_t regno, uint8_t bits); #pragma inline(bge_cfg_set8) static void bge_cfg_set8(bge_t *bgep, bge_regno_t regno, uint8_t bits) { uint8_t regval; BGE_TRACE(("bge_cfg_set8($%p, 0x%lx, 0x%x)", (void *)bgep, regno, bits)); regval = pci_config_get8(bgep->cfg_handle, regno); BGE_DEBUG(("bge_cfg_set8($%p, 0x%lx, 0x%x): 0x%x => 0x%x", (void *)bgep, regno, bits, regval, regval | bits)); regval |= bits; pci_config_put8(bgep->cfg_handle, regno, regval); } static void bge_cfg_clr8(bge_t *bgep, bge_regno_t regno, uint8_t bits); #pragma inline(bge_cfg_clr8) static void bge_cfg_clr8(bge_t *bgep, bge_regno_t regno, uint8_t bits) { uint8_t regval; BGE_TRACE(("bge_cfg_clr8($%p, 0x%lx, 0x%x)", (void *)bgep, regno, bits)); regval = pci_config_get8(bgep->cfg_handle, regno); BGE_DEBUG(("bge_cfg_clr8($%p, 0x%lx, 0x%x): 0x%x => 0x%x", (void *)bgep, regno, bits, regval, regval & ~bits)); regval &= ~bits; pci_config_put8(bgep->cfg_handle, regno, regval); } static void bge_cfg_set16(bge_t *bgep, bge_regno_t regno, uint16_t bits); #pragma inline(bge_cfg_set16) static void bge_cfg_set16(bge_t *bgep, bge_regno_t regno, uint16_t bits) { uint16_t regval; BGE_TRACE(("bge_cfg_set16($%p, 0x%lx, 0x%x)", (void *)bgep, regno, bits)); regval = pci_config_get16(bgep->cfg_handle, regno); BGE_DEBUG(("bge_cfg_set16($%p, 0x%lx, 0x%x): 0x%x => 0x%x", (void *)bgep, regno, bits, regval, regval | bits)); regval |= bits; pci_config_put16(bgep->cfg_handle, regno, regval); } static void bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits); #pragma inline(bge_cfg_clr16) static void bge_cfg_clr16(bge_t *bgep, bge_regno_t regno, uint16_t bits) { uint16_t regval; BGE_TRACE(("bge_cfg_clr16($%p, 0x%lx, 0x%x)", (void *)bgep, regno, bits)); regval = pci_config_get16(bgep->cfg_handle, regno); BGE_DEBUG(("bge_cfg_clr16($%p, 0x%lx, 0x%x): 0x%x => 0x%x", (void *)bgep, regno, bits, regval, regval & ~bits)); regval &= ~bits; pci_config_put16(bgep->cfg_handle, regno, regval); } #endif /* BGE_CFG_IO8 */ static void bge_cfg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits); #pragma inline(bge_cfg_set32) static void bge_cfg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits) { uint32_t regval; BGE_TRACE(("bge_cfg_set32($%p, 0x%lx, 0x%x)", (void *)bgep, regno, bits)); regval = pci_config_get32(bgep->cfg_handle, regno); BGE_DEBUG(("bge_cfg_set32($%p, 0x%lx, 0x%x): 0x%x => 0x%x", (void *)bgep, regno, bits, regval, regval | bits)); regval |= bits; pci_config_put32(bgep->cfg_handle, regno, regval); } static void bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits); #pragma inline(bge_cfg_clr32) static void bge_cfg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits) { uint32_t regval; BGE_TRACE(("bge_cfg_clr32($%p, 0x%lx, 0x%x)", (void *)bgep, regno, bits)); regval = pci_config_get32(bgep->cfg_handle, regno); BGE_DEBUG(("bge_cfg_clr32($%p, 0x%lx, 0x%x): 0x%x => 0x%x", (void *)bgep, regno, bits, regval, regval & ~bits)); regval &= ~bits; pci_config_put32(bgep->cfg_handle, regno, regval); } #if BGE_IND_IO32 /* * Indirect access to registers & RISC scratchpads, using config space * accesses only. * * This isn't currently used, but someday we might want to use it for * restoring the Subsystem Device/Vendor registers (which aren't directly * writable in Config Space), or for downloading firmware into the RISCs * * In any case there are endian issues to be resolved before this code is * enabled; the bizarre way that bytes get twisted by this chip AND by * the PCI bridge in SPARC systems mean that we shouldn't enable it until * it's been thoroughly tested for all access sizes on all supported * architectures (SPARC *and* x86!). */ static uint32_t bge_ind_get32(bge_t *bgep, bge_regno_t regno); #pragma inline(bge_ind_get32) static uint32_t bge_ind_get32(bge_t *bgep, bge_regno_t regno) { uint32_t val; BGE_TRACE(("bge_ind_get32($%p, 0x%lx)", (void *)bgep, regno)); ASSERT(mutex_owned(bgep->genlock)); pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno); val = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_RIADR); BGE_DEBUG(("bge_ind_get32($%p, 0x%lx) => 0x%x", (void *)bgep, regno, val)); return (val); } static void bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val); #pragma inline(bge_ind_put32) static void bge_ind_put32(bge_t *bgep, bge_regno_t regno, uint32_t val) { BGE_TRACE(("bge_ind_put32($%p, 0x%lx, 0x%x)", (void *)bgep, regno, val)); ASSERT(mutex_owned(bgep->genlock)); pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIAAR, regno); pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_RIADR, val); } #endif /* BGE_IND_IO32 */ #if BGE_DEBUGGING static void bge_pci_check(bge_t *bgep); #pragma no_inline(bge_pci_check) static void bge_pci_check(bge_t *bgep) { uint16_t pcistatus; pcistatus = pci_config_get16(bgep->cfg_handle, PCI_CONF_STAT); if ((pcistatus & (PCI_STAT_R_MAST_AB | PCI_STAT_R_TARG_AB)) != 0) BGE_DEBUG(("bge_pci_check($%p): PCI status 0x%x", (void *)bgep, pcistatus)); } #endif /* BGE_DEBUGGING */ /* * Perform first-stage chip (re-)initialisation, using only config-space * accesses: * * + Read the vendor/device/revision/subsystem/cache-line-size registers, * returning the data in the structure pointed to by . * + Configure the target-mode endianness (swap) options. * + Disable interrupts and enable Memory Space accesses. * + Enable or disable Bus Mastering according to the flag. * * This sequence is adapted from Broadcom document 570X-PG102-R, * page 102, steps 1-3, 6-8 and 11-13. The omitted parts of the sequence * are 4 and 5 (Reset Core and wait) which are handled elsewhere. * * This function MUST be called before any non-config-space accesses * are made; on this first call is B_FALSE, and it * effectively performs steps 3-1(!) of the initialisation sequence * (the rest are not required but should be harmless). * * It MUST also be called after a chip reset, as this disables * Memory Space cycles! In this case, is B_TRUE, and * it is effectively performing steps 6-8. */ void bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma); #pragma no_inline(bge_chip_cfg_init) void bge_chip_cfg_init(bge_t *bgep, chip_id_t *cidp, boolean_t enable_dma) { ddi_acc_handle_t handle; uint16_t command; uint32_t mhcr; uint16_t value16; int i; BGE_TRACE(("bge_chip_cfg_init($%p, $%p, %d)", (void *)bgep, (void *)cidp, enable_dma)); /* * Step 3: save PCI cache line size and subsystem vendor ID * * Read all the config-space registers that characterise the * chip, specifically vendor/device/revision/subsystem vendor * and subsystem device id. We expect (but don't check) that * (vendor == VENDOR_ID_BROADCOM) && (device == DEVICE_ID_5704) * * Also save all bus-transaction related registers (cache-line * size, bus-grant/latency parameters, etc). Some of these are * cleared by reset, so we'll have to restore them later. This * comes from the Broadcom document 570X-PG102-R ... * * Note: Broadcom document 570X-PG102-R seems to be in error * here w.r.t. the offsets of the Subsystem Vendor ID and * Subsystem (Device) ID registers, which are the opposite way * round according to the PCI standard. For good measure, we * save/restore both anyway. */ handle = bgep->cfg_handle; mhcr = pci_config_get32(handle, PCI_CONF_BGE_MHCR); cidp->asic_rev = mhcr & MHCR_CHIP_REV_MASK; cidp->businfo = pci_config_get32(handle, PCI_CONF_BGE_PCISTATE); cidp->command = pci_config_get16(handle, PCI_CONF_COMM); cidp->vendor = pci_config_get16(handle, PCI_CONF_VENID); cidp->device = pci_config_get16(handle, PCI_CONF_DEVID); cidp->subven = pci_config_get16(handle, PCI_CONF_SUBVENID); cidp->subdev = pci_config_get16(handle, PCI_CONF_SUBSYSID); cidp->revision = pci_config_get8(handle, PCI_CONF_REVID); cidp->clsize = pci_config_get8(handle, PCI_CONF_CACHE_LINESZ); cidp->latency = pci_config_get8(handle, PCI_CONF_LATENCY_TIMER); BGE_DEBUG(("bge_chip_cfg_init: %s bus is %s and %s; #INTA is %s", cidp->businfo & PCISTATE_BUS_IS_PCI ? "PCI" : "PCI-X", cidp->businfo & PCISTATE_BUS_IS_FAST ? "fast" : "slow", cidp->businfo & PCISTATE_BUS_IS_32_BIT ? "narrow" : "wide", cidp->businfo & PCISTATE_INTA_STATE ? "high" : "low")); BGE_DEBUG(("bge_chip_cfg_init: vendor 0x%x device 0x%x revision 0x%x", cidp->vendor, cidp->device, cidp->revision)); BGE_DEBUG(("bge_chip_cfg_init: subven 0x%x subdev 0x%x asic_rev 0x%x", cidp->subven, cidp->subdev, cidp->asic_rev)); BGE_DEBUG(("bge_chip_cfg_init: clsize %d latency %d command 0x%x", cidp->clsize, cidp->latency, cidp->command)); /* * Step 2 (also step 6): disable and clear interrupts. * Steps 11-13: configure PIO endianness options, and enable * indirect register access. We'll also select any other * options controlled by the MHCR (e.g. tagged status, mask * interrupt mode) at this stage ... * * Note: internally, the chip is 64-bit and BIG-endian, but * since it talks to the host over a (LITTLE-endian) PCI bus, * it normally swaps bytes around at the PCI interface. * However, the PCI host bridge on SPARC systems normally * swaps the byte lanes around too, since SPARCs are also * BIG-endian. So it turns out that on SPARC, the right * option is to tell the chip to swap (and the host bridge * will swap back again), whereas on x86 we ask the chip * NOT to swap, so the natural little-endianness of the * PCI bus is assumed. Then the only thing that doesn't * automatically work right is access to an 8-byte register * by a little-endian host; but we don't want to set the * MHCR_ENABLE_REGISTER_WORD_SWAP bit because then 4-byte * accesses don't go where expected ;-( So we live with * that, and perform word-swaps in software in the few cases * where a chip register is defined as an 8-byte value -- * see the code below for details ... * * Note: the meaning of the 'MASK_INTERRUPT_MODE' bit isn't * very clear in the register description in the PRM, but * Broadcom document 570X-PG104-R page 248 explains a little * more (under "Broadcom Mask Mode"). The bit changes the way * the MASK_PCI_INT_OUTPUT bit works: with MASK_INTERRUPT_MODE * clear, the chip interprets MASK_PCI_INT_OUTPUT in the same * way as the 5700 did, which isn't very convenient. Setting * the MASK_INTERRUPT_MODE bit makes the MASK_PCI_INT_OUTPUT * bit do just what its name says -- MASK the PCI #INTA output * (i.e. deassert the signal at the pin) leaving all internal * state unchanged. This is much more convenient for our * interrupt handler, so we set MASK_INTERRUPT_MODE here. * * Note: the inconvenient semantics of the interrupt mailbox * (nonzero disables and acknowledges/clears the interrupt, * zero enables AND CLEARS it) would make race conditions * likely in the interrupt handler: * * (1) acknowledge & disable interrupts * (2) while (more to do) * process packets * (3) enable interrupts -- also clears pending * * If the chip received more packets and internally generated * an interrupt between the check at (2) and the mbox write * at (3), this interrupt would be lost :-( * * The best way to avoid this is to use TAGGED STATUS mode, * where the chip includes a unique tag in each status block * update, and the host, when re-enabling interrupts, passes * the last tag it saw back to the chip; then the chip can * see whether the host is truly up to date, and regenerate * its interrupt if not. */ mhcr = MHCR_ENABLE_INDIRECT_ACCESS | MHCR_ENABLE_TAGGED_STATUS_MODE | MHCR_MASK_INTERRUPT_MODE | MHCR_CLEAR_INTERRUPT_INTA; if (bgep->intr_type == DDI_INTR_TYPE_FIXED) mhcr |= MHCR_MASK_PCI_INT_OUTPUT; #ifdef _BIG_ENDIAN mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP; #endif /* _BIG_ENDIAN */ pci_config_put32(handle, PCI_CONF_BGE_MHCR, mhcr); #ifdef BGE_IPMI_ASF bgep->asf_wordswapped = B_FALSE; #endif /* * Step 1 (also step 7): Enable PCI Memory Space accesses * Disable Memory Write/Invalidate * Enable or disable Bus Mastering * * Note that all other bits are taken from the original value saved * the first time through here, rather than from the current register * value, 'cos that will have been cleared by a soft RESET since. * In this way we preserve the OBP/nexus-parent's preferred settings * of the parity-error and system-error enable bits across multiple * chip RESETs. */ command = bgep->chipid.command | PCI_COMM_MAE; command &= ~(PCI_COMM_ME|PCI_COMM_MEMWR_INVAL); if (enable_dma) command |= PCI_COMM_ME; /* * on BCM5714 revision A0, false parity error gets generated * due to a logic bug. Provide a workaround by disabling parity * error. */ if (((cidp->device == DEVICE_ID_5714C) || (cidp->device == DEVICE_ID_5714S)) && (cidp->revision == REVISION_ID_5714_A0)) { command &= ~PCI_COMM_PARITY_DETECT; } pci_config_put16(handle, PCI_CONF_COMM, command); /* * On some PCI-E device, there were instances when * the device was still link training. */ if (bgep->chipid.pci_type == BGE_PCI_E) { i = 0; value16 = pci_config_get16(handle, PCI_CONF_COMM); while ((value16 != command) && (i < 100)) { drv_usecwait(200); value16 = pci_config_get16(handle, PCI_CONF_COMM); ++i; } } /* * Clear any remaining error status bits */ pci_config_put16(handle, PCI_CONF_STAT, ~0); /* * Do following if and only if the device is NOT BCM5714C OR * BCM5715C */ if (!((cidp->device == DEVICE_ID_5714C) || (cidp->device == DEVICE_ID_5715C))) { /* * Make sure these indirect-access registers are sane * rather than random after power-up or reset */ pci_config_put32(handle, PCI_CONF_BGE_RIAAR, 0); pci_config_put32(handle, PCI_CONF_BGE_MWBAR, 0); } /* * Step 8: Disable PCI-X/PCI-E Relaxed Ordering */ bge_cfg_clr16(bgep, PCIX_CONF_COMM, PCIX_COMM_RELAXED); if (cidp->pci_type == BGE_PCI_E) bge_cfg_clr16(bgep, PCI_CONF_DEV_CTRL, DEV_CTRL_NO_SNOOP | DEV_CTRL_RELAXED); } #ifdef __amd64 /* * Distinguish CPU types * * These use to distinguish AMD64 or Intel EM64T of CPU running mode. * If CPU runs on Intel EM64T mode,the 64bit operation cannot works fine * for PCI-Express based network interface card. This is the work-around * for those nics. */ static boolean_t bge_get_em64t_type(void); #pragma inline(bge_get_em64t_type) static boolean_t bge_get_em64t_type(void) { return (x86_vendor == X86_VENDOR_Intel); } #endif /* * Operating register get/set access routines */ uint32_t bge_reg_get32(bge_t *bgep, bge_regno_t regno); #pragma inline(bge_reg_get32) uint32_t bge_reg_get32(bge_t *bgep, bge_regno_t regno) { BGE_TRACE(("bge_reg_get32($%p, 0x%lx)", (void *)bgep, regno)); return (ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno))); } void bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data); #pragma inline(bge_reg_put32) void bge_reg_put32(bge_t *bgep, bge_regno_t regno, uint32_t data) { BGE_TRACE(("bge_reg_put32($%p, 0x%lx, 0x%x)", (void *)bgep, regno, data)); ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), data); BGE_PCICHK(bgep); } void bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits); #pragma inline(bge_reg_set32) void bge_reg_set32(bge_t *bgep, bge_regno_t regno, uint32_t bits) { uint32_t regval; BGE_TRACE(("bge_reg_set32($%p, 0x%lx, 0x%x)", (void *)bgep, regno, bits)); regval = bge_reg_get32(bgep, regno); regval |= bits; bge_reg_put32(bgep, regno, regval); } void bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits); #pragma inline(bge_reg_clr32) void bge_reg_clr32(bge_t *bgep, bge_regno_t regno, uint32_t bits) { uint32_t regval; BGE_TRACE(("bge_reg_clr32($%p, 0x%lx, 0x%x)", (void *)bgep, regno, bits)); regval = bge_reg_get32(bgep, regno); regval &= ~bits; bge_reg_put32(bgep, regno, regval); } static uint64_t bge_reg_get64(bge_t *bgep, bge_regno_t regno); #pragma inline(bge_reg_get64) static uint64_t bge_reg_get64(bge_t *bgep, bge_regno_t regno) { uint64_t regval; #ifdef __amd64 if (bge_get_em64t_type()) { regval = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno + 4)); regval <<= 32; regval |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, regno)); } else { regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno)); } #else regval = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, regno)); #endif #ifdef _LITTLE_ENDIAN regval = (regval >> 32) | (regval << 32); #endif /* _LITTLE_ENDIAN */ BGE_TRACE(("bge_reg_get64($%p, 0x%lx) = 0x%016llx", (void *)bgep, regno, regval)); return (regval); } static void bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data); #pragma inline(bge_reg_put64) static void bge_reg_put64(bge_t *bgep, bge_regno_t regno, uint64_t data) { BGE_TRACE(("bge_reg_put64($%p, 0x%lx, 0x%016llx)", (void *)bgep, regno, data)); #ifdef _LITTLE_ENDIAN data = ((data >> 32) | (data << 32)); #endif /* _LITTLE_ENDIAN */ #ifdef __amd64 if (bge_get_em64t_type()) { ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), (uint32_t)data); BGE_PCICHK(bgep); ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno + 4), (uint32_t)(data >> 32)); } else { ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data); } #else ddi_put64(bgep->io_handle, PIO_ADDR(bgep, regno), data); #endif BGE_PCICHK(bgep); } /* * The DDI doesn't provide get/put functions for 128 bit data * so we put RCBs out as two 64-bit chunks instead. */ static void bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp); #pragma inline(bge_reg_putrcb) static void bge_reg_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp) { uint64_t *p; BGE_TRACE(("bge_reg_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)", (void *)bgep, addr, rcbp->host_ring_addr, rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr)); ASSERT((addr % sizeof (*rcbp)) == 0); p = (void *)rcbp; bge_reg_put64(bgep, addr, *p++); bge_reg_put64(bgep, addr+8, *p); } void bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data); #pragma inline(bge_mbx_put) void bge_mbx_put(bge_t *bgep, bge_regno_t regno, uint64_t data) { BGE_TRACE(("bge_mbx_put($%p, 0x%lx, 0x%016llx)", (void *)bgep, regno, data)); /* * Mailbox registers are nominally 64 bits on the 5701, but * the MSW isn't used. On the 5703, they're only 32 bits * anyway. So here we just write the lower(!) 32 bits - * remembering that the chip is big-endian, even though the * PCI bus is little-endian ... */ #ifdef _BIG_ENDIAN ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno+4), (uint32_t)data); #else ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), (uint32_t)data); #endif /* _BIG_ENDIAN */ BGE_PCICHK(bgep); } #if BGE_DEBUGGING void bge_led_mark(bge_t *bgep); #pragma no_inline(bge_led_mark) void bge_led_mark(bge_t *bgep) { uint32_t led_ctrl = LED_CONTROL_OVERRIDE_LINK | LED_CONTROL_1000MBPS_LED | LED_CONTROL_100MBPS_LED | LED_CONTROL_10MBPS_LED; /* * Blink all three LINK LEDs on simultaneously, then all off, * then restore to automatic hardware control. This is used * in laboratory testing to trigger a logic analyser or scope. */ bge_reg_set32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl); led_ctrl ^= LED_CONTROL_OVERRIDE_LINK; bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl); led_ctrl = LED_CONTROL_OVERRIDE_LINK; bge_reg_clr32(bgep, ETHERNET_MAC_LED_CONTROL_REG, led_ctrl); } #endif /* BGE_DEBUGGING */ /* * NIC on-chip memory access routines * * Only 32K of NIC memory is visible at a time, controlled by the * Memory Window Base Address Register (in PCI config space). Once * this is set, the 32K region of NIC-local memory that it refers * to can be directly addressed in the upper 32K of the 64K of PCI * memory space used for the device. */ static void bge_nic_setwin(bge_t *bgep, bge_regno_t base); #pragma inline(bge_nic_setwin) static void bge_nic_setwin(bge_t *bgep, bge_regno_t base) { chip_id_t *cidp; BGE_TRACE(("bge_nic_setwin($%p, 0x%lx)", (void *)bgep, base)); ASSERT((base & MWBAR_GRANULE_MASK) == 0); /* * Don't do repeated zero data writes, * if the device is BCM5714C/15C. */ cidp = &bgep->chipid; if ((cidp->device == DEVICE_ID_5714C) || (cidp->device == DEVICE_ID_5715C)) { if (bgep->lastWriteZeroData && (base == (bge_regno_t)0)) return; /* Adjust lastWriteZeroData */ bgep->lastWriteZeroData = ((base == (bge_regno_t)0) ? B_TRUE : B_FALSE); } pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, base); } static uint32_t bge_nic_get32(bge_t *bgep, bge_regno_t addr); #pragma inline(bge_nic_get32) static uint32_t bge_nic_get32(bge_t *bgep, bge_regno_t addr) { uint32_t data; #ifdef BGE_IPMI_ASF if (bgep->asf_enabled && !bgep->asf_wordswapped) { /* workaround for word swap error */ if (addr & 4) addr = addr - 4; else addr = addr + 4; } #endif bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK); addr &= MWBAR_GRANULE_MASK; addr += NIC_MEM_WINDOW_OFFSET; data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr)); BGE_TRACE(("bge_nic_get32($%p, 0x%lx) = 0x%08x", (void *)bgep, addr, data)); return (data); } void bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data); #pragma inline(bge_nic_put32) void bge_nic_put32(bge_t *bgep, bge_regno_t addr, uint32_t data) { BGE_TRACE(("bge_nic_put32($%p, 0x%lx, 0x%08x)", (void *)bgep, addr, data)); #ifdef BGE_IPMI_ASF if (bgep->asf_enabled && !bgep->asf_wordswapped) { /* workaround for word swap error */ if (addr & 4) addr = addr - 4; else addr = addr + 4; } #endif bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK); addr &= MWBAR_GRANULE_MASK; addr += NIC_MEM_WINDOW_OFFSET; ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr), data); BGE_PCICHK(bgep); } static uint64_t bge_nic_get64(bge_t *bgep, bge_regno_t addr); #pragma inline(bge_nic_get64) static uint64_t bge_nic_get64(bge_t *bgep, bge_regno_t addr) { uint64_t data; bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK); addr &= MWBAR_GRANULE_MASK; addr += NIC_MEM_WINDOW_OFFSET; #ifdef __amd64 if (bge_get_em64t_type()) { data = ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr)); data <<= 32; data |= ddi_get32(bgep->io_handle, PIO_ADDR(bgep, addr + 4)); } else { data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr)); } #else data = ddi_get64(bgep->io_handle, PIO_ADDR(bgep, addr)); #endif BGE_TRACE(("bge_nic_get64($%p, 0x%lx) = 0x%016llx", (void *)bgep, addr, data)); return (data); } static void bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data); #pragma inline(bge_nic_put64) static void bge_nic_put64(bge_t *bgep, bge_regno_t addr, uint64_t data) { BGE_TRACE(("bge_nic_put64($%p, 0x%lx, 0x%016llx)", (void *)bgep, addr, data)); bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK); addr &= MWBAR_GRANULE_MASK; addr += NIC_MEM_WINDOW_OFFSET; #ifdef __amd64 if (bge_get_em64t_type()) { ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr), (uint32_t)data); BGE_PCICHK(bgep); ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4), (uint32_t)(data >> 32)); } else { ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data); } #else ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), data); #endif BGE_PCICHK(bgep); } /* * The DDI doesn't provide get/put functions for 128 bit data * so we put RCBs out as two 64-bit chunks instead. */ static void bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp); #pragma inline(bge_nic_putrcb) static void bge_nic_putrcb(bge_t *bgep, bge_regno_t addr, bge_rcb_t *rcbp) { uint64_t *p; BGE_TRACE(("bge_nic_putrcb($%p, 0x%lx, 0x%016llx:%04x:%04x:%08x)", (void *)bgep, addr, rcbp->host_ring_addr, rcbp->max_len, rcbp->flags, rcbp->nic_ring_addr)); ASSERT((addr % sizeof (*rcbp)) == 0); bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK); addr &= MWBAR_GRANULE_MASK; addr += NIC_MEM_WINDOW_OFFSET; p = (void *)rcbp; #ifdef __amd64 if (bge_get_em64t_type()) { ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr), (uint32_t)(*p)); ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 4), (uint32_t)(*p >> 32)); ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 8), (uint32_t)(*(p + 1))); ddi_put32(bgep->io_handle, PIO_ADDR(bgep, addr + 12), (uint32_t)(*p >> 32)); } else { ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++); ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr+8), *p); } #else ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr), *p++); ddi_put64(bgep->io_handle, PIO_ADDR(bgep, addr + 8), *p); #endif BGE_PCICHK(bgep); } static void bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes); #pragma inline(bge_nic_zero) static void bge_nic_zero(bge_t *bgep, bge_regno_t addr, uint32_t nbytes) { BGE_TRACE(("bge_nic_zero($%p, 0x%lx, 0x%x)", (void *)bgep, addr, nbytes)); ASSERT((addr & ~MWBAR_GRANULE_MASK) == ((addr+nbytes) & ~MWBAR_GRANULE_MASK)); bge_nic_setwin(bgep, addr & ~MWBAR_GRANULE_MASK); addr &= MWBAR_GRANULE_MASK; addr += NIC_MEM_WINDOW_OFFSET; (void) ddi_device_zero(bgep->io_handle, PIO_ADDR(bgep, addr), nbytes, 1, DDI_DATA_SZ08_ACC); BGE_PCICHK(bgep); } /* * MII (PHY) register get/set access routines * * These use the chip's MII auto-access method, controlled by the * MII Communication register at 0x044c, so the CPU doesn't have * to fiddle with the individual bits. */ #undef BGE_DBG #define BGE_DBG BGE_DBG_MII /* debug flag for this code */ static uint16_t bge_mii_access(bge_t *bgep, bge_regno_t regno, uint16_t data, uint32_t cmd); #pragma no_inline(bge_mii_access) static uint16_t bge_mii_access(bge_t *bgep, bge_regno_t regno, uint16_t data, uint32_t cmd) { uint32_t timeout; uint32_t regval1; uint32_t regval2; BGE_TRACE(("bge_mii_access($%p, 0x%lx, 0x%x, 0x%x)", (void *)bgep, regno, data, cmd)); ASSERT(mutex_owned(bgep->genlock)); /* * Assemble the command ... */ cmd |= data << MI_COMMS_DATA_SHIFT; cmd |= regno << MI_COMMS_REGISTER_SHIFT; cmd |= bgep->phy_mii_addr << MI_COMMS_ADDRESS_SHIFT; cmd |= MI_COMMS_START; /* * Wait for any command already in progress ... * * Note: this *shouldn't* ever find that there is a command * in progress, because we already hold the mutex. * Nonetheless, we have sometimes seen the MI_COMMS_START * bit set here -- it seems that the chip can initiate MII * accesses internally, even with polling OFF. */ regval1 = regval2 = bge_reg_get32(bgep, MI_COMMS_REG); for (timeout = 100; ; ) { if ((regval2 & MI_COMMS_START) == 0) { bge_reg_put32(bgep, MI_COMMS_REG, cmd); break; } if (--timeout == 0) break; drv_usecwait(10); regval2 = bge_reg_get32(bgep, MI_COMMS_REG); } if (timeout == 0) return ((uint16_t)~0u); if (timeout != 100) BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- " "MI_COMMS_START set for %d us; 0x%x->0x%x", cmd, 10*(100-timeout), regval1, regval2)); regval1 = bge_reg_get32(bgep, MI_COMMS_REG); for (timeout = 1000; ; ) { if ((regval1 & MI_COMMS_START) == 0) break; if (--timeout == 0) break; drv_usecwait(10); regval1 = bge_reg_get32(bgep, MI_COMMS_REG); } /* * Drop out early if the READ FAILED bit is set -- this chip * could be a 5703/4S, with a SerDes instead of a PHY! */ if (regval2 & MI_COMMS_READ_FAILED) return ((uint16_t)~0u); if (timeout == 0) return ((uint16_t)~0u); /* * The PRM says to wait 5us after seeing the START bit clear * and then re-read the register to get the final value of the * data field, in order to avoid a race condition where the * START bit is clear but the data field isn't yet valid. * * Note: we don't actually seem to be encounter this race; * except when the START bit is seen set again (see below), * the data field doesn't change during this 5us interval. */ drv_usecwait(5); regval2 = bge_reg_get32(bgep, MI_COMMS_REG); /* * Unfortunately, when following the PRMs instructions above, * we have occasionally seen the START bit set again(!) in the * value read after the 5us delay. This seems to be due to the * chip autonomously starting another MII access internally. * In such cases, the command/data/etc fields relate to the * internal command, rather than the one that we thought had * just finished. So in this case, we fall back to returning * the data from the original read that showed START clear. */ if (regval2 & MI_COMMS_START) { BGE_REPORT((bgep, "bge_mii_access: cmd 0x%x -- " "MI_COMMS_START set after transaction; 0x%x->0x%x", cmd, regval1, regval2)); regval2 = regval1; } if (regval2 & MI_COMMS_START) return ((uint16_t)~0u); if (regval2 & MI_COMMS_READ_FAILED) return ((uint16_t)~0u); return ((regval2 & MI_COMMS_DATA_MASK) >> MI_COMMS_DATA_SHIFT); } uint16_t bge_mii_get16(bge_t *bgep, bge_regno_t regno); #pragma no_inline(bge_mii_get16) uint16_t bge_mii_get16(bge_t *bgep, bge_regno_t regno) { BGE_TRACE(("bge_mii_get16($%p, 0x%lx)", (void *)bgep, regno)); ASSERT(mutex_owned(bgep->genlock)); return (bge_mii_access(bgep, regno, 0, MI_COMMS_COMMAND_READ)); } void bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data); #pragma no_inline(bge_mii_put16) void bge_mii_put16(bge_t *bgep, bge_regno_t regno, uint16_t data) { BGE_TRACE(("bge_mii_put16($%p, 0x%lx, 0x%x)", (void *)bgep, regno, data)); ASSERT(mutex_owned(bgep->genlock)); (void) bge_mii_access(bgep, regno, data, MI_COMMS_COMMAND_WRITE); } #undef BGE_DBG #define BGE_DBG BGE_DBG_SEEPROM /* debug flag for this code */ #if BGE_SEE_IO32 || BGE_FLASH_IO32 /* * Basic SEEPROM get/set access routine * * This uses the chip's SEEPROM auto-access method, controlled by the * Serial EEPROM Address/Data Registers at 0x6838/683c, so the CPU * doesn't have to fiddle with the individual bits. * * The caller should hold and *also* have already acquired * the right to access the SEEPROM, via bge_nvmem_acquire() above. * * Return value: * 0 on success, * ENODATA on access timeout (maybe retryable: device may just be busy) * EPROTO on other h/w or s/w errors. * * <*dp> is an input to a SEEPROM_ACCESS_WRITE operation, or an output * from a (successful) SEEPROM_ACCESS_READ. */ static int bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp); #pragma no_inline(bge_seeprom_access) static int bge_seeprom_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp) { uint32_t tries; uint32_t regval; ASSERT(mutex_owned(bgep->genlock)); /* * On the newer chips that support both SEEPROM & Flash, we need * to specifically enable SEEPROM access (Flash is the default). * On older chips, we don't; SEEPROM is the only NVtype supported, * and the NVM control registers don't exist ... */ switch (bgep->chipid.nvtype) { case BGE_NVTYPE_NONE: case BGE_NVTYPE_UNKNOWN: _NOTE(NOTREACHED) case BGE_NVTYPE_SEEPROM: break; case BGE_NVTYPE_LEGACY_SEEPROM: case BGE_NVTYPE_UNBUFFERED_FLASH: case BGE_NVTYPE_BUFFERED_FLASH: default: bge_reg_set32(bgep, NVM_CONFIG1_REG, NVM_CFG1_LEGACY_SEEPROM_MODE); break; } /* * Check there's no command in progress. * * Note: this *shouldn't* ever find that there is a command * in progress, because we already hold the mutex. * Also, to ensure we don't have a conflict with the chip's * internal firmware or a process accessing the same (shared) * SEEPROM through the other port of a 5704, we've already * been through the "software arbitration" protocol. * So this is just a final consistency check: we shouldn't * see EITHER the START bit (command started but not complete) * OR the COMPLETE bit (command completed but not cleared). */ regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG); if (regval & SEEPROM_ACCESS_START) return (EPROTO); if (regval & SEEPROM_ACCESS_COMPLETE) return (EPROTO); /* * Assemble the command ... */ cmd |= addr & SEEPROM_ACCESS_ADDRESS_MASK; addr >>= SEEPROM_ACCESS_ADDRESS_SIZE; addr <<= SEEPROM_ACCESS_DEVID_SHIFT; cmd |= addr & SEEPROM_ACCESS_DEVID_MASK; cmd |= SEEPROM_ACCESS_START; cmd |= SEEPROM_ACCESS_COMPLETE; cmd |= regval & SEEPROM_ACCESS_HALFCLOCK_MASK; bge_reg_put32(bgep, SERIAL_EEPROM_DATA_REG, *dp); bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, cmd); /* * By observation, a successful access takes ~20us on a 5703/4, * but apparently much longer (up to 1000us) on the obsolescent * BCM5700/BCM5701. We want to be sure we don't get any false * timeouts here; but OTOH, we don't want a bogus access to lock * out interrupts for longer than necessary. So we'll allow up * to 1000us ... */ for (tries = 0; tries < 1000; ++tries) { regval = bge_reg_get32(bgep, SERIAL_EEPROM_ADDRESS_REG); if (regval & SEEPROM_ACCESS_COMPLETE) break; drv_usecwait(1); } if (regval & SEEPROM_ACCESS_COMPLETE) { /* * All OK; read the SEEPROM data register, then write back * the value read from the address register in order to * clear the bit and leave the SEEPROM access * state machine idle, ready for the next access ... */ BGE_DEBUG(("bge_seeprom_access: complete after %d us", tries)); *dp = bge_reg_get32(bgep, SERIAL_EEPROM_DATA_REG); bge_reg_put32(bgep, SERIAL_EEPROM_ADDRESS_REG, regval); return (0); } /* * Hmm ... what happened here? * * Most likely, the user addressed a non-existent SEEPROM. Or * maybe the SEEPROM was busy internally (e.g. processing a write) * and didn't respond to being addressed. Either way, it's left * the SEEPROM access state machine wedged. So we'll reset it * before we leave, so it's ready for next time ... */ BGE_DEBUG(("bge_seeprom_access: timed out after %d us", tries)); bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT); return (ENODATA); } /* * Basic Flash get/set access routine * * These use the chip's Flash auto-access method, controlled by the * Flash Access Registers at 0x7000-701c, so the CPU doesn't have to * fiddle with the individual bits. * * The caller should hold and *also* have already acquired * the right to access the Flash, via bge_nvmem_acquire() above. * * Return value: * 0 on success, * ENODATA on access timeout (maybe retryable: device may just be busy) * ENODEV if the NVmem device is missing or otherwise unusable * * <*dp> is an input to a NVM_FLASH_CMD_WR operation, or an output * from a (successful) NVM_FLASH_CMD_RD. */ static int bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp); #pragma no_inline(bge_flash_access) static int bge_flash_access(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp) { uint32_t tries; uint32_t regval; ASSERT(mutex_owned(bgep->genlock)); /* * On the newer chips that support both SEEPROM & Flash, we need * to specifically disable SEEPROM access while accessing Flash. * The older chips don't support Flash, and the NVM registers don't * exist, so we shouldn't be here at all! */ switch (bgep->chipid.nvtype) { case BGE_NVTYPE_NONE: case BGE_NVTYPE_UNKNOWN: _NOTE(NOTREACHED) case BGE_NVTYPE_SEEPROM: return (ENODEV); case BGE_NVTYPE_LEGACY_SEEPROM: case BGE_NVTYPE_UNBUFFERED_FLASH: case BGE_NVTYPE_BUFFERED_FLASH: default: bge_reg_clr32(bgep, NVM_CONFIG1_REG, NVM_CFG1_LEGACY_SEEPROM_MODE); break; } /* * Assemble the command ... */ addr &= NVM_FLASH_ADDR_MASK; cmd |= NVM_FLASH_CMD_DOIT; cmd |= NVM_FLASH_CMD_FIRST; cmd |= NVM_FLASH_CMD_LAST; cmd |= NVM_FLASH_CMD_DONE; bge_reg_put32(bgep, NVM_FLASH_WRITE_REG, *dp); bge_reg_put32(bgep, NVM_FLASH_ADDR_REG, addr); bge_reg_put32(bgep, NVM_FLASH_CMD_REG, cmd); /* * Allow up to 1000ms ... */ for (tries = 0; tries < 1000; ++tries) { regval = bge_reg_get32(bgep, NVM_FLASH_CMD_REG); if (regval & NVM_FLASH_CMD_DONE) break; drv_usecwait(1); } if (regval & NVM_FLASH_CMD_DONE) { /* * All OK; read the data from the Flash read register */ BGE_DEBUG(("bge_flash_access: complete after %d us", tries)); *dp = bge_reg_get32(bgep, NVM_FLASH_READ_REG); return (0); } /* * Hmm ... what happened here? * * Most likely, the user addressed a non-existent Flash. Or * maybe the Flash was busy internally (e.g. processing a write) * and didn't respond to being addressed. Either way, there's * nothing we can here ... */ BGE_DEBUG(("bge_flash_access: timed out after %d us", tries)); return (ENODATA); } /* * The next two functions regulate access to the NVram (if fitted). * * On a 5704 (dual core) chip, there's only one SEEPROM and one Flash * (SPI) interface, but they can be accessed through either port. These * are managed by different instance of this driver and have no software * state in common. * * In addition (and even on a single core chip) the chip's internal * firmware can access the SEEPROM/Flash, most notably after a RESET * when it may download code to run internally. * * So we need to arbitrate between these various software agents. For * this purpose, the chip provides the Software Arbitration Register, * which implements hardware(!) arbitration. * * This functionality didn't exist on older (5700/5701) chips, so there's * nothing we can do by way of arbitration on those; also, if there's no * SEEPROM/Flash fitted (or we couldn't determine what type), there's also * nothing to do. * * The internal firmware appears to use Request 0, which is the highest * priority. So we'd like to use Request 2, leaving one higher and one * lower for any future developments ... but apparently this doesn't * always work. So for now, the code uses Request 1 ;-( */ #define NVM_READ_REQ NVM_READ_REQ1 #define NVM_RESET_REQ NVM_RESET_REQ1 #define NVM_SET_REQ NVM_SET_REQ1 static void bge_nvmem_relinquish(bge_t *bgep); #pragma no_inline(bge_nvmem_relinquish) static void bge_nvmem_relinquish(bge_t *bgep) { ASSERT(mutex_owned(bgep->genlock)); switch (bgep->chipid.nvtype) { case BGE_NVTYPE_NONE: case BGE_NVTYPE_UNKNOWN: _NOTE(NOTREACHED) return; case BGE_NVTYPE_SEEPROM: /* * No arbitration performed, no release needed */ return; case BGE_NVTYPE_LEGACY_SEEPROM: case BGE_NVTYPE_UNBUFFERED_FLASH: case BGE_NVTYPE_BUFFERED_FLASH: default: break; } /* * Our own request should be present (whether or not granted) ... */ (void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG); /* * ... this will make it go away. */ bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_RESET_REQ); (void) bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG); } /* * Arbitrate for access to the NVmem, if necessary * * Return value: * 0 on success * EAGAIN if the device is in use (retryable) * ENODEV if the NVmem device is missing or otherwise unusable */ static int bge_nvmem_acquire(bge_t *bgep); #pragma no_inline(bge_nvmem_acquire) static int bge_nvmem_acquire(bge_t *bgep) { uint32_t regval; uint32_t tries; ASSERT(mutex_owned(bgep->genlock)); switch (bgep->chipid.nvtype) { case BGE_NVTYPE_NONE: case BGE_NVTYPE_UNKNOWN: /* * Access denied: no (recognisable) device fitted */ return (ENODEV); case BGE_NVTYPE_SEEPROM: /* * Access granted: no arbitration needed (or possible) */ return (0); case BGE_NVTYPE_LEGACY_SEEPROM: case BGE_NVTYPE_UNBUFFERED_FLASH: case BGE_NVTYPE_BUFFERED_FLASH: default: /* * Access conditional: conduct arbitration protocol */ break; } /* * We're holding the per-port mutex , so no-one other * thread can be attempting to access the NVmem through *this* * port. But it could be in use by the *other* port (of a 5704), * or by the chip's internal firmware, so we have to go through * the full (hardware) arbitration protocol ... * * Note that *because* we're holding , the interrupt handler * won't be able to progress. So we're only willing to spin for a * fairly short time. Specifically: * * We *must* wait long enough for the hardware to resolve all * requests and determine the winner. Fortunately, this is * "almost instantaneous", even as observed by GHz CPUs. * * A successful access by another Solaris thread (via either * port) typically takes ~20us. So waiting a bit longer than * that will give a good chance of success, if the other user * *is* another thread on the other port. * * However, the internal firmware can hold on to the NVmem * for *much* longer: at least 10 milliseconds just after a * RESET, and maybe even longer if the NVmem actually contains * code to download and run on the internal CPUs. * * So, we'll allow 50us; if that's not enough then it's up to the * caller to retry later (hence the choice of return code EAGAIN). */ regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG); bge_reg_put32(bgep, NVM_SW_ARBITRATION_REG, NVM_SET_REQ); for (tries = 0; tries < 50; ++tries) { regval = bge_reg_get32(bgep, NVM_SW_ARBITRATION_REG); if (regval & NVM_WON_REQ1) break; drv_usecwait(1); } if (regval & NVM_WON_REQ1) { BGE_DEBUG(("bge_nvmem_acquire: won after %d us", tries)); return (0); } /* * Somebody else must be accessing the NVmem, so abandon our * attempt take control of it. The caller can try again later ... */ BGE_DEBUG(("bge_nvmem_acquire: lost after %d us", tries)); bge_nvmem_relinquish(bgep); return (EAGAIN); } /* * This code assumes that the GPIO1 bit has been wired up to the NVmem * write protect line in such a way that the NVmem is protected when * GPIO1 is an input, or is an output but driven high. Thus, to make the * NVmem writable we have to change GPIO1 to an output AND drive it low. * * Note: there's only one set of GPIO pins on a 5704, even though they * can be accessed through either port. So the chip has to resolve what * happens if the two ports program a single pin differently ... the rule * it uses is that if the ports disagree about the *direction* of a pin, * "output" wins over "input", but if they disagree about its *value* as * an output, then the pin is TRISTATED instead! In such a case, no-one * wins, and the external signal does whatever the external circuitry * defines as the default -- which we've assumed is the PROTECTED state. * So, we always change GPIO1 back to being an *input* whenever we're not * specifically using it to unprotect the NVmem. This allows either port * to update the NVmem, although obviously only one at a time! * * The caller should hold and *also* have already acquired the * right to access the NVmem, via bge_nvmem_acquire() above. */ static void bge_nvmem_protect(bge_t *bgep, boolean_t protect); #pragma inline(bge_nvmem_protect) static void bge_nvmem_protect(bge_t *bgep, boolean_t protect) { uint32_t regval; ASSERT(mutex_owned(bgep->genlock)); regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG); if (protect) { regval |= MLCR_MISC_PINS_OUTPUT_1; regval &= ~MLCR_MISC_PINS_OUTPUT_ENABLE_1; } else { regval &= ~MLCR_MISC_PINS_OUTPUT_1; regval |= MLCR_MISC_PINS_OUTPUT_ENABLE_1; } bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG, regval); } /* * Now put it all together ... * * Try to acquire control of the NVmem; if successful, then: * unprotect it (if we want to write to it) * perform the requested access * reprotect it (after a write) * relinquish control * * Return value: * 0 on success, * EAGAIN if the device is in use (retryable) * ENODATA on access timeout (maybe retryable: device may just be busy) * ENODEV if the NVmem device is missing or otherwise unusable * EPROTO on other h/w or s/w errors. */ static int bge_nvmem_rw32(bge_t *bgep, uint32_t cmd, bge_regno_t addr, uint32_t *dp) { int err; if ((err = bge_nvmem_acquire(bgep)) == 0) { switch (cmd) { case BGE_SEE_READ: err = bge_seeprom_access(bgep, SEEPROM_ACCESS_READ, addr, dp); break; case BGE_SEE_WRITE: bge_nvmem_protect(bgep, B_FALSE); err = bge_seeprom_access(bgep, SEEPROM_ACCESS_WRITE, addr, dp); bge_nvmem_protect(bgep, B_TRUE); break; case BGE_FLASH_READ: if (DEVICE_5721_SERIES_CHIPSETS(bgep) || DEVICE_5714_SERIES_CHIPSETS(bgep)) { bge_reg_set32(bgep, NVM_ACCESS_REG, NVM_ACCESS_ENABLE); } err = bge_flash_access(bgep, NVM_FLASH_CMD_RD, addr, dp); if (DEVICE_5721_SERIES_CHIPSETS(bgep) || DEVICE_5714_SERIES_CHIPSETS(bgep)) { bge_reg_clr32(bgep, NVM_ACCESS_REG, NVM_ACCESS_ENABLE); } break; case BGE_FLASH_WRITE: if (DEVICE_5721_SERIES_CHIPSETS(bgep) || DEVICE_5714_SERIES_CHIPSETS(bgep)) { bge_reg_set32(bgep, NVM_ACCESS_REG, NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE); } bge_nvmem_protect(bgep, B_FALSE); err = bge_flash_access(bgep, NVM_FLASH_CMD_WR, addr, dp); bge_nvmem_protect(bgep, B_TRUE); if (DEVICE_5721_SERIES_CHIPSETS(bgep) || DEVICE_5714_SERIES_CHIPSETS(bgep)) { bge_reg_clr32(bgep, NVM_ACCESS_REG, NVM_WRITE_ENABLE|NVM_ACCESS_ENABLE); } break; default: _NOTE(NOTREACHED) break; } bge_nvmem_relinquish(bgep); } BGE_DEBUG(("bge_nvmem_rw32: err %d", err)); return (err); } /* * Attempt to get a MAC address from the SEEPROM or Flash, if any */ static uint64_t bge_get_nvmac(bge_t *bgep); #pragma no_inline(bge_get_nvmac) static uint64_t bge_get_nvmac(bge_t *bgep) { uint32_t mac_high; uint32_t mac_low; uint32_t addr; uint32_t cmd; uint64_t mac; BGE_TRACE(("bge_get_nvmac($%p)", (void *)bgep)); switch (bgep->chipid.nvtype) { case BGE_NVTYPE_NONE: case BGE_NVTYPE_UNKNOWN: default: return (0ULL); case BGE_NVTYPE_SEEPROM: case BGE_NVTYPE_LEGACY_SEEPROM: cmd = BGE_SEE_READ; break; case BGE_NVTYPE_UNBUFFERED_FLASH: case BGE_NVTYPE_BUFFERED_FLASH: cmd = BGE_FLASH_READ; break; } addr = NVMEM_DATA_MAC_ADDRESS; if (bge_nvmem_rw32(bgep, cmd, addr, &mac_high)) return (0ULL); addr += 4; if (bge_nvmem_rw32(bgep, cmd, addr, &mac_low)) return (0ULL); /* * The Broadcom chip is natively BIG-endian, so that's how the * MAC address is represented in NVmem. We may need to swap it * around on a little-endian host ... */ #ifdef _BIG_ENDIAN mac = mac_high; mac = mac << 32; mac |= mac_low; #else mac = BGE_BSWAP_32(mac_high); mac = mac << 32; mac |= BGE_BSWAP_32(mac_low); #endif /* _BIG_ENDIAN */ return (mac); } #else /* BGE_SEE_IO32 || BGE_FLASH_IO32 */ /* * Dummy version for when we're not supporting NVmem access */ static uint64_t bge_get_nvmac(bge_t *bgep); #pragma inline(bge_get_nvmac) static uint64_t bge_get_nvmac(bge_t *bgep) { _NOTE(ARGUNUSED(bgep)) return (0ULL); } #endif /* BGE_SEE_IO32 || BGE_FLASH_IO32 */ /* * Determine the type of NVmem that is (or may be) attached to this chip, */ static enum bge_nvmem_type bge_nvmem_id(bge_t *bgep); #pragma no_inline(bge_nvmem_id) static enum bge_nvmem_type bge_nvmem_id(bge_t *bgep) { enum bge_nvmem_type nvtype; uint32_t config1; BGE_TRACE(("bge_nvmem_id($%p)", (void *)bgep)); switch (bgep->chipid.device) { default: /* * We shouldn't get here; it means we don't recognise * the chip, which means we don't know how to determine * what sort of NVmem (if any) it has. So we'll say * NONE, to disable the NVmem access code ... */ nvtype = BGE_NVTYPE_NONE; break; case DEVICE_ID_5700: case DEVICE_ID_5700x: case DEVICE_ID_5701: /* * These devices support *only* SEEPROMs */ nvtype = BGE_NVTYPE_SEEPROM; break; case DEVICE_ID_5702: case DEVICE_ID_5702fe: case DEVICE_ID_5703C: case DEVICE_ID_5703S: case DEVICE_ID_5704C: case DEVICE_ID_5704S: case DEVICE_ID_5704: case DEVICE_ID_5705M: case DEVICE_ID_5705C: case DEVICE_ID_5705_2: case DEVICE_ID_5706: case DEVICE_ID_5782: case DEVICE_ID_5788: case DEVICE_ID_5789: case DEVICE_ID_5751: case DEVICE_ID_5751M: case DEVICE_ID_5752: case DEVICE_ID_5752M: case DEVICE_ID_5754: case DEVICE_ID_5721: case DEVICE_ID_5714C: case DEVICE_ID_5714S: case DEVICE_ID_5715C: case DEVICE_ID_5715S: config1 = bge_reg_get32(bgep, NVM_CONFIG1_REG); if (config1 & NVM_CFG1_FLASH_MODE) if (config1 & NVM_CFG1_BUFFERED_MODE) nvtype = BGE_NVTYPE_BUFFERED_FLASH; else nvtype = BGE_NVTYPE_UNBUFFERED_FLASH; else nvtype = BGE_NVTYPE_LEGACY_SEEPROM; break; } return (nvtype); } #undef BGE_DBG #define BGE_DBG BGE_DBG_CHIP /* debug flag for this code */ static void bge_init_recv_rule(bge_t *bgep) { bge_recv_rule_t *rulep; uint32_t i; /* * receive rule: direct all TCP traffic to ring RULE_MATCH_TO_RING * 1. to direct UDP traffic, set: * rulep->control = RULE_PROTO_CONTROL; * rulep->mask_value = RULE_UDP_MASK_VALUE; * 2. to direct ICMP traffic, set: * rulep->control = RULE_PROTO_CONTROL; * rulep->mask_value = RULE_ICMP_MASK_VALUE; * 3. to direct traffic by source ip, set: * rulep->control = RULE_SIP_CONTROL; * rulep->mask_value = RULE_SIP_MASK_VALUE; */ rulep = bgep->recv_rules; rulep->control = RULE_PROTO_CONTROL; rulep->mask_value = RULE_TCP_MASK_VALUE; /* * set receive rule registers */ rulep = bgep->recv_rules; for (i = 0; i < RECV_RULES_NUM_MAX; i++, rulep++) { bge_reg_put32(bgep, RECV_RULE_MASK_REG(i), rulep->mask_value); bge_reg_put32(bgep, RECV_RULE_CONTROL_REG(i), rulep->control); } } /* * Using the values captured by bge_chip_cfg_init(), and additional probes * as required, characterise the chip fully: determine the label by which * to refer to this chip, the correct settings for various registers, and * of course whether the device and/or subsystem are supported! */ int bge_chip_id_init(bge_t *bgep); #pragma no_inline(bge_chip_id_init) int bge_chip_id_init(bge_t *bgep) { char buf[MAXPATHLEN]; /* any risk of stack overflow? */ boolean_t sys_ok; boolean_t dev_ok; chip_id_t *cidp; uint32_t subid; char *devname; char *sysname; int *ids; int err; uint_t i; ASSERT(bgep->bge_chip_state == BGE_CHIP_INITIAL); sys_ok = dev_ok = B_FALSE; cidp = &bgep->chipid; /* * Check the PCI device ID to determine the generic chip type and * select parameters that depend on this. * * Note: because the SPARC platforms in general don't fit the * SEEPROM 'behind' the chip, the PCI revision ID register reads * as zero - which is why we use rather than * below ... * * Note: in general we can't distinguish between the Copper/SerDes * versions by ID alone, as some Copper devices (e.g. some but not * all 5703Cs) have the same ID as the SerDes equivalents. So we * treat them the same here, and the MII code works out the media * type later on ... */ cidp->mbuf_base = bge_mbuf_pool_base; cidp->mbuf_length = bge_mbuf_pool_len; cidp->recv_slots = BGE_RECV_SLOTS_USED; cidp->bge_dma_rwctrl = bge_dma_rwctrl; cidp->pci_type = BGE_PCI_X; cidp->statistic_type = BGE_STAT_BLK; cidp->mbuf_lo_water_rdma = bge_mbuf_lo_water_rdma; cidp->mbuf_lo_water_rmac = bge_mbuf_lo_water_rmac; cidp->mbuf_hi_water = bge_mbuf_hi_water; if (cidp->rx_rings == 0 || cidp->rx_rings > BGE_RECV_RINGS_MAX) cidp->rx_rings = BGE_RECV_RINGS_DEFAULT; if (cidp->tx_rings == 0 || cidp->tx_rings > BGE_SEND_RINGS_MAX) cidp->tx_rings = BGE_SEND_RINGS_DEFAULT; cidp->msi_enabled = B_FALSE; switch (cidp->device) { case DEVICE_ID_5700: case DEVICE_ID_5700x: cidp->chip_label = 5700; cidp->flags |= CHIP_FLAG_PARTIAL_CSUM; break; case DEVICE_ID_5701: cidp->chip_label = 5701; dev_ok = B_TRUE; cidp->flags |= CHIP_FLAG_PARTIAL_CSUM; break; case DEVICE_ID_5702: case DEVICE_ID_5702fe: cidp->chip_label = 5702; dev_ok = B_TRUE; cidp->flags |= CHIP_FLAG_PARTIAL_CSUM; cidp->pci_type = BGE_PCI; break; case DEVICE_ID_5703C: case DEVICE_ID_5703S: case DEVICE_ID_5703: /* * Revision A0 of the 5703/5793 had various errata * that we can't or don't work around, so it's not * supported, but all later versions are */ cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5793 : 5703; if (bgep->chipid.asic_rev != MHCR_CHIP_REV_5703_A0) dev_ok = B_TRUE; cidp->flags |= CHIP_FLAG_PARTIAL_CSUM; break; case DEVICE_ID_5704C: case DEVICE_ID_5704S: case DEVICE_ID_5704: /* * Revision A0 of the 5704/5794 had various errata * but we have workarounds, so it *is* supported. */ cidp->chip_label = cidp->subven == VENDOR_ID_SUN ? 5794 : 5704; cidp->mbuf_base = bge_mbuf_pool_base_5704; cidp->mbuf_length = bge_mbuf_pool_len_5704; dev_ok = B_TRUE; if (cidp->asic_rev < MHCR_CHIP_REV_5704_B0) cidp->flags |= CHIP_FLAG_PARTIAL_CSUM; break; case DEVICE_ID_5705C: case DEVICE_ID_5705M: case DEVICE_ID_5705MA3: case DEVICE_ID_5705F: case DEVICE_ID_5705_2: case DEVICE_ID_5754: if (cidp->device == DEVICE_ID_5754) { cidp->chip_label = 5754; cidp->pci_type = BGE_PCI_E; } else { cidp->chip_label = 5705; cidp->pci_type = BGE_PCI; } cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705; cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705; cidp->mbuf_hi_water = MBUF_HIWAT_5705; cidp->mbuf_base = bge_mbuf_pool_base_5705; cidp->mbuf_length = bge_mbuf_pool_len_5705; cidp->recv_slots = BGE_RECV_SLOTS_5705; cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; cidp->tx_rings = BGE_SEND_RINGS_MAX_5705; cidp->flags |= CHIP_FLAG_NO_JUMBO; cidp->flags |= CHIP_FLAG_PARTIAL_CSUM; cidp->statistic_type = BGE_STAT_REG; dev_ok = B_TRUE; break; case DEVICE_ID_5706: cidp->chip_label = 5706; cidp->flags |= CHIP_FLAG_NO_JUMBO; break; case DEVICE_ID_5782: /* * Apart from the label, we treat this as a 5705(?) */ cidp->chip_label = 5782; cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705; cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705; cidp->mbuf_hi_water = MBUF_HIWAT_5705; cidp->mbuf_base = bge_mbuf_pool_base_5705; cidp->mbuf_length = bge_mbuf_pool_len_5705; cidp->recv_slots = BGE_RECV_SLOTS_5705; cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; cidp->tx_rings = BGE_SEND_RINGS_MAX_5705; cidp->flags |= CHIP_FLAG_NO_JUMBO; cidp->flags |= CHIP_FLAG_PARTIAL_CSUM; cidp->statistic_type = BGE_STAT_REG; dev_ok = B_TRUE; break; case DEVICE_ID_5788: /* * Apart from the label, we treat this as a 5705(?) */ cidp->chip_label = 5788; cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705; cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705; cidp->mbuf_hi_water = MBUF_HIWAT_5705; cidp->mbuf_base = bge_mbuf_pool_base_5705; cidp->mbuf_length = bge_mbuf_pool_len_5705; cidp->recv_slots = BGE_RECV_SLOTS_5705; cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; cidp->tx_rings = BGE_SEND_RINGS_MAX_5705; cidp->statistic_type = BGE_STAT_REG; cidp->flags |= CHIP_FLAG_NO_JUMBO; dev_ok = B_TRUE; break; case DEVICE_ID_5714C: if (cidp->revision >= REVISION_ID_5714_A2) cidp->msi_enabled = bge_enable_msi; /* FALLTHRU */ case DEVICE_ID_5714S: cidp->chip_label = 5714; cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705; cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705; cidp->mbuf_hi_water = MBUF_HIWAT_5705; cidp->mbuf_base = bge_mbuf_pool_base_5721; cidp->mbuf_length = bge_mbuf_pool_len_5721; cidp->recv_slots = BGE_RECV_SLOTS_5721; cidp->bge_dma_rwctrl = bge_dma_rwctrl_5714; cidp->bge_mlcr_default = bge_mlcr_default_5714; cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; cidp->tx_rings = BGE_SEND_RINGS_MAX_5705; cidp->pci_type = BGE_PCI_E; cidp->statistic_type = BGE_STAT_REG; dev_ok = B_TRUE; break; case DEVICE_ID_5715C: case DEVICE_ID_5715S: cidp->chip_label = 5715; cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705; cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705; cidp->mbuf_hi_water = MBUF_HIWAT_5705; cidp->mbuf_base = bge_mbuf_pool_base_5721; cidp->mbuf_length = bge_mbuf_pool_len_5721; cidp->recv_slots = BGE_RECV_SLOTS_5721; cidp->bge_dma_rwctrl = bge_dma_rwctrl_5715; cidp->bge_mlcr_default = bge_mlcr_default_5714; cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; cidp->tx_rings = BGE_SEND_RINGS_MAX_5705; cidp->pci_type = BGE_PCI_E; cidp->statistic_type = BGE_STAT_REG; if (cidp->revision >= REVISION_ID_5715_A2) cidp->msi_enabled = bge_enable_msi; dev_ok = B_TRUE; break; case DEVICE_ID_5721: cidp->chip_label = 5721; cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705; cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705; cidp->mbuf_hi_water = MBUF_HIWAT_5705; cidp->mbuf_base = bge_mbuf_pool_base_5721; cidp->mbuf_length = bge_mbuf_pool_len_5721; cidp->recv_slots = BGE_RECV_SLOTS_5721; cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721; cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; cidp->tx_rings = BGE_SEND_RINGS_MAX_5705; cidp->pci_type = BGE_PCI_E; cidp->statistic_type = BGE_STAT_REG; cidp->flags |= CHIP_FLAG_NO_JUMBO; dev_ok = B_TRUE; break; case DEVICE_ID_5751: case DEVICE_ID_5751M: cidp->chip_label = 5751; cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705; cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705; cidp->mbuf_hi_water = MBUF_HIWAT_5705; cidp->mbuf_base = bge_mbuf_pool_base_5721; cidp->mbuf_length = bge_mbuf_pool_len_5721; cidp->recv_slots = BGE_RECV_SLOTS_5721; cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721; cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; cidp->tx_rings = BGE_SEND_RINGS_MAX_5705; cidp->pci_type = BGE_PCI_E; cidp->statistic_type = BGE_STAT_REG; cidp->flags |= CHIP_FLAG_NO_JUMBO; dev_ok = B_TRUE; break; case DEVICE_ID_5752: case DEVICE_ID_5752M: cidp->chip_label = 5752; cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5705; cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5705; cidp->mbuf_hi_water = MBUF_HIWAT_5705; cidp->mbuf_base = bge_mbuf_pool_base_5721; cidp->mbuf_length = bge_mbuf_pool_len_5721; cidp->recv_slots = BGE_RECV_SLOTS_5721; cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721; cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; cidp->tx_rings = BGE_SEND_RINGS_MAX_5705; cidp->pci_type = BGE_PCI_E; cidp->statistic_type = BGE_STAT_REG; cidp->flags |= CHIP_FLAG_NO_JUMBO; dev_ok = B_TRUE; break; case DEVICE_ID_5789: cidp->chip_label = 5789; cidp->mbuf_base = bge_mbuf_pool_base_5721; cidp->mbuf_length = bge_mbuf_pool_len_5721; cidp->recv_slots = BGE_RECV_SLOTS_5721; cidp->bge_dma_rwctrl = bge_dma_rwctrl_5721; cidp->rx_rings = BGE_RECV_RINGS_MAX_5705; cidp->tx_rings = BGE_RECV_RINGS_MAX_5705; cidp->pci_type = BGE_PCI_E; cidp->statistic_type = BGE_STAT_REG; cidp->flags |= CHIP_FLAG_PARTIAL_CSUM; cidp->flags |= CHIP_FLAG_NO_JUMBO; cidp->msi_enabled = B_TRUE; dev_ok = B_TRUE; break; } /* * Setup the default jumbo parameter. */ cidp->ethmax_size = ETHERMAX; cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_DEFAULT; cidp->std_buf_size = BGE_STD_BUFF_SIZE; /* * If jumbo is enabled and this kind of chipset supports jumbo feature, * setup below jumbo specific parameters. * * For BCM5714/5715, there is only one standard receive ring. So the * std buffer size should be set to BGE_JUMBO_BUFF_SIZE when jumbo * feature is enabled. */ if (bge_jumbo_enable && !(cidp->flags & CHIP_FLAG_NO_JUMBO) && (cidp->default_mtu > BGE_DEFAULT_MTU) && (cidp->default_mtu <= BGE_MAXIMUM_MTU)) { if (DEVICE_5714_SERIES_CHIPSETS(bgep)) { cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_5714_JUMBO; cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_5714_JUMBO; cidp->mbuf_hi_water = MBUF_HIWAT_5714_JUMBO; cidp->jumbo_slots = 0; cidp->std_buf_size = BGE_JUMBO_BUFF_SIZE; } else { cidp->mbuf_lo_water_rdma = RDMA_MBUF_LOWAT_JUMBO; cidp->mbuf_lo_water_rmac = MAC_RX_MBUF_LOWAT_JUMBO; cidp->mbuf_hi_water = MBUF_HIWAT_JUMBO; cidp->jumbo_slots = BGE_JUMBO_SLOTS_USED; } cidp->recv_jumbo_size = BGE_JUMBO_BUFF_SIZE; cidp->snd_buff_size = BGE_SEND_BUFF_SIZE_JUMBO; cidp->ethmax_size = cidp->default_mtu + sizeof (struct ether_header); } /* * Identify the NV memory type: SEEPROM or Flash? */ cidp->nvtype = bge_nvmem_id(bgep); /* * Now, we want to check whether this device is part of a * supported subsystem (e.g., on the motherboard of a Sun * branded platform). * * Rule 1: If the Subsystem Vendor ID is "Sun", then it's OK ;-) */ if (cidp->subven == VENDOR_ID_SUN) sys_ok = B_TRUE; /* * Rule 2: If it's on the list on known subsystems, then it's OK. * Note: 0x14e41647 should *not* appear in the list, but the code * doesn't enforce that. */ err = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, bgep->devinfo, DDI_PROP_DONTPASS, knownids_propname, &ids, &i); if (err == DDI_PROP_SUCCESS) { /* * Got the list; scan for a matching subsystem vendor/device */ subid = (cidp->subven << 16) | cidp->subdev; while (i--) if (ids[i] == subid) sys_ok = B_TRUE; ddi_prop_free(ids); } /* * Rule 3: If it's a Taco/ENWS motherboard device, then it's OK * * Unfortunately, early SunBlade 1500s and 2500s didn't reprogram * the Subsystem Vendor ID, so it defaults to Broadcom. Therefore, * we have to check specially for the exact device paths to the * motherboard devices on those platforms ;-( * * Note: we can't just use the "supported-subsystems" mechanism * above, because the entry would have to be 0x14e41647 -- which * would then accept *any* plugin card that *didn't* contain a * (valid) SEEPROM ;-( */ sysname = ddi_node_name(ddi_root_node()); devname = ddi_pathname(bgep->devinfo, buf); ASSERT(strlen(devname) > 0); if (strcmp(sysname, "SUNW,Sun-Blade-1500") == 0) /* Taco */ if (strcmp(devname, "/pci@1f,700000/network@2") == 0) sys_ok = B_TRUE; if (strcmp(sysname, "SUNW,Sun-Blade-2500") == 0) /* ENWS */ if (strcmp(devname, "/pci@1c,600000/network@3") == 0) sys_ok = B_TRUE; /* * Now check what we've discovered: is this truly a supported * chip on (the motherboard of) a supported platform? * * Possible problems here: * 1) it's a completely unheard-of chip (e.g. 5761) * 2) it's a recognised but unsupported chip (e.g. 5701, 5703C-A0) * 3) it's a chip we would support if it were on the motherboard * of a Sun platform, but this one isn't ;-( */ if (cidp->chip_label == 0) bge_problem(bgep, "Device 'pci%04x,%04x' not recognized (%d?)", cidp->vendor, cidp->device, cidp->device); else if (!dev_ok) bge_problem(bgep, "Device 'pci%04x,%04x' (%d) revision %d not supported", cidp->vendor, cidp->device, cidp->chip_label, cidp->revision); #if BGE_DEBUGGING else if (!sys_ok) bge_problem(bgep, "%d-based subsystem 'pci%04x,%04x' not validated", cidp->chip_label, cidp->subven, cidp->subdev); #endif else cidp->flags |= CHIP_FLAG_SUPPORTED; if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) return (EIO); return (0); } void bge_chip_msi_trig(bge_t *bgep) { uint32_t regval; regval = bgep->param_msi_cnt<<4; bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, regval); BGE_DEBUG(("bge_chip_msi_trig:data = %d", regval)); } /* * Various registers that control the chip's internal engines (state * machines) have a and bits (fortunately, in the * same place in each such register :-). * * To reset the state machine, the bit must be written with 1; * it will then read back as 1 while the reset is in progress, but * self-clear to 0 when the reset completes. * * To enable a state machine, one must set the bit, which * will continue to read back as 0 until the state machine is running. * * To disable a state machine, the bit must be cleared, but * it will continue to read back as 1 until the state machine actually * stops. * * This routine implements polling for completion of a reset, enable * or disable operation, returning B_TRUE on success (bit reached the * required state) or B_FALSE on timeout (200*100us == 20ms). */ static boolean_t bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno, uint32_t mask, uint32_t val); #pragma no_inline(bge_chip_poll_engine) static boolean_t bge_chip_poll_engine(bge_t *bgep, bge_regno_t regno, uint32_t mask, uint32_t val) { uint32_t regval; uint32_t n; BGE_TRACE(("bge_chip_poll_engine($%p, 0x%lx, 0x%x, 0x%x)", (void *)bgep, regno, mask, val)); for (n = 200; n; --n) { regval = bge_reg_get32(bgep, regno); if ((regval & mask) == val) return (B_TRUE); drv_usecwait(100); } bge_fm_ereport(bgep, DDI_FM_DEVICE_NO_RESPONSE); return (B_FALSE); } /* * Various registers that control the chip's internal engines (state * machines) have a bit (fortunately, in the same place in * each such register :-). To reset the state machine, this bit must * be written with 1; it will then read back as 1 while the reset is * in progress, but self-clear to 0 when the reset completes. * * This code sets the bit, then polls for it to read back as zero. * The return value is B_TRUE on success (reset bit cleared itself), * or B_FALSE if the state machine didn't recover :( * * NOTE: the Core reset is similar to other resets, except that we * can't poll for completion, since the Core reset disables memory * access! So we just have to assume that it will all complete in * 100us. See Broadcom document 570X-PG102-R, p102, steps 4-5. */ static boolean_t bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno); #pragma no_inline(bge_chip_reset_engine) static boolean_t bge_chip_reset_engine(bge_t *bgep, bge_regno_t regno) { uint32_t regval; uint32_t val32; regval = bge_reg_get32(bgep, regno); BGE_TRACE(("bge_chip_reset_engine($%p, 0x%lx)", (void *)bgep, regno)); BGE_DEBUG(("bge_chip_reset_engine: 0x%lx before reset = 0x%08x", regno, regval)); regval |= STATE_MACHINE_RESET_BIT; switch (regno) { case MISC_CONFIG_REG: /* * BCM5714/5721/5751 pcie chip special case. In order to avoid * resetting PCIE block and bringing PCIE link down, bit 29 * in the register needs to be set first, and then set it again * while the reset bit is written. * See:P500 of 57xx-PG102-RDS.pdf. */ if (DEVICE_5705_SERIES_CHIPSETS(bgep)|| DEVICE_5721_SERIES_CHIPSETS(bgep)|| DEVICE_5714_SERIES_CHIPSETS(bgep)) { regval |= MISC_CONFIG_GPHY_POWERDOWN_OVERRIDE; if (bgep->chipid.pci_type == BGE_PCI_E) { if (bgep->chipid.asic_rev == MHCR_CHIP_REV_5751_A0 || bgep->chipid.asic_rev == MHCR_CHIP_REV_5721_A0) { val32 = bge_reg_get32(bgep, PHY_TEST_CTRL_REG); if (val32 == (PHY_PCIE_SCRAM_MODE | PHY_PCIE_LTASS_MODE)) bge_reg_put32(bgep, PHY_TEST_CTRL_REG, PHY_PCIE_SCRAM_MODE); val32 = pci_config_get32 (bgep->cfg_handle, PCI_CONF_BGE_CLKCTL); val32 |= CLKCTL_PCIE_A0_FIX; pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_CLKCTL, val32); } bge_reg_set32(bgep, regno, MISC_CONFIG_GRC_RESET_DISABLE); regval |= MISC_CONFIG_GRC_RESET_DISABLE; } } /* * Special case - causes Core reset * * On SPARC v9 we want to ensure that we don't start * timing until the I/O access has actually reached * the chip, otherwise we might make the next access * too early. And we can't just force the write out * by following it with a read (even to config space) * because that would cause the fault we're trying * to avoid. Hence the need for membar_sync() here. */ ddi_put32(bgep->io_handle, PIO_ADDR(bgep, regno), regval); #ifdef __sparcv9 membar_sync(); #endif /* __sparcv9 */ /* * On some platforms,system need about 300us for * link setup. */ drv_usecwait(300); if (bgep->chipid.pci_type == BGE_PCI_E) { /* PCI-E device need more reset time */ drv_usecwait(120000); /* Set PCIE max payload size and clear error status. */ if ((bgep->chipid.chip_label == 5721) || (bgep->chipid.chip_label == 5751) || (bgep->chipid.chip_label == 5752) || (bgep->chipid.chip_label == 5789)) { pci_config_put16(bgep->cfg_handle, PCI_CONF_DEV_CTRL, READ_REQ_SIZE_MAX); pci_config_put16(bgep->cfg_handle, PCI_CONF_DEV_STUS, DEVICE_ERROR_STUS); } } BGE_PCICHK(bgep); return (B_TRUE); default: bge_reg_put32(bgep, regno, regval); return (bge_chip_poll_engine(bgep, regno, STATE_MACHINE_RESET_BIT, 0)); } } /* * Various registers that control the chip's internal engines (state * machines) have an bit (fortunately, in the same place in * each such register :-). To stop the state machine, this bit must * be written with 0, then polled to see when the state machine has * actually stopped. * * The return value is B_TRUE on success (enable bit cleared), or * B_FALSE if the state machine didn't stop :( */ static boolean_t bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits); #pragma no_inline(bge_chip_disable_engine) static boolean_t bge_chip_disable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits) { uint32_t regval; BGE_TRACE(("bge_chip_disable_engine($%p, 0x%lx, 0x%x)", (void *)bgep, regno, morebits)); switch (regno) { case FTQ_RESET_REG: /* * Not quite like the others; it doesn't * have an bit, but instead we * have to set and then clear all the bits */ bge_reg_put32(bgep, regno, ~(uint32_t)0); drv_usecwait(100); bge_reg_put32(bgep, regno, 0); return (B_TRUE); default: regval = bge_reg_get32(bgep, regno); regval &= ~STATE_MACHINE_ENABLE_BIT; regval &= ~morebits; bge_reg_put32(bgep, regno, regval); return (bge_chip_poll_engine(bgep, regno, STATE_MACHINE_ENABLE_BIT, 0)); } } /* * Various registers that control the chip's internal engines (state * machines) have an bit (fortunately, in the same place in * each such register :-). To start the state machine, this bit must * be written with 1, then polled to see when the state machine has * actually started. * * The return value is B_TRUE on success (enable bit set), or * B_FALSE if the state machine didn't start :( */ static boolean_t bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits); #pragma no_inline(bge_chip_enable_engine) static boolean_t bge_chip_enable_engine(bge_t *bgep, bge_regno_t regno, uint32_t morebits) { uint32_t regval; BGE_TRACE(("bge_chip_enable_engine($%p, 0x%lx, 0x%x)", (void *)bgep, regno, morebits)); switch (regno) { case FTQ_RESET_REG: /* * Not quite like the others; it doesn't * have an bit, but instead we * have to set and then clear all the bits */ bge_reg_put32(bgep, regno, ~(uint32_t)0); drv_usecwait(100); bge_reg_put32(bgep, regno, 0); return (B_TRUE); default: regval = bge_reg_get32(bgep, regno); regval |= STATE_MACHINE_ENABLE_BIT; regval |= morebits; bge_reg_put32(bgep, regno, regval); return (bge_chip_poll_engine(bgep, regno, STATE_MACHINE_ENABLE_BIT, STATE_MACHINE_ENABLE_BIT)); } } /* * Reprogram the Ethernet, Transmit, and Receive MAC * modes to match the param_* variables */ static void bge_sync_mac_modes(bge_t *bgep); #pragma no_inline(bge_sync_mac_modes) static void bge_sync_mac_modes(bge_t *bgep) { uint32_t macmode; uint32_t regval; ASSERT(mutex_owned(bgep->genlock)); /* * Reprogram the Ethernet MAC mode ... */ macmode = regval = bge_reg_get32(bgep, ETHERNET_MAC_MODE_REG); if ((bgep->chipid.flags & CHIP_FLAG_SERDES) && (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC)) macmode &= ~ETHERNET_MODE_LINK_POLARITY; else macmode |= ETHERNET_MODE_LINK_POLARITY; macmode &= ~ETHERNET_MODE_PORTMODE_MASK; if ((bgep->chipid.flags & CHIP_FLAG_SERDES) && (bgep->param_loop_mode != BGE_LOOP_INTERNAL_MAC)) macmode |= ETHERNET_MODE_PORTMODE_TBI; else if (bgep->param_link_speed == 10 || bgep->param_link_speed == 100) macmode |= ETHERNET_MODE_PORTMODE_MII; else macmode |= ETHERNET_MODE_PORTMODE_GMII; if (bgep->param_link_duplex == LINK_DUPLEX_HALF) macmode |= ETHERNET_MODE_HALF_DUPLEX; else macmode &= ~ETHERNET_MODE_HALF_DUPLEX; if (bgep->param_loop_mode == BGE_LOOP_INTERNAL_MAC) macmode |= ETHERNET_MODE_MAC_LOOPBACK; else macmode &= ~ETHERNET_MODE_MAC_LOOPBACK; bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, macmode); BGE_DEBUG(("bge_sync_mac_modes($%p) Ethernet MAC mode 0x%x => 0x%x", (void *)bgep, regval, macmode)); /* * ... the Transmit MAC mode ... */ macmode = regval = bge_reg_get32(bgep, TRANSMIT_MAC_MODE_REG); if (bgep->param_link_tx_pause) macmode |= TRANSMIT_MODE_FLOW_CONTROL; else macmode &= ~TRANSMIT_MODE_FLOW_CONTROL; bge_reg_put32(bgep, TRANSMIT_MAC_MODE_REG, macmode); BGE_DEBUG(("bge_sync_mac_modes($%p) Transmit MAC mode 0x%x => 0x%x", (void *)bgep, regval, macmode)); /* * ... and the Receive MAC mode */ macmode = regval = bge_reg_get32(bgep, RECEIVE_MAC_MODE_REG); if (bgep->param_link_rx_pause) macmode |= RECEIVE_MODE_FLOW_CONTROL; else macmode &= ~RECEIVE_MODE_FLOW_CONTROL; bge_reg_put32(bgep, RECEIVE_MAC_MODE_REG, macmode); BGE_DEBUG(("bge_sync_mac_modes($%p) Receive MAC mode 0x%x => 0x%x", (void *)bgep, regval, macmode)); } /* * bge_chip_sync() -- program the chip with the unicast MAC address, * the multicast hash table, the required level of promiscuity, and * the current loopback mode ... */ #ifdef BGE_IPMI_ASF int bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive); #else int bge_chip_sync(bge_t *bgep); #endif #pragma no_inline(bge_chip_sync) int #ifdef BGE_IPMI_ASF bge_chip_sync(bge_t *bgep, boolean_t asf_keeplive) #else bge_chip_sync(bge_t *bgep) #endif { void (*opfn)(bge_t *bgep, bge_regno_t reg, uint32_t bits); boolean_t promisc; uint64_t macaddr; uint32_t fill; int i, j; int retval = DDI_SUCCESS; BGE_TRACE(("bge_chip_sync($%p)", (void *)bgep)); ASSERT(mutex_owned(bgep->genlock)); promisc = B_FALSE; fill = ~(uint32_t)0; if (bgep->promisc) promisc = B_TRUE; else fill = (uint32_t)0; /* * If the TX/RX MAC engines are already running, we should stop * them (and reset the RX engine) before changing the parameters. * If they're not running, this will have no effect ... * * NOTE: this is currently disabled by default because stopping * and restarting the Tx engine may cause an outgoing packet in * transit to be truncated. Also, stopping and restarting the * Rx engine seems to not work correctly on the 5705. Testing * has not (yet!) revealed any problems with NOT stopping and * restarting these engines (and Broadcom say their drivers don't * do this), but if it is found to cause problems, this variable * can be patched to re-enable the old behaviour ... */ if (bge_stop_start_on_sync) { #ifdef BGE_IPMI_ASF if (!bgep->asf_enabled) { if (!bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG)) retval = DDI_FAILURE; } else { if (!bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG, 0)) retval = DDI_FAILURE; } #else if (!bge_chip_disable_engine(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG)) retval = DDI_FAILURE; #endif if (!bge_chip_disable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0)) retval = DDI_FAILURE; if (!bge_chip_reset_engine(bgep, RECEIVE_MAC_MODE_REG)) retval = DDI_FAILURE; } /* * Reprogram the hashed multicast address table ... */ for (i = 0; i < BGE_HASH_TABLE_SIZE/32; ++i) bge_reg_put32(bgep, MAC_HASH_REG(i), bgep->mcast_hash[i] | fill); #ifdef BGE_IPMI_ASF if (!bgep->asf_enabled || !asf_keeplive) { #endif /* * Transform the MAC address(es) from host to chip format, then * reprogram the transmit random backoff seed and the unicast * MAC address(es) ... */ for (j = 0; j < MAC_ADDRESS_REGS_MAX; j++) { for (i = 0, fill = 0, macaddr = 0ull; i < ETHERADDRL; ++i) { macaddr <<= 8; macaddr |= bgep->curr_addr[j].addr[i]; fill += bgep->curr_addr[j].addr[i]; } bge_reg_put32(bgep, MAC_TX_RANDOM_BACKOFF_REG, fill); bge_reg_put64(bgep, MAC_ADDRESS_REG(j), macaddr); } BGE_DEBUG(("bge_chip_sync($%p) setting MAC address %012llx", (void *)bgep, macaddr)); #ifdef BGE_IPMI_ASF } #endif /* * Set or clear the PROMISCUOUS mode bit */ opfn = promisc ? bge_reg_set32 : bge_reg_clr32; (*opfn)(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_PROMISCUOUS); /* * Sync the rest of the MAC modes too ... */ bge_sync_mac_modes(bgep); /* * Restart RX/TX MAC engines if required ... */ if (bgep->bge_chip_state == BGE_CHIP_RUNNING) { if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0)) retval = DDI_FAILURE; #ifdef BGE_IPMI_ASF if (!bgep->asf_enabled) { if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG)) retval = DDI_FAILURE; } else { if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 0)) retval = DDI_FAILURE; } #else if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG)) retval = DDI_FAILURE; #endif } return (retval); } /* * This array defines the sequence of state machine control registers * in which the bit must be cleared to bring the chip to a * clean stop. Taken from Broadcom document 570X-PG102-R, p116. */ static bge_regno_t shutdown_engine_regs[] = { RECEIVE_MAC_MODE_REG, RCV_BD_INITIATOR_MODE_REG, RCV_LIST_PLACEMENT_MODE_REG, RCV_LIST_SELECTOR_MODE_REG, /* BCM5704 series only */ RCV_DATA_BD_INITIATOR_MODE_REG, RCV_DATA_COMPLETION_MODE_REG, RCV_BD_COMPLETION_MODE_REG, SEND_BD_SELECTOR_MODE_REG, SEND_BD_INITIATOR_MODE_REG, SEND_DATA_INITIATOR_MODE_REG, READ_DMA_MODE_REG, SEND_DATA_COMPLETION_MODE_REG, DMA_COMPLETION_MODE_REG, /* BCM5704 series only */ SEND_BD_COMPLETION_MODE_REG, TRANSMIT_MAC_MODE_REG, HOST_COALESCE_MODE_REG, WRITE_DMA_MODE_REG, MBUF_CLUSTER_FREE_MODE_REG, /* BCM5704 series only */ FTQ_RESET_REG, /* special - see code */ BUFFER_MANAGER_MODE_REG, /* BCM5704 series only */ MEMORY_ARBITER_MODE_REG, /* BCM5704 series only */ BGE_REGNO_NONE /* terminator */ }; /* * bge_chip_stop() -- stop all chip processing * * If the parameter is B_TRUE, we're stopping the chip because * we've detected a problem internally; otherwise, this is a normal * (clean) stop (at user request i.e. the last STREAM has been closed). */ void bge_chip_stop(bge_t *bgep, boolean_t fault); #pragma no_inline(bge_chip_stop) void bge_chip_stop(bge_t *bgep, boolean_t fault) { bge_regno_t regno; bge_regno_t *rbp; boolean_t ok; BGE_TRACE(("bge_chip_stop($%p)", (void *)bgep)); ASSERT(mutex_owned(bgep->genlock)); rbp = shutdown_engine_regs; /* * When driver try to shutdown the BCM5705/5788/5721/5751/ * 5752/5714 and 5715 chipsets,the buffer manager and the mem * -ory arbiter should not be disabled. */ for (ok = B_TRUE; (regno = *rbp) != BGE_REGNO_NONE; ++rbp) { if (DEVICE_5704_SERIES_CHIPSETS(bgep)) ok &= bge_chip_disable_engine(bgep, regno, 0); else if ((regno != RCV_LIST_SELECTOR_MODE_REG) && (regno != DMA_COMPLETION_MODE_REG) && (regno != MBUF_CLUSTER_FREE_MODE_REG)&& (regno != BUFFER_MANAGER_MODE_REG) && (regno != MEMORY_ARBITER_MODE_REG)) ok &= bge_chip_disable_engine(bgep, regno, 0); } if (!ok && !fault) ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED); /* * Finally, disable (all) MAC events & clear the MAC status */ bge_reg_put32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG, 0); bge_reg_put32(bgep, ETHERNET_MAC_STATUS_REG, ~0); /* * if we're stopping the chip because of a detected fault then do * appropriate actions */ if (fault) { if (bgep->bge_chip_state != BGE_CHIP_FAULT) { bgep->bge_chip_state = BGE_CHIP_FAULT; ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_LOST); if (bgep->bge_dma_error) { /* * need to free buffers in case the fault was * due to a memory error in a buffer - got to * do a fair bit of tidying first */ if (bgep->progress & PROGRESS_KSTATS) { bge_fini_kstats(bgep); bgep->progress &= ~PROGRESS_KSTATS; } if (bgep->progress & PROGRESS_INTR) { bge_intr_disable(bgep); rw_enter(bgep->errlock, RW_WRITER); bge_fini_rings(bgep); rw_exit(bgep->errlock); bgep->progress &= ~PROGRESS_INTR; } if (bgep->progress & PROGRESS_BUFS) { bge_free_bufs(bgep); bgep->progress &= ~PROGRESS_BUFS; } bgep->bge_dma_error = B_FALSE; } } } else bgep->bge_chip_state = BGE_CHIP_STOPPED; } /* * Poll for completion of chip's ROM firmware; also, at least on the * first time through, find and return the hardware MAC address, if any. */ static uint64_t bge_poll_firmware(bge_t *bgep); #pragma no_inline(bge_poll_firmware) static uint64_t bge_poll_firmware(bge_t *bgep) { uint64_t magic; uint64_t mac; uint32_t gen; uint32_t i; /* * Step 19: poll for firmware completion (GENCOMM port set * to the ones complement of T3_MAGIC_NUMBER). * * While we're at it, we also read the MAC address register; * at some stage the firmware will load this with the * factory-set value. * * When both the magic number and the MAC address are set, * we're done; but we impose a time limit of one second * (1000*1000us) in case the firmware fails in some fashion * or the SEEPROM that provides that MAC address isn't fitted. * * After the first time through (chip state != INITIAL), we * don't need the MAC address to be set (we've already got it * or not, from the first time), so we don't wait for it, but * we still have to wait for the T3_MAGIC_NUMBER. * * Note: the magic number is only a 32-bit quantity, but the NIC * memory is 64-bit (and big-endian) internally. Addressing the * GENCOMM word as "the upper half of a 64-bit quantity" makes * it work correctly on both big- and little-endian hosts. */ for (i = 0; i < 1000; ++i) { drv_usecwait(1000); gen = bge_nic_get64(bgep, NIC_MEM_GENCOMM) >> 32; mac = bge_reg_get64(bgep, MAC_ADDRESS_REG(0)); #ifdef BGE_IPMI_ASF if (!bgep->asf_enabled) { #endif if (gen != ~T3_MAGIC_NUMBER) continue; #ifdef BGE_IPMI_ASF } #endif if (mac != 0ULL) break; if (bgep->bge_chip_state != BGE_CHIP_INITIAL) break; } magic = bge_nic_get64(bgep, NIC_MEM_GENCOMM); BGE_DEBUG(("bge_poll_firmware($%p): PXE magic 0x%x after %d loops", (void *)bgep, gen, i)); BGE_DEBUG(("bge_poll_firmware: MAC %016llx, GENCOMM %016llx", mac, magic)); return (mac); } /* * Maximum times of trying to get the NVRAM access lock * by calling bge_nvmem_acquire() */ #define MAX_TRY_NVMEM_ACQUIRE 10000 #ifdef BGE_IPMI_ASF int bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode); #else int bge_chip_reset(bge_t *bgep, boolean_t enable_dma); #endif #pragma no_inline(bge_chip_reset) int #ifdef BGE_IPMI_ASF bge_chip_reset(bge_t *bgep, boolean_t enable_dma, uint_t asf_mode) #else bge_chip_reset(bge_t *bgep, boolean_t enable_dma) #endif { chip_id_t chipid; uint64_t mac; uint64_t magic; uint32_t modeflags; uint32_t mhcr; uint32_t sx0; uint32_t i, tries; #ifdef BGE_IPMI_ASF uint32_t mailbox; #endif int retval = DDI_SUCCESS; BGE_TRACE(("bge_chip_reset($%p, %d)", (void *)bgep, enable_dma)); ASSERT(mutex_owned(bgep->genlock)); BGE_DEBUG(("bge_chip_reset($%p, %d): current state is %d", (void *)bgep, enable_dma, bgep->bge_chip_state)); /* * Do we need to stop the chip cleanly before resetting? */ switch (bgep->bge_chip_state) { default: _NOTE(NOTREACHED) return (DDI_FAILURE); case BGE_CHIP_INITIAL: case BGE_CHIP_STOPPED: case BGE_CHIP_RESET: break; case BGE_CHIP_RUNNING: case BGE_CHIP_ERROR: case BGE_CHIP_FAULT: bge_chip_stop(bgep, B_FALSE); break; } #ifdef BGE_IPMI_ASF if (bgep->asf_enabled) { if (asf_mode == ASF_MODE_INIT) { bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET); } else if (asf_mode == ASF_MODE_SHUTDOWN) { bge_asf_pre_reset_operations(bgep, BGE_SHUTDOWN_RESET); } } #endif /* * Adapted from Broadcom document 570X-PG102-R, pp 102-116. * Updated to reflect Broadcom document 570X-PG104-R, pp 146-159. * * Before reset Core clock,it is * also required to initialize the Memory Arbiter as specified in step9 * and Misc Host Control Register as specified in step-13 * Step 4-5: reset Core clock & wait for completion * Steps 6-8: are done by bge_chip_cfg_init() * put the T3_MAGIC_NUMBER into the GENCOMM port before reset */ if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0)) retval = DDI_FAILURE; mhcr = MHCR_ENABLE_INDIRECT_ACCESS | MHCR_ENABLE_TAGGED_STATUS_MODE | MHCR_MASK_INTERRUPT_MODE | MHCR_MASK_PCI_INT_OUTPUT | MHCR_CLEAR_INTERRUPT_INTA; #ifdef _BIG_ENDIAN mhcr |= MHCR_ENABLE_ENDIAN_WORD_SWAP | MHCR_ENABLE_ENDIAN_BYTE_SWAP; #endif /* _BIG_ENDIAN */ pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MHCR, mhcr); #ifdef BGE_IPMI_ASF if (bgep->asf_enabled) bgep->asf_wordswapped = B_FALSE; #endif /* * NVRAM Corruption Workaround */ for (tries = 0; tries < MAX_TRY_NVMEM_ACQUIRE; tries++) if (bge_nvmem_acquire(bgep) != EAGAIN) break; if (tries >= MAX_TRY_NVMEM_ACQUIRE) BGE_DEBUG(("%s: fail to acquire nvram lock", bgep->ifname)); #ifdef BGE_IPMI_ASF if (!bgep->asf_enabled) { #endif magic = (uint64_t)T3_MAGIC_NUMBER << 32; bge_nic_put64(bgep, NIC_MEM_GENCOMM, magic); #ifdef BGE_IPMI_ASF } #endif if (!bge_chip_reset_engine(bgep, MISC_CONFIG_REG)) retval = DDI_FAILURE; bge_chip_cfg_init(bgep, &chipid, enable_dma); /* * Step 8a: This may belong elsewhere, but BCM5721 needs * a bit set to avoid a fifo overflow/underflow bug. */ if ((bgep->chipid.chip_label == 5721) || (bgep->chipid.chip_label == 5751) || (bgep->chipid.chip_label == 5752) || (bgep->chipid.chip_label == 5789)) bge_reg_set32(bgep, TLP_CONTROL_REG, TLP_DATA_FIFO_PROTECT); /* * Step 9: enable MAC memory arbiter,bit30 and bit31 of 5714/5715 should * not be changed. */ if (!bge_chip_enable_engine(bgep, MEMORY_ARBITER_MODE_REG, 0)) retval = DDI_FAILURE; /* * Steps 10-11: configure PIO endianness options and * enable indirect register access -- already done * Steps 12-13: enable writing to the PCI state & clock * control registers -- not required; we aren't going to * use those features. * Steps 14-15: Configure DMA endianness options. See * the comments on the setting of the MHCR above. */ #ifdef _BIG_ENDIAN modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME | MODE_WORD_SWAP_NONFRAME | MODE_BYTE_SWAP_NONFRAME; #else modeflags = MODE_WORD_SWAP_FRAME | MODE_BYTE_SWAP_FRAME; #endif /* _BIG_ENDIAN */ #ifdef BGE_IPMI_ASF if (bgep->asf_enabled) modeflags |= MODE_HOST_STACK_UP; #endif bge_reg_put32(bgep, MODE_CONTROL_REG, modeflags); #ifdef BGE_IPMI_ASF if (bgep->asf_enabled) { if (asf_mode != ASF_MODE_NONE) { /* Wait for NVRAM init */ i = 0; drv_usecwait(5000); mailbox = bge_nic_get32(bgep, BGE_FIRMWARE_MAILBOX); while ((mailbox != (uint32_t) ~BGE_MAGIC_NUM_FIRMWARE_INIT_DONE) && (i < 10000)) { drv_usecwait(100); mailbox = bge_nic_get32(bgep, BGE_FIRMWARE_MAILBOX); i++; } if (!bgep->asf_newhandshake) { if ((asf_mode == ASF_MODE_INIT) || (asf_mode == ASF_MODE_POST_INIT)) { bge_asf_post_reset_old_mode(bgep, BGE_INIT_RESET); } else { bge_asf_post_reset_old_mode(bgep, BGE_SHUTDOWN_RESET); } } } } #endif /* * Steps 16-17: poll for firmware completion */ mac = bge_poll_firmware(bgep); /* * Step 18: enable external memory -- doesn't apply. * * However we take the opportunity to set the MLCR anyway, as * this register also controls the SEEPROM auto-access method * which we may want to use later ... * * The proper value here depends on the way the chip is wired * into the circuit board, as this register *also* controls which * of the "Miscellaneous I/O" pins are driven as outputs and the * values driven onto those pins! * * See also step 74 in the PRM ... */ bge_reg_put32(bgep, MISC_LOCAL_CONTROL_REG, bgep->chipid.bge_mlcr_default); bge_reg_set32(bgep, SERIAL_EEPROM_ADDRESS_REG, SEEPROM_ACCESS_INIT); /* * Step 20: clear the Ethernet MAC mode register */ bge_reg_put32(bgep, ETHERNET_MAC_MODE_REG, 0); /* * Step 21: restore cache-line-size, latency timer, and * subsystem ID registers to their original values (not * those read into the local structure , 'cos * that was after they were cleared by the RESET). * * Note: the Subsystem Vendor/Device ID registers are not * directly writable in config space, so we use the shadow * copy in "Page Zero" of register space to restore them * both in one go ... */ pci_config_put8(bgep->cfg_handle, PCI_CONF_CACHE_LINESZ, bgep->chipid.clsize); pci_config_put8(bgep->cfg_handle, PCI_CONF_LATENCY_TIMER, bgep->chipid.latency); bge_reg_put32(bgep, PCI_CONF_SUBVENID, (bgep->chipid.subdev << 16) | bgep->chipid.subven); /* * The SEND INDEX registers should be reset to zero by the * global chip reset; if they're not, there'll be trouble * later on. */ sx0 = bge_reg_get32(bgep, NIC_DIAG_SEND_INDEX_REG(0)); if (sx0 != 0) { BGE_REPORT((bgep, "SEND INDEX - device didn't RESET")); bge_fm_ereport(bgep, DDI_FM_DEVICE_INVAL_STATE); retval = DDI_FAILURE; } /* Enable MSI code */ if (bgep->intr_type == DDI_INTR_TYPE_MSI) bge_reg_set32(bgep, MSI_MODE_REG, MSI_PRI_HIGHEST|MSI_MSI_ENABLE|MSI_ERROR_ATTENTION); /* * On the first time through, save the factory-set MAC address * (if any). If bge_poll_firmware() above didn't return one * (from a chip register) consider looking in the attached NV * memory device, if any. Once we have it, we save it in both * register-image (64-bit) and byte-array forms. All-zero and * all-one addresses are not valid, and we refuse to stash those. */ if (bgep->bge_chip_state == BGE_CHIP_INITIAL) { if (mac == 0ULL) mac = bge_get_nvmac(bgep); if (mac != 0ULL && mac != ~0ULL) { bgep->chipid.hw_mac_addr = mac; for (i = ETHERADDRL; i-- != 0; ) { bgep->chipid.vendor_addr.addr[i] = (uchar_t)mac; mac >>= 8; } bgep->chipid.vendor_addr.set = B_TRUE; } } #ifdef BGE_IPMI_ASF if (bgep->asf_enabled && bgep->asf_newhandshake) { if (asf_mode != ASF_MODE_NONE) { if ((asf_mode == ASF_MODE_INIT) || (asf_mode == ASF_MODE_POST_INIT)) { bge_asf_post_reset_new_mode(bgep, BGE_INIT_RESET); } else { bge_asf_post_reset_new_mode(bgep, BGE_SHUTDOWN_RESET); } } } #endif /* * Record the new state */ bgep->chip_resets += 1; bgep->bge_chip_state = BGE_CHIP_RESET; return (retval); } /* * bge_chip_start() -- start the chip transmitting and/or receiving, * including enabling interrupts */ int bge_chip_start(bge_t *bgep, boolean_t reset_phys); #pragma no_inline(bge_chip_start) int bge_chip_start(bge_t *bgep, boolean_t reset_phys) { uint32_t coalmode; uint32_t ledctl; uint32_t mtu; uint32_t maxring; uint32_t stats_mask; uint64_t ring; int retval = DDI_SUCCESS; BGE_TRACE(("bge_chip_start($%p)", (void *)bgep)); ASSERT(mutex_owned(bgep->genlock)); ASSERT(bgep->bge_chip_state == BGE_CHIP_RESET); /* * Taken from Broadcom document 570X-PG102-R, pp 102-116. * The document specifies 95 separate steps to fully * initialise the chip!!!! * * The reset code above has already got us as far as step * 21, so we continue with ... * * Step 22: clear the MAC statistics block * (0x0300-0x0aff in NIC-local memory) */ if (bgep->chipid.statistic_type == BGE_STAT_BLK) bge_nic_zero(bgep, NIC_MEM_STATISTICS, NIC_MEM_STATISTICS_SIZE); /* * Step 23: clear the status block (in host memory) */ DMA_ZERO(bgep->status_block); /* * Step 24: set DMA read/write control register */ pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_PDRWCR, bgep->chipid.bge_dma_rwctrl); /* * Step 25: Configure DMA endianness -- already done (16/17) * Step 26: Configure Host-Based Send Rings * Step 27: Indicate Host Stack Up */ bge_reg_set32(bgep, MODE_CONTROL_REG, MODE_HOST_SEND_BDS | MODE_HOST_STACK_UP); /* * Step 28: Configure checksum options: * Solaris supports the hardware default checksum options. * * Workaround for Incorrect pseudo-header checksum calculation. */ if (bgep->chipid.flags & CHIP_FLAG_PARTIAL_CSUM) bge_reg_set32(bgep, MODE_CONTROL_REG, MODE_SEND_NO_PSEUDO_HDR_CSUM); /* * Step 29: configure Timer Prescaler. The value is always the * same: the Core Clock frequency in MHz (66), minus 1, shifted * into bits 7-1. Don't set bit 0, 'cos that's the RESET bit * for the whole chip! */ bge_reg_put32(bgep, MISC_CONFIG_REG, MISC_CONFIG_DEFAULT); /* * Steps 30-31: Configure MAC local memory pool & DMA pool registers * * If the mbuf_length is specified as 0, we just leave these at * their hardware defaults, rather than explicitly setting them. * As the Broadcom HRM,driver better not change the parameters * when the chipsets is 5705/5788/5721/5751/5714 and 5715. */ if ((bgep->chipid.mbuf_length != 0) && (DEVICE_5704_SERIES_CHIPSETS(bgep))) { bge_reg_put32(bgep, MBUF_POOL_BASE_REG, bgep->chipid.mbuf_base); bge_reg_put32(bgep, MBUF_POOL_LENGTH_REG, bgep->chipid.mbuf_length); bge_reg_put32(bgep, DMAD_POOL_BASE_REG, DMAD_POOL_BASE_DEFAULT); bge_reg_put32(bgep, DMAD_POOL_LENGTH_REG, DMAD_POOL_LENGTH_DEFAULT); } /* * Step 32: configure MAC memory pool watermarks */ bge_reg_put32(bgep, RDMA_MBUF_LOWAT_REG, bgep->chipid.mbuf_lo_water_rdma); bge_reg_put32(bgep, MAC_RX_MBUF_LOWAT_REG, bgep->chipid.mbuf_lo_water_rmac); bge_reg_put32(bgep, MBUF_HIWAT_REG, bgep->chipid.mbuf_hi_water); /* * Step 33: configure DMA resource watermarks */ if (DEVICE_5704_SERIES_CHIPSETS(bgep)) { bge_reg_put32(bgep, DMAD_POOL_LOWAT_REG, bge_dmad_lo_water); bge_reg_put32(bgep, DMAD_POOL_HIWAT_REG, bge_dmad_hi_water); } bge_reg_put32(bgep, LOWAT_MAX_RECV_FRAMES_REG, bge_lowat_recv_frames); /* * Steps 34-36: enable buffer manager & internal h/w queues */ if (!bge_chip_enable_engine(bgep, BUFFER_MANAGER_MODE_REG, STATE_MACHINE_ATTN_ENABLE_BIT)) retval = DDI_FAILURE; if (!bge_chip_enable_engine(bgep, FTQ_RESET_REG, 0)) retval = DDI_FAILURE; /* * Steps 37-39: initialise Receive Buffer (Producer) RCBs */ bge_reg_putrcb(bgep, STD_RCV_BD_RING_RCB_REG, &bgep->buff[BGE_STD_BUFF_RING].hw_rcb); if (DEVICE_5704_SERIES_CHIPSETS(bgep)) { bge_reg_putrcb(bgep, JUMBO_RCV_BD_RING_RCB_REG, &bgep->buff[BGE_JUMBO_BUFF_RING].hw_rcb); bge_reg_putrcb(bgep, MINI_RCV_BD_RING_RCB_REG, &bgep->buff[BGE_MINI_BUFF_RING].hw_rcb); } /* * Step 40: set Receive Buffer Descriptor Ring replenish thresholds */ bge_reg_put32(bgep, STD_RCV_BD_REPLENISH_REG, bge_replenish_std); if (DEVICE_5704_SERIES_CHIPSETS(bgep)) { bge_reg_put32(bgep, JUMBO_RCV_BD_REPLENISH_REG, bge_replenish_jumbo); bge_reg_put32(bgep, MINI_RCV_BD_REPLENISH_REG, bge_replenish_mini); } /* * Steps 41-43: clear Send Ring Producer Indices and initialise * Send Producer Rings (0x0100-0x01ff in NIC-local memory) */ if (DEVICE_5704_SERIES_CHIPSETS(bgep)) maxring = BGE_SEND_RINGS_MAX; else maxring = BGE_SEND_RINGS_MAX_5705; for (ring = 0; ring < maxring; ++ring) { bge_mbx_put(bgep, SEND_RING_HOST_INDEX_REG(ring), 0); bge_mbx_put(bgep, SEND_RING_NIC_INDEX_REG(ring), 0); bge_nic_putrcb(bgep, NIC_MEM_SEND_RING(ring), &bgep->send[ring].hw_rcb); } /* * Steps 44-45: initialise Receive Return Rings * (0x0200-0x02ff in NIC-local memory) */ if (DEVICE_5704_SERIES_CHIPSETS(bgep)) maxring = BGE_RECV_RINGS_MAX; else maxring = BGE_RECV_RINGS_MAX_5705; for (ring = 0; ring < maxring; ++ring) bge_nic_putrcb(bgep, NIC_MEM_RECV_RING(ring), &bgep->recv[ring].hw_rcb); /* * Step 46: initialise Receive Buffer (Producer) Ring indexes */ bge_mbx_put(bgep, RECV_STD_PROD_INDEX_REG, 0); if (DEVICE_5704_SERIES_CHIPSETS(bgep)) { bge_mbx_put(bgep, RECV_JUMBO_PROD_INDEX_REG, 0); bge_mbx_put(bgep, RECV_MINI_PROD_INDEX_REG, 0); } /* * Step 47: configure the MAC unicast address * Step 48: configure the random backoff seed * Step 96: set up multicast filters */ #ifdef BGE_IPMI_ASF if (bge_chip_sync(bgep, B_FALSE) == DDI_FAILURE) #else if (bge_chip_sync(bgep) == DDI_FAILURE) #endif retval = DDI_FAILURE; /* * Step 49: configure the MTU */ mtu = bgep->chipid.ethmax_size+ETHERFCSL+VLAN_TAGSZ; bge_reg_put32(bgep, MAC_RX_MTU_SIZE_REG, mtu); /* * Step 50: configure the IPG et al */ bge_reg_put32(bgep, MAC_TX_LENGTHS_REG, MAC_TX_LENGTHS_DEFAULT); /* * Step 51: configure the default Rx Return Ring */ bge_reg_put32(bgep, RCV_RULES_CONFIG_REG, RCV_RULES_CONFIG_DEFAULT); /* * Steps 52-54: configure Receive List Placement, * and enable Receive List Placement Statistics */ bge_reg_put32(bgep, RCV_LP_CONFIG_REG, RCV_LP_CONFIG(bgep->chipid.rx_rings)); switch (MHCR_CHIP_ASIC_REV(bgep->chipid.asic_rev)) { case MHCR_CHIP_ASIC_REV_5700: case MHCR_CHIP_ASIC_REV_5701: case MHCR_CHIP_ASIC_REV_5703: case MHCR_CHIP_ASIC_REV_5704: bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, ~0); break; case MHCR_CHIP_ASIC_REV_5705: break; default: stats_mask = bge_reg_get32(bgep, RCV_LP_STATS_ENABLE_MASK_REG); stats_mask &= ~RCV_LP_STATS_DISABLE_MACTQ; bge_reg_put32(bgep, RCV_LP_STATS_ENABLE_MASK_REG, stats_mask); break; } bge_reg_set32(bgep, RCV_LP_STATS_CONTROL_REG, RCV_LP_STATS_ENABLE); if (bgep->chipid.rx_rings > 1) bge_init_recv_rule(bgep); /* * Steps 55-56: enable Send Data Initiator Statistics */ bge_reg_put32(bgep, SEND_INIT_STATS_ENABLE_MASK_REG, ~0); if (DEVICE_5704_SERIES_CHIPSETS(bgep)) { bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG, SEND_INIT_STATS_ENABLE | SEND_INIT_STATS_FASTER); } else { bge_reg_put32(bgep, SEND_INIT_STATS_CONTROL_REG, SEND_INIT_STATS_ENABLE); } /* * Steps 57-58: stop (?) the Host Coalescing Engine */ if (!bge_chip_disable_engine(bgep, HOST_COALESCE_MODE_REG, ~0)) retval = DDI_FAILURE; /* * Steps 59-62: initialise Host Coalescing parameters */ bge_reg_put32(bgep, SEND_COALESCE_MAX_BD_REG, bge_tx_count_norm); bge_reg_put32(bgep, SEND_COALESCE_TICKS_REG, bge_tx_ticks_norm); bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, bge_rx_count_norm); bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, bge_rx_ticks_norm); if (DEVICE_5704_SERIES_CHIPSETS(bgep)) { bge_reg_put32(bgep, SEND_COALESCE_INT_BD_REG, bge_tx_count_intr); bge_reg_put32(bgep, SEND_COALESCE_INT_TICKS_REG, bge_tx_ticks_intr); bge_reg_put32(bgep, RCV_COALESCE_INT_BD_REG, bge_rx_count_intr); bge_reg_put32(bgep, RCV_COALESCE_INT_TICKS_REG, bge_rx_ticks_intr); } /* * Steps 63-64: initialise status block & statistics * host memory addresses * The statistic block does not exist in some chipsets * Step 65: initialise Statistics Coalescing Tick Counter */ bge_reg_put64(bgep, STATUS_BLOCK_HOST_ADDR_REG, bgep->status_block.cookie.dmac_laddress); /* * Steps 66-67: initialise status block & statistics * NIC-local memory addresses */ if (DEVICE_5704_SERIES_CHIPSETS(bgep)) { bge_reg_put64(bgep, STATISTICS_HOST_ADDR_REG, bgep->statistics.cookie.dmac_laddress); bge_reg_put32(bgep, STATISTICS_TICKS_REG, STATISTICS_TICKS_DEFAULT); bge_reg_put32(bgep, STATUS_BLOCK_BASE_ADDR_REG, NIC_MEM_STATUS_BLOCK); bge_reg_put32(bgep, STATISTICS_BASE_ADDR_REG, NIC_MEM_STATISTICS); } /* * Steps 68-71: start the Host Coalescing Engine, the Receive BD * Completion Engine, the Receive List Placement Engine, and the * Receive List selector.Pay attention:0x3400 is not exist in BCM5714 * and BCM5715. */ if (bgep->chipid.tx_rings <= COALESCE_64_BYTE_RINGS && bgep->chipid.rx_rings <= COALESCE_64_BYTE_RINGS) coalmode = COALESCE_64_BYTE_STATUS; else coalmode = 0; if (!bge_chip_enable_engine(bgep, HOST_COALESCE_MODE_REG, coalmode)) retval = DDI_FAILURE; if (!bge_chip_enable_engine(bgep, RCV_BD_COMPLETION_MODE_REG, STATE_MACHINE_ATTN_ENABLE_BIT)) retval = DDI_FAILURE; if (!bge_chip_enable_engine(bgep, RCV_LIST_PLACEMENT_MODE_REG, 0)) retval = DDI_FAILURE; if (DEVICE_5704_SERIES_CHIPSETS(bgep)) if (!bge_chip_enable_engine(bgep, RCV_LIST_SELECTOR_MODE_REG, STATE_MACHINE_ATTN_ENABLE_BIT)) retval = DDI_FAILURE; /* * Step 72: Enable MAC DMA engines * Step 73: Clear & enable MAC statistics */ bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG, ETHERNET_MODE_ENABLE_FHDE | ETHERNET_MODE_ENABLE_RDE | ETHERNET_MODE_ENABLE_TDE); bge_reg_set32(bgep, ETHERNET_MAC_MODE_REG, ETHERNET_MODE_ENABLE_TX_STATS | ETHERNET_MODE_ENABLE_RX_STATS | ETHERNET_MODE_CLEAR_TX_STATS | ETHERNET_MODE_CLEAR_RX_STATS); /* * Step 74: configure the MLCR (Miscellaneous Local Control * Register); not required, as we set up the MLCR in step 10 * (part of the reset code) above. * * Step 75: clear Interrupt Mailbox 0 */ bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, 0); /* * Steps 76-87: Gentlemen, start your engines ... * * Enable the DMA Completion Engine, the Write DMA Engine, * the Read DMA Engine, Receive Data Completion Engine, * the MBuf Cluster Free Engine, the Send Data Completion Engine, * the Send BD Completion Engine, the Receive BD Initiator Engine, * the Receive Data Initiator Engine, the Send Data Initiator Engine, * the Send BD Initiator Engine, and the Send BD Selector Engine. * * Beware exhaust fumes? */ if (DEVICE_5704_SERIES_CHIPSETS(bgep)) if (!bge_chip_enable_engine(bgep, DMA_COMPLETION_MODE_REG, 0)) retval = DDI_FAILURE; if (!bge_chip_enable_engine(bgep, WRITE_DMA_MODE_REG, (bge_dma_wrprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS)) retval = DDI_FAILURE; if (!bge_chip_enable_engine(bgep, READ_DMA_MODE_REG, (bge_dma_rdprio << DMA_PRIORITY_SHIFT) | ALL_DMA_ATTN_BITS)) retval = DDI_FAILURE; if (!bge_chip_enable_engine(bgep, RCV_DATA_COMPLETION_MODE_REG, STATE_MACHINE_ATTN_ENABLE_BIT)) retval = DDI_FAILURE; if (DEVICE_5704_SERIES_CHIPSETS(bgep)) if (!bge_chip_enable_engine(bgep, MBUF_CLUSTER_FREE_MODE_REG, 0)) retval = DDI_FAILURE; if (!bge_chip_enable_engine(bgep, SEND_DATA_COMPLETION_MODE_REG, 0)) retval = DDI_FAILURE; if (!bge_chip_enable_engine(bgep, SEND_BD_COMPLETION_MODE_REG, STATE_MACHINE_ATTN_ENABLE_BIT)) retval = DDI_FAILURE; if (!bge_chip_enable_engine(bgep, RCV_BD_INITIATOR_MODE_REG, RCV_BD_DISABLED_RING_ATTN)) retval = DDI_FAILURE; if (!bge_chip_enable_engine(bgep, RCV_DATA_BD_INITIATOR_MODE_REG, RCV_DATA_BD_ILL_RING_ATTN)) retval = DDI_FAILURE; if (!bge_chip_enable_engine(bgep, SEND_DATA_INITIATOR_MODE_REG, 0)) retval = DDI_FAILURE; if (!bge_chip_enable_engine(bgep, SEND_BD_INITIATOR_MODE_REG, STATE_MACHINE_ATTN_ENABLE_BIT)) retval = DDI_FAILURE; if (!bge_chip_enable_engine(bgep, SEND_BD_SELECTOR_MODE_REG, STATE_MACHINE_ATTN_ENABLE_BIT)) retval = DDI_FAILURE; /* * Step 88: download firmware -- doesn't apply * Steps 89-90: enable Transmit & Receive MAC Engines */ if (!bge_chip_enable_engine(bgep, TRANSMIT_MAC_MODE_REG, 0)) retval = DDI_FAILURE; #ifdef BGE_IPMI_ASF if (!bgep->asf_enabled) { if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG)) retval = DDI_FAILURE; } else { if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, 0)) retval = DDI_FAILURE; } #else if (!bge_chip_enable_engine(bgep, RECEIVE_MAC_MODE_REG, RECEIVE_MODE_KEEP_VLAN_TAG)) retval = DDI_FAILURE; #endif /* * Step 91: disable auto-polling of PHY status */ bge_reg_put32(bgep, MI_MODE_REG, MI_MODE_DEFAULT); /* * Step 92: configure D0 power state (not required) * Step 93: initialise LED control register () */ ledctl = LED_CONTROL_DEFAULT; switch (bgep->chipid.device) { case DEVICE_ID_5700: case DEVICE_ID_5700x: case DEVICE_ID_5701: /* * Switch to 5700 (MAC) mode on these older chips */ ledctl &= ~LED_CONTROL_LED_MODE_MASK; ledctl |= LED_CONTROL_LED_MODE_5700; break; default: break; } bge_reg_put32(bgep, ETHERNET_MAC_LED_CONTROL_REG, ledctl); /* * Step 94: activate link */ bge_reg_put32(bgep, MI_STATUS_REG, MI_STATUS_LINK); /* * Step 95: set up physical layer (PHY/SerDes) * restart autoneg (if required) */ if (reset_phys) if (bge_phys_update(bgep) == DDI_FAILURE) retval = DDI_FAILURE; /* * Extra step (DSG): hand over all the Receive Buffers to the chip */ for (ring = 0; ring < BGE_BUFF_RINGS_USED; ++ring) bge_mbx_put(bgep, bgep->buff[ring].chip_mbx_reg, bgep->buff[ring].rf_next); /* * MSI bits:The least significant MSI 16-bit word. * ISR will be triggered different. */ if (bgep->intr_type == DDI_INTR_TYPE_MSI) bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, 0x70); /* * Extra step (DSG): select which interrupts are enabled * * Program the Ethernet MAC engine to signal attention on * Link Change events, then enable interrupts on MAC, DMA, * and FLOW attention signals. */ bge_reg_set32(bgep, ETHERNET_MAC_EVENT_ENABLE_REG, ETHERNET_EVENT_LINK_INT | ETHERNET_STATUS_PCS_ERROR_INT); #ifdef BGE_IPMI_ASF if (bgep->asf_enabled) { bge_reg_set32(bgep, MODE_CONTROL_REG, MODE_INT_ON_FLOW_ATTN | MODE_INT_ON_DMA_ATTN | MODE_HOST_STACK_UP| MODE_INT_ON_MAC_ATTN); } else { #endif bge_reg_set32(bgep, MODE_CONTROL_REG, MODE_INT_ON_FLOW_ATTN | MODE_INT_ON_DMA_ATTN | MODE_INT_ON_MAC_ATTN); #ifdef BGE_IPMI_ASF } #endif /* * Step 97: enable PCI interrupts!!! */ if (bgep->intr_type == DDI_INTR_TYPE_FIXED) bge_cfg_clr32(bgep, PCI_CONF_BGE_MHCR, MHCR_MASK_PCI_INT_OUTPUT); /* * All done! */ bgep->bge_chip_state = BGE_CHIP_RUNNING; return (retval); } /* * ========== Hardware interrupt handler ========== */ #undef BGE_DBG #define BGE_DBG BGE_DBG_INT /* debug flag for this code */ /* * Sync the status block, then atomically clear the specified bits in * the field of the status block. * the word of the status block, returning the value of the * and the before the bits were cleared. */ static int bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags); #pragma inline(bge_status_sync) static int bge_status_sync(bge_t *bgep, uint64_t bits, uint64_t *flags) { bge_status_t *bsp; int retval; BGE_TRACE(("bge_status_sync($%p, 0x%llx)", (void *)bgep, bits)); ASSERT(bgep->bge_guard == BGE_GUARD); DMA_SYNC(bgep->status_block, DDI_DMA_SYNC_FORKERNEL); retval = bge_check_dma_handle(bgep, bgep->status_block.dma_hdl); if (retval != DDI_FM_OK) return (retval); bsp = DMA_VPTR(bgep->status_block); *flags = bge_atomic_clr64(&bsp->flags_n_tag, bits); BGE_DEBUG(("bge_status_sync($%p, 0x%llx) returning 0x%llx", (void *)bgep, bits, *flags)); return (retval); } static void bge_wake_factotum(bge_t *bgep); #pragma inline(bge_wake_factotum) static void bge_wake_factotum(bge_t *bgep) { mutex_enter(bgep->softintrlock); if (bgep->factotum_flag == 0) { bgep->factotum_flag = 1; ddi_trigger_softintr(bgep->factotum_id); } mutex_exit(bgep->softintrlock); } /* * bge_intr() -- handle chip interrupts */ uint_t bge_intr(caddr_t arg1, caddr_t arg2); #pragma no_inline(bge_intr) uint_t bge_intr(caddr_t arg1, caddr_t arg2) { bge_t *bgep = (bge_t *)arg1; /* private device info */ bge_status_t *bsp; uint64_t flags; uint32_t regval; uint_t result; int retval; BGE_TRACE(("bge_intr($%p) ($%p)", arg1, arg2)); /* * GLD v2 checks that s/w setup is complete before passing * interrupts to this routine, thus eliminating the old * (and well-known) race condition around ddi_add_intr() */ ASSERT(bgep->progress & PROGRESS_HWINT); result = DDI_INTR_UNCLAIMED; mutex_enter(bgep->genlock); if (bgep->intr_type == DDI_INTR_TYPE_FIXED) { /* * Check whether chip's says it's asserting #INTA; * if not, don't process or claim the interrupt. * * Note that the PCI signal is active low, so the * bit is *zero* when the interrupt is asserted. */ regval = bge_reg_get32(bgep, MISC_LOCAL_CONTROL_REG); if (regval & MLCR_INTA_STATE) { if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) goto chip_stop; mutex_exit(bgep->genlock); return (result); } /* * Block further PCI interrupts ... */ bge_reg_set32(bgep, PCI_CONF_BGE_MHCR, MHCR_MASK_PCI_INT_OUTPUT); } else { /* * Check MSI status */ regval = bge_reg_get32(bgep, MSI_STATUS_REG); if (regval & MSI_ERROR_ATTENTION) { BGE_REPORT((bgep, "msi error attention," " status=0x%x", regval)); bge_reg_put32(bgep, MSI_STATUS_REG, regval); } } result = DDI_INTR_CLAIMED; BGE_DEBUG(("bge_intr($%p) ($%p) regval 0x%08x", arg1, arg2, regval)); /* * Sync the status block and grab the flags-n-tag from it. * We count the number of interrupts where there doesn't * seem to have been a DMA update of the status block; if * it *has* been updated, the counter will be cleared in * the while() loop below ... */ bgep->missed_dmas += 1; bsp = DMA_VPTR(bgep->status_block); for (;;) { if (bgep->bge_chip_state != BGE_CHIP_RUNNING) { /* * bge_chip_stop() may have freed dma area etc * while we were in this interrupt handler - * better not call bge_status_sync() */ (void) bge_check_acc_handle(bgep, bgep->io_handle); mutex_exit(bgep->genlock); return (DDI_INTR_CLAIMED); } retval = bge_status_sync(bgep, STATUS_FLAG_UPDATED, &flags); if (retval != DDI_FM_OK) { bgep->bge_dma_error = B_TRUE; goto chip_stop; } if (!(flags & STATUS_FLAG_UPDATED)) break; /* * Tell the chip that we're processing the interrupt */ bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, INTERRUPT_MBOX_DISABLE(flags)); if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) goto chip_stop; /* * Drop the mutex while we: * Receive any newly-arrived packets * Recycle any newly-finished send buffers */ bgep->bge_intr_running = B_TRUE; mutex_exit(bgep->genlock); bge_receive(bgep, bsp); bge_recycle(bgep, bsp); mutex_enter(bgep->genlock); bgep->bge_intr_running = B_FALSE; /* * Tell the chip we've finished processing, and * give it the tag that we got from the status * block earlier, so that it knows just how far * we've gone. If it's got more for us to do, * it will now update the status block and try * to assert an interrupt (but we've got the * #INTA blocked at present). If we see the * update, we'll loop around to do some more. * Eventually we'll get out of here ... */ bge_mbx_put(bgep, INTERRUPT_MBOX_0_REG, INTERRUPT_MBOX_ENABLE(flags)); bgep->missed_dmas = 0; } /* * Check for exceptional conditions that we need to handle * * Link status changed * Status block not updated */ if (flags & STATUS_FLAG_LINK_CHANGED) bge_wake_factotum(bgep); if (bgep->missed_dmas) { /* * Probably due to the internal status tag not * being reset. Force a status block update now; * this should ensure that we get an update and * a new interrupt. After that, we should be in * sync again ... */ BGE_REPORT((bgep, "interrupt: flags 0x%llx - " "not updated?", flags)); bgep->missed_updates++; bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, COALESCE_NOW); if (bgep->missed_dmas >= bge_dma_miss_limit) { /* * If this happens multiple times in a row, * it means DMA is just not working. Maybe * the chip's failed, or maybe there's a * problem on the PCI bus or in the host-PCI * bridge (Tomatillo). * * At all events, we want to stop further * interrupts and let the recovery code take * over to see whether anything can be done * about it ... */ bge_fm_ereport(bgep, DDI_FM_DEVICE_BADINT_LIMIT); goto chip_stop; } } /* * Reenable assertion of #INTA, unless there's a DMA fault */ if (bgep->intr_type == DDI_INTR_TYPE_FIXED) { bge_reg_clr32(bgep, PCI_CONF_BGE_MHCR, MHCR_MASK_PCI_INT_OUTPUT); if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) goto chip_stop; } if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) goto chip_stop; mutex_exit(bgep->genlock); return (result); chip_stop: #ifdef BGE_IPMI_ASF if (bgep->asf_enabled && bgep->asf_status == ASF_STAT_RUN) { /* * We must stop ASF heart beat before * bge_chip_stop(), otherwise some * computers (ex. IBM HS20 blade * server) may crash. */ bge_asf_update_status(bgep); bge_asf_stop_timer(bgep); bgep->asf_status = ASF_STAT_STOP; bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET); (void) bge_check_acc_handle(bgep, bgep->cfg_handle); } #endif bge_chip_stop(bgep, B_TRUE); (void) bge_check_acc_handle(bgep, bgep->io_handle); mutex_exit(bgep->genlock); return (result); } /* * ========== Factotum, implemented as a softint handler ========== */ #undef BGE_DBG #define BGE_DBG BGE_DBG_FACT /* debug flag for this code */ static void bge_factotum_error_handler(bge_t *bgep); #pragma no_inline(bge_factotum_error_handler) static void bge_factotum_error_handler(bge_t *bgep) { uint32_t flow; uint32_t rdma; uint32_t wdma; uint32_t tmac; uint32_t rmac; uint32_t rxrs; uint32_t txrs = 0; ASSERT(mutex_owned(bgep->genlock)); /* * Read all the registers that show the possible * reasons for the ERROR bit to be asserted */ flow = bge_reg_get32(bgep, FLOW_ATTN_REG); rdma = bge_reg_get32(bgep, READ_DMA_STATUS_REG); wdma = bge_reg_get32(bgep, WRITE_DMA_STATUS_REG); tmac = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG); rmac = bge_reg_get32(bgep, RECEIVE_MAC_STATUS_REG); rxrs = bge_reg_get32(bgep, RX_RISC_STATE_REG); if (DEVICE_5704_SERIES_CHIPSETS(bgep)) txrs = bge_reg_get32(bgep, TX_RISC_STATE_REG); BGE_DEBUG(("factotum($%p) flow 0x%x rdma 0x%x wdma 0x%x", (void *)bgep, flow, rdma, wdma)); BGE_DEBUG(("factotum($%p) tmac 0x%x rmac 0x%x rxrs 0x%08x txrs 0x%08x", (void *)bgep, tmac, rmac, rxrs, txrs)); /* * For now, just clear all the errors ... */ if (DEVICE_5704_SERIES_CHIPSETS(bgep)) bge_reg_put32(bgep, TX_RISC_STATE_REG, ~0); bge_reg_put32(bgep, RX_RISC_STATE_REG, ~0); bge_reg_put32(bgep, RECEIVE_MAC_STATUS_REG, ~0); bge_reg_put32(bgep, WRITE_DMA_STATUS_REG, ~0); bge_reg_put32(bgep, READ_DMA_STATUS_REG, ~0); bge_reg_put32(bgep, FLOW_ATTN_REG, ~0); } /* * Handler for hardware link state change. * * When this routine is called, the hardware link state has changed * and the new state is reflected in the param_* variables. Here * we must update the softstate, reprogram the MAC to match, and * record the change in the log and/or on the console. */ static void bge_factotum_link_handler(bge_t *bgep); #pragma no_inline(bge_factotum_link_handler) static void bge_factotum_link_handler(bge_t *bgep) { void (*logfn)(bge_t *bgep, const char *fmt, ...); const char *msg; hrtime_t deltat; ASSERT(mutex_owned(bgep->genlock)); /* * Update the s/w link_state */ if (bgep->param_link_up) bgep->link_state = LINK_STATE_UP; else bgep->link_state = LINK_STATE_DOWN; /* * Reprogram the MAC modes to match */ bge_sync_mac_modes(bgep); /* * Finally, we have to decide whether to write a message * on the console or only in the log. If the PHY has * been reprogrammed (at user request) "recently", then * the message only goes in the log. Otherwise it's an * "unexpected" event, and it goes on the console as well. */ deltat = bgep->phys_event_time - bgep->phys_write_time; if (deltat > BGE_LINK_SETTLE_TIME) msg = ""; else if (bgep->param_link_up) msg = bgep->link_up_msg; else msg = bgep->link_down_msg; logfn = (msg == NULL || *msg == '\0') ? bge_notice : bge_log; (*logfn)(bgep, "link %s%s", bgep->link_mode_msg, msg); } static boolean_t bge_factotum_link_check(bge_t *bgep, int *dma_state); #pragma no_inline(bge_factotum_link_check) static boolean_t bge_factotum_link_check(bge_t *bgep, int *dma_state) { boolean_t check; uint64_t flags; uint32_t tmac_status; ASSERT(mutex_owned(bgep->genlock)); /* * Get & clear the writable status bits in the Tx status register * (some bits are write-1-to-clear, others are just readonly). */ tmac_status = bge_reg_get32(bgep, TRANSMIT_MAC_STATUS_REG); bge_reg_put32(bgep, TRANSMIT_MAC_STATUS_REG, tmac_status); /* * Get & clear the ERROR and LINK_CHANGED bits from the status block */ *dma_state = bge_status_sync(bgep, STATUS_FLAG_ERROR | STATUS_FLAG_LINK_CHANGED, &flags); if (*dma_state != DDI_FM_OK) return (B_FALSE); /* * Clear any errors flagged in the status block ... */ if (flags & STATUS_FLAG_ERROR) bge_factotum_error_handler(bgep); /* * We need to check the link status if: * the status block says there's been a link change * or there's any discrepancy between the various * flags indicating the link state (link_state, * param_link_up, and the LINK STATE bit in the * Transmit MAC status register). */ check = (flags & STATUS_FLAG_LINK_CHANGED) != 0; switch (bgep->link_state) { case LINK_STATE_UP: check |= (bgep->param_link_up == B_FALSE); check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) == 0); break; case LINK_STATE_DOWN: check |= (bgep->param_link_up != B_FALSE); check |= ((tmac_status & TRANSMIT_STATUS_LINK_UP) != 0); break; default: check = B_TRUE; break; } /* * If is false, we're sure the link hasn't changed. * If true, however, it's not yet definitive; we have to call * bge_phys_check() to determine whether the link has settled * into a new state yet ... and if it has, then call the link * state change handler.But when the chip is 5700 in Dell 6650 * ,even if check is false, the link may have changed.So we * have to call bge_phys_check() to determine the link state. */ if (check || bgep->chipid.device == DEVICE_ID_5700) { check = bge_phys_check(bgep); if (check) bge_factotum_link_handler(bgep); } return (check); } /* * Factotum routine to check for Tx stall, using the 'watchdog' counter */ static boolean_t bge_factotum_stall_check(bge_t *bgep); #pragma no_inline(bge_factotum_stall_check) static boolean_t bge_factotum_stall_check(bge_t *bgep) { uint32_t dogval; ASSERT(mutex_owned(bgep->genlock)); /* * Specific check for Tx stall ... * * The 'watchdog' counter is incremented whenever a packet * is queued, reset to 1 when some (but not all) buffers * are reclaimed, reset to 0 (disabled) when all buffers * are reclaimed, and shifted left here. If it exceeds the * threshold value, the chip is assumed to have stalled and * is put into the ERROR state. The factotum will then reset * it on the next pass. * * All of which should ensure that we don't get into a state * where packets are left pending indefinitely! */ dogval = bge_atomic_shl32(&bgep->watchdog, 1); if (dogval < bge_watchdog_count) return (B_FALSE); BGE_REPORT((bgep, "Tx stall detected, watchdog code 0x%x", dogval)); bge_fm_ereport(bgep, DDI_FM_DEVICE_STALL); return (B_TRUE); } /* * The factotum is woken up when there's something to do that we'd rather * not do from inside a hardware interrupt handler or high-level cyclic. * Its two main tasks are: * reset & restart the chip after an error * check the link status whenever necessary */ uint_t bge_chip_factotum(caddr_t arg); #pragma no_inline(bge_chip_factotum) uint_t bge_chip_factotum(caddr_t arg) { bge_t *bgep; uint_t result; boolean_t error; boolean_t linkchg; int dma_state; bgep = (bge_t *)arg; BGE_TRACE(("bge_chip_factotum($%p)", (void *)bgep)); mutex_enter(bgep->softintrlock); if (bgep->factotum_flag == 0) { mutex_exit(bgep->softintrlock); return (DDI_INTR_UNCLAIMED); } bgep->factotum_flag = 0; mutex_exit(bgep->softintrlock); result = DDI_INTR_CLAIMED; error = B_FALSE; linkchg = B_FALSE; mutex_enter(bgep->genlock); switch (bgep->bge_chip_state) { default: break; case BGE_CHIP_RUNNING: linkchg = bge_factotum_link_check(bgep, &dma_state); error = bge_factotum_stall_check(bgep); if (dma_state != DDI_FM_OK) { bgep->bge_dma_error = B_TRUE; error = B_TRUE; } if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) error = B_TRUE; if (error) bgep->bge_chip_state = BGE_CHIP_ERROR; break; case BGE_CHIP_ERROR: error = B_TRUE; break; case BGE_CHIP_FAULT: /* * Fault detected, time to reset ... */ if (bge_autorecover) { if (!(bgep->progress & PROGRESS_BUFS)) { /* * if we can't allocate the ring buffers, * try later */ if (bge_alloc_bufs(bgep) != DDI_SUCCESS) { mutex_exit(bgep->genlock); return (result); } bgep->progress |= PROGRESS_BUFS; } if (!(bgep->progress & PROGRESS_INTR)) { bge_init_rings(bgep); bge_intr_enable(bgep); bgep->progress |= PROGRESS_INTR; } if (!(bgep->progress & PROGRESS_KSTATS)) { bge_init_kstats(bgep, ddi_get_instance(bgep->devinfo)); bgep->progress |= PROGRESS_KSTATS; } BGE_REPORT((bgep, "automatic recovery activated")); if (bge_restart(bgep, B_FALSE) != DDI_SUCCESS) { bgep->bge_chip_state = BGE_CHIP_ERROR; error = B_TRUE; } if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) { bgep->bge_chip_state = BGE_CHIP_ERROR; error = B_TRUE; } if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) { bgep->bge_chip_state = BGE_CHIP_ERROR; error = B_TRUE; } if (error == B_FALSE) { #ifdef BGE_IPMI_ASF if (bgep->asf_enabled && bgep->asf_status != ASF_STAT_RUN) { bgep->asf_timeout_id = timeout( bge_asf_heartbeat, (void *)bgep, drv_usectohz( BGE_ASF_HEARTBEAT_INTERVAL)); bgep->asf_status = ASF_STAT_RUN; } #endif ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_RESTORED); } } break; } /* * If an error is detected, stop the chip now, marking it as * faulty, so that it will be reset next time through ... * * Note that if intr_running is set, then bge_intr() has dropped * genlock to call bge_receive/bge_recycle. Can't stop the chip at * this point so have to wait until the next time the factotum runs. */ if (error && !bgep->bge_intr_running) { #ifdef BGE_IPMI_ASF if (bgep->asf_enabled && (bgep->asf_status == ASF_STAT_RUN)) { /* * We must stop ASF heart beat before bge_chip_stop(), * otherwise some computers (ex. IBM HS20 blade server) * may crash. */ bge_asf_update_status(bgep); bge_asf_stop_timer(bgep); bgep->asf_status = ASF_STAT_STOP; bge_asf_pre_reset_operations(bgep, BGE_INIT_RESET); (void) bge_check_acc_handle(bgep, bgep->cfg_handle); } #endif bge_chip_stop(bgep, B_TRUE); (void) bge_check_acc_handle(bgep, bgep->io_handle); } mutex_exit(bgep->genlock); /* * If the link state changed, tell the world about it. * Note: can't do this while still holding the mutex. */ if (linkchg) mac_link_update(bgep->mh, bgep->link_state); return (result); } /* * High-level cyclic handler * * This routine schedules a (low-level) softint callback to the * factotum, and prods the chip to update the status block (which * will cause a hardware interrupt when complete). */ void bge_chip_cyclic(void *arg); #pragma no_inline(bge_chip_cyclic) void bge_chip_cyclic(void *arg) { bge_t *bgep; bgep = arg; switch (bgep->bge_chip_state) { default: return; case BGE_CHIP_RUNNING: bge_reg_set32(bgep, HOST_COALESCE_MODE_REG, COALESCE_NOW); if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED); break; case BGE_CHIP_FAULT: case BGE_CHIP_ERROR: break; } bge_wake_factotum(bgep); } /* * ========== Ioctl subfunctions ========== */ #undef BGE_DBG #define BGE_DBG BGE_DBG_PPIO /* debug flag for this code */ #if BGE_DEBUGGING || BGE_DO_PPIO static void bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd); #pragma no_inline(bge_chip_peek_cfg) static void bge_chip_peek_cfg(bge_t *bgep, bge_peekpoke_t *ppd) { uint64_t regval; uint64_t regno; BGE_TRACE(("bge_chip_peek_cfg($%p, $%p)", (void *)bgep, (void *)ppd)); regno = ppd->pp_acc_offset; switch (ppd->pp_acc_size) { case 1: regval = pci_config_get8(bgep->cfg_handle, regno); break; case 2: regval = pci_config_get16(bgep->cfg_handle, regno); break; case 4: regval = pci_config_get32(bgep->cfg_handle, regno); break; case 8: regval = pci_config_get64(bgep->cfg_handle, regno); break; } ppd->pp_acc_data = regval; } static void bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd); #pragma no_inline(bge_chip_poke_cfg) static void bge_chip_poke_cfg(bge_t *bgep, bge_peekpoke_t *ppd) { uint64_t regval; uint64_t regno; BGE_TRACE(("bge_chip_poke_cfg($%p, $%p)", (void *)bgep, (void *)ppd)); regno = ppd->pp_acc_offset; regval = ppd->pp_acc_data; switch (ppd->pp_acc_size) { case 1: pci_config_put8(bgep->cfg_handle, regno, regval); break; case 2: pci_config_put16(bgep->cfg_handle, regno, regval); break; case 4: pci_config_put32(bgep->cfg_handle, regno, regval); break; case 8: pci_config_put64(bgep->cfg_handle, regno, regval); break; } } static void bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd); #pragma no_inline(bge_chip_peek_reg) static void bge_chip_peek_reg(bge_t *bgep, bge_peekpoke_t *ppd) { uint64_t regval; void *regaddr; BGE_TRACE(("bge_chip_peek_reg($%p, $%p)", (void *)bgep, (void *)ppd)); regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset); switch (ppd->pp_acc_size) { case 1: regval = ddi_get8(bgep->io_handle, regaddr); break; case 2: regval = ddi_get16(bgep->io_handle, regaddr); break; case 4: regval = ddi_get32(bgep->io_handle, regaddr); break; case 8: regval = ddi_get64(bgep->io_handle, regaddr); break; } ppd->pp_acc_data = regval; } static void bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd); #pragma no_inline(bge_chip_peek_reg) static void bge_chip_poke_reg(bge_t *bgep, bge_peekpoke_t *ppd) { uint64_t regval; void *regaddr; BGE_TRACE(("bge_chip_poke_reg($%p, $%p)", (void *)bgep, (void *)ppd)); regaddr = PIO_ADDR(bgep, ppd->pp_acc_offset); regval = ppd->pp_acc_data; switch (ppd->pp_acc_size) { case 1: ddi_put8(bgep->io_handle, regaddr, regval); break; case 2: ddi_put16(bgep->io_handle, regaddr, regval); break; case 4: ddi_put32(bgep->io_handle, regaddr, regval); break; case 8: ddi_put64(bgep->io_handle, regaddr, regval); break; } BGE_PCICHK(bgep); } static void bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd); #pragma no_inline(bge_chip_peek_nic) static void bge_chip_peek_nic(bge_t *bgep, bge_peekpoke_t *ppd) { uint64_t regoff; uint64_t regval; void *regaddr; BGE_TRACE(("bge_chip_peek_nic($%p, $%p)", (void *)bgep, (void *)ppd)); regoff = ppd->pp_acc_offset; bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK); regoff &= MWBAR_GRANULE_MASK; regoff += NIC_MEM_WINDOW_OFFSET; regaddr = PIO_ADDR(bgep, regoff); switch (ppd->pp_acc_size) { case 1: regval = ddi_get8(bgep->io_handle, regaddr); break; case 2: regval = ddi_get16(bgep->io_handle, regaddr); break; case 4: regval = ddi_get32(bgep->io_handle, regaddr); break; case 8: regval = ddi_get64(bgep->io_handle, regaddr); break; } ppd->pp_acc_data = regval; } static void bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd); #pragma no_inline(bge_chip_poke_nic) static void bge_chip_poke_nic(bge_t *bgep, bge_peekpoke_t *ppd) { uint64_t regoff; uint64_t regval; void *regaddr; BGE_TRACE(("bge_chip_poke_nic($%p, $%p)", (void *)bgep, (void *)ppd)); regoff = ppd->pp_acc_offset; bge_nic_setwin(bgep, regoff & ~MWBAR_GRANULE_MASK); regoff &= MWBAR_GRANULE_MASK; regoff += NIC_MEM_WINDOW_OFFSET; regaddr = PIO_ADDR(bgep, regoff); regval = ppd->pp_acc_data; switch (ppd->pp_acc_size) { case 1: ddi_put8(bgep->io_handle, regaddr, regval); break; case 2: ddi_put16(bgep->io_handle, regaddr, regval); break; case 4: ddi_put32(bgep->io_handle, regaddr, regval); break; case 8: ddi_put64(bgep->io_handle, regaddr, regval); break; } BGE_PCICHK(bgep); } static void bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd); #pragma no_inline(bge_chip_peek_mii) static void bge_chip_peek_mii(bge_t *bgep, bge_peekpoke_t *ppd) { BGE_TRACE(("bge_chip_peek_mii($%p, $%p)", (void *)bgep, (void *)ppd)); ppd->pp_acc_data = bge_mii_get16(bgep, ppd->pp_acc_offset/2); } static void bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd); #pragma no_inline(bge_chip_poke_mii) static void bge_chip_poke_mii(bge_t *bgep, bge_peekpoke_t *ppd) { BGE_TRACE(("bge_chip_poke_mii($%p, $%p)", (void *)bgep, (void *)ppd)); bge_mii_put16(bgep, ppd->pp_acc_offset/2, ppd->pp_acc_data); } #if BGE_SEE_IO32 static void bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd); #pragma no_inline(bge_chip_peek_seeprom) static void bge_chip_peek_seeprom(bge_t *bgep, bge_peekpoke_t *ppd) { uint32_t data; int err; BGE_TRACE(("bge_chip_peek_seeprom($%p, $%p)", (void *)bgep, (void *)ppd)); err = bge_nvmem_rw32(bgep, BGE_SEE_READ, ppd->pp_acc_offset, &data); ppd->pp_acc_data = err ? ~0ull : data; } static void bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd); #pragma no_inline(bge_chip_poke_seeprom) static void bge_chip_poke_seeprom(bge_t *bgep, bge_peekpoke_t *ppd) { uint32_t data; BGE_TRACE(("bge_chip_poke_seeprom($%p, $%p)", (void *)bgep, (void *)ppd)); data = ppd->pp_acc_data; (void) bge_nvmem_rw32(bgep, BGE_SEE_WRITE, ppd->pp_acc_offset, &data); } #endif /* BGE_SEE_IO32 */ #if BGE_FLASH_IO32 static void bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd); #pragma no_inline(bge_chip_peek_flash) static void bge_chip_peek_flash(bge_t *bgep, bge_peekpoke_t *ppd) { uint32_t data; int err; BGE_TRACE(("bge_chip_peek_flash($%p, $%p)", (void *)bgep, (void *)ppd)); err = bge_nvmem_rw32(bgep, BGE_FLASH_READ, ppd->pp_acc_offset, &data); ppd->pp_acc_data = err ? ~0ull : data; } static void bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd); #pragma no_inline(bge_chip_poke_flash) static void bge_chip_poke_flash(bge_t *bgep, bge_peekpoke_t *ppd) { uint32_t data; BGE_TRACE(("bge_chip_poke_flash($%p, $%p)", (void *)bgep, (void *)ppd)); data = ppd->pp_acc_data; (void) bge_nvmem_rw32(bgep, BGE_FLASH_WRITE, ppd->pp_acc_offset, &data); } #endif /* BGE_FLASH_IO32 */ static void bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd); #pragma no_inline(bge_chip_peek_mem) static void bge_chip_peek_mem(bge_t *bgep, bge_peekpoke_t *ppd) { uint64_t regval; void *vaddr; BGE_TRACE(("bge_chip_peek_bge($%p, $%p)", (void *)bgep, (void *)ppd)); vaddr = (void *)(uintptr_t)ppd->pp_acc_offset; switch (ppd->pp_acc_size) { case 1: regval = *(uint8_t *)vaddr; break; case 2: regval = *(uint16_t *)vaddr; break; case 4: regval = *(uint32_t *)vaddr; break; case 8: regval = *(uint64_t *)vaddr; break; } BGE_DEBUG(("bge_chip_peek_mem($%p, $%p) peeked 0x%llx from $%p", (void *)bgep, (void *)ppd, regval, vaddr)); ppd->pp_acc_data = regval; } static void bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd); #pragma no_inline(bge_chip_poke_mem) static void bge_chip_poke_mem(bge_t *bgep, bge_peekpoke_t *ppd) { uint64_t regval; void *vaddr; BGE_TRACE(("bge_chip_poke_mem($%p, $%p)", (void *)bgep, (void *)ppd)); vaddr = (void *)(uintptr_t)ppd->pp_acc_offset; regval = ppd->pp_acc_data; BGE_DEBUG(("bge_chip_poke_mem($%p, $%p) poking 0x%llx at $%p", (void *)bgep, (void *)ppd, regval, vaddr)); switch (ppd->pp_acc_size) { case 1: *(uint8_t *)vaddr = (uint8_t)regval; break; case 2: *(uint16_t *)vaddr = (uint16_t)regval; break; case 4: *(uint32_t *)vaddr = (uint32_t)regval; break; case 8: *(uint64_t *)vaddr = (uint64_t)regval; break; } } static enum ioc_reply bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp); #pragma no_inline(bge_pp_ioctl) static enum ioc_reply bge_pp_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp) { void (*ppfn)(bge_t *bgep, bge_peekpoke_t *ppd); bge_peekpoke_t *ppd; dma_area_t *areap; uint64_t sizemask; uint64_t mem_va; uint64_t maxoff; boolean_t peek; switch (cmd) { default: /* NOTREACHED */ bge_error(bgep, "bge_pp_ioctl: invalid cmd 0x%x", cmd); return (IOC_INVAL); case BGE_PEEK: peek = B_TRUE; break; case BGE_POKE: peek = B_FALSE; break; } /* * Validate format of ioctl */ if (iocp->ioc_count != sizeof (bge_peekpoke_t)) return (IOC_INVAL); if (mp->b_cont == NULL) return (IOC_INVAL); ppd = (bge_peekpoke_t *)mp->b_cont->b_rptr; /* * Validate request parameters */ switch (ppd->pp_acc_space) { default: return (IOC_INVAL); case BGE_PP_SPACE_CFG: /* * Config space */ sizemask = 8|4|2|1; mem_va = 0; maxoff = PCI_CONF_HDR_SIZE; ppfn = peek ? bge_chip_peek_cfg : bge_chip_poke_cfg; break; case BGE_PP_SPACE_REG: /* * Memory-mapped I/O space */ sizemask = 8|4|2|1; mem_va = 0; maxoff = RIAAR_REGISTER_MAX; ppfn = peek ? bge_chip_peek_reg : bge_chip_poke_reg; break; case BGE_PP_SPACE_NIC: /* * NIC on-chip memory */ sizemask = 8|4|2|1; mem_va = 0; maxoff = MWBAR_ONCHIP_MAX; ppfn = peek ? bge_chip_peek_nic : bge_chip_poke_nic; break; case BGE_PP_SPACE_MII: /* * PHY's MII registers * NB: all PHY registers are two bytes, but the * addresses increment in ones (word addressing). * So we scale the address here, then undo the * transformation inside the peek/poke functions. */ ppd->pp_acc_offset *= 2; sizemask = 2; mem_va = 0; maxoff = (MII_MAXREG+1)*2; ppfn = peek ? bge_chip_peek_mii : bge_chip_poke_mii; break; #if BGE_SEE_IO32 case BGE_PP_SPACE_SEEPROM: /* * Attached SEEPROM(s), if any. * NB: we use the high-order bits of the 'address' as * a device select to accommodate multiple SEEPROMS, * If each one is the maximum size (64kbytes), this * makes them appear contiguous. Otherwise, there may * be holes in the mapping. ENxS doesn't have any * SEEPROMs anyway ... */ sizemask = 4; mem_va = 0; maxoff = SEEPROM_DEV_AND_ADDR_MASK; ppfn = peek ? bge_chip_peek_seeprom : bge_chip_poke_seeprom; break; #endif /* BGE_SEE_IO32 */ #if BGE_FLASH_IO32 case BGE_PP_SPACE_FLASH: /* * Attached Flash device (if any); a maximum of one device * is currently supported. But it can be up to 1MB (unlike * the 64k limit on SEEPROMs) so why would you need more ;-) */ sizemask = 4; mem_va = 0; maxoff = NVM_FLASH_ADDR_MASK; ppfn = peek ? bge_chip_peek_flash : bge_chip_poke_flash; break; #endif /* BGE_FLASH_IO32 */ case BGE_PP_SPACE_BGE: /* * BGE data structure! */ sizemask = 8|4|2|1; mem_va = (uintptr_t)bgep; maxoff = sizeof (*bgep); ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem; break; case BGE_PP_SPACE_STATUS: case BGE_PP_SPACE_STATISTICS: case BGE_PP_SPACE_TXDESC: case BGE_PP_SPACE_TXBUFF: case BGE_PP_SPACE_RXDESC: case BGE_PP_SPACE_RXBUFF: /* * Various DMA_AREAs */ switch (ppd->pp_acc_space) { case BGE_PP_SPACE_TXDESC: areap = &bgep->tx_desc; break; case BGE_PP_SPACE_TXBUFF: areap = &bgep->tx_buff[0]; break; case BGE_PP_SPACE_RXDESC: areap = &bgep->rx_desc[0]; break; case BGE_PP_SPACE_RXBUFF: areap = &bgep->rx_buff[0]; break; case BGE_PP_SPACE_STATUS: areap = &bgep->status_block; break; case BGE_PP_SPACE_STATISTICS: if (bgep->chipid.statistic_type == BGE_STAT_BLK) areap = &bgep->statistics; break; } sizemask = 8|4|2|1; mem_va = (uintptr_t)areap->mem_va; maxoff = areap->alength; ppfn = peek ? bge_chip_peek_mem : bge_chip_poke_mem; break; } switch (ppd->pp_acc_size) { default: return (IOC_INVAL); case 8: case 4: case 2: case 1: if ((ppd->pp_acc_size & sizemask) == 0) return (IOC_INVAL); break; } if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0) return (IOC_INVAL); if (ppd->pp_acc_offset >= maxoff) return (IOC_INVAL); if (ppd->pp_acc_offset+ppd->pp_acc_size > maxoff) return (IOC_INVAL); /* * All OK - go do it! */ ppd->pp_acc_offset += mem_va; (*ppfn)(bgep, ppd); return (peek ? IOC_REPLY : IOC_ACK); } static enum ioc_reply bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp); #pragma no_inline(bge_diag_ioctl) static enum ioc_reply bge_diag_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp) { ASSERT(mutex_owned(bgep->genlock)); switch (cmd) { default: /* NOTREACHED */ bge_error(bgep, "bge_diag_ioctl: invalid cmd 0x%x", cmd); return (IOC_INVAL); case BGE_DIAG: /* * Currently a no-op */ return (IOC_ACK); case BGE_PEEK: case BGE_POKE: return (bge_pp_ioctl(bgep, cmd, mp, iocp)); case BGE_PHY_RESET: return (IOC_RESTART_ACK); case BGE_SOFT_RESET: case BGE_HARD_RESET: /* * Reset and reinitialise the 570x hardware */ (void) bge_restart(bgep, cmd == BGE_HARD_RESET); return (IOC_ACK); } /* NOTREACHED */ } #endif /* BGE_DEBUGGING || BGE_DO_PPIO */ static enum ioc_reply bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp); #pragma no_inline(bge_mii_ioctl) static enum ioc_reply bge_mii_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp) { struct bge_mii_rw *miirwp; /* * Validate format of ioctl */ if (iocp->ioc_count != sizeof (struct bge_mii_rw)) return (IOC_INVAL); if (mp->b_cont == NULL) return (IOC_INVAL); miirwp = (struct bge_mii_rw *)mp->b_cont->b_rptr; /* * Validate request parameters ... */ if (miirwp->mii_reg > MII_MAXREG) return (IOC_INVAL); switch (cmd) { default: /* NOTREACHED */ bge_error(bgep, "bge_mii_ioctl: invalid cmd 0x%x", cmd); return (IOC_INVAL); case BGE_MII_READ: miirwp->mii_data = bge_mii_get16(bgep, miirwp->mii_reg); return (IOC_REPLY); case BGE_MII_WRITE: bge_mii_put16(bgep, miirwp->mii_reg, miirwp->mii_data); return (IOC_ACK); } /* NOTREACHED */ } #if BGE_SEE_IO32 static enum ioc_reply bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp); #pragma no_inline(bge_see_ioctl) static enum ioc_reply bge_see_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp) { struct bge_see_rw *seerwp; /* * Validate format of ioctl */ if (iocp->ioc_count != sizeof (struct bge_see_rw)) return (IOC_INVAL); if (mp->b_cont == NULL) return (IOC_INVAL); seerwp = (struct bge_see_rw *)mp->b_cont->b_rptr; /* * Validate request parameters ... */ if (seerwp->see_addr & ~SEEPROM_DEV_AND_ADDR_MASK) return (IOC_INVAL); switch (cmd) { default: /* NOTREACHED */ bge_error(bgep, "bge_see_ioctl: invalid cmd 0x%x", cmd); return (IOC_INVAL); case BGE_SEE_READ: case BGE_SEE_WRITE: iocp->ioc_error = bge_nvmem_rw32(bgep, cmd, seerwp->see_addr, &seerwp->see_data); return (IOC_REPLY); } /* NOTREACHED */ } #endif /* BGE_SEE_IO32 */ #if BGE_FLASH_IO32 static enum ioc_reply bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp); #pragma no_inline(bge_flash_ioctl) static enum ioc_reply bge_flash_ioctl(bge_t *bgep, int cmd, mblk_t *mp, struct iocblk *iocp) { struct bge_flash_rw *flashrwp; /* * Validate format of ioctl */ if (iocp->ioc_count != sizeof (struct bge_flash_rw)) return (IOC_INVAL); if (mp->b_cont == NULL) return (IOC_INVAL); flashrwp = (struct bge_flash_rw *)mp->b_cont->b_rptr; /* * Validate request parameters ... */ if (flashrwp->flash_addr & ~NVM_FLASH_ADDR_MASK) return (IOC_INVAL); switch (cmd) { default: /* NOTREACHED */ bge_error(bgep, "bge_flash_ioctl: invalid cmd 0x%x", cmd); return (IOC_INVAL); case BGE_FLASH_READ: case BGE_FLASH_WRITE: iocp->ioc_error = bge_nvmem_rw32(bgep, cmd, flashrwp->flash_addr, &flashrwp->flash_data); return (IOC_REPLY); } /* NOTREACHED */ } #endif /* BGE_FLASH_IO32 */ enum ioc_reply bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp); #pragma no_inline(bge_chip_ioctl) enum ioc_reply bge_chip_ioctl(bge_t *bgep, queue_t *wq, mblk_t *mp, struct iocblk *iocp) { int cmd; BGE_TRACE(("bge_chip_ioctl($%p, $%p, $%p, $%p)", (void *)bgep, (void *)wq, (void *)mp, (void *)iocp)); ASSERT(mutex_owned(bgep->genlock)); cmd = iocp->ioc_cmd; switch (cmd) { default: /* NOTREACHED */ bge_error(bgep, "bge_chip_ioctl: invalid cmd 0x%x", cmd); return (IOC_INVAL); case BGE_DIAG: case BGE_PEEK: case BGE_POKE: case BGE_PHY_RESET: case BGE_SOFT_RESET: case BGE_HARD_RESET: #if BGE_DEBUGGING || BGE_DO_PPIO return (bge_diag_ioctl(bgep, cmd, mp, iocp)); #else return (IOC_INVAL); #endif /* BGE_DEBUGGING || BGE_DO_PPIO */ case BGE_MII_READ: case BGE_MII_WRITE: return (bge_mii_ioctl(bgep, cmd, mp, iocp)); #if BGE_SEE_IO32 case BGE_SEE_READ: case BGE_SEE_WRITE: return (bge_see_ioctl(bgep, cmd, mp, iocp)); #endif /* BGE_SEE_IO32 */ #if BGE_FLASH_IO32 case BGE_FLASH_READ: case BGE_FLASH_WRITE: return (bge_flash_ioctl(bgep, cmd, mp, iocp)); #endif /* BGE_FLASH_IO32 */ } /* NOTREACHED */ } void bge_chip_blank(void *arg, time_t ticks, uint_t count) { bge_t *bgep = arg; mutex_enter(bgep->genlock); bge_reg_put32(bgep, RCV_COALESCE_TICKS_REG, ticks); bge_reg_put32(bgep, RCV_COALESCE_MAX_BD_REG, count); if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_UNAFFECTED); mutex_exit(bgep->genlock); } #ifdef BGE_IPMI_ASF uint32_t bge_nic_read32(bge_t *bgep, bge_regno_t addr) { uint32_t data; if (!bgep->asf_wordswapped) { /* a workaround word swap error */ if (addr & 4) addr = addr - 4; else addr = addr + 4; } pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, addr); data = pci_config_get32(bgep->cfg_handle, PCI_CONF_BGE_MWDAR); pci_config_put32(bgep->cfg_handle, PCI_CONF_BGE_MWBAR, 0); return (data); } void bge_asf_update_status(bge_t *bgep) { uint32_t event; bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_ALIVE); bge_nic_put32(bgep, BGE_CMD_LENGTH_MAILBOX, 4); bge_nic_put32(bgep, BGE_CMD_DATA_MAILBOX, 3); event = bge_reg_get32(bgep, RX_RISC_EVENT_REG); bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT); } /* * The driver is supposed to notify ASF that the OS is still running * every three seconds, otherwise the management server may attempt * to reboot the machine. If it hasn't actually failed, this is * not a desirable result. However, this isn't running as a real-time * thread, and even if it were, it might not be able to generate the * heartbeat in a timely manner due to system load. As it isn't a * significant strain on the machine, we will set the interval to half * of the required value. */ void bge_asf_heartbeat(void *arg) { bge_t *bgep = (bge_t *)arg; mutex_enter(bgep->genlock); bge_asf_update_status((bge_t *)bgep); if (bge_check_acc_handle(bgep, bgep->io_handle) != DDI_FM_OK) ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); if (bge_check_acc_handle(bgep, bgep->cfg_handle) != DDI_FM_OK) ddi_fm_service_impact(bgep->devinfo, DDI_SERVICE_DEGRADED); mutex_exit(bgep->genlock); ((bge_t *)bgep)->asf_timeout_id = timeout(bge_asf_heartbeat, bgep, drv_usectohz(BGE_ASF_HEARTBEAT_INTERVAL)); } void bge_asf_stop_timer(bge_t *bgep) { timeout_id_t tmp_id = 0; while ((bgep->asf_timeout_id != 0) && (tmp_id != bgep->asf_timeout_id)) { tmp_id = bgep->asf_timeout_id; (void) untimeout(tmp_id); } bgep->asf_timeout_id = 0; } /* * This function should be placed at the earliest position of bge_attach(). */ void bge_asf_get_config(bge_t *bgep) { uint32_t nicsig; uint32_t niccfg; nicsig = bge_nic_read32(bgep, BGE_NIC_DATA_SIG_ADDR); if (nicsig == BGE_NIC_DATA_SIG) { niccfg = bge_nic_read32(bgep, BGE_NIC_DATA_NIC_CFG_ADDR); if (niccfg & BGE_NIC_CFG_ENABLE_ASF) /* * Here, we don't consider BAXTER, because BGE haven't * supported BAXTER (that is 5752). Also, as I know, * BAXTER doesn't support ASF feature. */ bgep->asf_enabled = B_TRUE; else bgep->asf_enabled = B_FALSE; } else bgep->asf_enabled = B_FALSE; } void bge_asf_pre_reset_operations(bge_t *bgep, uint32_t mode) { uint32_t tries; uint32_t event; ASSERT(bgep->asf_enabled); /* Issues "pause firmware" command and wait for ACK */ bge_nic_put32(bgep, BGE_CMD_MAILBOX, BGE_CMD_NICDRV_PAUSE_FW); event = bge_reg_get32(bgep, RX_RISC_EVENT_REG); bge_reg_put32(bgep, RX_RISC_EVENT_REG, event | RRER_ASF_EVENT); event = bge_reg_get32(bgep, RX_RISC_EVENT_REG); tries = 0; while ((event & RRER_ASF_EVENT) && (tries < 100)) { drv_usecwait(1); tries ++; event = bge_reg_get32(bgep, RX_RISC_EVENT_REG); } bge_nic_put32(bgep, BGE_FIRMWARE_MAILBOX, BGE_MAGIC_NUM_FIRMWARE_INIT_DONE); if (bgep->asf_newhandshake) { switch (mode) { case BGE_INIT_RESET: bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX, BGE_DRV_STATE_START); break; case BGE_SHUTDOWN_RESET: bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX, BGE_DRV_STATE_UNLOAD); break; case BGE_SUSPEND_RESET: bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX, BGE_DRV_STATE_SUSPEND); break; default: break; } } } void bge_asf_post_reset_old_mode(bge_t *bgep, uint32_t mode) { switch (mode) { case BGE_INIT_RESET: bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX, BGE_DRV_STATE_START); break; case BGE_SHUTDOWN_RESET: bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX, BGE_DRV_STATE_UNLOAD); break; case BGE_SUSPEND_RESET: bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX, BGE_DRV_STATE_SUSPEND); break; default: break; } } void bge_asf_post_reset_new_mode(bge_t *bgep, uint32_t mode) { switch (mode) { case BGE_INIT_RESET: bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX, BGE_DRV_STATE_START_DONE); break; case BGE_SHUTDOWN_RESET: bge_nic_put32(bgep, BGE_DRV_STATE_MAILBOX, BGE_DRV_STATE_UNLOAD_DONE); break; default: break; } } #endif /* BGE_IPMI_ASF */