/*
 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

/*
 * Copyright (c) 2008 Atheros Communications Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include <sys/param.h>
#include <sys/types.h>
#include <sys/signal.h>
#include <sys/stream.h>
#include <sys/termio.h>
#include <sys/errno.h>
#include <sys/file.h>
#include <sys/cmn_err.h>
#include <sys/stropts.h>
#include <sys/strsubr.h>
#include <sys/strtty.h>
#include <sys/kbio.h>
#include <sys/cred.h>
#include <sys/stat.h>
#include <sys/consdev.h>
#include <sys/kmem.h>
#include <sys/modctl.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/pci.h>
#include <sys/errno.h>
#include <sys/gld.h>
#include <sys/dlpi.h>
#include <sys/ethernet.h>
#include <sys/list.h>
#include <sys/byteorder.h>
#include <sys/strsun.h>
#include <inet/common.h>
#include <inet/nd.h>
#include <inet/mi.h>
#include <inet/wifi_ioctl.h>

#include "arn_core.h"
#include "arn_hw.h"
#include "arn_reg.h"
#include "arn_phy.h"

static void
ath9k_hw_analog_shift_rmw(struct ath_hal *ah,
    uint32_t reg, uint32_t mask,
    uint32_t shift, uint32_t val)
{
	uint32_t regVal;

	regVal = REG_READ(ah, reg) & ~mask;
	regVal |= (val << shift) & mask;

	REG_WRITE(ah, reg, regVal);

	if (ah->ah_config.analog_shiftreg)
		drv_usecwait(100);
}

static inline uint16_t
ath9k_hw_fbin2freq(uint8_t fbin, boolean_t is2GHz)
{

	if (fbin == AR5416_BCHAN_UNUSED)
		return (fbin);

	return ((uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin)));
}

static inline int16_t
ath9k_hw_interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
    int16_t targetLeft, int16_t targetRight)
{
	int16_t rv;

	if (srcRight == srcLeft) {
		rv = targetLeft;
	} else {
		rv = (int16_t)(((target - srcLeft) * targetRight +
		    (srcRight - target) * targetLeft) /
		    (srcRight - srcLeft));
	}
	return (rv);
}

static inline boolean_t
ath9k_hw_get_lower_upper_index(uint8_t target, uint8_t *pList,
    uint16_t listSize, uint16_t *indexL, uint16_t *indexR)
{
	uint16_t i;

	if (target <= pList[0]) {
		*indexL = *indexR = 0;
		return (B_TRUE);
	}
	if (target >= pList[listSize - 1]) {
		*indexL = *indexR = (uint16_t)(listSize - 1);
		return (B_TRUE);
	}

	for (i = 0; i < listSize - 1; i++) {
		if (pList[i] == target) {
			*indexL = *indexR = i;
			return (B_TRUE);
		}
		if (target < pList[i + 1]) {
			*indexL = i;
			*indexR = (uint16_t)(i + 1);
			return (B_FALSE);
		}
	}
	return (B_FALSE);
}

static boolean_t
ath9k_hw_eeprom_read(struct ath_hal *ah, uint32_t off, uint16_t *data)
{
	(void) REG_READ(ah, AR5416_EEPROM_OFFSET + (off << AR5416_EEPROM_S));

	if (!ath9k_hw_wait(ah, AR_EEPROM_STATUS_DATA,
	    AR_EEPROM_STATUS_DATA_BUSY |
	    AR_EEPROM_STATUS_DATA_PROT_ACCESS, 0)) {
		return (B_FALSE);
	}

	*data = MS(REG_READ(ah, AR_EEPROM_STATUS_DATA),
	    AR_EEPROM_STATUS_DATA_VAL);

	return (B_TRUE);
}

/* ARGSUSED */
static int
ath9k_hw_flash_map(struct ath_hal *ah)
{
	ARN_DBG((ARN_DBG_EEPROM, "arn: ath9k_hw_flash_map(): "
	    "using flash but eepom\n"));

	return (0);
}

static boolean_t
ath9k_hw_flash_read(struct ath_hal *ah, uint32_t off, uint16_t *data)
{
	*data = FLASH_READ(ah, off);

	return (B_TRUE);
}

static inline boolean_t
ath9k_hw_nvram_read(struct ath_hal *ah, uint32_t off, uint16_t *data)
{
	if (ath9k_hw_use_flash(ah))
		return (ath9k_hw_flash_read(ah, off, data));
	else
		return (ath9k_hw_eeprom_read(ah, off, data));
}

static boolean_t
ath9k_hw_fill_4k_eeprom(struct ath_hal *ah)
{
#define	SIZE_EEPROM_4K	(sizeof (struct ar5416_eeprom_4k) / sizeof (uint16_t))
	struct ath_hal_5416 *ahp = AH5416(ah);
	struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k;
	uint16_t *eep_data;
	int addr, eep_start_loc = 0;

	eep_start_loc = 64;

	if (!ath9k_hw_use_flash(ah)) {
		ARN_DBG((ARN_DBG_EEPROM,
		    "Reading from EEPROM, not flash\n"));
	}

	eep_data = (uint16_t *)eep;

	for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
		if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data)) {
			ARN_DBG((ARN_DBG_EEPROM,
			    "Unable to read eeprom region \n"));
			return (B_FALSE);
		}
		eep_data++;
	}
	return (B_TRUE);
#undef SIZE_EEPROM_4K
}

static boolean_t
ath9k_hw_fill_def_eeprom(struct ath_hal *ah)
{
#define	SIZE_EEPROM_DEF	(sizeof (struct ar5416_eeprom_def) / sizeof (uint16_t))
	struct ath_hal_5416 *ahp = AH5416(ah);
	struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def;
	uint16_t *eep_data;
	int addr, ar5416_eep_start_loc = 0x100;

	eep_data = (uint16_t *)eep;

	for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
		if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc,
		    eep_data)) {
			ARN_DBG((ARN_DBG_EEPROM,
			    "Unable to read eeprom region\n"));
			return (B_FALSE);
		}
		eep_data++;
	}
	return (B_TRUE);
#undef SIZE_EEPROM_DEF
}

static boolean_t (*ath9k_fill_eeprom[]) (struct ath_hal *) = {
	ath9k_hw_fill_def_eeprom,
	ath9k_hw_fill_4k_eeprom
};

static inline boolean_t
ath9k_hw_fill_eeprom(struct ath_hal *ah)
{
	struct ath_hal_5416 *ahp = AH5416(ah);

	return (ath9k_fill_eeprom[ahp->ah_eep_map](ah));
}

static int
ath9k_hw_check_def_eeprom(struct ath_hal *ah)
{
	struct ath_hal_5416 *ahp = AH5416(ah);
	struct ar5416_eeprom_def *eep =
	    (struct ar5416_eeprom_def *)&ahp->ah_eeprom.def;
	uint16_t *eepdata, temp, magic, magic2;
	uint32_t sum = 0, el;
	boolean_t need_swap = B_FALSE;
	int i, addr, size;
	if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
		ARN_DBG((ARN_DBG_EEPROM, "arn: "
		    "%s: Reading Magic # failed\n", __func__));
		return (B_FALSE);
	}

	if (!ath9k_hw_use_flash(ah)) {
		ARN_DBG((ARN_DBG_EEPROM, "ath9k: "
		    "%s: Read Magic = 0x%04X\n", __func__, magic));

		if (magic != AR5416_EEPROM_MAGIC) {
			magic2 = swab16(magic);

			if (magic2 == AR5416_EEPROM_MAGIC) {
				size = sizeof (struct ar5416_eeprom_def);
				need_swap = B_TRUE;
				eepdata = (uint16_t *)(&ahp->ah_eeprom);

				for (addr = 0; addr < size / sizeof (uint16_t);
				    addr++) {
					temp = swab16(*eepdata);
					*eepdata = temp;
					eepdata++;

					ARN_DBG((ARN_DBG_EEPROM,
					    "0x%04X  ", *eepdata));

					if (((addr + 1) % 6) == 0)
						ARN_DBG((ARN_DBG_EEPROM,
						    "arn: "
						    "%s\n", __func__));
				}
			} else {
				ARN_DBG((ARN_DBG_EEPROM,
				    "Invalid EEPROM Magic. "
				    "endianness mismatch.\n"));
				return (EINVAL);
			}
		}
	}

	ARN_DBG((ARN_DBG_EEPROM, "need_swap = %s.\n",
	    need_swap ? "TRUE" : "FALSE"));

	if (need_swap)
		el = swab16(ahp->ah_eeprom.def.baseEepHeader.length);
	else
		el = ahp->ah_eeprom.def.baseEepHeader.length;

	if (el > sizeof (struct ar5416_eeprom_def))
		el = sizeof (struct ar5416_eeprom_def) / sizeof (uint16_t);
	else
		el = el / sizeof (uint16_t);

	eepdata = (uint16_t *)(&ahp->ah_eeprom);

	for (i = 0; i < el; i++)
		sum ^= *eepdata++;

	if (need_swap) {
		uint32_t integer, j;
		uint16_t word;

		ARN_DBG((ARN_DBG_EEPROM,
		    "EEPROM Endianness is not native.. Changing \n"));

		word = swab16(eep->baseEepHeader.length);
		eep->baseEepHeader.length = word;

		word = swab16(eep->baseEepHeader.checksum);
		eep->baseEepHeader.checksum = word;

		word = swab16(eep->baseEepHeader.version);
		eep->baseEepHeader.version = word;

		word = swab16(eep->baseEepHeader.regDmn[0]);
		eep->baseEepHeader.regDmn[0] = word;

		word = swab16(eep->baseEepHeader.regDmn[1]);
		eep->baseEepHeader.regDmn[1] = word;

		word = swab16(eep->baseEepHeader.rfSilent);
		eep->baseEepHeader.rfSilent = word;

		word = swab16(eep->baseEepHeader.blueToothOptions);
		eep->baseEepHeader.blueToothOptions = word;

		word = swab16(eep->baseEepHeader.deviceCap);
		eep->baseEepHeader.deviceCap = word;

		for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
			struct modal_eep_header *pModal =
			    &eep->modalHeader[j];
			integer = swab32(pModal->antCtrlCommon);
			pModal->antCtrlCommon = integer;

			for (i = 0; i < AR5416_MAX_CHAINS; i++) {
				integer = swab32(pModal->antCtrlChain[i]);
				pModal->antCtrlChain[i] = integer;
			}

			for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
				word = swab16(pModal->spurChans[i].spurChan);
				pModal->spurChans[i].spurChan = word;
			}
		}
	}

	if (sum != 0xffff || ar5416_get_eep_ver(ahp) != AR5416_EEP_VER ||
	    ar5416_get_eep_rev(ahp) < AR5416_EEP_NO_BACK_VER) {
		ARN_DBG((ARN_DBG_EEPROM,
		    "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
		    sum, ar5416_get_eep_ver(ahp)));
		return (EINVAL);
	}

	return (0);
}

static int
ath9k_hw_check_4k_eeprom(struct ath_hal *ah)
{
#define	EEPROM_4K_SIZE	(sizeof (struct ar5416_eeprom_4k) / sizeof (uint16_t))
	struct ath_hal_5416 *ahp = AH5416(ah);
	struct ar5416_eeprom_4k *eep =
	    (struct ar5416_eeprom_4k *)&ahp->ah_eeprom.map4k;
	uint16_t *eepdata, temp, magic, magic2;
	uint32_t sum = 0, el;
	boolean_t need_swap = B_FALSE;
	int i, addr;


	if (!ath9k_hw_use_flash(ah)) {

		if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
		    &magic)) {
			ARN_DBG((ARN_DBG_EEPROM,
			    "Reading Magic # failed\n"));
			return (B_FALSE);
		}

		ARN_DBG((ARN_DBG_EEPROM,
		    "Read Magic = 0x%04X\n", magic));

		if (magic != AR5416_EEPROM_MAGIC) {
			magic2 = swab16(magic);

			if (magic2 == AR5416_EEPROM_MAGIC) {
				need_swap = B_TRUE;
				eepdata = (uint16_t *)(&ahp->ah_eeprom);

				for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
					temp = swab16(*eepdata);
					*eepdata = temp;
					eepdata++;

					ARN_DBG((ARN_DBG_EEPROM,
					    "0x%04X  ", *eepdata));

					if (((addr + 1) % 6) == 0)
						ARN_DBG((ARN_DBG_EEPROM, "\n"));
				}
			} else {
				ARN_DBG((ARN_DBG_EEPROM,
				    "Invalid EEPROM Magic. "
				    "endianness mismatch.\n"));
				return (EINVAL);
			}
		}
	}

	ARN_DBG((ARN_DBG_EEPROM, "need_swap = %s.\n",
	    need_swap ? "True" : "False"));

	if (need_swap)
		el = swab16(ahp->ah_eeprom.map4k.baseEepHeader.length);
	else
		el = ahp->ah_eeprom.map4k.baseEepHeader.length;

	if (el > sizeof (struct ar5416_eeprom_def))
		el = sizeof (struct ar5416_eeprom_4k) / sizeof (uint16_t);
	else
		el = el / sizeof (uint16_t);

	eepdata = (uint16_t *)(&ahp->ah_eeprom);

	for (i = 0; i < el; i++)
		sum ^= *eepdata++;

	if (need_swap) {
		uint32_t integer;
		uint16_t word;

		ARN_DBG((ARN_DBG_EEPROM,
		    "EEPROM Endianness is not native.. Changing \n"));

		word = swab16(eep->baseEepHeader.length);
		eep->baseEepHeader.length = word;

		word = swab16(eep->baseEepHeader.checksum);
		eep->baseEepHeader.checksum = word;

		word = swab16(eep->baseEepHeader.version);
		eep->baseEepHeader.version = word;

		word = swab16(eep->baseEepHeader.regDmn[0]);
		eep->baseEepHeader.regDmn[0] = word;

		word = swab16(eep->baseEepHeader.regDmn[1]);
		eep->baseEepHeader.regDmn[1] = word;

		word = swab16(eep->baseEepHeader.rfSilent);
		eep->baseEepHeader.rfSilent = word;

		word = swab16(eep->baseEepHeader.blueToothOptions);
		eep->baseEepHeader.blueToothOptions = word;

		word = swab16(eep->baseEepHeader.deviceCap);
		eep->baseEepHeader.deviceCap = word;

		integer = swab32(eep->modalHeader.antCtrlCommon);
		eep->modalHeader.antCtrlCommon = integer;

		for (i = 0; i < AR5416_MAX_CHAINS; i++) {
			integer = swab32(eep->modalHeader.antCtrlChain[i]);
			eep->modalHeader.antCtrlChain[i] = integer;
		}

		for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
			word = swab16(eep->modalHeader.spurChans[i].spurChan);
			eep->modalHeader.spurChans[i].spurChan = word;
		}
	}

	if (sum != 0xffff || ar5416_get_eep4k_ver(ahp) != AR5416_EEP_VER ||
	    ar5416_get_eep4k_rev(ahp) < AR5416_EEP_NO_BACK_VER) {
		ARN_DBG((ARN_DBG_EEPROM,
		    "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
		    sum, ar5416_get_eep4k_ver(ahp)));
		return (EINVAL);
	}

	return (0);
#undef EEPROM_4K_SIZE
}

static int
(*ath9k_check_eeprom[]) (struct ath_hal *) = {
    ath9k_hw_check_def_eeprom,
    ath9k_hw_check_4k_eeprom
};

static inline int
ath9k_hw_check_eeprom(struct ath_hal *ah)
{
	struct ath_hal_5416 *ahp = AH5416(ah);

	return (ath9k_check_eeprom[ahp->ah_eep_map](ah));
}

static inline boolean_t
ath9k_hw_fill_vpd_table(uint8_t pwrMin, uint8_t pwrMax, uint8_t *pPwrList,
    uint8_t *pVpdList, uint16_t numIntercepts, uint8_t *pRetVpdList)
{
	uint16_t i, k;
	uint8_t currPwr = pwrMin;
	uint16_t idxL = 0, idxR = 0;

	for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
		(void) ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
		    numIntercepts, &(idxL), &(idxR));
		if (idxR < 1)
			idxR = 1;
		if (idxL == numIntercepts - 1)
			idxL = (uint16_t)(numIntercepts - 2);
		if (pPwrList[idxL] == pPwrList[idxR])
			k = pVpdList[idxL];
		else
			k = (uint16_t)
			    (((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
			    (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
			    (pPwrList[idxR] - pPwrList[idxL]));
		pRetVpdList[i] = (uint8_t)k;
		currPwr += 2;
	}

	return (B_TRUE);
}

static void
ath9k_hw_get_4k_gain_boundaries_pdadcs(struct ath_hal *ah,
    struct ath9k_channel *chan,
    struct cal_data_per_freq_4k *pRawDataSet,
    uint8_t *bChans, uint16_t availPiers,
    uint16_t tPdGainOverlap, int16_t *pMinCalPower,
    uint16_t *pPdGainBoundaries, uint8_t *pPDADCValues,
    uint16_t numXpdGains)
{
#define	TMP_VAL_VPD_TABLE \
	((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep));
	int i, j, k;
	int16_t ss;
	uint16_t idxL = 0, idxR = 0, numPiers;
	static uint8_t vpdTableL[AR5416_EEP4K_NUM_PD_GAINS]
	    [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
	static uint8_t vpdTableR[AR5416_EEP4K_NUM_PD_GAINS]
	    [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
	static uint8_t vpdTableI[AR5416_EEP4K_NUM_PD_GAINS]
	    [AR5416_MAX_PWR_RANGE_IN_HALF_DB];

	uint8_t *pVpdL, *pVpdR, *pPwrL, *pPwrR;
	uint8_t minPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
	uint8_t maxPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
	int16_t vpdStep;
	int16_t tmpVal;
	uint16_t sizeCurrVpdTable, maxIndex, tgtIndex;
	boolean_t match;
	int16_t minDelta = 0;
	struct chan_centers centers;
#define	PD_GAIN_BOUNDARY_DEFAULT	58;

	ath9k_hw_get_channel_centers(ah, chan, &centers);

	for (numPiers = 0; numPiers < availPiers; numPiers++) {
		if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
			break;
	}

	match = ath9k_hw_get_lower_upper_index(
	    (uint8_t)FREQ2FBIN(centers.synth_center,
	    IS_CHAN_2GHZ(chan)), bChans, numPiers,
	    &idxL, &idxR);

	if (match) {
		for (i = 0; i < numXpdGains; i++) {
			minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
			maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
			(void) ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
			    pRawDataSet[idxL].pwrPdg[i],
			    pRawDataSet[idxL].vpdPdg[i],
			    AR5416_EEP4K_PD_GAIN_ICEPTS,
			    vpdTableI[i]);
		}
	} else {
		for (i = 0; i < numXpdGains; i++) {
			pVpdL = pRawDataSet[idxL].vpdPdg[i];
			pPwrL = pRawDataSet[idxL].pwrPdg[i];
			pVpdR = pRawDataSet[idxR].vpdPdg[i];
			pPwrR = pRawDataSet[idxR].pwrPdg[i];

			minPwrT4[i] = max(pPwrL[0], pPwrR[0]);

			maxPwrT4[i] =
			    min(pPwrL[AR5416_EEP4K_PD_GAIN_ICEPTS - 1],
			    pPwrR[AR5416_EEP4K_PD_GAIN_ICEPTS - 1]);


			(void) ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
			    pPwrL, pVpdL,
			    AR5416_EEP4K_PD_GAIN_ICEPTS,
			    vpdTableL[i]);
			(void) ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
			    pPwrR, pVpdR,
			    AR5416_EEP4K_PD_GAIN_ICEPTS,
			    vpdTableR[i]);

			for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
				vpdTableI[i][j] =
				    (uint8_t)(ath9k_hw_interpolate((uint16_t)
				    FREQ2FBIN(centers.
				    synth_center,
				    IS_CHAN_2GHZ
				    (chan)),
				    bChans[idxL], bChans[idxR],
				    vpdTableL[i][j], vpdTableR[i][j]));
			}
		}
	}

	*pMinCalPower = (int16_t)(minPwrT4[0] / 2);

	k = 0;

	for (i = 0; i < numXpdGains; i++) {
		if (i == (numXpdGains - 1))
			pPdGainBoundaries[i] =
			    (uint16_t)(maxPwrT4[i] / 2);
		else
			pPdGainBoundaries[i] =
			    (uint16_t)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);

		pPdGainBoundaries[i] =
		    min((uint16_t)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);

		if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah)) {
			minDelta = pPdGainBoundaries[0] - 23;
			pPdGainBoundaries[0] = 23;
		} else {
			minDelta = 0;
		}

		if (i == 0) {
			if (AR_SREV_9280_10_OR_LATER(ah))
				ss = (int16_t)(0 - (minPwrT4[i] / 2));
			else
				ss = 0;
		} else {
			ss = (int16_t)((pPdGainBoundaries[i - 1] -
			    (minPwrT4[i] / 2)) -
			    tPdGainOverlap + 1 + minDelta);
		}
		vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);

		while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
			tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
			pPDADCValues[k++] =
			    (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
			ss++;
		}

		sizeCurrVpdTable =
		    (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
		tgtIndex = (uint8_t)
		    (pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
		maxIndex =
		    (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;

		while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1)))
			pPDADCValues[k++] = vpdTableI[i][ss++];

		vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
		    vpdTableI[i][sizeCurrVpdTable - 2]);
		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);

		if (tgtIndex > maxIndex) {
			while ((ss <= tgtIndex) &&
			    (k < (AR5416_NUM_PDADC_VALUES - 1))) {
				tmpVal = (int16_t)TMP_VAL_VPD_TABLE;
				pPDADCValues[k++] = (uint8_t)
				    ((tmpVal > 255) ? 255 : tmpVal);
				ss++;
			}
		}
	}

	while (i < AR5416_EEP4K_PD_GAINS_IN_MASK) {
		pPdGainBoundaries[i] = PD_GAIN_BOUNDARY_DEFAULT;
		i++;
	}

	while (k < AR5416_NUM_PDADC_VALUES) {
		pPDADCValues[k] = pPDADCValues[k - 1];
		k++;
	}

	return;
#undef TMP_VAL_VPD_TABLE
}

static void
ath9k_hw_get_def_gain_boundaries_pdadcs(struct ath_hal *ah,
    struct ath9k_channel *chan,
    struct cal_data_per_freq *pRawDataSet,
    uint8_t *bChans, uint16_t availPiers,
    uint16_t tPdGainOverlap, int16_t *pMinCalPower,
    uint16_t *pPdGainBoundaries, uint8_t *pPDADCValues,
    uint16_t numXpdGains)
{
	int i, j, k;
	int16_t ss;
	uint16_t idxL = 0, idxR = 0, numPiers;
	static uint8_t vpdTableL[AR5416_NUM_PD_GAINS]
	    [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
	static uint8_t vpdTableR[AR5416_NUM_PD_GAINS]
	    [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
	static uint8_t vpdTableI[AR5416_NUM_PD_GAINS]
	    [AR5416_MAX_PWR_RANGE_IN_HALF_DB];

	uint8_t *pVpdL, *pVpdR, *pPwrL, *pPwrR;
	uint8_t minPwrT4[AR5416_NUM_PD_GAINS];
	uint8_t maxPwrT4[AR5416_NUM_PD_GAINS];
	int16_t vpdStep;
	int16_t tmpVal;
	uint16_t sizeCurrVpdTable, maxIndex, tgtIndex;
	boolean_t match;
	int16_t minDelta = 0;
	struct chan_centers centers;

	ath9k_hw_get_channel_centers(ah, chan, &centers);

	for (numPiers = 0; numPiers < availPiers; numPiers++) {
		if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
			break;
	}

	match =
	    ath9k_hw_get_lower_upper_index(
	    (uint8_t)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
	    bChans, numPiers, &idxL, &idxR);

	if (match) {
		for (i = 0; i < numXpdGains; i++) {
			minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
			maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
			(void) ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
			    pRawDataSet[idxL].pwrPdg[i],
			    pRawDataSet[idxL].vpdPdg[i],
			    AR5416_PD_GAIN_ICEPTS,
			    vpdTableI[i]);
		}
	} else {
		for (i = 0; i < numXpdGains; i++) {
			pVpdL = pRawDataSet[idxL].vpdPdg[i];
			pPwrL = pRawDataSet[idxL].pwrPdg[i];
			pVpdR = pRawDataSet[idxR].vpdPdg[i];
			pPwrR = pRawDataSet[idxR].pwrPdg[i];

			minPwrT4[i] = max(pPwrL[0], pPwrR[0]);

			maxPwrT4[i] =
			    min(pPwrL[AR5416_PD_GAIN_ICEPTS - 1],
			    pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);


			(void) ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
			    pPwrL, pVpdL,
			    AR5416_PD_GAIN_ICEPTS,
			    vpdTableL[i]);
			(void) ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
			    pPwrR, pVpdR,
			    AR5416_PD_GAIN_ICEPTS,
			    vpdTableR[i]);

			for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
				vpdTableI[i][j] =
				    (uint8_t)(ath9k_hw_interpolate((uint16_t)
				    FREQ2FBIN(centers.
				    synth_center,
				    IS_CHAN_2GHZ
				    (chan)),
				    bChans[idxL], bChans[idxR],
				    vpdTableL[i][j], vpdTableR[i][j]));
			}
		}
	}

	*pMinCalPower = (int16_t)(minPwrT4[0] / 2);

	k = 0;

	for (i = 0; i < numXpdGains; i++) {
		if (i == (numXpdGains - 1))
			pPdGainBoundaries[i] =
			    (uint16_t)(maxPwrT4[i] / 2);
		else
			pPdGainBoundaries[i] =
			    (uint16_t)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);

		pPdGainBoundaries[i] =
		    min((uint16_t)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);

		if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah)) {
			minDelta = pPdGainBoundaries[0] - 23;
			pPdGainBoundaries[0] = 23;
		} else {
			minDelta = 0;
		}

		if (i == 0) {
			if (AR_SREV_9280_10_OR_LATER(ah))
				ss = (int16_t)(0 - (minPwrT4[i] / 2));
			else
				ss = 0;
		} else {
			ss = (int16_t)((pPdGainBoundaries[i - 1] -
			    (minPwrT4[i] / 2)) -
			    tPdGainOverlap + 1 + minDelta);
		}
		vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);

		while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
			tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
			pPDADCValues[k++] =
			    (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
			ss++;
		}

		sizeCurrVpdTable =
		    (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
		tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap -
		    (minPwrT4[i] / 2));
		maxIndex = (tgtIndex < sizeCurrVpdTable) ?
		    tgtIndex : sizeCurrVpdTable;

		while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
			pPDADCValues[k++] = vpdTableI[i][ss++];
		}

		vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
		    vpdTableI[i][sizeCurrVpdTable - 2]);
		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);

		if (tgtIndex > maxIndex) {
			while ((ss <= tgtIndex) &&
			    (k < (AR5416_NUM_PDADC_VALUES - 1))) {
				tmpVal =
				    (int16_t)
				    ((vpdTableI[i][sizeCurrVpdTable - 1] +
				    (ss - maxIndex + 1) * vpdStep));
				pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ?
				    255 : tmpVal);
				ss++;
			}
		}
	}

	while (i < AR5416_PD_GAINS_IN_MASK) {
		pPdGainBoundaries[i] = pPdGainBoundaries[i - 1];
		i++;
	}

	while (k < AR5416_NUM_PDADC_VALUES) {
		pPDADCValues[k] = pPDADCValues[k - 1];
		k++;
	}
}

static void
ath9k_hw_get_legacy_target_powers(struct ath_hal *ah,
    struct ath9k_channel *chan,
    struct cal_target_power_leg *powInfo,
    uint16_t numChannels,
    struct cal_target_power_leg *pNewPower,
    uint16_t numRates, boolean_t isExtTarget)
{
	struct chan_centers centers;
	uint16_t clo, chi;
	int i;
	int matchIndex = -1, lowIndex = -1;
	uint16_t freq;

	ath9k_hw_get_channel_centers(ah, chan, &centers);
	freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;

	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
	    IS_CHAN_2GHZ(chan))) {
		matchIndex = 0;
	} else {
		for (i = 0; (i < numChannels) &&
		    (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
			    IS_CHAN_2GHZ(chan))) {
				matchIndex = i;
				break;
			} else if ((freq <
			    ath9k_hw_fbin2freq(powInfo[i].bChannel,
			    IS_CHAN_2GHZ(chan))) &&
			    (freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
			    IS_CHAN_2GHZ(chan)))) {
				lowIndex = i - 1;
				break;
			}
		}
		if ((matchIndex == -1) && (lowIndex == -1))
			matchIndex = i - 1;
	}

	if (matchIndex != -1) {
		*pNewPower = powInfo[matchIndex];
	} else {
		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
		    IS_CHAN_2GHZ(chan));
		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
		    IS_CHAN_2GHZ(chan));

		for (i = 0; i < numRates; i++) {
			pNewPower->tPow2x[i] =
			    (uint8_t)ath9k_hw_interpolate(freq, clo, chi,
			    powInfo[lowIndex].tPow2x[i],
			    powInfo[lowIndex + 1].tPow2x[i]);
		}
	}
}

static void
ath9k_hw_get_target_powers(struct ath_hal *ah,
    struct ath9k_channel *chan,
    struct cal_target_power_ht *powInfo,
    uint16_t numChannels,
    struct cal_target_power_ht *pNewPower,
    uint16_t numRates, boolean_t isHt40Target)
{
	struct chan_centers centers;
	uint16_t clo, chi;
	int i;
	int matchIndex = -1, lowIndex = -1;
	uint16_t freq;

	ath9k_hw_get_channel_centers(ah, chan, &centers);
	freq = isHt40Target ? centers.synth_center : centers.ctl_center;

	if (freq <=
	    ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
		matchIndex = 0;
	} else {
		for (i = 0; (i < numChannels) &&
		    (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
			    IS_CHAN_2GHZ(chan))) {
				matchIndex = i;
				break;
			} else
				if ((freq <
				    ath9k_hw_fbin2freq(powInfo[i].bChannel,
				    IS_CHAN_2GHZ(chan))) &&
				    (freq > ath9k_hw_fbin2freq
				    (powInfo[i - 1].bChannel,
				    IS_CHAN_2GHZ(chan)))) {
					lowIndex = i - 1;
					break;
				}
		}
		if ((matchIndex == -1) && (lowIndex == -1))
			matchIndex = i - 1;
	}

	if (matchIndex != -1) {
		*pNewPower = powInfo[matchIndex];
	} else {
		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
		    IS_CHAN_2GHZ(chan));
		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
		    IS_CHAN_2GHZ(chan));

		for (i = 0; i < numRates; i++) {
			pNewPower->tPow2x[i] =
			    (uint8_t)ath9k_hw_interpolate(freq,
			    clo, chi,
			    powInfo[lowIndex].tPow2x[i],
			    powInfo[lowIndex + 1].tPow2x[i]);
		}
	}
}

static uint16_t
ath9k_hw_get_max_edge_power(uint16_t freq,
    struct cal_ctl_edges *pRdEdgesPower,
    boolean_t is2GHz, int num_band_edges)
{
	uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
	int i;

	for (i = 0; (i < num_band_edges) &&
	    (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
		if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
		    is2GHz)) {
			twiceMaxEdgePower = pRdEdgesPower[i].tPower;
			break;
		} else if ((i > 0) &&
		    (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
		    is2GHz))) {
			if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
			    is2GHz) < freq &&
			    pRdEdgesPower[i - 1].flag) {
				twiceMaxEdgePower =
				    pRdEdgesPower[i - 1].tPower;
			}
			break;
		}
	}

	return (twiceMaxEdgePower);
}

static boolean_t
ath9k_hw_set_def_power_cal_table(struct ath_hal *ah,
    struct ath9k_channel *chan, int16_t *pTxPowerIndexOffset)
{
	struct ath_hal_5416 *ahp = AH5416(ah);
	struct ar5416_eeprom_def *pEepData = &ahp->ah_eeprom.def;
	struct cal_data_per_freq *pRawDataset;
	uint8_t *pCalBChans = NULL;
	uint16_t pdGainOverlap_t2;
	static uint8_t pdadcValues[AR5416_NUM_PDADC_VALUES];
	uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
	uint16_t numPiers, i, j;
	int16_t tMinCalPower;
	uint16_t numXpdGain, xpdMask;
	uint16_t xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
	uint32_t reg32, regOffset, regChainOffset;
	int16_t modalIdx;

	modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
	xpdMask = pEepData->modalHeader[modalIdx].xpdGain;

	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
	    AR5416_EEP_MINOR_VER_2) {
		pdGainOverlap_t2 =
		    pEepData->modalHeader[modalIdx].pdGainOverlap;
	} else {
		pdGainOverlap_t2 =
		    (uint16_t)(MS(REG_READ(ah, AR_PHY_TPCRG5),
		    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
	}

	if (IS_CHAN_2GHZ(chan)) {
		pCalBChans = pEepData->calFreqPier2G;
		numPiers = AR5416_NUM_2G_CAL_PIERS;
	} else {
		pCalBChans = pEepData->calFreqPier5G;
		numPiers = AR5416_NUM_5G_CAL_PIERS;
	}

	numXpdGain = 0;

	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
			if (numXpdGain >= AR5416_NUM_PD_GAINS)
				break;
			xpdGainValues[numXpdGain] =
			    (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
			numXpdGain++;
		}
	}

	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
	    (numXpdGain - 1) & 0x3);
	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
	    xpdGainValues[0]);
	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
	    xpdGainValues[1]);
	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
	    xpdGainValues[2]);

	for (i = 0; i < AR5416_MAX_CHAINS; i++) {
		if (AR_SREV_5416_V20_OR_LATER(ah) &&
		    (ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5) &&
		    (i != 0)) {
			regChainOffset = (i == 1) ? 0x2000 : 0x1000;
		} else
			regChainOffset = i * 0x1000;

		if (pEepData->baseEepHeader.txMask & (1 << i)) {
			if (IS_CHAN_2GHZ(chan))
				pRawDataset = pEepData->calPierData2G[i];
			else
				pRawDataset = pEepData->calPierData5G[i];

			ath9k_hw_get_def_gain_boundaries_pdadcs(ah, chan,
			    pRawDataset, pCalBChans,
			    numPiers, pdGainOverlap_t2,
			    &tMinCalPower, gainBoundaries,
			    pdadcValues, numXpdGain);

			if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
				REG_WRITE(ah,
				    AR_PHY_TPCRG5 + regChainOffset,
				    SM(pdGainOverlap_t2,
				    AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
				    SM(gainBoundaries[0],
				    AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
				    SM(gainBoundaries[1],
				    AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
				    SM(gainBoundaries[2],
				    AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
				    SM(gainBoundaries[3],
				    AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
			}

			regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
			for (j = 0; j < 32; j++) {
				reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
				    ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
				    ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
				    ((pdadcValues[4 * j + 3] & 0xFF) << 24);
				REG_WRITE(ah, regOffset, reg32);

				ARN_DBG((ARN_DBG_REG_IO,
				    "PDADC (%d,%4x): %4.4x %8.8x\n",
				    i, regChainOffset, regOffset,
				    reg32));
				ARN_DBG((ARN_DBG_REG_IO,
				    "PDADC: Chain %d | PDADC %3d "
				    "Value %3d | PDADC %3d Value %3d | "
				    "PDADC %3d Value %3d | PDADC %3d "
				    "Value %3d |\n",
				    i, 4 * j, pdadcValues[4 * j],
				    4 * j + 1, pdadcValues[4 * j + 1],
				    4 * j + 2, pdadcValues[4 * j + 2],
				    4 * j + 3,
				    pdadcValues[4 * j + 3]));

				regOffset += 4;
			}
		}
	}

	*pTxPowerIndexOffset = 0;

	return (B_TRUE);
}

static boolean_t
ath9k_hw_set_4k_power_cal_table(struct ath_hal *ah,
    struct ath9k_channel *chan, int16_t *pTxPowerIndexOffset)
{
	struct ath_hal_5416 *ahp = AH5416(ah);
	struct ar5416_eeprom_4k *pEepData = &ahp->ah_eeprom.map4k;
	struct cal_data_per_freq_4k *pRawDataset;
	uint8_t *pCalBChans = NULL;
	uint16_t pdGainOverlap_t2;
	static uint8_t pdadcValues[AR5416_NUM_PDADC_VALUES];
	uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
	uint16_t numPiers, i, j;
	int16_t tMinCalPower;
	uint16_t numXpdGain, xpdMask;
	uint16_t xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
	uint32_t reg32, regOffset, regChainOffset;

	xpdMask = pEepData->modalHeader.xpdGain;

	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
	    AR5416_EEP_MINOR_VER_2) {
		pdGainOverlap_t2 =
		    pEepData->modalHeader.pdGainOverlap;
	} else {
		pdGainOverlap_t2 = (uint16_t)(MS(REG_READ(ah, AR_PHY_TPCRG5),
		    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
	}

	pCalBChans = pEepData->calFreqPier2G;
	numPiers = AR5416_NUM_2G_CAL_PIERS;

	numXpdGain = 0;

	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
			if (numXpdGain >= AR5416_NUM_PD_GAINS)
				break;
			xpdGainValues[numXpdGain] =
			    (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
			numXpdGain++;
		}
	}

	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
	    (numXpdGain - 1) & 0x3);
	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
	    xpdGainValues[0]);
	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
	    xpdGainValues[1]);
	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
	    xpdGainValues[2]);

	for (i = 0; i < AR5416_MAX_CHAINS; i++) {
		if (AR_SREV_5416_V20_OR_LATER(ah) &&
		    (ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5) &&
		    (i != 0)) {
			regChainOffset = (i == 1) ? 0x2000 : 0x1000;
		} else
			regChainOffset = i * 0x1000;

		if (pEepData->baseEepHeader.txMask & (1 << i)) {
			pRawDataset = pEepData->calPierData2G[i];

			ath9k_hw_get_4k_gain_boundaries_pdadcs(ah, chan,
			    pRawDataset, pCalBChans,
			    numPiers, pdGainOverlap_t2,
			    &tMinCalPower, gainBoundaries,
			    pdadcValues, numXpdGain);

			if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
				REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
				    SM(pdGainOverlap_t2,
				    AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
				    SM(gainBoundaries[0],
				    AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
				    SM(gainBoundaries[1],
				    AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
				    SM(gainBoundaries[2],
				    AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
				    SM(gainBoundaries[3],
				    AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
			}

			regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
			for (j = 0; j < 32; j++) {
				reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
				    ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
				    ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
				    ((pdadcValues[4 * j + 3] & 0xFF) << 24);
				REG_WRITE(ah, regOffset, reg32);

				ARN_DBG((ARN_DBG_REG_IO,
				    "PDADC (%d,%4x): %4.4x %8.8x\n",
				    i, regChainOffset, regOffset,
				    reg32));
				ARN_DBG((ARN_DBG_REG_IO,
				    "PDADC: Chain %d | "
				    "PDADC %3d Value %3d | "
				    "PDADC %3d Value %3d | "
				    "PDADC %3d Value %3d | "
				    "PDADC %3d Value %3d |\n",
				    i, 4 * j, pdadcValues[4 * j],
				    4 * j + 1, pdadcValues[4 * j + 1],
				    4 * j + 2, pdadcValues[4 * j + 2],
				    4 * j + 3,
				    pdadcValues[4 * j + 3]));

				regOffset += 4;
			}
		}
	}

	*pTxPowerIndexOffset = 0;

	return (B_TRUE);
}

static boolean_t
ath9k_hw_set_def_power_per_rate_table(struct ath_hal *ah,
    struct ath9k_channel *chan,
    int16_t *ratesArray,
    uint16_t cfgCtl,
    uint16_t AntennaReduction,
    uint16_t twiceMaxRegulatoryPower,
    uint16_t powerLimit)
{
#define	REDUCE_SCALED_POWER_BY_TWO_CHAIN	6  /* 10*log10(2)*2 */
#define	REDUCE_SCALED_POWER_BY_THREE_CHAIN	10 /* 10*log10(3)*2 */
	struct ath_hal_5416 *ahp = AH5416(ah);
	struct ar5416_eeprom_def *pEepData = &ahp->ah_eeprom.def;
	uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
	static const uint16_t tpScaleReductionTable[5] =
	    { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };

	int i;
	int8_t twiceLargestAntenna;
	struct cal_ctl_data *rep;
	struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
		0, { 0, 0, 0, 0}
	};
	struct cal_target_power_leg targetPowerOfdmExt = {
		0, { 0, 0, 0, 0} }, targetPowerCckExt = {
		0, { 0, 0, 0, 0 }
	};
	struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
		0, {0, 0, 0, 0}
	};
	uint16_t scaledPower = 0, minCtlPower, maxRegAllowedPower;
	uint16_t ctlModesFor11a[] =
		{ CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 };
	uint16_t ctlModesFor11g[] =
		{ CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
		    CTL_2GHT40
		};
	uint16_t numCtlModes, *pCtlMode, ctlMode, freq;
	struct chan_centers centers;
	int tx_chainmask;
	uint16_t twiceMinEdgePower;

	tx_chainmask = ahp->ah_txchainmask;

	ath9k_hw_get_channel_centers(ah, chan, &centers);

	twiceLargestAntenna = max(
	    pEepData->modalHeader
	    [IS_CHAN_2GHZ(chan)].antennaGainCh[0],
	    pEepData->modalHeader
	    [IS_CHAN_2GHZ(chan)].antennaGainCh[1]);

	twiceLargestAntenna =
	    max((uint8_t)twiceLargestAntenna,
	    pEepData->modalHeader
	    [IS_CHAN_2GHZ(chan)].antennaGainCh[2]);

	twiceLargestAntenna =
	    (int16_t)min(AntennaReduction - twiceLargestAntenna, 0);

	maxRegAllowedPower =
	    twiceMaxRegulatoryPower + twiceLargestAntenna;

	if (ah->ah_tpScale != ATH9K_TP_SCALE_MAX) {
		maxRegAllowedPower -=
		    (tpScaleReductionTable[(ah->ah_tpScale)] * 2);
	}

	scaledPower = min(powerLimit, maxRegAllowedPower);

	switch (ar5416_get_ntxchains(tx_chainmask)) {
	case 1:
		break;
	case 2:
		scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
		break;
	case 3:
		scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
		break;
	}

	scaledPower = max((uint16_t)0, scaledPower);

	if (IS_CHAN_2GHZ(chan)) {
		numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
		    SUB_NUM_CTL_MODES_AT_2G_40;
		pCtlMode = ctlModesFor11g;

		ath9k_hw_get_legacy_target_powers(ah, chan,
		    pEepData->calTargetPowerCck,
		    AR5416_NUM_2G_CCK_TARGET_POWERS,
		    &targetPowerCck, 4, B_FALSE);
		ath9k_hw_get_legacy_target_powers(ah, chan,
		    pEepData->calTargetPower2G,
		    AR5416_NUM_2G_20_TARGET_POWERS,
		    &targetPowerOfdm, 4, B_FALSE);
		ath9k_hw_get_target_powers(ah, chan,
		    pEepData->calTargetPower2GHT20,
		    AR5416_NUM_2G_20_TARGET_POWERS,
		    &targetPowerHt20, 8, B_FALSE);

		if (IS_CHAN_HT40(chan)) {
			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
			ath9k_hw_get_target_powers(ah, chan,
			    pEepData->calTargetPower2GHT40,
			    AR5416_NUM_2G_40_TARGET_POWERS,
			    &targetPowerHt40, 8, B_TRUE);
			ath9k_hw_get_legacy_target_powers(ah, chan,
			    pEepData->calTargetPowerCck,
			    AR5416_NUM_2G_CCK_TARGET_POWERS,
			    &targetPowerCckExt, 4, B_TRUE);
			ath9k_hw_get_legacy_target_powers(ah, chan,
			    pEepData->calTargetPower2G,
			    AR5416_NUM_2G_20_TARGET_POWERS,
			    &targetPowerOfdmExt, 4, B_TRUE);
		}
	} else {
		numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
		    SUB_NUM_CTL_MODES_AT_5G_40;
		pCtlMode = ctlModesFor11a;

		ath9k_hw_get_legacy_target_powers(ah, chan,
		    pEepData->calTargetPower5G,
		    AR5416_NUM_5G_20_TARGET_POWERS,
		    &targetPowerOfdm, 4, B_FALSE);
		ath9k_hw_get_target_powers(ah, chan,
		    pEepData->calTargetPower5GHT20,
		    AR5416_NUM_5G_20_TARGET_POWERS,
		    &targetPowerHt20, 8, B_FALSE);

		if (IS_CHAN_HT40(chan)) {
			numCtlModes = ARRAY_SIZE(ctlModesFor11a);
			ath9k_hw_get_target_powers(ah, chan,
			    pEepData->calTargetPower5GHT40,
			    AR5416_NUM_5G_40_TARGET_POWERS,
			    &targetPowerHt40, 8, B_TRUE);
			ath9k_hw_get_legacy_target_powers(ah, chan,
			    pEepData->calTargetPower5G,
			    AR5416_NUM_5G_20_TARGET_POWERS,
			    &targetPowerOfdmExt, 4, B_TRUE);
		}
	}

	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
		boolean_t isHt40CtlMode =
		    (pCtlMode[ctlMode] == CTL_5GHT40) ||
		    (pCtlMode[ctlMode] == CTL_2GHT40);
		if (isHt40CtlMode)
			freq = centers.synth_center;
		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
			freq = centers.ext_center;
		else
			freq = centers.ctl_center;

		if (ar5416_get_eep_ver(ahp) == 14 &&
		    ar5416_get_eep_rev(ahp) <= 2)
			twiceMaxEdgePower = AR5416_MAX_RATE_POWER;

		ARN_DBG((ARN_DBG_EEPROM, "arn: "
		    "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, "
		    "EXT_ADDITIVE %d\n",
		    ctlMode, numCtlModes, isHt40CtlMode,
		    (pCtlMode[ctlMode] & EXT_ADDITIVE)));

		for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i];
		    i++) {

			ARN_DBG((ARN_DBG_EEPROM, "arn: "
			    "LOOP-Ctlidx %d: cfgCtl 0x%2.2x "
			    "pCtlMode 0x%2.2x ctlIndex 0x%2.2x "
			    "chan %d\n",
			    i, cfgCtl, pCtlMode[ctlMode],
			    pEepData->ctlIndex[i], chan->channel));

			if ((((cfgCtl & ~CTL_MODE_M) |
			    (pCtlMode[ctlMode] & CTL_MODE_M)) ==
			    pEepData->ctlIndex[i]) ||
			    (((cfgCtl & ~CTL_MODE_M) |
			    (pCtlMode[ctlMode] & CTL_MODE_M)) ==
			    ((pEepData->ctlIndex[i] & CTL_MODE_M) |
			    SD_NO_CTL))) {
				rep = &(pEepData->ctlData[i]);

				twiceMinEdgePower =
				    ath9k_hw_get_max_edge_power(freq,
				    rep->ctlEdges[ar5416_get_ntxchains
				    (tx_chainmask) - 1],
				    IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);

				ARN_DBG((ARN_DBG_EEPROM, "arn: "
				    "MATCH-EE_IDX %d: ch %d is2 %d "
				    "2xMinEdge %d chainmask %d chains %d\n",
				    i, freq, IS_CHAN_2GHZ(chan),
				    twiceMinEdgePower, tx_chainmask,
				    ar5416_get_ntxchains(tx_chainmask)));

				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
					twiceMaxEdgePower =
					    min(twiceMaxEdgePower,
					    twiceMinEdgePower);
				} else {
					twiceMaxEdgePower = twiceMinEdgePower;
					break;
				}
			}
		}

		minCtlPower = min(twiceMaxEdgePower, scaledPower);

		ARN_DBG((ARN_DBG_EEPROM, "arn: "
		    "SEL-Min ctlMode %d pCtlMode %d "
		    "2xMaxEdge %d sP %d minCtlPwr %d\n",
		    ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
		    scaledPower, minCtlPower));

		switch (pCtlMode[ctlMode]) {
		case CTL_11B:
			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x);
			    i++) {
				targetPowerCck.tPow2x[i] =
				    min((uint16_t)targetPowerCck.tPow2x[i],
				    minCtlPower);
			}
			break;
		case CTL_11A:
		case CTL_11G:
			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x);
			    i++) {
				targetPowerOfdm.tPow2x[i] =
				    min((uint16_t)targetPowerOfdm.tPow2x[i],
				    minCtlPower);
			}
			break;
		case CTL_5GHT20:
		case CTL_2GHT20:
			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x);
			    i++) {
				targetPowerHt20.tPow2x[i] =
				    min((uint16_t)targetPowerHt20.tPow2x[i],
				    minCtlPower);
			}
			break;
		case CTL_11B_EXT:
			targetPowerCckExt.tPow2x[0] =
			    min((uint16_t)targetPowerCckExt.tPow2x[0],
			    minCtlPower);
			break;
		case CTL_11A_EXT:
		case CTL_11G_EXT:
			targetPowerOfdmExt.tPow2x[0] =
			    min((uint16_t)targetPowerOfdmExt.tPow2x[0],
			    minCtlPower);
			break;
		case CTL_5GHT40:
		case CTL_2GHT40:
			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x);
			    i++) {
				targetPowerHt40.tPow2x[i] =
				    min((uint16_t)targetPowerHt40.tPow2x[i],
				    minCtlPower);
			}
			break;
		default:
			break;
		}
	}

	ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
	    ratesArray[rate18mb] = ratesArray[rate24mb] =
	    targetPowerOfdm.tPow2x[0];
	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];

	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];

	if (IS_CHAN_2GHZ(chan)) {
		ratesArray[rate1l] = targetPowerCck.tPow2x[0];
		ratesArray[rate2s] = ratesArray[rate2l] =
		    targetPowerCck.tPow2x[1];
		ratesArray[rate5_5s] = ratesArray[rate5_5l] =
		    targetPowerCck.tPow2x[2];
		;
		ratesArray[rate11s] = ratesArray[rate11l] =
		    targetPowerCck.tPow2x[3];
		;
	}
	if (IS_CHAN_HT40(chan)) {
		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
			ratesArray[rateHt40_0 + i] =
			    targetPowerHt40.tPow2x[i];
		}
		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
		ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
		if (IS_CHAN_2GHZ(chan)) {
			ratesArray[rateExtCck] =
			    targetPowerCckExt.tPow2x[0];
		}
	}
	return (B_TRUE);
}

static boolean_t
ath9k_hw_set_4k_power_per_rate_table(struct ath_hal *ah,
    struct ath9k_channel *chan,
    int16_t *ratesArray,
    uint16_t cfgCtl,
    uint16_t AntennaReduction,
    uint16_t twiceMaxRegulatoryPower,
    uint16_t powerLimit)
{
	struct ath_hal_5416 *ahp = AH5416(ah);
	struct ar5416_eeprom_4k *pEepData = &ahp->ah_eeprom.map4k;
	uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
	static const uint16_t tpScaleReductionTable[5] =
		{ 0, 3, 6, 9, AR5416_MAX_RATE_POWER };

	int i;
	int16_t twiceLargestAntenna;
	struct cal_ctl_data_4k *rep;
	struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
		0, { 0, 0, 0, 0}
	};
	struct cal_target_power_leg targetPowerOfdmExt = {
		0, { 0, 0, 0, 0} }, targetPowerCckExt = {
		0, { 0, 0, 0, 0 }
	};
	struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
		0, {0, 0, 0, 0}
	};
	uint16_t scaledPower = 0, minCtlPower, maxRegAllowedPower;
	uint16_t ctlModesFor11g[] =
	    { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
	    CTL_2GHT40
	    };
	uint16_t numCtlModes, *pCtlMode, ctlMode, freq;
	struct chan_centers centers;
	int tx_chainmask;
	uint16_t twiceMinEdgePower;

	tx_chainmask = ahp->ah_txchainmask;

	ath9k_hw_get_channel_centers(ah, chan, &centers);

	twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];

	twiceLargestAntenna =
	    (int16_t)min(AntennaReduction - twiceLargestAntenna, 0);

	maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;

	if (ah->ah_tpScale != ATH9K_TP_SCALE_MAX) {
		maxRegAllowedPower -=
		    (tpScaleReductionTable[(ah->ah_tpScale)] * 2);
	}

	scaledPower = min(powerLimit, maxRegAllowedPower);
	scaledPower = max((uint16_t)0, scaledPower);

	numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
	pCtlMode = ctlModesFor11g;

	ath9k_hw_get_legacy_target_powers(ah, chan,
	    pEepData->calTargetPowerCck,
	    AR5416_NUM_2G_CCK_TARGET_POWERS,
	    &targetPowerCck, 4, B_FALSE);
	ath9k_hw_get_legacy_target_powers(ah, chan,
	    pEepData->calTargetPower2G,
	    AR5416_NUM_2G_20_TARGET_POWERS,
	    &targetPowerOfdm, 4, B_FALSE);
	ath9k_hw_get_target_powers(ah, chan,
	    pEepData->calTargetPower2GHT20,
	    AR5416_NUM_2G_20_TARGET_POWERS,
	    &targetPowerHt20, 8, B_FALSE);

	if (IS_CHAN_HT40(chan)) {
		numCtlModes = ARRAY_SIZE(ctlModesFor11g);
		ath9k_hw_get_target_powers(ah, chan,
		    pEepData->calTargetPower2GHT40,
		    AR5416_NUM_2G_40_TARGET_POWERS,
		    &targetPowerHt40, 8, B_TRUE);
		ath9k_hw_get_legacy_target_powers(ah, chan,
		    pEepData->calTargetPowerCck,
		    AR5416_NUM_2G_CCK_TARGET_POWERS,
		    &targetPowerCckExt, 4, B_TRUE);
		ath9k_hw_get_legacy_target_powers(ah, chan,
		    pEepData->calTargetPower2G,
		    AR5416_NUM_2G_20_TARGET_POWERS,
		    &targetPowerOfdmExt, 4, B_TRUE);
	}

	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
		boolean_t isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
		    (pCtlMode[ctlMode] == CTL_2GHT40);
		if (isHt40CtlMode)
			freq = centers.synth_center;
		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
			freq = centers.ext_center;
		else
			freq = centers.ctl_center;

		if (ar5416_get_eep_ver(ahp) == 14 &&
		    ar5416_get_eep_rev(ahp) <= 2)
			twiceMaxEdgePower = AR5416_MAX_RATE_POWER;

		ARN_DBG((ARN_DBG_POWER_MGMT,
		    "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, "
		    "EXT_ADDITIVE %d\n",
		    ctlMode, numCtlModes, isHt40CtlMode,
		    (pCtlMode[ctlMode] & EXT_ADDITIVE)));

		for (i = 0; (i < AR5416_NUM_CTLS) &&
		    pEepData->ctlIndex[i]; i++) {
			ARN_DBG((ARN_DBG_POWER_MGMT,
			    "  LOOP-Ctlidx %d: cfgCtl 0x%2.2x "
			    "pCtlMode 0x%2.2x ctlIndex 0x%2.2x "
			    "chan %d\n",
			    i, cfgCtl, pCtlMode[ctlMode],
			    pEepData->ctlIndex[i], chan->channel));

			if ((((cfgCtl & ~CTL_MODE_M) |
			    (pCtlMode[ctlMode] & CTL_MODE_M)) ==
			    pEepData->ctlIndex[i]) ||
			    (((cfgCtl & ~CTL_MODE_M) |
			    (pCtlMode[ctlMode] & CTL_MODE_M)) ==
			    ((pEepData->ctlIndex[i] & CTL_MODE_M) |
			    SD_NO_CTL))) {
				rep = &(pEepData->ctlData[i]);

				twiceMinEdgePower =
				    ath9k_hw_get_max_edge_power(freq,
				    rep->ctlEdges[ar5416_get_ntxchains
				    (tx_chainmask) - 1],
				    IS_CHAN_2GHZ(chan),
				    AR5416_EEP4K_NUM_BAND_EDGES);

				ARN_DBG((ARN_DBG_POWER_MGMT,
				    "   MATCH-EE_IDX %d: ch %d is2 %d "
				    "2xMinEdge %d chainmask %d chains %d\n",
				    i, freq, IS_CHAN_2GHZ(chan),
				    twiceMinEdgePower, tx_chainmask,
				    ar5416_get_ntxchains
				    (tx_chainmask)));
				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
					twiceMaxEdgePower =
					    min(twiceMaxEdgePower,
					    twiceMinEdgePower);
				} else {
					twiceMaxEdgePower = twiceMinEdgePower;
					break;
				}
			}
		}

		minCtlPower = (uint8_t)min(twiceMaxEdgePower, scaledPower);

		ARN_DBG((ARN_DBG_POWER_MGMT,
		    "    SEL-Min ctlMode %d pCtlMode %d "
		    "2xMaxEdge %d sP %d minCtlPwr %d\n",
		    ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
		    scaledPower, minCtlPower));

		switch (pCtlMode[ctlMode]) {
		case CTL_11B:
			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x);
			    i++) {
				targetPowerCck.tPow2x[i] =
				    min((uint16_t)targetPowerCck.tPow2x[i],
				    minCtlPower);
			}
			break;
		case CTL_11G:
			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x);
			    i++) {
				targetPowerOfdm.tPow2x[i] =
				    min((uint16_t)targetPowerOfdm.tPow2x[i],
				    minCtlPower);
			}
			break;
		case CTL_2GHT20:
			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x);
			    i++) {
				targetPowerHt20.tPow2x[i] =
				    min((uint16_t)targetPowerHt20.tPow2x[i],
				    minCtlPower);
			}
			break;
		case CTL_11B_EXT:
			targetPowerCckExt.tPow2x[0] = min((uint16_t)
			    targetPowerCckExt.tPow2x[0],
			    minCtlPower);
			break;
		case CTL_11G_EXT:
			targetPowerOfdmExt.tPow2x[0] = min((uint16_t)
			    targetPowerOfdmExt.tPow2x[0],
			    minCtlPower);
			break;
		case CTL_2GHT40:
			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x);
			    i++) {
				targetPowerHt40.tPow2x[i] =
				    min((uint16_t)targetPowerHt40.tPow2x[i],
				    minCtlPower);
			}
			break;
		default:
			break;
		}
	}

	ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
	    ratesArray[rate18mb] = ratesArray[rate24mb] =
	    targetPowerOfdm.tPow2x[0];
	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];

	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];

	ratesArray[rate1l] = targetPowerCck.tPow2x[0];
	ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
	ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
	ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];

	if (IS_CHAN_HT40(chan)) {
		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
			ratesArray[rateHt40_0 + i] =
			    targetPowerHt40.tPow2x[i];
		}
		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
		ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
		ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
	}
	return (B_TRUE);
}

static int
ath9k_hw_def_set_txpower(struct ath_hal *ah, struct ath9k_channel *chan,
    uint16_t cfgCtl, uint8_t twiceAntennaReduction,
    uint8_t twiceMaxRegulatoryPower, uint8_t powerLimit)
{
	struct ath_hal_5416 *ahp = AH5416(ah);
	struct ar5416_eeprom_def *pEepData = &ahp->ah_eeprom.def;
	struct modal_eep_header *pModal =
	    &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
	int16_t ratesArray[Ar5416RateSize];
	int16_t txPowerIndexOffset = 0;
	uint8_t ht40PowerIncForPdadc = 2;
	int i;

	(void) memset(ratesArray, 0, sizeof (ratesArray));

	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
	    AR5416_EEP_MINOR_VER_2) {
		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
	}

	if (!ath9k_hw_set_def_power_per_rate_table(ah, chan,
	    &ratesArray[0], cfgCtl,
	    twiceAntennaReduction,
	    twiceMaxRegulatoryPower,
	    powerLimit)) {

		ARN_DBG((ARN_DBG_EEPROM,
		    "ath9k_hw_set_txpower: unable to set "
		    "tx power per rate table\n"));

		return (EIO);
	}

	if (!ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset)) {
		ARN_DBG((ARN_DBG_EEPROM, "ath9k: "
		    "ath9k_hw_set_txpower: unable to set power table\n"));
		return (EIO);
	}

	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
		ratesArray[i] =	(int16_t)(txPowerIndexOffset + ratesArray[i]);
		if (ratesArray[i] > AR5416_MAX_RATE_POWER)
			ratesArray[i] = AR5416_MAX_RATE_POWER;
	}

	if (AR_SREV_9280_10_OR_LATER(ah)) {
		for (i = 0; i < Ar5416RateSize; i++)
			ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
	}

	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
	    ATH9K_POW_SM(ratesArray[rate18mb], 24) |
	    ATH9K_POW_SM(ratesArray[rate12mb], 16) |
	    ATH9K_POW_SM(ratesArray[rate9mb], 8) |
	    ATH9K_POW_SM(ratesArray[rate6mb], 0));
	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
	    ATH9K_POW_SM(ratesArray[rate54mb], 24) |
	    ATH9K_POW_SM(ratesArray[rate48mb], 16) |
	    ATH9K_POW_SM(ratesArray[rate36mb], 8) |
	    ATH9K_POW_SM(ratesArray[rate24mb], 0));

	if (IS_CHAN_2GHZ(chan)) {
		REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
		    ATH9K_POW_SM(ratesArray[rate2s], 24) |
		    ATH9K_POW_SM(ratesArray[rate2l], 16) |
		    ATH9K_POW_SM(ratesArray[rateXr], 8) |
		    ATH9K_POW_SM(ratesArray[rate1l], 0));
		REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
		    ATH9K_POW_SM(ratesArray[rate11s], 24) |
		    ATH9K_POW_SM(ratesArray[rate11l], 16) |
		    ATH9K_POW_SM(ratesArray[rate5_5s], 8) |
		    ATH9K_POW_SM(ratesArray[rate5_5l], 0));
	}

	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
	    ATH9K_POW_SM(ratesArray[rateHt20_3], 24) |
	    ATH9K_POW_SM(ratesArray[rateHt20_2], 16) |
	    ATH9K_POW_SM(ratesArray[rateHt20_1], 8) |
	    ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
	    ATH9K_POW_SM(ratesArray[rateHt20_7], 24) |
	    ATH9K_POW_SM(ratesArray[rateHt20_6], 16) |
	    ATH9K_POW_SM(ratesArray[rateHt20_5], 8) |
	    ATH9K_POW_SM(ratesArray[rateHt20_4], 0));

	if (IS_CHAN_HT40(chan)) {
		REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
		    ATH9K_POW_SM(ratesArray[rateHt40_3] +
		    ht40PowerIncForPdadc, 24) |
		    ATH9K_POW_SM(ratesArray[rateHt40_2] +
		    ht40PowerIncForPdadc, 16) |
		    ATH9K_POW_SM(ratesArray[rateHt40_1] +
		    ht40PowerIncForPdadc, 8) |
		    ATH9K_POW_SM(ratesArray[rateHt40_0] +
		    ht40PowerIncForPdadc, 0));
		REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
		    ATH9K_POW_SM(ratesArray[rateHt40_7] +
		    ht40PowerIncForPdadc, 24) |
		    ATH9K_POW_SM(ratesArray[rateHt40_6] +
		    ht40PowerIncForPdadc, 16) |
		    ATH9K_POW_SM(ratesArray[rateHt40_5] +
		    ht40PowerIncForPdadc, 8) |
		    ATH9K_POW_SM(ratesArray[rateHt40_4] +
		    ht40PowerIncForPdadc, 0));

		REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
		    ATH9K_POW_SM(ratesArray[rateExtOfdm], 24) |
		    ATH9K_POW_SM(ratesArray[rateExtCck], 16) |
		    ATH9K_POW_SM(ratesArray[rateDupOfdm], 8) |
		    ATH9K_POW_SM(ratesArray[rateDupCck], 0));
	}

	REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
	    ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6) |
	    ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));

	i = rate6mb;

	if (IS_CHAN_HT40(chan))
		i = rateHt40_0;
	else if (IS_CHAN_HT20(chan))
		i = rateHt20_0;

	if (AR_SREV_9280_10_OR_LATER(ah))
		ah->ah_maxPowerLevel =
		    ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2;
	else
		ah->ah_maxPowerLevel = ratesArray[i];

	return (0);
}

static int
ath9k_hw_4k_set_txpower(struct ath_hal *ah,
    struct ath9k_channel *chan,
    uint16_t cfgCtl,
    uint8_t twiceAntennaReduction,
    uint8_t twiceMaxRegulatoryPower,
    uint8_t powerLimit)
{
	struct ath_hal_5416 *ahp = AH5416(ah);
	struct ar5416_eeprom_4k *pEepData = &ahp->ah_eeprom.map4k;
	struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
	int16_t ratesArray[Ar5416RateSize];
	int16_t txPowerIndexOffset = 0;
	uint8_t ht40PowerIncForPdadc = 2;
	int i;

	(void) memset(ratesArray, 0, sizeof (ratesArray));

	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
	    AR5416_EEP_MINOR_VER_2) {
		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
	}

	if (!ath9k_hw_set_4k_power_per_rate_table(ah, chan,
	    &ratesArray[0], cfgCtl,
	    twiceAntennaReduction,
	    twiceMaxRegulatoryPower,
	    powerLimit)) {
		ARN_DBG((ARN_DBG_EEPROM,
		    "ath9k_hw_set_txpower: unable to set "
		    "tx power per rate table\n"));
		return (EIO);
	}

	if (!ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset)) {
		ARN_DBG((ARN_DBG_EEPROM,
		    "ath9k_hw_set_txpower: unable to set power table\n"));
		return (EIO);
	}

	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
		ratesArray[i] =	(int16_t)(txPowerIndexOffset + ratesArray[i]);
		if (ratesArray[i] > AR5416_MAX_RATE_POWER)
			ratesArray[i] = AR5416_MAX_RATE_POWER;
	}

	if (AR_SREV_9280_10_OR_LATER(ah)) {
		for (i = 0; i < Ar5416RateSize; i++)
			ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
	}

	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
	    ATH9K_POW_SM(ratesArray[rate18mb], 24) |
	    ATH9K_POW_SM(ratesArray[rate12mb], 16) |
	    ATH9K_POW_SM(ratesArray[rate9mb], 8) |
	    ATH9K_POW_SM(ratesArray[rate6mb], 0));
	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
	    ATH9K_POW_SM(ratesArray[rate54mb], 24) |
	    ATH9K_POW_SM(ratesArray[rate48mb], 16) |
	    ATH9K_POW_SM(ratesArray[rate36mb], 8) |
	    ATH9K_POW_SM(ratesArray[rate24mb], 0));

	if (IS_CHAN_2GHZ(chan)) {
		REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
		    ATH9K_POW_SM(ratesArray[rate2s], 24) |
		    ATH9K_POW_SM(ratesArray[rate2l], 16) |
		    ATH9K_POW_SM(ratesArray[rateXr], 8) |
		    ATH9K_POW_SM(ratesArray[rate1l], 0));
		REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
		    ATH9K_POW_SM(ratesArray[rate11s], 24) |
		    ATH9K_POW_SM(ratesArray[rate11l], 16) |
		    ATH9K_POW_SM(ratesArray[rate5_5s], 8) |
		    ATH9K_POW_SM(ratesArray[rate5_5l], 0));
	}

	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
	    ATH9K_POW_SM(ratesArray[rateHt20_3], 24) |
	    ATH9K_POW_SM(ratesArray[rateHt20_2], 16) |
	    ATH9K_POW_SM(ratesArray[rateHt20_1], 8) |
	    ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
	    ATH9K_POW_SM(ratesArray[rateHt20_7], 24) |
	    ATH9K_POW_SM(ratesArray[rateHt20_6], 16) |
	    ATH9K_POW_SM(ratesArray[rateHt20_5], 8) |
	    ATH9K_POW_SM(ratesArray[rateHt20_4], 0));

	if (IS_CHAN_HT40(chan)) {
		REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
		    ATH9K_POW_SM(ratesArray[rateHt40_3] +
		    ht40PowerIncForPdadc, 24) |
		    ATH9K_POW_SM(ratesArray[rateHt40_2] +
		    ht40PowerIncForPdadc, 16) |
		    ATH9K_POW_SM(ratesArray[rateHt40_1] +
		    ht40PowerIncForPdadc, 8) |
		    ATH9K_POW_SM(ratesArray[rateHt40_0] +
		    ht40PowerIncForPdadc, 0));

		REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
		    ATH9K_POW_SM(ratesArray[rateHt40_7] +
		    ht40PowerIncForPdadc, 24) |
		    ATH9K_POW_SM(ratesArray[rateHt40_6] +
		    ht40PowerIncForPdadc, 16) |
		    ATH9K_POW_SM(ratesArray[rateHt40_5] +
		    ht40PowerIncForPdadc, 8) |
		    ATH9K_POW_SM(ratesArray[rateHt40_4] +
		    ht40PowerIncForPdadc, 0));

		REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
		    ATH9K_POW_SM(ratesArray[rateExtOfdm], 24) |
		    ATH9K_POW_SM(ratesArray[rateExtCck], 16) |
		    ATH9K_POW_SM(ratesArray[rateDupOfdm], 8) |
		    ATH9K_POW_SM(ratesArray[rateDupCck], 0));
	}

	i = rate6mb;

	if (IS_CHAN_HT40(chan))
		i = rateHt40_0;
	else if (IS_CHAN_HT20(chan))
		i = rateHt20_0;

	if (AR_SREV_9280_10_OR_LATER(ah))
		ah->ah_maxPowerLevel =
		    ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2;
	else
		ah->ah_maxPowerLevel = ratesArray[i];

	return (0);
}

int
ath9k_hw_set_txpower(struct ath_hal *ah,
    struct ath9k_channel *chan,
    uint16_t cfgCtl,
    uint8_t twiceAntennaReduction,
    uint8_t twiceMaxRegulatoryPower,
    uint8_t powerLimit)
{
	struct ath_hal_5416 *ahp = AH5416(ah);
	int val;

	if (ahp->ah_eep_map == EEP_MAP_DEFAULT)
		val = ath9k_hw_def_set_txpower(ah, chan, cfgCtl,
		    twiceAntennaReduction, twiceMaxRegulatoryPower,
		    powerLimit);
	else if (ahp->ah_eep_map == EEP_MAP_4KBITS)
		val = ath9k_hw_4k_set_txpower(ah, chan, cfgCtl,
		    twiceAntennaReduction, twiceMaxRegulatoryPower,
		    powerLimit);
	return (val);
}

static void
ath9k_hw_set_def_addac(struct ath_hal *ah, struct ath9k_channel *chan)
{
#define	XPA_LVL_FREQ(cnt)	(pModal->xpaBiasLvlFreq[cnt])
	struct modal_eep_header *pModal;
	struct ath_hal_5416 *ahp = AH5416(ah);
	struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def;
	uint8_t biaslevel;

	if (ah->ah_macVersion != AR_SREV_VERSION_9160)
		return;

	if (ar5416_get_eep_rev(ahp) < AR5416_EEP_MINOR_VER_7)
		return;

	pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);

	if (pModal->xpaBiasLvl != 0xff) {
		biaslevel = pModal->xpaBiasLvl;
	} else {
		uint16_t resetFreqBin, freqBin, freqCount = 0;
		struct chan_centers centers;

		ath9k_hw_get_channel_centers(ah, chan, &centers);

		resetFreqBin =
		    FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan));
		freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
		biaslevel = (uint8_t)(XPA_LVL_FREQ(0) >> 14);

		freqCount++;

		while (freqCount < 3) {
			if (XPA_LVL_FREQ(freqCount) == 0x0)
				break;

			freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
			if (resetFreqBin >= freqBin) {
				biaslevel =
				    (uint8_t)
				    (XPA_LVL_FREQ(freqCount) >> 14);
			} else {
				break;
			}
			freqCount++;
		}
	}

	if (IS_CHAN_2GHZ(chan)) {
		INI_RA(&ahp->ah_iniAddac, 7, 1) =
		    (INI_RA(&ahp->ah_iniAddac, 7, 1) &
		    (~0x18)) | biaslevel << 3;
	} else {
		INI_RA(&ahp->ah_iniAddac, 6, 1) =
		    (INI_RA(&ahp->ah_iniAddac, 6, 1) &
		    (~0xc0)) | biaslevel << 6;
	}
#undef XPA_LVL_FREQ
}

/* ARGSUSED */
static void
ath9k_hw_set_4k_addac(struct ath_hal *ah, struct ath9k_channel *chan)
{
	struct modal_eep_4k_header *pModal;
	struct ath_hal_5416 *ahp = AH5416(ah);
	struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k;
	uint8_t biaslevel;

	if (ah->ah_macVersion != AR_SREV_VERSION_9160)
		return;

	if (ar5416_get_eep_rev(ahp) < AR5416_EEP_MINOR_VER_7)
		return;

	pModal = &eep->modalHeader;

	if (pModal->xpaBiasLvl != 0xff) {
		biaslevel = pModal->xpaBiasLvl;
		INI_RA(&ahp->ah_iniAddac, 7, 1) =
		    (INI_RA(&ahp->ah_iniAddac, 7, 1) & (~0x18)) |
		    biaslevel << 3;
	}
}

void
ath9k_hw_set_addac(struct ath_hal *ah, struct ath9k_channel *chan)
{
	struct ath_hal_5416 *ahp = AH5416(ah);

	if (ahp->ah_eep_map == EEP_MAP_DEFAULT)
		ath9k_hw_set_def_addac(ah, chan);
	else if (ahp->ah_eep_map == EEP_MAP_4KBITS)
		ath9k_hw_set_4k_addac(ah, chan);
}

/* XXX: Clean me up, make me more legible */
static boolean_t
ath9k_hw_eeprom_set_def_board_values(struct ath_hal *ah,
    struct ath9k_channel *chan)
{
	struct modal_eep_header *pModal;
	struct ath_hal_5416 *ahp = AH5416(ah);
	struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def;
	int i, regChainOffset;
	uint8_t txRxAttenLocal;
	uint16_t ant_config;

	pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);

	txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;

	(void) ath9k_hw_get_eeprom_antenna_cfg(ah, chan, 0, &ant_config);
	REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);

	for (i = 0; i < AR5416_MAX_CHAINS; i++) {
		if (AR_SREV_9280(ah)) {
			if (i >= 2)
				break;
		}

		if (AR_SREV_5416_V20_OR_LATER(ah) &&
		    (ahp->ah_rxchainmask == 5 || ahp->ah_txchainmask == 5) &&
		    (i != 0))
			regChainOffset = (i == 1) ? 0x2000 : 0x1000;
		else
			regChainOffset = i * 0x1000;

		REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
		    pModal->antCtrlChain[i]);

		REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
		    (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
		    ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
		    AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
		    SM(pModal->iqCalICh[i],
		    AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
		    SM(pModal->iqCalQCh[i],
		    AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));

		if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
			if ((eep->baseEepHeader.version &
			    AR5416_EEP_VER_MINOR_MASK) >=
			    AR5416_EEP_MINOR_VER_3) {
				txRxAttenLocal = pModal->txRxAttenCh[i];
				if (AR_SREV_9280_10_OR_LATER(ah)) {
					REG_RMW_FIELD(ah,
					    AR_PHY_GAIN_2GHZ +
					    regChainOffset,
					    AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
					    pModal->
					    bswMargin[i]);
					REG_RMW_FIELD(ah,
					    AR_PHY_GAIN_2GHZ +
					    regChainOffset,
					    AR_PHY_GAIN_2GHZ_XATTEN1_DB,
					    pModal->
					    bswAtten[i]);
					REG_RMW_FIELD(ah,
					    AR_PHY_GAIN_2GHZ +
					    regChainOffset,
					    AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
					    pModal->
					    xatten2Margin[i]);
					REG_RMW_FIELD(ah,
					    AR_PHY_GAIN_2GHZ +
					    regChainOffset,
					    AR_PHY_GAIN_2GHZ_XATTEN2_DB,
					    pModal->
					    xatten2Db[i]);
				} else {
					REG_WRITE(ah,
					    AR_PHY_GAIN_2GHZ +
					    regChainOffset,
					    (REG_READ(ah,
					    AR_PHY_GAIN_2GHZ +
					    regChainOffset) &
					    ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
					    | SM(pModal->
					    bswMargin[i],
					    AR_PHY_GAIN_2GHZ_BSW_MARGIN));
					REG_WRITE(ah,
					    AR_PHY_GAIN_2GHZ +
					    regChainOffset,
					    (REG_READ(ah,
					    AR_PHY_GAIN_2GHZ +
					    regChainOffset) &
					    ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
					    | SM(pModal->bswAtten[i],
					    AR_PHY_GAIN_2GHZ_BSW_ATTEN));
				}
			}
			if (AR_SREV_9280_10_OR_LATER(ah)) {
				REG_RMW_FIELD(ah,
				    AR_PHY_RXGAIN +
				    regChainOffset,
				    AR9280_PHY_RXGAIN_TXRX_ATTEN,
				    txRxAttenLocal);
				REG_RMW_FIELD(ah,
				    AR_PHY_RXGAIN +
				    regChainOffset,
				    AR9280_PHY_RXGAIN_TXRX_MARGIN,
				    pModal->rxTxMarginCh[i]);
			} else {
				REG_WRITE(ah,
				    AR_PHY_RXGAIN + regChainOffset,
				    (REG_READ(ah,
				    AR_PHY_RXGAIN +
				    regChainOffset) &
				    ~AR_PHY_RXGAIN_TXRX_ATTEN) |
				    SM(txRxAttenLocal,
				    AR_PHY_RXGAIN_TXRX_ATTEN));
				REG_WRITE(ah,
				    AR_PHY_GAIN_2GHZ +
				    regChainOffset,
				    (REG_READ(ah,
				    AR_PHY_GAIN_2GHZ +
				    regChainOffset) &
				    ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
				    SM(pModal->rxTxMarginCh[i],
				    AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
			}
		}
	}

	if (AR_SREV_9280_10_OR_LATER(ah)) {
		if (IS_CHAN_2GHZ(chan)) {
			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
			    AR_AN_RF2G1_CH0_OB,
			    AR_AN_RF2G1_CH0_OB_S,
			    pModal->ob);
			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
			    AR_AN_RF2G1_CH0_DB,
			    AR_AN_RF2G1_CH0_DB_S,
			    pModal->db);
			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
			    AR_AN_RF2G1_CH1_OB,
			    AR_AN_RF2G1_CH1_OB_S,
			    pModal->ob_ch1);
			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
			    AR_AN_RF2G1_CH1_DB,
			    AR_AN_RF2G1_CH1_DB_S,
			    pModal->db_ch1);
		} else {
			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
			    AR_AN_RF5G1_CH0_OB5,
			    AR_AN_RF5G1_CH0_OB5_S,
			    pModal->ob);
			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
			    AR_AN_RF5G1_CH0_DB5,
			    AR_AN_RF5G1_CH0_DB5_S,
			    pModal->db);
			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
			    AR_AN_RF5G1_CH1_OB5,
			    AR_AN_RF5G1_CH1_OB5_S,
			    pModal->ob_ch1);
			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
			    AR_AN_RF5G1_CH1_DB5,
			    AR_AN_RF5G1_CH1_DB5_S,
			    pModal->db_ch1);
		}
		ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
		    AR_AN_TOP2_XPABIAS_LVL,
		    AR_AN_TOP2_XPABIAS_LVL_S,
		    pModal->xpaBiasLvl);
		ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
		    AR_AN_TOP2_LOCALBIAS,
		    AR_AN_TOP2_LOCALBIAS_S,
		    pModal->local_bias);

		ARN_DBG((ARN_DBG_EEPROM, "arn: "
		    "ForceXPAon: %d\n", pModal->force_xpaon));

		REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
		    pModal->force_xpaon);
	}

	REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
	    pModal->switchSettling);
	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
	    pModal->adcDesiredSize);

	if (!AR_SREV_9280_10_OR_LATER(ah))
		REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
		    AR_PHY_DESIRED_SZ_PGA,
		    pModal->pgaDesiredSize);

	REG_WRITE(ah, AR_PHY_RF_CTL4,
	    SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
	    SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
	    SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
	    SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));

	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
	    pModal->txEndToRxOn);
	if (AR_SREV_9280_10_OR_LATER(ah)) {
		REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
		    pModal->thresh62);
		REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
		    AR_PHY_EXT_CCA0_THRESH62,
		    pModal->thresh62);
	} else {
		REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
		    pModal->thresh62);
		REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
		    AR_PHY_EXT_CCA_THRESH62,
		    pModal->thresh62);
	}

	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
	    AR5416_EEP_MINOR_VER_2) {
		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
		    AR_PHY_TX_END_DATA_START,
		    pModal->txFrameToDataStart);
		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
		    pModal->txFrameToPaOn);
	}

	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
	    AR5416_EEP_MINOR_VER_3) {
		if (IS_CHAN_HT40(chan))
			REG_RMW_FIELD(ah, AR_PHY_SETTLING,
			    AR_PHY_SETTLING_SWITCH,
			    pModal->swSettleHt40);
	}

	return (B_TRUE);
}

static boolean_t
ath9k_hw_eeprom_set_4k_board_values(struct ath_hal *ah,
    struct ath9k_channel *chan)
{
	struct modal_eep_4k_header *pModal;
	struct ath_hal_5416 *ahp = AH5416(ah);
	struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k;
	int regChainOffset;
	uint8_t txRxAttenLocal;
	uint16_t ant_config = 0;
	uint8_t ob[5], db1[5], db2[5];
	uint8_t ant_div_control1, ant_div_control2;
	uint32_t regVal;


	pModal = &eep->modalHeader;

	txRxAttenLocal = 23;

	(void) ath9k_hw_get_eeprom_antenna_cfg(ah, chan, 0, &ant_config);
	REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);

	regChainOffset = 0;
	REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
	    pModal->antCtrlChain[0]);

	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
	    (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
	    ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
	    AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
	    SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
	    SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));

	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
	    AR5416_EEP_MINOR_VER_3) {
		txRxAttenLocal = pModal->txRxAttenCh[0];
		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
		    AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
		    AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
		    AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
		    pModal->xatten2Margin[0]);
		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
		    AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
	}

	REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
	    AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
	REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
	    AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);

	if (AR_SREV_9285_11(ah))
		REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14));

	/* Initialize Ant Diversity settings from EEPROM */
	if (pModal->version == 3) {
		ant_div_control1 = ((pModal->ob_234 >> 12) & 0xf);
		ant_div_control2 = ((pModal->db1_234 >> 12) & 0xf);
		regVal = REG_READ(ah, 0x99ac);
		regVal &= (~(0x7f000000));
		regVal |= ((ant_div_control1 & 0x1) << 24);
		regVal |= (((ant_div_control1 >> 1) & 0x1) << 29);
		regVal |= (((ant_div_control1 >> 2) & 0x1) << 30);
		regVal |= ((ant_div_control2 & 0x3) << 25);
		regVal |= (((ant_div_control2 >> 2) & 0x3) << 27);
		REG_WRITE(ah, 0x99ac, regVal);
		regVal = REG_READ(ah, 0x99ac);
		regVal = REG_READ(ah, 0xa208);
		regVal &= (~(0x1 << 13));
		regVal |= (((ant_div_control1 >> 3) & 0x1) << 13);
		REG_WRITE(ah, 0xa208, regVal);
		regVal = REG_READ(ah, 0xa208);
	}

	if (pModal->version >= 2) {
		ob[0] = (pModal->ob_01 & 0xf);
		ob[1] = (pModal->ob_01 >> 4) & 0xf;
		ob[2] = (pModal->ob_234 & 0xf);
		ob[3] = ((pModal->ob_234 >> 4) & 0xf);
		ob[4] = ((pModal->ob_234 >> 8) & 0xf);

		db1[0] = (pModal->db1_01 & 0xf);
		db1[1] = ((pModal->db1_01 >> 4) & 0xf);
		db1[2] = (pModal->db1_234 & 0xf);
		db1[3] = ((pModal->db1_234 >> 4) & 0xf);
		db1[4] = ((pModal->db1_234 >> 8) & 0xf);

		db2[0] = (pModal->db2_01 & 0xf);
		db2[1] = ((pModal->db2_01 >> 4) & 0xf);
		db2[2] = (pModal->db2_234 & 0xf);
		db2[3] = ((pModal->db2_234 >> 4) & 0xf);
		db2[4] = ((pModal->db2_234 >> 8) & 0xf);

	} else if (pModal->version == 1) {

		ARN_DBG((ARN_DBG_EEPROM,
		    "EEPROM Model version is set to 1 \n"));
		ob[0] = (pModal->ob_01 & 0xf);
		ob[1] = ob[2] = ob[3] = ob[4] = (pModal->ob_01 >> 4) & 0xf;
		db1[0] = (pModal->db1_01 & 0xf);
		db1[1] = db1[2] = db1[3] = db1[4] =
		    ((pModal->db1_01 >> 4) & 0xf);
		db2[0] = (pModal->db2_01 & 0xf);
		db2[1] = db2[2] = db2[3] = db2[4] =
		    ((pModal->db2_01 >> 4) & 0xf);
	} else {
		int i;
		for (i = 0; i < 5; i++) {
			ob[i] = pModal->ob_01;
			db1[i] = pModal->db1_01;
			db2[i] = pModal->db1_01;
		}
	}

	ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
	    AR9285_AN_RF2G3_OB_0, AR9285_AN_RF2G3_OB_0_S, ob[0]);
	ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
	    AR9285_AN_RF2G3_OB_1, AR9285_AN_RF2G3_OB_1_S, ob[1]);
	ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
	    AR9285_AN_RF2G3_OB_2, AR9285_AN_RF2G3_OB_2_S, ob[2]);
	ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
	    AR9285_AN_RF2G3_OB_3, AR9285_AN_RF2G3_OB_3_S, ob[3]);
	ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
	    AR9285_AN_RF2G3_OB_4, AR9285_AN_RF2G3_OB_4_S, ob[4]);

	ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
	    AR9285_AN_RF2G3_DB1_0, AR9285_AN_RF2G3_DB1_0_S, db1[0]);
	ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
	    AR9285_AN_RF2G3_DB1_1, AR9285_AN_RF2G3_DB1_1_S, db1[1]);
	ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
	    AR9285_AN_RF2G3_DB1_2, AR9285_AN_RF2G3_DB1_2_S, db1[2]);
	ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
	    AR9285_AN_RF2G4_DB1_3, AR9285_AN_RF2G4_DB1_3_S, db1[3]);
	ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
	    AR9285_AN_RF2G4_DB1_4, AR9285_AN_RF2G4_DB1_4_S, db1[4]);

	ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
	    AR9285_AN_RF2G4_DB2_0, AR9285_AN_RF2G4_DB2_0_S, db2[0]);
	ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
	    AR9285_AN_RF2G4_DB2_1, AR9285_AN_RF2G4_DB2_1_S, db2[1]);
	ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
	    AR9285_AN_RF2G4_DB2_2, AR9285_AN_RF2G4_DB2_2_S, db2[2]);
	ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
	    AR9285_AN_RF2G4_DB2_3, AR9285_AN_RF2G4_DB2_3_S, db2[3]);
	ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
	    AR9285_AN_RF2G4_DB2_4, AR9285_AN_RF2G4_DB2_4_S, db2[4]);


	if (AR_SREV_9285_11(ah))
		REG_WRITE(ah, AR9285_AN_TOP4, AR9285_AN_TOP4_DEFAULT);

	REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
	    pModal->switchSettling);
	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
	    pModal->adcDesiredSize);

	REG_WRITE(ah, AR_PHY_RF_CTL4,
	    SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
	    SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
	    SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)  |
	    SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));

	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
	    pModal->txEndToRxOn);
	REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
	    pModal->thresh62);
	REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
	    pModal->thresh62);

	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
	    AR5416_EEP_MINOR_VER_2) {
		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
		    pModal->txFrameToDataStart);
		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
		    pModal->txFrameToPaOn);
	}

	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
	    AR5416_EEP_MINOR_VER_3) {
		if (IS_CHAN_HT40(chan))
			REG_RMW_FIELD(ah, AR_PHY_SETTLING,
			    AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
	}

	return (B_TRUE);
}

boolean_t
ath9k_hw_eeprom_set_board_values(struct ath_hal *ah, struct ath9k_channel *chan)
{
	struct ath_hal_5416 *ahp = AH5416(ah);
	boolean_t val;

	if (ahp->ah_eep_map == EEP_MAP_DEFAULT)
		val = ath9k_hw_eeprom_set_def_board_values(ah, chan);
	else if (ahp->ah_eep_map == EEP_MAP_4KBITS)
		val = ath9k_hw_eeprom_set_4k_board_values(ah, chan);

	return (val);
}

static int
ath9k_hw_get_def_eeprom_antenna_cfg(struct ath_hal *ah,
    struct ath9k_channel *chan,
    uint8_t index, uint16_t *config)
{
	struct ath_hal_5416 *ahp = AH5416(ah);
	struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def;
	struct modal_eep_header *pModal =
	    &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
	struct base_eep_header *pBase = &eep->baseEepHeader;

	switch (index) {
	case 0:
		*config = pModal->antCtrlCommon & 0xFFFF;
		return (0);
	case 1:
		if (pBase->version >= 0x0E0D) {
			if (pModal->useAnt1) {
				*config =
				    ((pModal->antCtrlCommon & 0xFFFF0000)
				    >> 16);
				return (0);
			}
		}
		break;
	default:
		break;
	}

	return (-EINVAL);
}

/* ARGSUSED */
static int
ath9k_hw_get_4k_eeprom_antenna_cfg(struct ath_hal *ah,
    struct ath9k_channel *chan,
    uint8_t index, uint16_t *config)
{
	struct ath_hal_5416 *ahp = AH5416(ah);
	struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k;
	struct modal_eep_4k_header *pModal = &eep->modalHeader;

	switch (index) {
	case 0:
		*config = pModal->antCtrlCommon & 0xFFFF;
		return (0);
	default:
		break;
	}

	return (EINVAL);
}

int
ath9k_hw_get_eeprom_antenna_cfg(struct ath_hal *ah,
    struct ath9k_channel *chan,
    uint8_t index, uint16_t *config)
{
	struct ath_hal_5416 *ahp = AH5416(ah);
	int val;

	if (ahp->ah_eep_map == EEP_MAP_DEFAULT)
		val = ath9k_hw_get_def_eeprom_antenna_cfg(ah, chan,
		    index, config);
	else if (ahp->ah_eep_map == EEP_MAP_4KBITS)
		val = ath9k_hw_get_4k_eeprom_antenna_cfg(ah, chan,
		    index, config);

	return (val);
}

/* ARGSUSED */
static uint8_t
ath9k_hw_get_4k_num_ant_config(struct ath_hal *ah,
    enum ath9k_band freq_band)
{
	return (1);
}

static uint8_t
ath9k_hw_get_def_num_ant_config(struct ath_hal *ah,
    enum ath9k_band freq_band)
{
	struct ath_hal_5416 *ahp = AH5416(ah);
	struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def;

	struct modal_eep_header *pModal =
	    &(eep->modalHeader[ATH9K_BAND_5GHZ == freq_band]);
	struct base_eep_header *pBase = &eep->baseEepHeader;
	uint8_t num_ant_config;

	num_ant_config = 1;

	if (pBase->version >= 0x0E0D)
		if (pModal->useAnt1)
			num_ant_config += 1;

	return (num_ant_config);
}

uint8_t
ath9k_hw_get_num_ant_config(struct ath_hal *ah,
    enum ath9k_band freq_band)
{
	struct ath_hal_5416 *ahp = AH5416(ah);
	uint8_t val;

	if (ahp->ah_eep_map == EEP_MAP_DEFAULT)
		val = ath9k_hw_get_def_num_ant_config(ah, freq_band);
	else if (ahp->ah_eep_map == EEP_MAP_4KBITS)
		val = ath9k_hw_get_4k_num_ant_config(ah, freq_band);

	return (val);
}

uint16_t
ath9k_hw_eeprom_get_spur_chan(struct ath_hal *ah, uint16_t i, boolean_t is2GHz)
{
#define	EEP_MAP4K_SPURCHAN \
	(ahp->ah_eeprom.map4k.modalHeader.spurChans[i].spurChan)
#define	EEP_DEF_SPURCHAN \
	(ahp->ah_eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)

	struct ath_hal_5416 *ahp = AH5416(ah);
	uint16_t spur_val = AR_NO_SPUR;

	ARN_DBG((ARN_DBG_ANI, "arn: "
	    "Getting spur idx %d is2Ghz. %d val %x\n",
	    i, is2GHz, ah->ah_config.spurchans[i][is2GHz]));

	switch (ah->ah_config.spurmode) {
	case SPUR_DISABLE:
		break;
	case SPUR_ENABLE_IOCTL:
		spur_val = ah->ah_config.spurchans[i][is2GHz];
		ARN_DBG((ARN_DBG_ANI, "arn: "
		    "Getting spur val from new loc. %d\n", spur_val));
		break;
	case SPUR_ENABLE_EEPROM:
		if (ahp->ah_eep_map == EEP_MAP_4KBITS)
			spur_val = EEP_MAP4K_SPURCHAN;
		else
			spur_val = EEP_DEF_SPURCHAN;
		break;

	}

	return (spur_val);
#undef EEP_DEF_SPURCHAN
#undef EEP_MAP4K_SPURCHAN
}

static uint32_t
ath9k_hw_get_eeprom_4k(struct ath_hal *ah,
    enum eeprom_param param)
{
	struct ath_hal_5416 *ahp = AH5416(ah);
	struct ar5416_eeprom_4k *eep = &ahp->ah_eeprom.map4k;
	struct modal_eep_4k_header *pModal = &eep->modalHeader;
	struct base_eep_header_4k *pBase = &eep->baseEepHeader;

	switch (param) {
	case EEP_NFTHRESH_2:
		return (pModal[1].noiseFloorThreshCh[0]);
	case AR_EEPROM_MAC(0):
		return (pBase->macAddr[0] << 8 | pBase->macAddr[1]);
	case AR_EEPROM_MAC(1):
		return (pBase->macAddr[2] << 8 | pBase->macAddr[3]);
	case AR_EEPROM_MAC(2):
		return (pBase->macAddr[4] << 8 | pBase->macAddr[5]);
	case EEP_REG_0:
		return (pBase->regDmn[0]);
	case EEP_REG_1:
		return (pBase->regDmn[1]);
	case EEP_OP_CAP:
		return (pBase->deviceCap);
	case EEP_OP_MODE:
		return (pBase->opCapFlags);
	case EEP_RF_SILENT:
		return (pBase->rfSilent);
	case EEP_OB_2:
		return (pModal->ob_01);
	case EEP_DB_2:
		return (pModal->db1_01);
	case EEP_MINOR_REV:
		return (pBase->version & AR5416_EEP_VER_MINOR_MASK);
	case EEP_TX_MASK:
		return (pBase->txMask);
	case EEP_RX_MASK:
		return (pBase->rxMask);
	default:
		return (0);
	}
}

uint32_t
ath9k_hw_get_eeprom_def(struct ath_hal *ah, enum eeprom_param param)
{
	struct ath_hal_5416 	*ahp = AH5416(ah);
	struct ar5416_eeprom_def *eep = &ahp->ah_eeprom.def;
	struct modal_eep_header *pModal = eep->modalHeader;
	struct base_eep_header 	*pBase = &eep->baseEepHeader;

	switch (param) {
	case EEP_NFTHRESH_5:
		return (pModal[0].noiseFloorThreshCh[0]);
	case EEP_NFTHRESH_2:
		return (pModal[1].noiseFloorThreshCh[0]);
	case AR_EEPROM_MAC(0):
		return (pBase->macAddr[0] << 8 | pBase->macAddr[1]);
	case AR_EEPROM_MAC(1):
		return (pBase->macAddr[2] << 8 | pBase->macAddr[3]);
	case AR_EEPROM_MAC(2):
		return (pBase->macAddr[4] << 8 | pBase->macAddr[5]);
	case EEP_REG_0:
		return (pBase->regDmn[0]);
	case EEP_REG_1:
		return (pBase->regDmn[1]);
	case EEP_OP_CAP:
		return (pBase->deviceCap);
	case EEP_OP_MODE:
		return (pBase->opCapFlags);
	case EEP_RF_SILENT:
		return (pBase->rfSilent);
	case EEP_OB_5:
		return (pModal[0].ob);
	case EEP_DB_5:
		return (pModal[0].db);
	case EEP_OB_2:
		return (pModal[1].ob);
	case EEP_DB_2:
		return (pModal[1].db);
	case EEP_MINOR_REV:
		return (pBase->version & AR5416_EEP_VER_MINOR_MASK);
	case EEP_TX_MASK:
		return (pBase->txMask);
	case EEP_RX_MASK:
		return (pBase->rxMask);
	case EEP_RXGAIN_TYPE:
		return (pBase->rxGainType);
	case EEP_TXGAIN_TYPE:
		return (pBase->txGainType);

	default:
		return (0);
	}
}

uint32_t
ath9k_hw_get_eeprom(struct ath_hal *ah, enum eeprom_param param)
{
	struct ath_hal_5416 *ahp = AH5416(ah);
	uint32_t val;

	if (ahp->ah_eep_map == EEP_MAP_DEFAULT)
		val = ath9k_hw_get_eeprom_def(ah, param);
	else if (ahp->ah_eep_map == EEP_MAP_4KBITS)
		val = ath9k_hw_get_eeprom_4k(ah, param);

	return (val);
}

int
ath9k_hw_eeprom_attach(struct ath_hal *ah)
{
	int status;
	struct ath_hal_5416 *ahp = AH5416(ah);

	if (ath9k_hw_use_flash(ah))
		(void) ath9k_hw_flash_map(ah);

	if (AR_SREV_9285(ah))
		ahp->ah_eep_map = EEP_MAP_4KBITS;
	else
		ahp->ah_eep_map = EEP_MAP_DEFAULT;

	if (!ath9k_hw_fill_eeprom(ah))
		return (EIO);

	status = ath9k_hw_check_eeprom(ah);

	return (status);
}