/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #ifndef _INET_IP_IMPL_H #define _INET_IP_IMPL_H /* * IP implementation private declarations. These interfaces are * used to build the IP module and are not meant to be accessed * by any modules except IP itself. They are undocumented and are * subject to change without notice. */ #ifdef __cplusplus extern "C" { #endif #ifdef _KERNEL #include #include #define IP_MOD_ID 5701 #define INET_NAME "ip" #ifdef _BIG_ENDIAN #define IP_HDR_CSUM_TTL_ADJUST 256 #define IP_TCP_CSUM_COMP IPPROTO_TCP #define IP_UDP_CSUM_COMP IPPROTO_UDP #else #define IP_HDR_CSUM_TTL_ADJUST 1 #define IP_TCP_CSUM_COMP (IPPROTO_TCP << 8) #define IP_UDP_CSUM_COMP (IPPROTO_UDP << 8) #endif #define TCP_CHECKSUM_OFFSET 16 #define TCP_CHECKSUM_SIZE 2 #define UDP_CHECKSUM_OFFSET 6 #define UDP_CHECKSUM_SIZE 2 #define IPH_TCPH_CHECKSUMP(ipha, hlen) \ ((uint16_t *)(((uchar_t *)(ipha)) + ((hlen) + TCP_CHECKSUM_OFFSET))) #define IPH_UDPH_CHECKSUMP(ipha, hlen) \ ((uint16_t *)(((uchar_t *)(ipha)) + ((hlen) + UDP_CHECKSUM_OFFSET))) #define ILL_HCKSUM_CAPABLE(ill) \ (((ill)->ill_capabilities & ILL_CAPAB_HCKSUM) != 0) /* * Macro that performs software checksum calculation on the IP header. */ #define IP_HDR_CKSUM(ipha, sum, v_hlen_tos_len, ttl_protocol) { \ (sum) += (ttl_protocol) + (ipha)->ipha_ident + \ ((v_hlen_tos_len) >> 16) + \ ((v_hlen_tos_len) & 0xFFFF) + \ (ipha)->ipha_fragment_offset_and_flags; \ (sum) = (((sum) & 0xFFFF) + ((sum) >> 16)); \ (sum) = ~((sum) + ((sum) >> 16)); \ (ipha)->ipha_hdr_checksum = (uint16_t)(sum); \ } #define IS_IP_HDR_HWCKSUM(ipsec, mp, ill) \ ((!ipsec) && (DB_CKSUMFLAGS(mp) & HCK_IPV4_HDRCKSUM) && \ ILL_HCKSUM_CAPABLE(ill) && dohwcksum) /* * This macro acts as a wrapper around IP_CKSUM_XMIT_FAST, and it performs * several checks on the IRE and ILL (among other things) in order to see * whether or not hardware checksum offload is allowed for the outgoing * packet. It assumes that the caller has held a reference to the IRE. */ #define IP_CKSUM_XMIT(ill, ire, mp, ihp, up, proto, start, end, \ max_frag, ipsec_len, pseudo) { \ uint32_t _hck_flags; \ /* \ * We offload checksum calculation to hardware when IPsec isn't \ * present and if fragmentation isn't required. We also check \ * if M_DATA fastpath is safe to be used on the corresponding \ * IRE; this check is performed without grabbing ire_lock but \ * instead by holding a reference to it. This is sufficient \ * for IRE_CACHE; for IRE_BROADCAST on non-Ethernet links, the \ * DL_NOTE_FASTPATH_FLUSH indication could come up from the \ * driver and trigger the IRE (hence fp_mp) deletion. This is \ * why only IRE_CACHE type is eligible for offload. \ * \ * The presense of IP options also forces the network stack to \ * calculate the checksum in software. This is because: \ * \ * Wrap around: certain partial-checksum NICs (eri, ce) limit \ * the size of "start offset" width to 6-bit. This effectively \ * sets the largest value of the offset to 64-bytes, starting \ * from the MAC header. When the cumulative MAC and IP headers \ * exceed such limit, the offset will wrap around. This causes \ * the checksum to be calculated at the wrong place. \ * \ * IPv4 source routing: none of the full-checksum capable NICs \ * is capable of correctly handling the IPv4 source-routing \ * option for purposes of calculating the pseudo-header; the \ * actual destination is different from the destination in the \ * header which is that of the next-hop. (This case may not be \ * true for NICs which can parse IPv6 extension headers, but \ * we choose to simplify the implementation by not offloading \ * checksum when they are present.) \ * \ */ \ if ((ill) != NULL && ILL_HCKSUM_CAPABLE(ill) && \ !((ire)->ire_flags & RTF_MULTIRT) && \ (!((ire)->ire_type & IRE_BROADCAST) || \ (ill)->ill_type == IFT_ETHER) && \ (ipsec_len) == 0 && \ (((ire)->ire_ipversion == IPV4_VERSION && \ (start) == IP_SIMPLE_HDR_LENGTH && \ ((ire)->ire_nce != NULL && \ (ire)->ire_nce->nce_fp_mp != NULL && \ MBLKHEAD(mp) >= MBLKL((ire)->ire_nce->nce_fp_mp))) || \ ((ire)->ire_ipversion == IPV6_VERSION && \ (start) == IPV6_HDR_LEN && \ (ire)->ire_nce->nce_fp_mp != NULL && \ MBLKHEAD(mp) >= MBLKL((ire)->ire_nce->nce_fp_mp))) && \ (max_frag) >= (uint_t)((end) + (ipsec_len)) && \ dohwcksum) { \ _hck_flags = (ill)->ill_hcksum_capab->ill_hcksum_txflags; \ } else { \ _hck_flags = 0; \ } \ IP_CKSUM_XMIT_FAST((ire)->ire_ipversion, _hck_flags, mp, ihp, \ up, proto, start, end, pseudo); \ } /* * Based on the device capabilities, this macro either marks an outgoing * packet with hardware checksum offload information or calculate the * checksum in software. If the latter is performed, the checksum field * of the dblk is cleared; otherwise it will be non-zero and contain the * necessary flag(s) for the driver. */ #define IP_CKSUM_XMIT_FAST(ipver, hck_flags, mp, ihp, up, proto, start, \ end, pseudo) { \ uint32_t _sum; \ /* \ * Underlying interface supports hardware checksum offload for \ * the payload; leave the payload checksum for the hardware to \ * calculate. N.B: We only need to set up checksum info on the \ * first mblk. \ */ \ DB_CKSUMFLAGS(mp) = 0; \ if (((ipver) == IPV4_VERSION && \ ((hck_flags) & HCKSUM_INET_FULL_V4)) || \ ((ipver) == IPV6_VERSION && \ ((hck_flags) & HCKSUM_INET_FULL_V6))) { \ /* \ * Hardware calculates pseudo-header, header and the \ * payload checksums, so clear the checksum field in \ * the protocol header. \ */ \ *(up) = 0; \ DB_CKSUMFLAGS(mp) |= HCK_FULLCKSUM; \ } else if ((hck_flags) & HCKSUM_INET_PARTIAL) { \ /* \ * Partial checksum offload has been enabled. Fill \ * the checksum field in the protocl header with the \ * pseudo-header checksum value. \ */ \ _sum = ((proto) == IPPROTO_UDP) ? \ IP_UDP_CSUM_COMP : IP_TCP_CSUM_COMP; \ _sum += *(up) + (pseudo); \ _sum = (_sum & 0xFFFF) + (_sum >> 16); \ *(up) = (_sum & 0xFFFF) + (_sum >> 16); \ /* \ * Offsets are relative to beginning of IP header. \ */ \ DB_CKSUMSTART(mp) = (start); \ DB_CKSUMSTUFF(mp) = ((proto) == IPPROTO_UDP) ? \ (start) + UDP_CHECKSUM_OFFSET : \ (start) + TCP_CHECKSUM_OFFSET; \ DB_CKSUMEND(mp) = (end); \ DB_CKSUMFLAGS(mp) |= HCK_PARTIALCKSUM; \ } else { \ /* \ * Software checksumming. \ */ \ _sum = ((proto) == IPPROTO_UDP) ? \ IP_UDP_CSUM_COMP : IP_TCP_CSUM_COMP; \ _sum += (pseudo); \ _sum = IP_CSUM(mp, start, _sum); \ *(up) = (uint16_t)(((proto) == IPPROTO_UDP) ? \ (_sum ? _sum : ~_sum) : _sum); \ } \ /* \ * Hardware supports IP header checksum offload; clear the \ * contents of IP header checksum field as expected by NIC. \ * Do this only if we offloaded either full or partial sum. \ */ \ if ((ipver) == IPV4_VERSION && DB_CKSUMFLAGS(mp) != 0 && \ ((hck_flags) & HCKSUM_IPHDRCKSUM)) { \ DB_CKSUMFLAGS(mp) |= HCK_IPV4_HDRCKSUM; \ ((ipha_t *)(ihp))->ipha_hdr_checksum = 0; \ } \ } /* * Macro to inspect the checksum of a fully-reassembled incoming datagram. */ #define IP_CKSUM_RECV_REASS(hck_flags, off, pseudo, sum, err) { \ (err) = B_FALSE; \ if ((hck_flags) & HCK_FULLCKSUM) { \ /* \ * The sum of all fragment checksums should \ * result in -0 (0xFFFF) or otherwise invalid. \ */ \ if ((sum) != 0xFFFF) \ (err) = B_TRUE; \ } else if ((hck_flags) & HCK_PARTIALCKSUM) { \ (sum) += (pseudo); \ (sum) = ((sum) & 0xFFFF) + ((sum) >> 16); \ (sum) = ((sum) & 0xFFFF) + ((sum) >> 16); \ if (~(sum) & 0xFFFF) \ (err) = B_TRUE; \ } else if (((sum) = IP_CSUM(mp, off, pseudo)) != 0) { \ (err) = B_TRUE; \ } \ } /* * This macro inspects an incoming packet to see if the checksum value * contained in it is valid; if the hardware has provided the information, * the value is verified, otherwise it performs software checksumming. * The checksum value is returned to caller. */ #define IP_CKSUM_RECV(hck_flags, sum, cksum_start, ulph_off, mp, mp1, err) { \ int32_t _len; \ \ (err) = B_FALSE; \ if ((hck_flags) & HCK_FULLCKSUM) { \ /* \ * Full checksum has been computed by the hardware \ * and has been attached. If the driver wants us to \ * verify the correctness of the attached value, in \ * order to protect against faulty hardware, compare \ * it against -0 (0xFFFF) to see if it's valid. \ */ \ (sum) = DB_CKSUM16(mp); \ if (!((hck_flags) & HCK_FULLCKSUM_OK) && (sum) != 0xFFFF) \ (err) = B_TRUE; \ } else if (((hck_flags) & HCK_PARTIALCKSUM) && \ ((mp1) == NULL || (mp1)->b_cont == NULL) && \ (ulph_off) >= DB_CKSUMSTART(mp) && \ ((_len = (ulph_off) - DB_CKSUMSTART(mp)) & 1) == 0) { \ uint32_t _adj; \ /* \ * Partial checksum has been calculated by hardware \ * and attached to the packet; in addition, any \ * prepended extraneous data is even byte aligned, \ * and there are at most two mblks associated with \ * the packet. If any such data exists, we adjust \ * the checksum; also take care any postpended data. \ */ \ IP_ADJCKSUM_PARTIAL(cksum_start, mp, mp1, _len, _adj); \ /* \ * One's complement subtract extraneous checksum \ */ \ (sum) += DB_CKSUM16(mp); \ if (_adj >= (sum)) \ (sum) = ~(_adj - (sum)) & 0xFFFF; \ else \ (sum) -= _adj; \ (sum) = ((sum) & 0xFFFF) + ((int)(sum) >> 16); \ (sum) = ((sum) & 0xFFFF) + ((int)(sum) >> 16); \ if (~(sum) & 0xFFFF) \ (err) = B_TRUE; \ } else if (((sum) = IP_CSUM(mp, ulph_off, sum)) != 0) { \ (err) = B_TRUE; \ } \ } /* * Macro to adjust a given checksum value depending on any prepended * or postpended data on the packet. It expects the start offset to * begin at an even boundary and that the packet consists of at most * two mblks. */ #define IP_ADJCKSUM_PARTIAL(cksum_start, mp, mp1, len, adj) { \ /* \ * Prepended extraneous data; adjust checksum. \ */ \ if ((len) > 0) \ (adj) = IP_BCSUM_PARTIAL(cksum_start, len, 0); \ else \ (adj) = 0; \ /* \ * len is now the total length of mblk(s) \ */ \ (len) = MBLKL(mp); \ if ((mp1) == NULL) \ (mp1) = (mp); \ else \ (len) += MBLKL(mp1); \ /* \ * Postpended extraneous data; adjust checksum. \ */ \ if (((len) = (DB_CKSUMEND(mp) - len)) > 0) { \ uint32_t _pad; \ \ _pad = IP_BCSUM_PARTIAL((mp1)->b_wptr, len, 0); \ /* \ * If the postpended extraneous data was odd \ * byte aligned, swap resulting checksum bytes. \ */ \ if ((uintptr_t)(mp1)->b_wptr & 1) \ (adj) += ((_pad << 8) & 0xFFFF) | (_pad >> 8); \ else \ (adj) += _pad; \ (adj) = ((adj) & 0xFFFF) + ((int)(adj) >> 16); \ } \ } #define ILL_MDT_CAPABLE(ill) \ (((ill)->ill_capabilities & ILL_CAPAB_MDT) != 0) /* * ioctl identifier and structure for Multidata Transmit update * private M_CTL communication from IP to ULP. */ #define MDT_IOC_INFO_UPDATE (('M' << 8) + 1020) typedef struct ip_mdt_info_s { uint_t mdt_info_id; /* MDT_IOC_INFO_UPDATE */ ill_mdt_capab_t mdt_capab; /* ILL MDT capabilities */ } ip_mdt_info_t; /* * Macro that determines whether or not a given ILL is allowed for MDT. */ #define ILL_MDT_USABLE(ill) \ (ILL_MDT_CAPABLE(ill) && \ ill->ill_mdt_capab != NULL && \ ill->ill_mdt_capab->ill_mdt_version == MDT_VERSION_2 && \ ill->ill_mdt_capab->ill_mdt_on != 0) #define ILL_LSO_CAPABLE(ill) \ (((ill)->ill_capabilities & ILL_CAPAB_DLD_LSO) != 0) /* * ioctl identifier and structure for Large Segment Offload * private M_CTL communication from IP to ULP. */ #define LSO_IOC_INFO_UPDATE (('L' << 24) + ('S' << 16) + ('O' << 8)) typedef struct ip_lso_info_s { uint_t lso_info_id; /* LSO_IOC_INFO_UPDATE */ ill_lso_capab_t lso_capab; /* ILL LSO capabilities */ } ip_lso_info_t; /* * Macro that determines whether or not a given ILL is allowed for LSO. */ #define ILL_LSO_USABLE(ill) \ (ILL_LSO_CAPABLE(ill) && \ ill->ill_lso_capab != NULL && \ ill->ill_lso_capab->ill_lso_on != 0) #define ILL_LSO_TCP_USABLE(ill) \ (ILL_LSO_USABLE(ill) && \ ill->ill_lso_capab->ill_lso_flags & DLD_LSO_TX_BASIC_TCP_IPV4) /* * Macro that determines whether or not a given CONN may be considered * for fast path prior to proceeding further with LSO or Multidata. */ #define CONN_IS_LSO_MD_FASTPATH(connp) \ ((connp)->conn_dontroute == 0 && /* SO_DONTROUTE */ \ !((connp)->conn_nexthop_set) && /* IP_NEXTHOP */ \ (connp)->conn_outgoing_ill == NULL) /* IP{V6}_BOUND_IF */ /* Definitions for fragmenting IP packets using MDT. */ /* * Smaller and private version of pdescinfo_t used specifically for IP, * which allows for only a single payload span per packet. */ typedef struct ip_pdescinfo_s PDESCINFO_STRUCT(2) ip_pdescinfo_t; /* * Macro version of ip_can_frag_mdt() which avoids the function call if we * only examine a single message block. */ #define IP_CAN_FRAG_MDT(mp, hdr_len, len) \ (((mp)->b_cont == NULL) ? \ (MBLKL(mp) >= ((hdr_len) + ip_wput_frag_mdt_min)) : \ ip_can_frag_mdt((mp), (hdr_len), (len))) /* * Macro that determines whether or not a given IPC requires * outbound IPSEC processing. */ #define CONN_IPSEC_OUT_ENCAPSULATED(connp) \ ((connp)->conn_out_enforce_policy || \ ((connp)->conn_latch != NULL && \ (connp)->conn_latch->ipl_out_policy != NULL)) /* * These are used by the synchronous streams code in tcp and udp. * When we set the flags for a wakeup from a synchronous stream we * always set RSLEEP in sd_wakeq, even if we have a read thread waiting * to do the io. This is in case the read thread gets interrupted * before completing the io. The RSLEEP flag in sd_wakeq is used to * indicate that there is data available at the synchronous barrier. * The assumption is that subsequent functions calls through rwnext() * will reset sd_wakeq appropriately. */ #define STR_WAKEUP_CLEAR(stp) { \ mutex_enter(&stp->sd_lock); \ stp->sd_wakeq &= ~RSLEEP; \ mutex_exit(&stp->sd_lock); \ } #define STR_WAKEUP_SET(stp) { \ mutex_enter(&stp->sd_lock); \ if (stp->sd_flag & RSLEEP) { \ stp->sd_flag &= ~RSLEEP; \ cv_broadcast(&_RD(stp->sd_wrq)->q_wait); \ } \ stp->sd_wakeq |= RSLEEP; \ mutex_exit(&stp->sd_lock); \ } /* * Combined wakeup and sendsig to avoid dropping and reacquiring the * sd_lock. The list of messages waiting at the synchronous barrier is * supplied in order to determine whether a wakeup needs to occur. We * only send a wakeup to the application when necessary, i.e. during * the first enqueue when the received messages list will be NULL. */ #define STR_WAKEUP_SENDSIG(stp, rcv_list) { \ int _events; \ mutex_enter(&stp->sd_lock); \ if (rcv_list == NULL) { \ if (stp->sd_flag & RSLEEP) { \ stp->sd_flag &= ~RSLEEP; \ cv_broadcast(&_RD(stp->sd_wrq)->q_wait); \ } \ stp->sd_wakeq |= RSLEEP; \ } \ if ((_events = stp->sd_sigflags & (S_INPUT | S_RDNORM)) != 0) \ strsendsig(stp->sd_siglist, _events, 0, 0); \ if (stp->sd_rput_opt & SR_POLLIN) { \ stp->sd_rput_opt &= ~SR_POLLIN; \ mutex_exit(&stp->sd_lock); \ pollwakeup(&stp->sd_pollist, POLLIN | POLLRDNORM); \ } else { \ mutex_exit(&stp->sd_lock); \ } \ } #define CONN_UDP_SYNCSTR(connp) \ (IPCL_IS_UDP(connp) && (connp)->conn_udp->udp_direct_sockfs) /* * Macro that checks whether or not a particular UDP conn is * flow-controlling on the read-side. If udp module is directly * above ip, check to see if the drain queue is full; note here * that we check this without any lock protection because this * is a coarse granularity inbound flow-control. If the module * above ip is not udp, then use canputnext to determine the * flow-control. * * Note that these checks are done after the conn is found in * the UDP fanout table. * FIXME? Might be faster to check both udp_drain_qfull and canputnext. */ #define CONN_UDP_FLOWCTLD(connp) \ (CONN_UDP_SYNCSTR(connp) ? \ (connp)->conn_udp->udp_drain_qfull : \ !canputnext((connp)->conn_rq)) /* Macro that follows definitions of flags for mac_tx() (see mac_client.h) */ #define IP_DROP_ON_NO_DESC 0x01 /* Equivalent to MAC_DROP_ON_NO_DESC */ #define ILL_DIRECT_CAPABLE(ill) \ (((ill)->ill_capabilities & ILL_CAPAB_DLD_DIRECT) != 0) #define ILL_SEND_TX(ill, ire, hint, mp, flag, connp) { \ if (ILL_DIRECT_CAPABLE(ill) && DB_TYPE(mp) == M_DATA) { \ ill_dld_direct_t *idd; \ uintptr_t cookie; \ conn_t *udp_connp = (conn_t *)connp; \ \ idd = &(ill)->ill_dld_capab->idc_direct; \ /* \ * Send the packet directly to DLD, where it \ * may be queued depending on the availability \ * of transmit resources at the media layer. \ * Ignore the returned value for the time being \ * In future, we may want to take this into \ * account and flow control the TCP. \ */ \ cookie = idd->idd_tx_df(idd->idd_tx_dh, mp, \ (uintptr_t)(hint), flag); \ \ /* \ * non-NULL cookie indicates flow control situation \ * and the cookie itself identifies this specific \ * Tx ring that is blocked. This cookie is used to \ * block the UDP conn that is sending packets over \ * this specific Tx ring. \ */ \ if ((cookie != NULL) && (udp_connp != NULL) && \ (udp_connp->conn_ulp == IPPROTO_UDP)) { \ idl_tx_list_t *idl_txl; \ ip_stack_t *ipst; \ \ /* \ * Flow controlled. \ */ \ DTRACE_PROBE2(ill__send__tx__cookie, \ uintptr_t, cookie, conn_t *, udp_connp); \ ipst = udp_connp->conn_netstack->netstack_ip; \ idl_txl = \ &ipst->ips_idl_tx_list[IDLHASHINDEX(cookie)];\ mutex_enter(&idl_txl->txl_lock); \ if (udp_connp->conn_direct_blocked || \ (idd->idd_tx_fctl_df(idd->idd_tx_fctl_dh, \ cookie) == 0)) { \ DTRACE_PROBE1(ill__tx__not__blocked, \ boolean, \ udp_connp->conn_direct_blocked); \ } else if (idl_txl->txl_cookie != NULL && \ idl_txl->txl_cookie != cookie) { \ udp_t *udp = udp_connp->conn_udp; \ udp_stack_t *us = udp->udp_us; \ \ DTRACE_PROBE2(ill__send__tx__collision, \ uintptr_t, cookie, \ uintptr_t, idl_txl->txl_cookie); \ UDP_STAT(us, udp_cookie_coll); \ } else { \ udp_connp->conn_direct_blocked = B_TRUE;\ idl_txl->txl_cookie = cookie; \ conn_drain_insert(udp_connp, idl_txl); \ DTRACE_PROBE1(ill__send__tx__insert, \ conn_t *, udp_connp); \ } \ mutex_exit(&idl_txl->txl_lock); \ } \ } else { \ putnext((ire)->ire_stq, mp); \ } \ } #define MBLK_RX_FANOUT_SLOWPATH(mp, ipha) \ (DB_TYPE(mp) != M_DATA || DB_REF(mp) != 1 || !OK_32PTR(ipha) || \ (((uchar_t *)ipha + IP_SIMPLE_HDR_LENGTH) >= (mp)->b_wptr)) /* * In non-global zone exclusive IP stacks, data structures such as IRE * entries pretend that they're in the global zone. The following * macro evaluates to the real zoneid instead of a pretend * GLOBAL_ZONEID. */ #define IP_REAL_ZONEID(zoneid, ipst) \ (((zoneid) == GLOBAL_ZONEID) ? \ netstackid_to_zoneid((ipst)->ips_netstack->netstack_stackid) : \ (zoneid)) extern int ip_wput_frag_mdt_min; extern boolean_t ip_can_frag_mdt(mblk_t *, ssize_t, ssize_t); extern mblk_t *ip_prepend_zoneid(mblk_t *, zoneid_t, ip_stack_t *); extern void ill_flow_enable(void *, ip_mac_tx_cookie_t); extern zoneid_t ip_get_zoneid_v4(ipaddr_t, mblk_t *, ip_stack_t *, zoneid_t); extern zoneid_t ip_get_zoneid_v6(in6_addr_t *, mblk_t *, const ill_t *, ip_stack_t *, zoneid_t); /* * flag passed in by IP based protocols to get a private ip stream with * no conn_t. Note this flag has the same value as SO_FALLBACK */ #define IP_HELPER_STR SO_FALLBACK #define IP_MOD_MINPSZ 1 #define IP_MOD_MAXPSZ INFPSZ #define IP_MOD_HIWAT 65536 #define IP_MOD_LOWAT 1024 #define DEV_IP "/devices/pseudo/ip@0:ip" #define DEV_IP6 "/devices/pseudo/ip6@0:ip6" extern struct kmem_cache *ip_helper_stream_cache; #endif /* _KERNEL */ #ifdef __cplusplus } #endif #endif /* _INET_IP_IMPL_H */