/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #define _SUN_TPI_VERSION 2 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * This is a transport provider for the PF_POLICY IPsec policy * management socket, which provides a management interface into the * SPD, allowing policy rules to be added, deleted, and queried. * * This effectively replaces the old private SIOC*IPSECONFIG ioctls * with an extensible interface which will hopefully be public some * day. * * See for more details on the protocol. * * We link against drv/ip and call directly into it to manipulate the * SPD; see ipsec_impl.h for the policy data structures and spd.c for * the code which maintains them. * * The MT model of this is QPAIR with the addition of some explicit * locking to protect system-wide policy data structures. */ static vmem_t *spdsock_vmem; /* for minor numbers. */ #define ALIGNED64(x) IS_P2ALIGNED((x), sizeof (uint64_t)) /* Default structure copied into T_INFO_ACK messages (from rts.c...) */ static struct T_info_ack spdsock_g_t_info_ack = { T_INFO_ACK, T_INFINITE, /* TSDU_size. Maximum size messages. */ T_INVALID, /* ETSDU_size. No expedited data. */ T_INVALID, /* CDATA_size. No connect data. */ T_INVALID, /* DDATA_size. No disconnect data. */ 0, /* ADDR_size. */ 0, /* OPT_size. No user-settable options */ 64 * 1024, /* TIDU_size. spdsock allows maximum size messages. */ T_COTS, /* SERV_type. spdsock supports connection oriented. */ TS_UNBND, /* CURRENT_state. This is set from spdsock_state. */ (XPG4_1) /* Provider flags */ }; /* Named Dispatch Parameter Management Structure */ typedef struct spdsockpparam_s { uint_t spdsock_param_min; uint_t spdsock_param_max; uint_t spdsock_param_value; char *spdsock_param_name; } spdsockparam_t; /* * Table of NDD variables supported by spdsock. These are loaded into * spdsock_g_nd in spdsock_init_nd. * All of these are alterable, within the min/max values given, at run time. */ static spdsockparam_t spdsock_param_arr[] = { /* min max value name */ { 4096, 65536, 8192, "spdsock_xmit_hiwat"}, { 0, 65536, 1024, "spdsock_xmit_lowat"}, { 4096, 65536, 8192, "spdsock_recv_hiwat"}, { 65536, 1024*1024*1024, 256*1024, "spdsock_max_buf"}, { 0, 3, 0, "spdsock_debug"}, }; #define spdsock_xmit_hiwat spdsock_param_arr[0].spdsock_param_value #define spdsock_xmit_lowat spdsock_param_arr[1].spdsock_param_value #define spdsock_recv_hiwat spdsock_param_arr[2].spdsock_param_value #define spdsock_max_buf spdsock_param_arr[3].spdsock_param_value #define spdsock_debug spdsock_param_arr[4].spdsock_param_value kmutex_t spdsock_param_lock; /* Protects the NDD variables. */ /* * To save algorithm update messages that are processed only after IPsec * is loaded. */ static spd_ext_t *spdsock_extv_algs[SPD_EXT_MAX + 1]; static mblk_t *spdsock_mp_algs = NULL; static boolean_t spdsock_algs_pending = B_FALSE; static ipsec_alginfo_t *spdsock_algs[IPSEC_NALGTYPES][IPSEC_MAX_ALGS]; static ipsec_algs_exec_mode_t spdsock_algs_exec_mode[IPSEC_NALGTYPES]; static kmutex_t spdsock_alg_lock; #define ss0dbg(a) printf a /* NOTE: != 0 instead of > 0 so lint doesn't complain. */ #define ss1dbg(a) if (spdsock_debug != 0) printf a #define ss2dbg(a) if (spdsock_debug > 1) printf a #define ss3dbg(a) if (spdsock_debug > 2) printf a static IDP spdsock_g_nd; static int spdsock_close(queue_t *); static int spdsock_open(queue_t *, dev_t *, int, int, cred_t *); static void spdsock_wput(queue_t *, mblk_t *); static void spdsock_wsrv(queue_t *); static void spdsock_rsrv(queue_t *); static void spdsock_loadcheck(void *); static void spdsock_merge_algs(void); static struct module_info info = { 5138, "spdsock", 1, INFPSZ, 512, 128 }; static struct qinit rinit = { NULL, (pfi_t)spdsock_rsrv, spdsock_open, spdsock_close, NULL, &info }; static struct qinit winit = { (pfi_t)spdsock_wput, (pfi_t)spdsock_wsrv, NULL, NULL, NULL, &info }; struct streamtab spdsockinfo = { &rinit, &winit }; /* mapping from alg type to protocol number, as per RFC 2407 */ static const uint_t algproto[] = { PROTO_IPSEC_AH, PROTO_IPSEC_ESP, }; #define NALGPROTOS (sizeof (algproto) / sizeof (algproto[0])) /* mapping from kernel exec mode to spdsock exec mode */ static const uint_t execmodes[] = { SPD_ALG_EXEC_MODE_SYNC, SPD_ALG_EXEC_MODE_ASYNC }; #define NEXECMODES (sizeof (execmodes) / sizeof (execmodes[0])) /* ARGSUSED */ static int spdsock_param_get(q, mp, cp, cr) queue_t *q; mblk_t *mp; caddr_t cp; cred_t *cr; { spdsockparam_t *spdsockpa = (spdsockparam_t *)cp; uint_t value; mutex_enter(&spdsock_param_lock); value = spdsockpa->spdsock_param_value; mutex_exit(&spdsock_param_lock); (void) mi_mpprintf(mp, "%u", value); return (0); } /* This routine sets an NDD variable in a spdsockparam_t structure. */ /* ARGSUSED */ static int spdsock_param_set(q, mp, value, cp, cr) queue_t *q; mblk_t *mp; char *value; caddr_t cp; cred_t *cr; { ulong_t new_value; spdsockparam_t *spdsockpa = (spdsockparam_t *)cp; /* Convert the value from a string into a long integer. */ if (ddi_strtoul(value, NULL, 10, &new_value) != 0) return (EINVAL); mutex_enter(&spdsock_param_lock); /* * Fail the request if the new value does not lie within the * required bounds. */ if (new_value < spdsockpa->spdsock_param_min || new_value > spdsockpa->spdsock_param_max) { mutex_exit(&spdsock_param_lock); return (EINVAL); } /* Set the new value */ spdsockpa->spdsock_param_value = new_value; mutex_exit(&spdsock_param_lock); return (0); } boolean_t spdsock_ddi_init(void) { spdsockparam_t *ssp = spdsock_param_arr; int count = A_CNT(spdsock_param_arr); if (!spdsock_g_nd) { for (; count-- > 0; ssp++) { if (ssp->spdsock_param_name != NULL && (ssp->spdsock_param_name[0] != '\0')) { if (!nd_load(&spdsock_g_nd, ssp->spdsock_param_name, spdsock_param_get, spdsock_param_set, (caddr_t)ssp)) { nd_free(&spdsock_g_nd); return (B_FALSE); } } } } spdsock_max_optsize = optcom_max_optsize( spdsock_opt_obj.odb_opt_des_arr, spdsock_opt_obj.odb_opt_arr_cnt); spdsock_vmem = vmem_create("spdsock", (void *)1, MAXMIN, 1, NULL, NULL, NULL, 1, VM_SLEEP | VMC_IDENTIFIER); mutex_init(&spdsock_param_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&spdsock_alg_lock, NULL, MUTEX_DEFAULT, NULL); return (B_TRUE); } void spdsock_ddi_destroy(void) { vmem_destroy(spdsock_vmem); mutex_destroy(&spdsock_param_lock); mutex_destroy(&spdsock_alg_lock); nd_free(&spdsock_g_nd); } /* * NOTE: large quantities of this should be shared with keysock. * Would be nice to combine some of this into a common module, but * not possible given time pressures. */ /* * High-level reality checking of extensions. */ /* ARGSUSED */ /* XXX */ static boolean_t ext_check(spd_ext_t *ext) { return (B_TRUE); /* For now... */ } /* Return values for spdsock_get_ext(). */ #define KGE_OK 0 #define KGE_DUP 1 #define KGE_UNK 2 #define KGE_LEN 3 #define KGE_CHK 4 /* * Parse basic extension headers and return in the passed-in pointer vector. * Return values include: * * KGE_OK Everything's nice and parsed out. * If there are no extensions, place NULL in extv[0]. * KGE_DUP There is a duplicate extension. * First instance in appropriate bin. First duplicate in * extv[0]. * KGE_UNK Unknown extension type encountered. extv[0] contains * unknown header. * KGE_LEN Extension length error. * KGE_CHK High-level reality check failed on specific extension. * * My apologies for some of the pointer arithmetic in here. I'm thinking * like an assembly programmer, yet trying to make the compiler happy. */ static int spdsock_get_ext(spd_ext_t *extv[], spd_msg_t *basehdr, uint_t msgsize) { bzero(extv, sizeof (spd_ext_t *) * (SPD_EXT_MAX + 1)); /* Use extv[0] as the "current working pointer". */ extv[0] = (spd_ext_t *)(basehdr + 1); while (extv[0] < (spd_ext_t *)(((uint8_t *)basehdr) + msgsize)) { /* Check for unknown headers. */ if (extv[0]->spd_ext_type == 0 || extv[0]->spd_ext_type > SPD_EXT_MAX) return (KGE_UNK); /* * Check length. Use uint64_t because extlen is in units * of 64-bit words. If length goes beyond the msgsize, * return an error. (Zero length also qualifies here.) */ if (extv[0]->spd_ext_len == 0 || (void *)((uint64_t *)extv[0] + extv[0]->spd_ext_len) > (void *)((uint8_t *)basehdr + msgsize)) return (KGE_LEN); /* Check for redundant headers. */ if (extv[extv[0]->spd_ext_type] != NULL) return (KGE_DUP); /* * Reality check the extension if possible at the spdsock * level. */ if (!ext_check(extv[0])) return (KGE_CHK); /* If I make it here, assign the appropriate bin. */ extv[extv[0]->spd_ext_type] = extv[0]; /* Advance pointer (See above for uint64_t ptr reasoning.) */ extv[0] = (spd_ext_t *) ((uint64_t *)extv[0] + extv[0]->spd_ext_len); } /* Everything's cool. */ /* * If extv[0] == NULL, then there are no extension headers in this * message. Ensure that this is the case. */ if (extv[0] == (spd_ext_t *)(basehdr + 1)) extv[0] = NULL; return (KGE_OK); } static const int bad_ext_diag[] = { SPD_DIAGNOSTIC_MALFORMED_LCLPORT, SPD_DIAGNOSTIC_MALFORMED_REMPORT, SPD_DIAGNOSTIC_MALFORMED_PROTO, SPD_DIAGNOSTIC_MALFORMED_LCLADDR, SPD_DIAGNOSTIC_MALFORMED_REMADDR, SPD_DIAGNOSTIC_MALFORMED_ACTION, SPD_DIAGNOSTIC_MALFORMED_RULE, SPD_DIAGNOSTIC_MALFORMED_RULESET, SPD_DIAGNOSTIC_MALFORMED_ICMP_TYPECODE }; static const int dup_ext_diag[] = { SPD_DIAGNOSTIC_DUPLICATE_LCLPORT, SPD_DIAGNOSTIC_DUPLICATE_REMPORT, SPD_DIAGNOSTIC_DUPLICATE_PROTO, SPD_DIAGNOSTIC_DUPLICATE_LCLADDR, SPD_DIAGNOSTIC_DUPLICATE_REMADDR, SPD_DIAGNOSTIC_DUPLICATE_ACTION, SPD_DIAGNOSTIC_DUPLICATE_RULE, SPD_DIAGNOSTIC_DUPLICATE_RULESET, SPD_DIAGNOSTIC_DUPLICATE_ICMP_TYPECODE }; /* * Transmit a PF_POLICY error message to the instance either pointed to * by ks, the instance with serial number serial, or more, depending. * * The faulty message (or a reasonable facsimile thereof) is in mp. * This function will free mp or recycle it for delivery, thereby causing * the stream head to free it. */ static void spdsock_error(queue_t *q, mblk_t *mp, int error, int diagnostic) { spd_msg_t *spmsg = (spd_msg_t *)mp->b_rptr; ASSERT(mp->b_datap->db_type == M_DATA); if (spmsg->spd_msg_type < SPD_MIN || spmsg->spd_msg_type > SPD_MAX) spmsg->spd_msg_type = SPD_RESERVED; /* * Strip out extension headers. */ ASSERT(mp->b_rptr + sizeof (*spmsg) <= mp->b_datap->db_lim); mp->b_wptr = mp->b_rptr + sizeof (*spmsg); spmsg->spd_msg_len = SPD_8TO64(sizeof (spd_msg_t)); spmsg->spd_msg_errno = (uint8_t)error; spmsg->spd_msg_diagnostic = (uint16_t)diagnostic; qreply(q, mp); } static void spdsock_diag(queue_t *q, mblk_t *mp, int diagnostic) { spdsock_error(q, mp, EINVAL, diagnostic); } static void spd_echo(queue_t *q, mblk_t *mp) { qreply(q, mp); } /* ARGSUSED */ static void spdsock_flush(queue_t *q, ipsec_policy_head_t *iph, mblk_t *mp, spd_ext_t **extv) { rw_enter(&iph->iph_lock, RW_WRITER); ipsec_polhead_flush(iph); rw_exit(&iph->iph_lock); spd_echo(q, mp); } static boolean_t spdsock_ext_to_sel(spd_ext_t **extv, ipsec_selkey_t *sel, int *diag) { bzero(sel, sizeof (*sel)); if (extv[SPD_EXT_PROTO] != NULL) { struct spd_proto *pr = (struct spd_proto *)extv[SPD_EXT_PROTO]; sel->ipsl_proto = pr->spd_proto_number; sel->ipsl_valid |= IPSL_PROTOCOL; } if (extv[SPD_EXT_LCLPORT] != NULL) { struct spd_portrange *pr = (struct spd_portrange *)extv[SPD_EXT_LCLPORT]; sel->ipsl_lport = pr->spd_ports_minport; sel->ipsl_valid |= IPSL_LOCAL_PORT; } if (extv[SPD_EXT_REMPORT] != NULL) { struct spd_portrange *pr = (struct spd_portrange *)extv[SPD_EXT_REMPORT]; sel->ipsl_rport = pr->spd_ports_minport; sel->ipsl_valid |= IPSL_REMOTE_PORT; } if (extv[SPD_EXT_ICMP_TYPECODE] != NULL) { struct spd_typecode *tc= (struct spd_typecode *)extv[SPD_EXT_ICMP_TYPECODE]; sel->ipsl_valid |= IPSL_ICMP_TYPE; sel->ipsl_icmp_type = tc->spd_typecode_type; if (tc->spd_typecode_type_end < tc->spd_typecode_type) sel->ipsl_icmp_type_end = tc->spd_typecode_type; else sel->ipsl_icmp_type_end = tc->spd_typecode_type_end; if (tc->spd_typecode_code != 255) { sel->ipsl_valid |= IPSL_ICMP_CODE; sel->ipsl_icmp_code = tc->spd_typecode_code; if (tc->spd_typecode_code_end < tc->spd_typecode_code) sel->ipsl_icmp_code_end = tc->spd_typecode_code; else sel->ipsl_icmp_code_end = tc->spd_typecode_code_end; } } #define ADDR2SEL(sel, extv, field, pfield, extn, bit) \ if ((extv)[(extn)] != NULL) { \ uint_t addrlen; \ struct spd_address *ap = \ (struct spd_address *)((extv)[(extn)]); \ addrlen = (ap->spd_address_af == AF_INET6) ? \ IPV6_ADDR_LEN : IP_ADDR_LEN; \ if (SPD_64TO8(ap->spd_address_len) < \ (addrlen + sizeof (*ap))) { \ *diag = SPD_DIAGNOSTIC_BAD_ADDR_LEN; \ return (B_FALSE); \ } \ bcopy((ap+1), &((sel)->field), addrlen); \ (sel)->pfield = ap->spd_address_prefixlen; \ (sel)->ipsl_valid |= (bit); \ (sel)->ipsl_valid |= (ap->spd_address_af == AF_INET6) ? \ IPSL_IPV6 : IPSL_IPV4; \ } ADDR2SEL(sel, extv, ipsl_local, ipsl_local_pfxlen, SPD_EXT_LCLADDR, IPSL_LOCAL_ADDR); ADDR2SEL(sel, extv, ipsl_remote, ipsl_remote_pfxlen, SPD_EXT_REMADDR, IPSL_REMOTE_ADDR); if ((sel->ipsl_valid & (IPSL_IPV6|IPSL_IPV4)) == (IPSL_IPV6|IPSL_IPV4)) { *diag = SPD_DIAGNOSTIC_MIXED_AF; return (B_FALSE); } #undef ADDR2SEL return (B_TRUE); } static boolean_t spd_convert_type(uint32_t type, ipsec_act_t *act) { switch (type) { case SPD_ACTTYPE_DROP: act->ipa_type = IPSEC_ACT_DISCARD; return (B_TRUE); case SPD_ACTTYPE_PASS: act->ipa_type = IPSEC_ACT_CLEAR; return (B_TRUE); case SPD_ACTTYPE_IPSEC: act->ipa_type = IPSEC_ACT_APPLY; return (B_TRUE); } return (B_FALSE); } static boolean_t spd_convert_flags(uint32_t flags, ipsec_act_t *act) { /* * Note use of !! for boolean canonicalization. */ act->ipa_apply.ipp_use_ah = !!(flags & SPD_APPLY_AH); act->ipa_apply.ipp_use_esp = !!(flags & SPD_APPLY_ESP); act->ipa_apply.ipp_use_espa = !!(flags & SPD_APPLY_ESPA); act->ipa_apply.ipp_use_se = !!(flags & SPD_APPLY_SE); act->ipa_apply.ipp_use_unique = !!(flags & SPD_APPLY_UNIQUE); return (B_TRUE); } static void spdsock_reset_act(ipsec_act_t *act) { bzero(act, sizeof (*act)); act->ipa_apply.ipp_espe_maxbits = IPSEC_MAX_KEYBITS; act->ipa_apply.ipp_espa_maxbits = IPSEC_MAX_KEYBITS; act->ipa_apply.ipp_ah_maxbits = IPSEC_MAX_KEYBITS; } /* * Sanity check action against reality, and shrink-wrap key sizes.. */ static boolean_t spdsock_check_action(ipsec_act_t *act, int *diag) { if ((act->ipa_type != IPSEC_ACT_APPLY) && (act->ipa_apply.ipp_use_ah || act->ipa_apply.ipp_use_esp || act->ipa_apply.ipp_use_espa || act->ipa_apply.ipp_use_se || act->ipa_apply.ipp_use_unique)) { *diag = SPD_DIAGNOSTIC_ADD_INCON_FLAGS; return (B_FALSE); } if ((act->ipa_type == IPSEC_ACT_APPLY) && !act->ipa_apply.ipp_use_ah && !act->ipa_apply.ipp_use_esp) { *diag = SPD_DIAGNOSTIC_ADD_INCON_FLAGS; return (B_FALSE); } return (ipsec_check_action(act, diag)); } /* * We may be short a few error checks here.. */ static boolean_t spdsock_ext_to_actvec(spd_ext_t **extv, ipsec_act_t **actpp, uint_t *nactp, int *diag) { struct spd_ext_actions *sactp = (struct spd_ext_actions *)extv[SPD_EXT_ACTION]; ipsec_act_t act, *actp, *endactp; struct spd_attribute *attrp, *endattrp; uint64_t *endp; int nact; *actpp = NULL; *nactp = 0; if (sactp == NULL) { *diag = SPD_DIAGNOSTIC_NO_ACTION_EXT; return (B_FALSE); } /* * Parse the "action" extension and convert into an action chain. */ nact = sactp->spd_actions_count; endp = (uint64_t *)sactp; endp += sactp->spd_actions_len; endattrp = (struct spd_attribute *)endp; actp = kmem_alloc(sizeof (*actp) * nact, KM_NOSLEEP); if (actp == NULL) { *diag = SPD_DIAGNOSTIC_ADD_NO_MEM; return (B_FALSE); } *actpp = actp; *nactp = nact; endactp = actp + nact; spdsock_reset_act(&act); attrp = (struct spd_attribute *)(&sactp[1]); for (; attrp < endattrp; attrp++) { switch (attrp->spd_attr_tag) { case SPD_ATTR_NOP: break; case SPD_ATTR_EMPTY: spdsock_reset_act(&act); break; case SPD_ATTR_END: attrp = endattrp; /* FALLTHRU */ case SPD_ATTR_NEXT: if (actp >= endactp) { *diag = SPD_DIAGNOSTIC_ADD_WRONG_ACT_COUNT; goto fail; } if (!spdsock_check_action(&act, diag)) goto fail; *actp++ = act; break; case SPD_ATTR_TYPE: if (!spd_convert_type(attrp->spd_attr_value, &act)) { *diag = SPD_DIAGNOSTIC_ADD_BAD_TYPE; goto fail; } break; case SPD_ATTR_FLAGS: if (!spd_convert_flags(attrp->spd_attr_value, &act)) { *diag = SPD_DIAGNOSTIC_ADD_BAD_FLAGS; goto fail; } break; case SPD_ATTR_AH_AUTH: act.ipa_apply.ipp_auth_alg = attrp->spd_attr_value; break; case SPD_ATTR_ESP_ENCR: act.ipa_apply.ipp_encr_alg = attrp->spd_attr_value; break; case SPD_ATTR_ESP_AUTH: act.ipa_apply.ipp_esp_auth_alg = attrp->spd_attr_value; break; case SPD_ATTR_ENCR_MINBITS: act.ipa_apply.ipp_espe_minbits = attrp->spd_attr_value; break; case SPD_ATTR_ENCR_MAXBITS: act.ipa_apply.ipp_espe_maxbits = attrp->spd_attr_value; break; case SPD_ATTR_AH_MINBITS: act.ipa_apply.ipp_ah_minbits = attrp->spd_attr_value; break; case SPD_ATTR_AH_MAXBITS: act.ipa_apply.ipp_ah_maxbits = attrp->spd_attr_value; break; case SPD_ATTR_ESPA_MINBITS: act.ipa_apply.ipp_espa_minbits = attrp->spd_attr_value; break; case SPD_ATTR_ESPA_MAXBITS: act.ipa_apply.ipp_espa_maxbits = attrp->spd_attr_value; break; case SPD_ATTR_LIFE_SOFT_TIME: case SPD_ATTR_LIFE_HARD_TIME: case SPD_ATTR_LIFE_SOFT_BYTES: case SPD_ATTR_LIFE_HARD_BYTES: break; case SPD_ATTR_KM_PROTO: act.ipa_apply.ipp_km_proto = attrp->spd_attr_value; break; case SPD_ATTR_KM_COOKIE: act.ipa_apply.ipp_km_cookie = attrp->spd_attr_value; break; case SPD_ATTR_REPLAY_DEPTH: act.ipa_apply.ipp_replay_depth = attrp->spd_attr_value; break; } } if (actp != endactp) { *diag = SPD_DIAGNOSTIC_ADD_WRONG_ACT_COUNT; goto fail; } return (B_TRUE); fail: ipsec_actvec_free(*actpp, nact); *actpp = NULL; return (B_FALSE); } typedef struct { ipsec_policy_t *pol; int dir; } tmprule_t; static int mkrule(ipsec_policy_head_t *iph, struct spd_rule *rule, ipsec_selkey_t *sel, ipsec_act_t *actp, int nact, uint_t dir, uint_t af, tmprule_t **rp) { ipsec_policy_t *pol; sel->ipsl_valid &= ~(IPSL_IPV6|IPSL_IPV4); sel->ipsl_valid |= af; pol = ipsec_policy_create(sel, actp, nact, rule->spd_rule_priority); if (pol == NULL) return (ENOMEM); (*rp)->pol = pol; (*rp)->dir = dir; (*rp)++; if (!ipsec_check_policy(iph, pol, dir)) return (EEXIST); rule->spd_rule_index = pol->ipsp_index; return (0); } static int mkrulepair(ipsec_policy_head_t *iph, struct spd_rule *rule, ipsec_selkey_t *sel, ipsec_act_t *actp, int nact, uint_t dir, uint_t afs, tmprule_t **rp) { int error; if (afs & IPSL_IPV4) { error = mkrule(iph, rule, sel, actp, nact, dir, IPSL_IPV4, rp); if (error != 0) return (error); } if (afs & IPSL_IPV6) { error = mkrule(iph, rule, sel, actp, nact, dir, IPSL_IPV6, rp); if (error != 0) return (error); } return (0); } static void spdsock_addrule(queue_t *q, ipsec_policy_head_t *iph, mblk_t *mp, spd_ext_t **extv) { ipsec_selkey_t sel; ipsec_act_t *actp; uint_t nact; int diag, error, afs; struct spd_rule *rule = (struct spd_rule *)extv[SPD_EXT_RULE]; tmprule_t rules[4], *rulep = &rules[0]; if (rule == NULL) { spdsock_diag(q, mp, SPD_DIAGNOSTIC_NO_RULE_EXT); return; } if (rule->spd_rule_index != 0) { spdsock_diag(q, mp, SPD_DIAGNOSTIC_INVALID_RULE_INDEX); return; } if (!spdsock_ext_to_sel(extv, &sel, &diag)) { spdsock_diag(q, mp, diag); return; } if (!spdsock_ext_to_actvec(extv, &actp, &nact, &diag)) { spdsock_diag(q, mp, diag); return; } /* * If no addresses were specified, add both. */ afs = sel.ipsl_valid & (IPSL_IPV6|IPSL_IPV4); if (afs == 0) afs = (IPSL_IPV6|IPSL_IPV4); rw_enter(&iph->iph_lock, RW_WRITER); if (rule->spd_rule_flags & SPD_RULE_FLAG_OUTBOUND) { error = mkrulepair(iph, rule, &sel, actp, nact, IPSEC_TYPE_OUTBOUND, afs, &rulep); if (error != 0) goto fail; } if (rule->spd_rule_flags & SPD_RULE_FLAG_INBOUND) { error = mkrulepair(iph, rule, &sel, actp, nact, IPSEC_TYPE_INBOUND, afs, &rulep); if (error != 0) goto fail; } while ((--rulep) >= &rules[0]) ipsec_enter_policy(iph, rulep->pol, rulep->dir); rw_exit(&iph->iph_lock); ipsec_actvec_free(actp, nact); spd_echo(q, mp); return; fail: rw_exit(&iph->iph_lock); while ((--rulep) >= &rules[0]) { IPPOL_REFRELE(rulep->pol); } ipsec_actvec_free(actp, nact); spdsock_error(q, mp, error, 0); } void spdsock_deleterule(queue_t *q, ipsec_policy_head_t *iph, mblk_t *mp, spd_ext_t **extv) { ipsec_selkey_t sel; struct spd_rule *rule = (struct spd_rule *)extv[SPD_EXT_RULE]; int diag; if (rule == NULL) { spdsock_diag(q, mp, SPD_DIAGNOSTIC_NO_RULE_EXT); return; } if (rule->spd_rule_index != 0) { if (ipsec_policy_delete_index(iph, rule->spd_rule_index) != 0) { spdsock_error(q, mp, ESRCH, 0); return; } } else { if (!spdsock_ext_to_sel(extv, &sel, &diag)) { spdsock_diag(q, mp, diag); return; } if (rule->spd_rule_flags & SPD_RULE_FLAG_INBOUND) { if (!ipsec_policy_delete(iph, &sel, IPSEC_TYPE_INBOUND)) goto fail; } if (rule->spd_rule_flags & SPD_RULE_FLAG_OUTBOUND) { if (!ipsec_policy_delete(iph, &sel, IPSEC_TYPE_OUTBOUND)) goto fail; } } spd_echo(q, mp); return; fail: spdsock_error(q, mp, ESRCH, 0); } void spdsock_flip(queue_t *q, mblk_t *mp) { ipsec_swap_policy(); /* can't fail */ spd_echo(q, mp); } /* * Unimplemented feature */ /* ARGSUSED */ static void spdsock_lookup(queue_t *q, ipsec_policy_head_t *iph, mblk_t *mp, spd_ext_t **extv) { spdsock_error(q, mp, EINVAL, 0); } static mblk_t * spdsock_dump_ruleset(mblk_t *req, ipsec_policy_head_t *iph, uint32_t count, uint16_t error) { size_t len = sizeof (spd_ruleset_ext_t) + sizeof (spd_msg_t); spd_msg_t *msg; spd_ruleset_ext_t *ruleset; mblk_t *m = allocb(len, BPRI_HI); ASSERT(RW_READ_HELD(&iph->iph_lock)); if (m == NULL) { return (NULL); } msg = (spd_msg_t *)m->b_rptr; ruleset = (spd_ruleset_ext_t *)(&msg[1]); m->b_wptr = (uint8_t *)&ruleset[1]; *msg = *(spd_msg_t *)(req->b_rptr); msg->spd_msg_len = SPD_8TO64(len); msg->spd_msg_errno = error; ruleset->spd_ruleset_len = SPD_8TO64(sizeof (*ruleset)); ruleset->spd_ruleset_type = SPD_EXT_RULESET; ruleset->spd_ruleset_count = count; ruleset->spd_ruleset_version = iph->iph_gen; return (m); } static mblk_t * spdsock_dump_finish(spdsock_t *ss, int error) { mblk_t *m; ipsec_policy_head_t *iph = ss->spdsock_dump_head; mblk_t *req = ss->spdsock_dump_req; rw_enter(&iph->iph_lock, RW_READER); m = spdsock_dump_ruleset(req, iph, ss->spdsock_dump_count, error); rw_exit(&iph->iph_lock); ss->spdsock_dump_req = NULL; freemsg(req); return (m); } /* * Rule encoding functions. * We do a two-pass encode. * If base != NULL, fill in encoded rule part starting at base+offset. * Always return "offset" plus length of to-be-encoded data. */ static uint_t spdsock_encode_typecode(uint8_t *base, uint_t offset, uint8_t type, uint8_t type_end, uint8_t code, uint8_t code_end) { struct spd_typecode *tcp; ASSERT(ALIGNED64(offset)); if (base != NULL) { tcp = (struct spd_typecode *)(base + offset); tcp->spd_typecode_len = SPD_8TO64(sizeof (*tcp)); tcp->spd_typecode_exttype = SPD_EXT_ICMP_TYPECODE; tcp->spd_typecode_code = code; tcp->spd_typecode_type = type; tcp->spd_typecode_type_end = type_end; tcp->spd_typecode_code_end = code_end; } offset += sizeof (*tcp); ASSERT(ALIGNED64(offset)); return (offset); } static uint_t spdsock_encode_proto(uint8_t *base, uint_t offset, uint8_t proto) { struct spd_proto *spp; ASSERT(ALIGNED64(offset)); if (base != NULL) { spp = (struct spd_proto *)(base + offset); spp->spd_proto_len = SPD_8TO64(sizeof (*spp)); spp->spd_proto_exttype = SPD_EXT_PROTO; spp->spd_proto_number = proto; spp->spd_proto_reserved1 = 0; spp->spd_proto_reserved2 = 0; } offset += sizeof (*spp); ASSERT(ALIGNED64(offset)); return (offset); } static uint_t spdsock_encode_port(uint8_t *base, uint_t offset, uint16_t ext, uint16_t port) { struct spd_portrange *spp; ASSERT(ALIGNED64(offset)); if (base != NULL) { spp = (struct spd_portrange *)(base + offset); spp->spd_ports_len = SPD_8TO64(sizeof (*spp)); spp->spd_ports_exttype = ext; spp->spd_ports_minport = port; spp->spd_ports_maxport = port; } offset += sizeof (*spp); ASSERT(ALIGNED64(offset)); return (offset); } static uint_t spdsock_encode_addr(uint8_t *base, uint_t offset, uint16_t ext, const ipsec_selkey_t *sel, const ipsec_addr_t *addr, uint_t pfxlen) { struct spd_address *sae; ipsec_addr_t *spdaddr; uint_t start = offset; uint_t addrlen; uint_t af; if (sel->ipsl_valid & IPSL_IPV4) { af = AF_INET; addrlen = IP_ADDR_LEN; } else { af = AF_INET6; addrlen = IPV6_ADDR_LEN; } ASSERT(ALIGNED64(offset)); if (base != NULL) { sae = (struct spd_address *)(base + offset); sae->spd_address_exttype = ext; sae->spd_address_af = af; sae->spd_address_prefixlen = pfxlen; sae->spd_address_reserved2 = 0; spdaddr = (ipsec_addr_t *)(&sae[1]); bcopy(addr, spdaddr, addrlen); } offset += sizeof (*sae); addrlen = roundup(addrlen, sizeof (uint64_t)); offset += addrlen; ASSERT(ALIGNED64(offset)); if (base != NULL) sae->spd_address_len = SPD_8TO64(offset - start); return (offset); } static uint_t spdsock_encode_sel(uint8_t *base, uint_t offset, const ipsec_sel_t *sel) { const ipsec_selkey_t *selkey = &sel->ipsl_key; if (selkey->ipsl_valid & IPSL_PROTOCOL) offset = spdsock_encode_proto(base, offset, selkey->ipsl_proto); if (selkey->ipsl_valid & IPSL_LOCAL_PORT) offset = spdsock_encode_port(base, offset, SPD_EXT_LCLPORT, selkey->ipsl_lport); if (selkey->ipsl_valid & IPSL_REMOTE_PORT) offset = spdsock_encode_port(base, offset, SPD_EXT_REMPORT, selkey->ipsl_rport); if (selkey->ipsl_valid & IPSL_REMOTE_ADDR) offset = spdsock_encode_addr(base, offset, SPD_EXT_REMADDR, selkey, &selkey->ipsl_remote, selkey->ipsl_remote_pfxlen); if (selkey->ipsl_valid & IPSL_LOCAL_ADDR) offset = spdsock_encode_addr(base, offset, SPD_EXT_LCLADDR, selkey, &selkey->ipsl_local, selkey->ipsl_local_pfxlen); if (selkey->ipsl_valid & IPSL_ICMP_TYPE) { offset = spdsock_encode_typecode(base, offset, selkey->ipsl_icmp_type, selkey->ipsl_icmp_type_end, (selkey->ipsl_valid & IPSL_ICMP_CODE) ? selkey->ipsl_icmp_code : 255, (selkey->ipsl_valid & IPSL_ICMP_CODE) ? selkey->ipsl_icmp_code_end : 255); } return (offset); } static uint_t spdsock_encode_actattr(uint8_t *base, uint_t offset, uint32_t tag, uint32_t value) { struct spd_attribute *attr; ASSERT(ALIGNED64(offset)); if (base != NULL) { attr = (struct spd_attribute *)(base + offset); attr->spd_attr_tag = tag; attr->spd_attr_value = value; } offset += sizeof (struct spd_attribute); ASSERT(ALIGNED64(offset)); return (offset); } #define EMIT(t, v) offset = spdsock_encode_actattr(base, offset, (t), (v)) static uint_t spdsock_encode_action(uint8_t *base, uint_t offset, const ipsec_action_t *ap) { const struct ipsec_act *act = &(ap->ipa_act); uint_t flags; EMIT(SPD_ATTR_EMPTY, 0); switch (act->ipa_type) { case IPSEC_ACT_DISCARD: case IPSEC_ACT_REJECT: EMIT(SPD_ATTR_TYPE, SPD_ACTTYPE_DROP); break; case IPSEC_ACT_BYPASS: case IPSEC_ACT_CLEAR: EMIT(SPD_ATTR_TYPE, SPD_ACTTYPE_PASS); break; case IPSEC_ACT_APPLY: EMIT(SPD_ATTR_TYPE, SPD_ACTTYPE_IPSEC); flags = 0; if (act->ipa_apply.ipp_use_ah) flags |= SPD_APPLY_AH; if (act->ipa_apply.ipp_use_esp) flags |= SPD_APPLY_ESP; if (act->ipa_apply.ipp_use_espa) flags |= SPD_APPLY_ESPA; if (act->ipa_apply.ipp_use_se) flags |= SPD_APPLY_SE; if (act->ipa_apply.ipp_use_unique) flags |= SPD_APPLY_UNIQUE; EMIT(SPD_ATTR_FLAGS, flags); if (flags & SPD_APPLY_AH) { EMIT(SPD_ATTR_AH_AUTH, act->ipa_apply.ipp_auth_alg); EMIT(SPD_ATTR_AH_MINBITS, act->ipa_apply.ipp_ah_minbits); EMIT(SPD_ATTR_AH_MAXBITS, act->ipa_apply.ipp_ah_maxbits); } if (flags & SPD_APPLY_ESP) { EMIT(SPD_ATTR_ESP_ENCR, act->ipa_apply.ipp_encr_alg); EMIT(SPD_ATTR_ENCR_MINBITS, act->ipa_apply.ipp_espe_minbits); EMIT(SPD_ATTR_ENCR_MAXBITS, act->ipa_apply.ipp_espe_maxbits); if (flags & SPD_APPLY_ESPA) { EMIT(SPD_ATTR_ESP_AUTH, act->ipa_apply.ipp_esp_auth_alg); EMIT(SPD_ATTR_ESPA_MINBITS, act->ipa_apply.ipp_espa_minbits); EMIT(SPD_ATTR_ESPA_MAXBITS, act->ipa_apply.ipp_espa_maxbits); } } if (act->ipa_apply.ipp_km_proto != 0) EMIT(SPD_ATTR_KM_PROTO, act->ipa_apply.ipp_km_proto); if (act->ipa_apply.ipp_km_cookie != 0) EMIT(SPD_ATTR_KM_PROTO, act->ipa_apply.ipp_km_cookie); if (act->ipa_apply.ipp_replay_depth != 0) EMIT(SPD_ATTR_REPLAY_DEPTH, act->ipa_apply.ipp_replay_depth); /* Add more here */ break; } return (offset); } static uint_t spdsock_encode_action_list(uint8_t *base, uint_t offset, const ipsec_action_t *ap) { struct spd_ext_actions *act; uint_t nact = 0; uint_t start = offset; ASSERT(ALIGNED64(offset)); if (base != NULL) { act = (struct spd_ext_actions *)(base + offset); act->spd_actions_len = 0; act->spd_actions_exttype = SPD_EXT_ACTION; act->spd_actions_count = 0; act->spd_actions_reserved = 0; } offset += sizeof (*act); ASSERT(ALIGNED64(offset)); while (ap != NULL) { offset = spdsock_encode_action(base, offset, ap); ap = ap->ipa_next; nact++; if (ap != NULL) { EMIT(SPD_ATTR_NEXT, 0); } } EMIT(SPD_ATTR_END, 0); ASSERT(ALIGNED64(offset)); if (base != NULL) { act->spd_actions_count = nact; act->spd_actions_len = SPD_8TO64(offset - start); } return (offset); } #undef EMIT /* ARGSUSED */ static uint_t spdsock_rule_flags(uint_t dir, uint_t af) { uint_t flags = 0; if (dir == IPSEC_TYPE_INBOUND) flags |= SPD_RULE_FLAG_INBOUND; if (dir == IPSEC_TYPE_OUTBOUND) flags |= SPD_RULE_FLAG_OUTBOUND; return (flags); } static uint_t spdsock_encode_rule_head(uint8_t *base, uint_t offset, spd_msg_t *req, const ipsec_policy_t *rule, uint_t dir, uint_t af) { struct spd_msg *spmsg; struct spd_rule *spr; uint_t start = offset; ASSERT(ALIGNED64(offset)); if (base != NULL) { spmsg = (struct spd_msg *)(base + offset); bzero(spmsg, sizeof (*spmsg)); spmsg->spd_msg_version = PF_POLICY_V1; spmsg->spd_msg_type = SPD_DUMP; spmsg->spd_msg_seq = req->spd_msg_seq; spmsg->spd_msg_pid = req->spd_msg_pid; } offset += sizeof (struct spd_msg); ASSERT(ALIGNED64(offset)); if (base != NULL) { spr = (struct spd_rule *)(base + offset); spr->spd_rule_type = SPD_EXT_RULE; spr->spd_rule_priority = rule->ipsp_prio; spr->spd_rule_flags = spdsock_rule_flags(dir, af); spr->spd_rule_unused = 0; spr->spd_rule_len = SPD_8TO64(sizeof (*spr)); spr->spd_rule_index = rule->ipsp_index; } offset += sizeof (struct spd_rule); offset = spdsock_encode_sel(base, offset, rule->ipsp_sel); offset = spdsock_encode_action_list(base, offset, rule->ipsp_act); ASSERT(ALIGNED64(offset)); if (base != NULL) { spmsg->spd_msg_len = SPD_8TO64(offset - start); } return (offset); } /* ARGSUSED */ static mblk_t * spdsock_encode_rule(mblk_t *req, const ipsec_policy_t *rule, uint_t dir, uint_t af) { mblk_t *m; uint_t len; spd_msg_t *mreq = (spd_msg_t *)req->b_rptr; /* * Figure out how much space we'll need. */ len = spdsock_encode_rule_head(NULL, 0, mreq, rule, dir, af); /* * Allocate mblk. */ m = allocb(len, BPRI_HI); if (m == NULL) return (NULL); /* * Fill it in.. */ m->b_wptr = m->b_rptr + len; bzero(m->b_rptr, len); (void) spdsock_encode_rule_head(m->b_rptr, 0, mreq, rule, dir, af); return (m); } static ipsec_policy_t * spdsock_dump_next_in_chain(spdsock_t *ss, ipsec_policy_head_t *iph, ipsec_policy_t *cur) { ASSERT(RW_READ_HELD(&iph->iph_lock)); ss->spdsock_dump_count++; ss->spdsock_dump_cur_rule = cur->ipsp_hash.hash_next; return (cur); } static ipsec_policy_t * spdsock_dump_next_rule(spdsock_t *ss, ipsec_policy_head_t *iph) { ipsec_policy_t *cur; ipsec_policy_root_t *ipr; int chain, nchains, type, af; ASSERT(RW_READ_HELD(&iph->iph_lock)); cur = ss->spdsock_dump_cur_rule; if (cur != NULL) return (spdsock_dump_next_in_chain(ss, iph, cur)); type = ss->spdsock_dump_cur_type; next: chain = ss->spdsock_dump_cur_chain; ipr = &iph->iph_root[type]; nchains = ipr->ipr_nchains; while (chain < nchains) { cur = ipr->ipr_hash[chain].hash_head; chain++; if (cur != NULL) { ss->spdsock_dump_cur_chain = chain; return (spdsock_dump_next_in_chain(ss, iph, cur)); } } ss->spdsock_dump_cur_chain = nchains; af = ss->spdsock_dump_cur_af; while (af < IPSEC_NAF) { cur = ipr->ipr_nonhash[af]; af++; if (cur != NULL) { ss->spdsock_dump_cur_af = af; return (spdsock_dump_next_in_chain(ss, iph, cur)); } } type++; if (type >= IPSEC_NTYPES) return (NULL); ss->spdsock_dump_cur_chain = 0; ss->spdsock_dump_cur_type = type; ss->spdsock_dump_cur_af = IPSEC_AF_V4; goto next; } static mblk_t * spdsock_dump_next_record(spdsock_t *ss) { ipsec_policy_head_t *iph; ipsec_policy_t *rule; mblk_t *m; mblk_t *req = ss->spdsock_dump_req; iph = ss->spdsock_dump_head; ASSERT(iph != NULL); rw_enter(&iph->iph_lock, RW_READER); if (iph->iph_gen != ss->spdsock_dump_gen) { rw_exit(&iph->iph_lock); return (spdsock_dump_finish(ss, EAGAIN)); } rule = spdsock_dump_next_rule(ss, iph); if (!rule) { rw_exit(&iph->iph_lock); return (spdsock_dump_finish(ss, 0)); } m = spdsock_encode_rule(req, rule, ss->spdsock_dump_cur_type, ss->spdsock_dump_cur_af); rw_exit(&iph->iph_lock); if (m == NULL) return (spdsock_dump_finish(ss, ENOMEM)); return (m); } /* * Dump records until we run into flow-control back-pressure. */ static void spdsock_dump_some(queue_t *q, spdsock_t *ss) { mblk_t *m, *dataind; while ((ss->spdsock_dump_req != NULL) && canputnext(q)) { m = spdsock_dump_next_record(ss); if (m == NULL) return; dataind = allocb(sizeof (struct T_data_req), BPRI_HI); if (dataind == NULL) { freemsg(m); return; } dataind->b_cont = m; dataind->b_wptr += sizeof (struct T_data_req); ((struct T_data_ind *)dataind->b_rptr)->PRIM_type = T_DATA_IND; ((struct T_data_ind *)dataind->b_rptr)->MORE_flag = 0; dataind->b_datap->db_type = M_PROTO; putnext(q, dataind); } } /* * Start dumping. * Format a start-of-dump record, and set up the stream and kick the rsrv * procedure to continue the job.. */ /* ARGSUSED */ static void spdsock_dump(queue_t *q, ipsec_policy_head_t *iph, mblk_t *mp, spd_ext_t **extv) { spdsock_t *ss = (spdsock_t *)q->q_ptr; mblk_t *mr; rw_enter(&iph->iph_lock, RW_READER); mr = spdsock_dump_ruleset(mp, iph, 0, 0); if (!mr) { rw_exit(&iph->iph_lock); spdsock_error(q, mp, ENOMEM, 0); return; } ss->spdsock_dump_req = mp; ss->spdsock_dump_head = iph; ss->spdsock_dump_gen = iph->iph_gen; ss->spdsock_dump_cur_type = 0; ss->spdsock_dump_cur_af = IPSEC_AF_V4; ss->spdsock_dump_cur_rule = NULL; ss->spdsock_dump_count = 0; ss->spdsock_dump_cur_chain = 0; rw_exit(&iph->iph_lock); qreply(q, mr); qenable(OTHERQ(q)); } void spdsock_clone(queue_t *q, mblk_t *mp) { int error = ipsec_clone_system_policy(); if (error != 0) spdsock_error(q, mp, error, 0); else spd_echo(q, mp); } /* * Process a SPD_ALGLIST request. The caller expects separate alg entries * for AH authentication, ESP authentication, and ESP encryption. * The same distinction is then used when setting the min and max key * sizes when defining policies. */ #define SPDSOCK_AH_AUTH 0 #define SPDSOCK_ESP_AUTH 1 #define SPDSOCK_ESP_ENCR 2 #define SPDSOCK_NTYPES 3 static const uint_t algattr[SPDSOCK_NTYPES] = { SPD_ATTR_AH_AUTH, SPD_ATTR_ESP_AUTH, SPD_ATTR_ESP_ENCR }; static const uint_t minbitsattr[SPDSOCK_NTYPES] = { SPD_ATTR_AH_MINBITS, SPD_ATTR_ESPA_MINBITS, SPD_ATTR_ENCR_MINBITS }; static const uint_t maxbitsattr[SPDSOCK_NTYPES] = { SPD_ATTR_AH_MAXBITS, SPD_ATTR_ESPA_MAXBITS, SPD_ATTR_ENCR_MAXBITS }; static const uint_t defbitsattr[SPDSOCK_NTYPES] = { SPD_ATTR_AH_DEFBITS, SPD_ATTR_ESPA_DEFBITS, SPD_ATTR_ENCR_DEFBITS }; static const uint_t incrbitsattr[SPDSOCK_NTYPES] = { SPD_ATTR_AH_INCRBITS, SPD_ATTR_ESPA_INCRBITS, SPD_ATTR_ENCR_INCRBITS }; #define ATTRPERALG 6 /* fixed attributes per algs */ void spdsock_alglist(queue_t *q, mblk_t *mp) { uint_t algtype; uint_t algidx; uint_t algcount; uint_t size; mblk_t *m; uint8_t *cur; spd_msg_t *msg; struct spd_ext_actions *act; struct spd_attribute *attr; mutex_enter(&alg_lock); /* * The SPD client expects to receive separate entries for * AH authentication and ESP authentication supported algorithms. * * Don't return the "any" algorithms, if defined, as no * kernel policies can be set for these algorithms. */ algcount = 2 * ipsec_nalgs[IPSEC_ALG_AUTH] + ipsec_nalgs[IPSEC_ALG_ENCR]; if (ipsec_alglists[IPSEC_ALG_AUTH][SADB_AALG_NONE] != NULL) algcount--; if (ipsec_alglists[IPSEC_ALG_ENCR][SADB_EALG_NONE] != NULL) algcount--; /* * For each algorithm, we encode: * ALG / MINBITS / MAXBITS / DEFBITS / INCRBITS / {END, NEXT} */ size = sizeof (spd_msg_t) + sizeof (struct spd_ext_actions) + ATTRPERALG * sizeof (struct spd_attribute) * algcount; ASSERT(ALIGNED64(size)); m = allocb(size, BPRI_HI); if (m == NULL) { mutex_exit(&alg_lock); spdsock_error(q, mp, ENOMEM, 0); return; } m->b_wptr = m->b_rptr + size; cur = m->b_rptr; msg = (spd_msg_t *)cur; bcopy(mp->b_rptr, cur, sizeof (*msg)); msg->spd_msg_len = SPD_8TO64(size); msg->spd_msg_errno = 0; msg->spd_msg_diagnostic = 0; cur += sizeof (*msg); act = (struct spd_ext_actions *)cur; cur += sizeof (*act); act->spd_actions_len = SPD_8TO64(size - sizeof (spd_msg_t)); act->spd_actions_exttype = SPD_EXT_ACTION; act->spd_actions_count = algcount; act->spd_actions_reserved = 0; attr = (struct spd_attribute *)cur; #define EMIT(tag, value) { \ attr->spd_attr_tag = (tag); \ attr->spd_attr_value = (value); \ attr++; \ } /* * If you change the number of EMIT's here, change * ATTRPERALG above to match */ #define EMITALGATTRS(_type) { \ EMIT(algattr[_type], algid); /* 1 */ \ EMIT(minbitsattr[_type], minbits); /* 2 */ \ EMIT(maxbitsattr[_type], maxbits); /* 3 */ \ EMIT(defbitsattr[_type], defbits); /* 4 */ \ EMIT(incrbitsattr[_type], incr); /* 5 */ \ EMIT(SPD_ATTR_NEXT, 0); /* 6 */ \ } for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) { for (algidx = 0; algidx < ipsec_nalgs[algtype]; algidx++) { int algid = ipsec_sortlist[algtype][algidx]; ipsec_alginfo_t *alg = ipsec_alglists[algtype][algid]; uint_t minbits = alg->alg_minbits; uint_t maxbits = alg->alg_maxbits; uint_t defbits = alg->alg_default_bits; uint_t incr = alg->alg_increment; if (algtype == IPSEC_ALG_AUTH) { if (algid == SADB_AALG_NONE) continue; EMITALGATTRS(SPDSOCK_AH_AUTH); EMITALGATTRS(SPDSOCK_ESP_AUTH); } else { if (algid == SADB_EALG_NONE) continue; ASSERT(algtype == IPSEC_ALG_ENCR); EMITALGATTRS(SPDSOCK_ESP_ENCR); } } } mutex_exit(&alg_lock); #undef EMITALGATTRS #undef EMIT #undef ATTRPERALG attr--; attr->spd_attr_tag = SPD_ATTR_END; freemsg(mp); qreply(q, m); } /* * Process a SPD_DUMPALGS request. */ #define ATTRPERALG 7 /* fixed attributes per algs */ void spdsock_dumpalgs(queue_t *q, mblk_t *mp) { uint_t algtype; uint_t algidx; uint_t size; mblk_t *m; uint8_t *cur; spd_msg_t *msg; struct spd_ext_actions *act; struct spd_attribute *attr; ipsec_alginfo_t *alg; uint_t algid; uint_t i; uint_t alg_size; mutex_enter(&alg_lock); /* * For each algorithm, we encode: * ALG / MINBITS / MAXBITS / DEFBITS / INCRBITS / {END, NEXT} * * ALG_ID / ALG_PROTO / ALG_INCRBITS / ALG_NKEYSIZES / ALG_KEYSIZE* * ALG_NBLOCKSIZES / ALG_BLOCKSIZE* / ALG_MECHNAME / {END, NEXT} */ /* * Compute the size of the SPD message. */ size = sizeof (spd_msg_t) + sizeof (struct spd_ext_actions); for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) { for (algidx = 0; algidx < ipsec_nalgs[algtype]; algidx++) { algid = ipsec_sortlist[algtype][algidx]; alg = ipsec_alglists[algtype][algid]; alg_size = sizeof (struct spd_attribute) * (ATTRPERALG + alg->alg_nkey_sizes + alg->alg_nblock_sizes) + CRYPTO_MAX_MECH_NAME; size += alg_size; } } ASSERT(ALIGNED64(size)); m = allocb(size, BPRI_HI); if (m == NULL) { mutex_exit(&alg_lock); spdsock_error(q, mp, ENOMEM, 0); return; } m->b_wptr = m->b_rptr + size; cur = m->b_rptr; msg = (spd_msg_t *)cur; bcopy(mp->b_rptr, cur, sizeof (*msg)); msg->spd_msg_len = SPD_8TO64(size); msg->spd_msg_errno = 0; msg->spd_msg_diagnostic = 0; cur += sizeof (*msg); act = (struct spd_ext_actions *)cur; cur += sizeof (*act); act->spd_actions_len = SPD_8TO64(size - sizeof (spd_msg_t)); act->spd_actions_exttype = SPD_EXT_ACTION; act->spd_actions_count = ipsec_nalgs[IPSEC_ALG_AUTH] + ipsec_nalgs[IPSEC_ALG_ENCR]; act->spd_actions_reserved = 0; attr = (struct spd_attribute *)cur; #define EMIT(tag, value) { \ attr->spd_attr_tag = (tag); \ attr->spd_attr_value = (value); \ attr++; \ } for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) { for (algidx = 0; algidx < ipsec_nalgs[algtype]; algidx++) { algid = ipsec_sortlist[algtype][algidx]; alg = ipsec_alglists[algtype][algid]; /* * If you change the number of EMIT's here, change * ATTRPERALG above to match */ EMIT(SPD_ATTR_ALG_ID, algid); EMIT(SPD_ATTR_ALG_PROTO, algproto[algtype]); EMIT(SPD_ATTR_ALG_INCRBITS, alg->alg_increment); EMIT(SPD_ATTR_ALG_NKEYSIZES, alg->alg_nkey_sizes); for (i = 0; i < alg->alg_nkey_sizes; i++) EMIT(SPD_ATTR_ALG_KEYSIZE, alg->alg_key_sizes[i]); EMIT(SPD_ATTR_ALG_NBLOCKSIZES, alg->alg_nblock_sizes); for (i = 0; i < alg->alg_nblock_sizes; i++) EMIT(SPD_ATTR_ALG_BLOCKSIZE, alg->alg_block_sizes[i]); EMIT(SPD_ATTR_ALG_MECHNAME, CRYPTO_MAX_MECH_NAME); bcopy(alg->alg_mech_name, attr, CRYPTO_MAX_MECH_NAME); attr = (struct spd_attribute *)((char *)attr + CRYPTO_MAX_MECH_NAME); EMIT(SPD_ATTR_NEXT, 0); } } mutex_exit(&alg_lock); #undef EMITALGATTRS #undef EMIT #undef ATTRPERALG attr--; attr->spd_attr_tag = SPD_ATTR_END; freemsg(mp); qreply(q, m); } /* * Do the actual work of processing an SPD_UPDATEALGS request. Can * be invoked either once IPsec is loaded on a cached request, or * when a request is received while IPsec is loaded. */ static void spdsock_do_updatealg(spd_ext_t *extv[], int *diag) { struct spd_ext_actions *actp; struct spd_attribute *attr, *endattr; uint64_t *start, *end; ipsec_alginfo_t *alg = NULL; ipsec_algtype_t alg_type = 0; boolean_t skip_alg = B_TRUE, doing_proto = B_FALSE; uint_t i, cur_key, cur_block, algid; *diag = -1; ASSERT(MUTEX_HELD(&spdsock_alg_lock)); /* parse the message, building the list of algorithms */ actp = (struct spd_ext_actions *)extv[SPD_EXT_ACTION]; if (actp == NULL) { *diag = SPD_DIAGNOSTIC_NO_ACTION_EXT; return; } start = (uint64_t *)actp; end = (start + actp->spd_actions_len); endattr = (struct spd_attribute *)end; attr = (struct spd_attribute *)&actp[1]; bzero(spdsock_algs, IPSEC_NALGTYPES * IPSEC_MAX_ALGS * sizeof (ipsec_alginfo_t *)); alg = kmem_zalloc(sizeof (*alg), KM_SLEEP); #define ALG_KEY_SIZES(a) (((a)->alg_nkey_sizes + 1) * sizeof (uint16_t)) #define ALG_BLOCK_SIZES(a) (((a)->alg_nblock_sizes + 1) * sizeof (uint16_t)) while (attr < endattr) { switch (attr->spd_attr_tag) { case SPD_ATTR_NOP: case SPD_ATTR_EMPTY: break; case SPD_ATTR_END: attr = endattr; /* FALLTHRU */ case SPD_ATTR_NEXT: if (doing_proto) { doing_proto = B_FALSE; break; } if (skip_alg) { ipsec_alg_free(alg); } else { ipsec_alg_free( spdsock_algs[alg_type][alg->alg_id]); spdsock_algs[alg_type][alg->alg_id] = alg; } alg = kmem_zalloc(sizeof (*alg), KM_SLEEP); break; case SPD_ATTR_ALG_ID: if (attr->spd_attr_value >= IPSEC_MAX_ALGS) { ss1dbg(("spdsock_do_updatealg: " "invalid alg id %d\n", attr->spd_attr_value)); *diag = SPD_DIAGNOSTIC_ALG_ID_RANGE; goto bail; } alg->alg_id = attr->spd_attr_value; break; case SPD_ATTR_ALG_PROTO: /* find the alg type */ for (i = 0; i < NALGPROTOS; i++) if (algproto[i] == attr->spd_attr_value) break; skip_alg = (i == NALGPROTOS); if (!skip_alg) alg_type = i; break; case SPD_ATTR_ALG_INCRBITS: alg->alg_increment = attr->spd_attr_value; break; case SPD_ATTR_ALG_NKEYSIZES: if (alg->alg_key_sizes != NULL) { kmem_free(alg->alg_key_sizes, ALG_KEY_SIZES(alg)); } alg->alg_nkey_sizes = attr->spd_attr_value; /* * Allocate room for the trailing zero key size * value as well. */ alg->alg_key_sizes = kmem_zalloc(ALG_KEY_SIZES(alg), KM_SLEEP); cur_key = 0; break; case SPD_ATTR_ALG_KEYSIZE: if (alg->alg_key_sizes == NULL || cur_key >= alg->alg_nkey_sizes) { ss1dbg(("spdsock_do_updatealg: " "too many key sizes\n")); *diag = SPD_DIAGNOSTIC_ALG_NUM_KEY_SIZES; goto bail; } alg->alg_key_sizes[cur_key++] = attr->spd_attr_value; break; case SPD_ATTR_ALG_NBLOCKSIZES: if (alg->alg_block_sizes != NULL) { kmem_free(alg->alg_block_sizes, ALG_BLOCK_SIZES(alg)); } alg->alg_nblock_sizes = attr->spd_attr_value; /* * Allocate room for the trailing zero block size * value as well. */ alg->alg_block_sizes = kmem_zalloc(ALG_BLOCK_SIZES(alg), KM_SLEEP); cur_block = 0; break; case SPD_ATTR_ALG_BLOCKSIZE: if (alg->alg_block_sizes == NULL || cur_block >= alg->alg_nblock_sizes) { ss1dbg(("spdsock_do_updatealg: " "too many block sizes\n")); *diag = SPD_DIAGNOSTIC_ALG_NUM_BLOCK_SIZES; goto bail; } alg->alg_block_sizes[cur_block++] = attr->spd_attr_value; break; case SPD_ATTR_ALG_MECHNAME: { char *mech_name; if (attr->spd_attr_value > CRYPTO_MAX_MECH_NAME) { ss1dbg(("spdsock_do_updatealg: " "mech name too long\n")); *diag = SPD_DIAGNOSTIC_ALG_MECH_NAME_LEN; goto bail; } mech_name = (char *)(attr + 1); bcopy(mech_name, alg->alg_mech_name, attr->spd_attr_value); alg->alg_mech_name[CRYPTO_MAX_MECH_NAME-1] = '\0'; attr = (struct spd_attribute *)((char *)attr + attr->spd_attr_value); break; } case SPD_ATTR_PROTO_ID: doing_proto = B_TRUE; for (i = 0; i < NALGPROTOS; i++) { if (algproto[i] == attr->spd_attr_value) { alg_type = i; break; } } break; case SPD_ATTR_PROTO_EXEC_MODE: if (!doing_proto) break; for (i = 0; i < NEXECMODES; i++) { if (execmodes[i] == attr->spd_attr_value) { spdsock_algs_exec_mode[alg_type] = i; break; } } break; } attr++; } #undef ALG_KEY_SIZES #undef ALG_BLOCK_SIZES /* update the algorithm tables */ spdsock_merge_algs(); bail: /* cleanup */ ipsec_alg_free(alg); for (alg_type = 0; alg_type < IPSEC_NALGTYPES; alg_type++) for (algid = 0; algid < IPSEC_MAX_ALGS; algid++) if (spdsock_algs[alg_type][algid] != NULL) ipsec_alg_free(spdsock_algs[alg_type][algid]); } /* * Process an SPD_UPDATEALGS request. If IPsec is not loaded, queue * the request until IPsec loads. If IPsec is loaded, act on it * immediately. */ static void spdsock_updatealg(queue_t *q, mblk_t *mp, spd_ext_t *extv[]) { if (!ipsec_loaded()) { /* * IPsec is not loaded, save request and return nicely, * the message will be processed once IPsec loads. */ mblk_t *new_mp; /* last update message wins */ if ((new_mp = copymsg(mp)) == NULL) { spdsock_error(q, mp, ENOMEM, 0); return; } mutex_enter(&spdsock_alg_lock); bcopy(extv, spdsock_extv_algs, sizeof (spd_ext_t *) * (SPD_EXT_MAX + 1)); if (spdsock_mp_algs != NULL) freemsg(spdsock_mp_algs); spdsock_mp_algs = mp; spdsock_algs_pending = B_TRUE; mutex_exit(&spdsock_alg_lock); spd_echo(q, new_mp); } else { /* * IPsec is loaded, act on the message immediately. */ int diag; mutex_enter(&spdsock_alg_lock); spdsock_do_updatealg(extv, &diag); mutex_exit(&spdsock_alg_lock); if (diag == -1) spd_echo(q, mp); else spdsock_diag(q, mp, diag); } } static void spdsock_parse(queue_t *q, mblk_t *mp) { spd_msg_t *spmsg; spd_ext_t *extv[SPD_EXT_MAX + 1]; uint_t msgsize; ipsec_policy_head_t *iph; /* Make sure nothing's below me. */ ASSERT(WR(q)->q_next == NULL); spmsg = (spd_msg_t *)mp->b_rptr; msgsize = SPD_64TO8(spmsg->spd_msg_len); if (msgdsize(mp) != msgsize) { /* * Message len incorrect w.r.t. actual size. Send an error * (EMSGSIZE). It may be necessary to massage things a * bit. For example, if the spd_msg_type is hosed, * I need to set it to SPD_RESERVED to get delivery to * do the right thing. Then again, maybe just letting * the error delivery do the right thing. */ ss2dbg(("mblk (%lu) and base (%d) message sizes don't jibe.\n", msgdsize(mp), msgsize)); spdsock_error(q, mp, EMSGSIZE, SPD_DIAGNOSTIC_NONE); return; } if (msgsize > (uint_t)(mp->b_wptr - mp->b_rptr)) { /* Get all message into one mblk. */ if (pullupmsg(mp, -1) == 0) { /* * Something screwy happened. */ ss3dbg(("spdsock_parse: pullupmsg() failed.\n")); return; } else { spmsg = (spd_msg_t *)mp->b_rptr; } } switch (spdsock_get_ext(extv, spmsg, msgsize)) { case KGE_DUP: /* Handle duplicate extension. */ ss1dbg(("Got duplicate extension of type %d.\n", extv[0]->spd_ext_type)); spdsock_diag(q, mp, dup_ext_diag[extv[0]->spd_ext_type]); return; case KGE_UNK: /* Handle unknown extension. */ ss1dbg(("Got unknown extension of type %d.\n", extv[0]->spd_ext_type)); spdsock_diag(q, mp, SPD_DIAGNOSTIC_UNKNOWN_EXT); return; case KGE_LEN: /* Length error. */ ss1dbg(("Length %d on extension type %d overrun or 0.\n", extv[0]->spd_ext_len, extv[0]->spd_ext_type)); spdsock_diag(q, mp, SPD_DIAGNOSTIC_BAD_EXTLEN); return; case KGE_CHK: /* Reality check failed. */ ss1dbg(("Reality check failed on extension type %d.\n", extv[0]->spd_ext_type)); spdsock_diag(q, mp, bad_ext_diag[extv[0]->spd_ext_type]); return; default: /* Default case is no errors. */ break; } /* * Which rule set are we operating on today? */ switch (spmsg->spd_msg_spdid) { case SPD_ACTIVE: iph = ipsec_system_policy(); break; case SPD_STANDBY: iph = ipsec_inactive_policy(); break; default: spdsock_diag(q, mp, SPD_DIAGNOSTIC_BAD_SPDID); return; } /* * Special-case SPD_UPDATEALGS so as not to load IPsec. */ if (!ipsec_loaded() && spmsg->spd_msg_type != SPD_UPDATEALGS) { spdsock_t *ss = (spdsock_t *)q->q_ptr; ASSERT(ss != NULL); ipsec_loader_loadnow(); ss->spdsock_timeout_arg = mp; ss->spdsock_timeout = qtimeout(q, spdsock_loadcheck, q, LOADCHECK_INTERVAL); return; } switch (spmsg->spd_msg_type) { case SPD_UPDATEALGS: spdsock_updatealg(q, mp, extv); return; case SPD_FLUSH: spdsock_flush(q, iph, mp, extv); return; case SPD_ADDRULE: spdsock_addrule(q, iph, mp, extv); return; case SPD_DELETERULE: spdsock_deleterule(q, iph, mp, extv); return; case SPD_FLIP: spdsock_flip(q, mp); return; case SPD_LOOKUP: spdsock_lookup(q, iph, mp, extv); return; case SPD_DUMP: spdsock_dump(q, iph, mp, extv); return; case SPD_CLONE: spdsock_clone(q, mp); return; case SPD_ALGLIST: spdsock_alglist(q, mp); return; case SPD_DUMPALGS: spdsock_dumpalgs(q, mp); return; default: spdsock_diag(q, mp, SPD_DIAGNOSTIC_BAD_MSG_TYPE); return; } } /* * If an algorithm mapping was received before IPsec was loaded, process it. * Called from the IPsec loader. */ void spdsock_update_pending_algs(void) { mutex_enter(&spdsock_alg_lock); if (spdsock_algs_pending) { int diag; spdsock_do_updatealg(spdsock_extv_algs, &diag); spdsock_algs_pending = B_FALSE; } mutex_exit(&spdsock_alg_lock); } static void spdsock_loadcheck(void *arg) { queue_t *q = (queue_t *)arg; spdsock_t *ss = (spdsock_t *)q->q_ptr; mblk_t *mp; ASSERT(ss != NULL); ss->spdsock_timeout = 0; mp = ss->spdsock_timeout_arg; ASSERT(mp != NULL); ss->spdsock_timeout_arg = NULL; if (ipsec_failed()) spdsock_error(q, mp, EPROTONOSUPPORT, 0); else spdsock_parse(q, mp); } /* * Copy relevant state bits. */ static void spdsock_copy_info(struct T_info_ack *tap, spdsock_t *ss) { *tap = spdsock_g_t_info_ack; tap->CURRENT_state = ss->spdsock_state; tap->OPT_size = spdsock_max_optsize; } /* * This routine responds to T_CAPABILITY_REQ messages. It is called by * spdsock_wput. Much of the T_CAPABILITY_ACK information is copied from * spdsock_g_t_info_ack. The current state of the stream is copied from * spdsock_state. */ static void spdsock_capability_req(queue_t *q, mblk_t *mp) { spdsock_t *ss = (spdsock_t *)q->q_ptr; t_uscalar_t cap_bits1; struct T_capability_ack *tcap; cap_bits1 = ((struct T_capability_req *)mp->b_rptr)->CAP_bits1; mp = tpi_ack_alloc(mp, sizeof (struct T_capability_ack), mp->b_datap->db_type, T_CAPABILITY_ACK); if (mp == NULL) return; tcap = (struct T_capability_ack *)mp->b_rptr; tcap->CAP_bits1 = 0; if (cap_bits1 & TC1_INFO) { spdsock_copy_info(&tcap->INFO_ack, ss); tcap->CAP_bits1 |= TC1_INFO; } qreply(q, mp); } /* * This routine responds to T_INFO_REQ messages. It is called by * spdsock_wput_other. * Most of the T_INFO_ACK information is copied from spdsock_g_t_info_ack. * The current state of the stream is copied from spdsock_state. */ static void spdsock_info_req(q, mp) queue_t *q; mblk_t *mp; { mp = tpi_ack_alloc(mp, sizeof (struct T_info_ack), M_PCPROTO, T_INFO_ACK); if (mp == NULL) return; spdsock_copy_info((struct T_info_ack *)mp->b_rptr, (spdsock_t *)q->q_ptr); qreply(q, mp); } /* * spdsock_err_ack. This routine creates a * T_ERROR_ACK message and passes it * upstream. */ static void spdsock_err_ack(q, mp, t_error, sys_error) queue_t *q; mblk_t *mp; int t_error; int sys_error; { if ((mp = mi_tpi_err_ack_alloc(mp, t_error, sys_error)) != NULL) qreply(q, mp); } /* * This routine retrieves the current status of socket options. * It returns the size of the option retrieved. */ /* ARGSUSED */ int spdsock_opt_get(queue_t *q, int level, int name, uchar_t *ptr) { int *i1 = (int *)ptr; switch (level) { case SOL_SOCKET: switch (name) { case SO_TYPE: *i1 = SOCK_RAW; break; /* * The following two items can be manipulated, * but changing them should do nothing. */ case SO_SNDBUF: *i1 = (int)q->q_hiwat; break; case SO_RCVBUF: *i1 = (int)(RD(q)->q_hiwat); break; } break; default: return (0); } return (sizeof (int)); } /* * This routine sets socket options. */ /* ARGSUSED */ int spdsock_opt_set(queue_t *q, uint_t mgmt_flags, int level, int name, uint_t inlen, uchar_t *invalp, uint_t *outlenp, uchar_t *outvalp, void *thisdg_attrs, cred_t *cr, mblk_t *mblk) { int *i1 = (int *)invalp; switch (level) { case SOL_SOCKET: switch (name) { case SO_SNDBUF: if (*i1 > spdsock_max_buf) return (ENOBUFS); q->q_hiwat = *i1; break; case SO_RCVBUF: if (*i1 > spdsock_max_buf) return (ENOBUFS); RD(q)->q_hiwat = *i1; (void) mi_set_sth_hiwat(RD(q), *i1); break; } break; } return (0); } /* * Handle STREAMS messages. */ static void spdsock_wput_other(queue_t *q, mblk_t *mp) { struct iocblk *iocp; int error; switch (mp->b_datap->db_type) { case M_PROTO: case M_PCPROTO: if ((mp->b_wptr - mp->b_rptr) < sizeof (long)) { ss3dbg(( "spdsock_wput_other: Not big enough M_PROTO\n")); freemsg(mp); return; } switch (((union T_primitives *)mp->b_rptr)->type) { case T_CAPABILITY_REQ: spdsock_capability_req(q, mp); return; case T_INFO_REQ: spdsock_info_req(q, mp); return; case T_SVR4_OPTMGMT_REQ: (void) svr4_optcom_req(q, mp, DB_CREDDEF(mp, kcred), &spdsock_opt_obj); return; case T_OPTMGMT_REQ: (void) tpi_optcom_req(q, mp, DB_CREDDEF(mp, kcred), &spdsock_opt_obj); return; case T_DATA_REQ: case T_EXDATA_REQ: case T_ORDREL_REQ: /* Illegal for spdsock. */ freemsg(mp); (void) putnextctl1(RD(q), M_ERROR, EPROTO); return; default: /* Not supported by spdsock. */ spdsock_err_ack(q, mp, TNOTSUPPORT, 0); return; } case M_IOCTL: iocp = (struct iocblk *)mp->b_rptr; error = EINVAL; switch (iocp->ioc_cmd) { case ND_SET: case ND_GET: if (nd_getset(q, spdsock_g_nd, mp)) { qreply(q, mp); return; } else error = ENOENT; /* FALLTHRU */ default: miocnak(q, mp, 0, error); return; } case M_FLUSH: if (*mp->b_rptr & FLUSHW) { flushq(q, FLUSHALL); *mp->b_rptr &= ~FLUSHW; } if (*mp->b_rptr & FLUSHR) { qreply(q, mp); return; } /* Else FALLTHRU */ } /* If fell through, just black-hole the message. */ freemsg(mp); } static void spdsock_wput(queue_t *q, mblk_t *mp) { uint8_t *rptr = mp->b_rptr; mblk_t *mp1; spdsock_t *ss = (spdsock_t *)q->q_ptr; /* * If we're dumping, defer processing other messages until the * dump completes. */ if (ss->spdsock_dump_req != NULL) { if (!putq(q, mp)) freemsg(mp); return; } switch (mp->b_datap->db_type) { case M_DATA: /* * Silently discard. */ ss2dbg(("raw M_DATA in spdsock.\n")); freemsg(mp); return; case M_PROTO: case M_PCPROTO: if ((mp->b_wptr - rptr) >= sizeof (struct T_data_req)) { if (((union T_primitives *)rptr)->type == T_DATA_REQ) { if ((mp1 = mp->b_cont) == NULL) { /* No data after T_DATA_REQ. */ ss2dbg(("No data after DATA_REQ.\n")); freemsg(mp); return; } freeb(mp); mp = mp1; ss2dbg(("T_DATA_REQ\n")); break; /* Out of switch. */ } } /* FALLTHRU */ default: ss3dbg(("In default wput case (%d %d).\n", mp->b_datap->db_type, ((union T_primitives *)rptr)->type)); spdsock_wput_other(q, mp); return; } /* I now have a PF_POLICY message in an M_DATA block. */ spdsock_parse(q, mp); } /* * Device open procedure, called when new queue pair created. * We are passed the read-side queue. */ /* ARGSUSED */ static int spdsock_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) { spdsock_t *ss; queue_t *oq = OTHERQ(q); minor_t ssminor; if (secpolicy_net_config(credp, B_FALSE) != 0) return (EPERM); if (q->q_ptr != NULL) return (0); /* Re-open of an already open instance. */ if (sflag & MODOPEN) return (EINVAL); ss2dbg(("Made it into PF_POLICY socket open.\n")); ssminor = (minor_t)(uintptr_t)vmem_alloc(spdsock_vmem, 1, VM_NOSLEEP); if (ssminor == 0) return (ENOMEM); ss = kmem_zalloc(sizeof (spdsock_t), KM_NOSLEEP); if (ss == NULL) { vmem_free(spdsock_vmem, (void *)(uintptr_t)ssminor, 1); return (ENOMEM); } ss->spdsock_minor = ssminor; ss->spdsock_state = TS_UNBND; ss->spdsock_dump_req = NULL; q->q_ptr = ss; oq->q_ptr = ss; q->q_hiwat = spdsock_recv_hiwat; oq->q_hiwat = spdsock_xmit_hiwat; oq->q_lowat = spdsock_xmit_lowat; qprocson(q); (void) mi_set_sth_hiwat(q, spdsock_recv_hiwat); *devp = makedevice(getmajor(*devp), ss->spdsock_minor); return (0); } /* * Read-side service procedure, invoked when we get back-enabled * when buffer space becomes available. * * Dump another chunk if we were dumping before; when we finish, kick * the write-side queue in case it's waiting for read queue space. */ void spdsock_rsrv(queue_t *q) { spdsock_t *ss = q->q_ptr; if (ss->spdsock_dump_req != NULL) spdsock_dump_some(q, ss); if (ss->spdsock_dump_req == NULL) qenable(OTHERQ(q)); } /* * Write-side service procedure, invoked when we defer processing * if another message is received while a dump is in progress. */ void spdsock_wsrv(queue_t *q) { spdsock_t *ss = q->q_ptr; mblk_t *mp; if (ss->spdsock_dump_req != NULL) { qenable(OTHERQ(q)); return; } while ((mp = getq(q)) != NULL) { if (ipsec_loaded()) { spdsock_wput(q, mp); if (ss->spdsock_dump_req != NULL) return; } else if (!ipsec_failed()) { (void) putq(q, mp); } else { spdsock_error(q, mp, EPFNOSUPPORT, 0); } } } static int spdsock_close(queue_t *q) { spdsock_t *ss = q->q_ptr; qprocsoff(q); /* Safe assumption. */ ASSERT(ss != NULL); if (ss->spdsock_timeout != 0) (void) quntimeout(q, ss->spdsock_timeout); ss3dbg(("Driver close, PF_POLICY socket is going away.\n")); vmem_free(spdsock_vmem, (void *)(uintptr_t)ss->spdsock_minor, 1); kmem_free(ss, sizeof (spdsock_t)); return (0); } /* * Merge the IPsec algorithms tables with the received algorithm information. */ void spdsock_merge_algs(void) { ipsec_alginfo_t *alg, *oalg; ipsec_algtype_t algtype; uint_t algidx, algid, nalgs; crypto_mech_name_t *mechs; uint_t mech_count, mech_idx; ASSERT(MUTEX_HELD(&spdsock_alg_lock)); /* * Get the list of supported mechanisms from the crypto framework. * If a mechanism is supported by KCF, resolve its mechanism * id and mark it as being valid. This operation must be done * without holding alg_lock, since it can cause a provider * module to be loaded and the provider notification callback to * be invoked. */ mechs = crypto_get_mech_list(&mech_count, KM_SLEEP); for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) { for (algid = 0; algid < IPSEC_MAX_ALGS; algid++) { int algflags = 0; crypto_mech_type_t mt = CRYPTO_MECHANISM_INVALID; if ((alg = spdsock_algs[algtype][algid]) == NULL) continue; /* * The NULL encryption algorithm is a special * case because there are no mechanisms, yet * the algorithm is still valid. */ if (alg->alg_id == SADB_EALG_NULL) { alg->alg_mech_type = CRYPTO_MECHANISM_INVALID; alg->alg_flags = ALG_FLAG_VALID; continue; } for (mech_idx = 0; mech_idx < mech_count; mech_idx++) { if (strncmp(alg->alg_mech_name, mechs[mech_idx], CRYPTO_MAX_MECH_NAME) == 0) { mt = crypto_mech2id(alg->alg_mech_name); ASSERT(mt != CRYPTO_MECHANISM_INVALID); algflags = ALG_FLAG_VALID; break; } } alg->alg_mech_type = mt; alg->alg_flags = algflags; } } mutex_enter(&alg_lock); /* * For each algorithm currently defined, check if it is * present in the new tables created from the SPD_UPDATEALGS * message received from user-space. * Delete the algorithm entries that are currently defined * but not part of the new tables. */ for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) { nalgs = ipsec_nalgs[algtype]; for (algidx = 0; algidx < nalgs; algidx++) { algid = ipsec_sortlist[algtype][algidx]; if (spdsock_algs[algtype][algid] == NULL) ipsec_alg_unreg(algtype, algid); } } /* * For each algorithm we just received, check if it is * present in the currently defined tables. If it is, swap * the entry with the one we just allocated. * If the new algorithm is not in the current tables, * add it. */ for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) { for (algid = 0; algid < IPSEC_MAX_ALGS; algid++) { if ((alg = spdsock_algs[algtype][algid]) == NULL) continue; if ((oalg = ipsec_alglists[algtype][algid]) == NULL) { /* * New algorithm, add it to the algorithm * table. */ ipsec_alg_reg(algtype, alg); } else { /* * Algorithm is already in the table. Swap * the existing entry with the new one. */ ipsec_alg_fix_min_max(alg, algtype); ipsec_alglists[algtype][algid] = alg; ipsec_alg_free(oalg); } spdsock_algs[algtype][algid] = NULL; } } for (algtype = 0; algtype < IPSEC_NALGTYPES; algtype++) ipsec_algs_exec_mode[algtype] = spdsock_algs_exec_mode[algtype]; mutex_exit(&alg_lock); crypto_free_mech_list(mechs, mech_count); ipsecah_algs_changed(); ipsecesp_algs_changed(); }