/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Packet dropper for ESP drops. */ static ipdropper_t esp_dropper; static kmutex_t ipsecesp_param_lock; /* Protects ipsecesp_param_arr[] below. */ /* * Table of ND variables supported by ipsecesp. These are loaded into * ipsecesp_g_nd in ipsecesp_init_nd. * All of these are alterable, within the min/max values given, at run time. */ static ipsecespparam_t ipsecesp_param_arr[] = { /* min max value name */ { 0, 3, 0, "ipsecesp_debug"}, { 125, 32000, SADB_AGE_INTERVAL_DEFAULT, "ipsecesp_age_interval"}, { 1, 10, 1, "ipsecesp_reap_delay"}, { 1, SADB_MAX_REPLAY, 64, "ipsecesp_replay_size"}, { 1, 300, 15, "ipsecesp_acquire_timeout"}, { 1, 1800, 90, "ipsecesp_larval_timeout"}, /* Default lifetime values for ACQUIRE messages. */ { 0, 0xffffffffU, 0, "ipsecesp_default_soft_bytes"}, { 0, 0xffffffffU, 0, "ipsecesp_default_hard_bytes"}, { 0, 0xffffffffU, 24000, "ipsecesp_default_soft_addtime"}, { 0, 0xffffffffU, 28800, "ipsecesp_default_hard_addtime"}, { 0, 0xffffffffU, 0, "ipsecesp_default_soft_usetime"}, { 0, 0xffffffffU, 0, "ipsecesp_default_hard_usetime"}, { 0, 1, 0, "ipsecesp_log_unknown_spi"}, { 0, 2, 1, "ipsecesp_padding_check"}, }; #define ipsecesp_debug ipsecesp_param_arr[0].ipsecesp_param_value #define ipsecesp_age_interval ipsecesp_param_arr[1].ipsecesp_param_value #define ipsecesp_age_int_max ipsecesp_param_arr[1].ipsecesp_param_max #define ipsecesp_reap_delay ipsecesp_param_arr[2].ipsecesp_param_value #define ipsecesp_replay_size ipsecesp_param_arr[3].ipsecesp_param_value #define ipsecesp_acquire_timeout ipsecesp_param_arr[4].ipsecesp_param_value #define ipsecesp_larval_timeout ipsecesp_param_arr[5].ipsecesp_param_value #define ipsecesp_default_soft_bytes \ ipsecesp_param_arr[6].ipsecesp_param_value #define ipsecesp_default_hard_bytes \ ipsecesp_param_arr[7].ipsecesp_param_value #define ipsecesp_default_soft_addtime \ ipsecesp_param_arr[8].ipsecesp_param_value #define ipsecesp_default_hard_addtime \ ipsecesp_param_arr[9].ipsecesp_param_value #define ipsecesp_default_soft_usetime \ ipsecesp_param_arr[10].ipsecesp_param_value #define ipsecesp_default_hard_usetime \ ipsecesp_param_arr[11].ipsecesp_param_value #define ipsecesp_log_unknown_spi \ ipsecesp_param_arr[12].ipsecesp_param_value #define ipsecesp_padding_check \ ipsecesp_param_arr[13].ipsecesp_param_value #define esp0dbg(a) printf a /* NOTE: != 0 instead of > 0 so lint doesn't complain. */ #define esp1dbg(a) if (ipsecesp_debug != 0) printf a #define esp2dbg(a) if (ipsecesp_debug > 1) printf a #define esp3dbg(a) if (ipsecesp_debug > 2) printf a static IDP ipsecesp_g_nd; static int ipsecesp_open(queue_t *, dev_t *, int, int, cred_t *); static int ipsecesp_close(queue_t *); static void ipsecesp_rput(queue_t *, mblk_t *); static void ipsecesp_wput(queue_t *, mblk_t *); static void esp_send_acquire(ipsacq_t *, mblk_t *); static ipsec_status_t esp_outbound_accelerated(mblk_t *, uint_t); static ipsec_status_t esp_inbound_accelerated(mblk_t *, mblk_t *, boolean_t, ipsa_t *); static boolean_t esp_register_out(uint32_t, uint32_t, uint_t); static boolean_t esp_strip_header(mblk_t *, boolean_t, uint32_t, kstat_named_t **); static ipsec_status_t esp_submit_req_inbound(mblk_t *, ipsa_t *, uint_t); static ipsec_status_t esp_submit_req_outbound(mblk_t *, ipsa_t *, uchar_t *, uint_t); static struct module_info info = { 5137, "ipsecesp", 0, INFPSZ, 65536, 1024 }; static struct qinit rinit = { (pfi_t)ipsecesp_rput, NULL, ipsecesp_open, ipsecesp_close, NULL, &info, NULL }; static struct qinit winit = { (pfi_t)ipsecesp_wput, NULL, ipsecesp_open, ipsecesp_close, NULL, &info, NULL }; struct streamtab ipsecespinfo = { &rinit, &winit, NULL, NULL }; /* * Keysock instance of ESP. "There can be only one." :) * Use casptr() on this because I don't set it until KEYSOCK_HELLO comes down. * Paired up with the esp_pfkey_q is the esp_event, which will age SAs. */ static queue_t *esp_pfkey_q; static timeout_id_t esp_event; static taskq_t *esp_taskq; /* * OTOH, this one is set at open/close, and I'm D_MTQPAIR for now. * * Question: Do I need this, given that all instance's esps->esps_wq point * to IP? * * Answer: Yes, because I need to know which queue is BOUND to * IPPROTO_ESP */ static mblk_t *esp_ip_unbind; /* * Stats. This may eventually become a full-blown SNMP MIB once that spec * stabilizes. */ typedef struct { kstat_named_t esp_stat_num_aalgs; kstat_named_t esp_stat_good_auth; kstat_named_t esp_stat_bad_auth; kstat_named_t esp_stat_bad_padding; kstat_named_t esp_stat_replay_failures; kstat_named_t esp_stat_replay_early_failures; kstat_named_t esp_stat_keysock_in; kstat_named_t esp_stat_out_requests; kstat_named_t esp_stat_acquire_requests; kstat_named_t esp_stat_bytes_expired; kstat_named_t esp_stat_out_discards; kstat_named_t esp_stat_in_accelerated; kstat_named_t esp_stat_out_accelerated; kstat_named_t esp_stat_noaccel; kstat_named_t esp_stat_crypto_sync; kstat_named_t esp_stat_crypto_async; kstat_named_t esp_stat_crypto_failures; kstat_named_t esp_stat_num_ealgs; kstat_named_t esp_stat_bad_decrypt; } esp_kstats_t; uint32_t esp_hash_size = IPSEC_DEFAULT_HASH_SIZE; #define ESP_BUMP_STAT(x) (esp_kstats->esp_stat_ ## x).value.ui64++ #define ESP_DEBUMP_STAT(x) (esp_kstats->esp_stat_ ## x).value.ui64-- static kstat_t *esp_ksp; static esp_kstats_t *esp_kstats; static int esp_kstat_update(kstat_t *, int); static boolean_t esp_kstat_init(void) { esp_ksp = kstat_create("ipsecesp", 0, "esp_stat", "net", KSTAT_TYPE_NAMED, sizeof (*esp_kstats) / sizeof (kstat_named_t), KSTAT_FLAG_PERSISTENT); if (esp_ksp == NULL) return (B_FALSE); esp_kstats = esp_ksp->ks_data; esp_ksp->ks_update = esp_kstat_update; #define K64 KSTAT_DATA_UINT64 #define KI(x) kstat_named_init(&(esp_kstats->esp_stat_##x), #x, K64) KI(num_aalgs); KI(num_ealgs); KI(good_auth); KI(bad_auth); KI(bad_padding); KI(replay_failures); KI(replay_early_failures); KI(keysock_in); KI(out_requests); KI(acquire_requests); KI(bytes_expired); KI(out_discards); KI(in_accelerated); KI(out_accelerated); KI(noaccel); KI(crypto_sync); KI(crypto_async); KI(crypto_failures); KI(bad_decrypt); #undef KI #undef K64 kstat_install(esp_ksp); return (B_TRUE); } static int esp_kstat_update(kstat_t *kp, int rw) { esp_kstats_t *ekp; if ((kp == NULL) || (kp->ks_data == NULL)) return (EIO); if (rw == KSTAT_WRITE) return (EACCES); ASSERT(kp == esp_ksp); ekp = (esp_kstats_t *)kp->ks_data; ASSERT(ekp == esp_kstats); mutex_enter(&alg_lock); ekp->esp_stat_num_aalgs.value.ui64 = ipsec_nalgs[IPSEC_ALG_AUTH]; ekp->esp_stat_num_ealgs.value.ui64 = ipsec_nalgs[IPSEC_ALG_ENCR]; mutex_exit(&alg_lock); return (0); } #ifdef DEBUG /* * Debug routine, useful to see pre-encryption data. */ static char * dump_msg(mblk_t *mp) { char tmp_str[3], tmp_line[256]; while (mp != NULL) { unsigned char *ptr; printf("mblk address 0x%p, length %ld, db_ref %d " "type %d, base 0x%p, lim 0x%p\n", (void *) mp, (long)(mp->b_wptr - mp->b_rptr), mp->b_datap->db_ref, mp->b_datap->db_type, (void *)mp->b_datap->db_base, (void *)mp->b_datap->db_lim); ptr = mp->b_rptr; tmp_line[0] = '\0'; while (ptr < mp->b_wptr) { uint_t diff; diff = (ptr - mp->b_rptr); if (!(diff & 0x1f)) { if (strlen(tmp_line) > 0) { printf("bytes: %s\n", tmp_line); tmp_line[0] = '\0'; } } if (!(diff & 0x3)) (void) strcat(tmp_line, " "); (void) sprintf(tmp_str, "%02x", *ptr); (void) strcat(tmp_line, tmp_str); ptr++; } if (strlen(tmp_line) > 0) printf("bytes: %s\n", tmp_line); mp = mp->b_cont; } return ("\n"); } #else /* DEBUG */ static char * dump_msg(mblk_t *mp) { printf("Find value of mp %p.\n", mp); return ("\n"); } #endif /* DEBUG */ /* * Don't have to lock age_interval, as only one thread will access it at * a time, because I control the one function that does with timeout(). */ /* ARGSUSED */ static void esp_ager(void *ignoreme) { hrtime_t begin = gethrtime(); sadb_ager(&esp_sadb.s_v4, esp_pfkey_q, esp_sadb.s_ip_q, ipsecesp_reap_delay); sadb_ager(&esp_sadb.s_v6, esp_pfkey_q, esp_sadb.s_ip_q, ipsecesp_reap_delay); esp_event = sadb_retimeout(begin, esp_pfkey_q, esp_ager, &(ipsecesp_age_interval), ipsecesp_age_int_max, info.mi_idnum); } /* * Get an ESP NDD parameter. */ /* ARGSUSED */ static int ipsecesp_param_get(q, mp, cp, cr) queue_t *q; mblk_t *mp; caddr_t cp; cred_t *cr; { ipsecespparam_t *ipsecesppa = (ipsecespparam_t *)cp; uint_t value; mutex_enter(&ipsecesp_param_lock); value = ipsecesppa->ipsecesp_param_value; mutex_exit(&ipsecesp_param_lock); (void) mi_mpprintf(mp, "%u", value); return (0); } /* * This routine sets an NDD variable in a ipsecespparam_t structure. */ /* ARGSUSED */ static int ipsecesp_param_set(q, mp, value, cp, cr) queue_t *q; mblk_t *mp; char *value; caddr_t cp; cred_t *cr; { ulong_t new_value; ipsecespparam_t *ipsecesppa = (ipsecespparam_t *)cp; /* * Fail the request if the new value does not lie within the * required bounds. */ if (ddi_strtoul(value, NULL, 10, &new_value) != 0 || new_value < ipsecesppa->ipsecesp_param_min || new_value > ipsecesppa->ipsecesp_param_max) { return (EINVAL); } /* Set the new value */ mutex_enter(&ipsecesp_param_lock); ipsecesppa->ipsecesp_param_value = new_value; mutex_exit(&ipsecesp_param_lock); return (0); } /* * Using lifetime NDD variables, fill in an extended combination's * lifetime information. */ void ipsecesp_fill_defs(sadb_x_ecomb_t *ecomb) { ecomb->sadb_x_ecomb_soft_bytes = ipsecesp_default_soft_bytes; ecomb->sadb_x_ecomb_hard_bytes = ipsecesp_default_hard_bytes; ecomb->sadb_x_ecomb_soft_addtime = ipsecesp_default_soft_addtime; ecomb->sadb_x_ecomb_hard_addtime = ipsecesp_default_hard_addtime; ecomb->sadb_x_ecomb_soft_usetime = ipsecesp_default_soft_usetime; ecomb->sadb_x_ecomb_hard_usetime = ipsecesp_default_hard_usetime; } /* * Initialize things for ESP at module load time. */ boolean_t ipsecesp_ddi_init(void) { int count; ipsecespparam_t *espp = ipsecesp_param_arr; for (count = A_CNT(ipsecesp_param_arr); count-- > 0; espp++) { if (espp->ipsecesp_param_name != NULL && espp->ipsecesp_param_name[0]) { if (!nd_load(&ipsecesp_g_nd, espp->ipsecesp_param_name, ipsecesp_param_get, ipsecesp_param_set, (caddr_t)espp)) { nd_free(&ipsecesp_g_nd); return (B_FALSE); } } } if (!esp_kstat_init()) { nd_free(&ipsecesp_g_nd); return (B_FALSE); } esp_sadb.s_acquire_timeout = &ipsecesp_acquire_timeout; esp_sadb.s_acqfn = esp_send_acquire; sadbp_init("ESP", &esp_sadb, SADB_SATYPE_ESP, esp_hash_size); esp_taskq = taskq_create("esp_taskq", 1, minclsyspri, IPSEC_TASKQ_MIN, IPSEC_TASKQ_MAX, 0); mutex_init(&ipsecesp_param_lock, NULL, MUTEX_DEFAULT, 0); ip_drop_register(&esp_dropper, "IPsec ESP"); return (B_TRUE); } /* * Destroy things for ESP at module unload time. */ void ipsecesp_ddi_destroy(void) { esp1dbg(("In ipsecesp_ddi_destroy.\n")); sadbp_destroy(&esp_sadb); ip_drop_unregister(&esp_dropper); taskq_destroy(esp_taskq); mutex_destroy(&ipsecesp_param_lock); nd_free(&ipsecesp_g_nd); kstat_delete(esp_ksp); } /* * ESP module open routine. */ /* ARGSUSED */ static int ipsecesp_open(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp) { if (secpolicy_net_config(credp, B_FALSE) != 0) { esp1dbg(("Non-privileged user trying to open ipsecesp.\n")); return (EPERM); } if (q->q_ptr != NULL) return (0); /* Re-open of an already open instance. */ if (sflag != MODOPEN) return (EINVAL); /* * ASSUMPTIONS (because I'm MT_OCEXCL): * * * I'm being pushed on top of IP for all my opens (incl. #1). * * Only ipsecesp_open() can write into esp_sadb.s_ip_q. * * Because of this, I can check lazily for esp_sadb.s_ip_q. * * If these assumptions are wrong, I'm in BIG trouble... */ q->q_ptr = q; /* just so I know I'm open */ if (esp_sadb.s_ip_q == NULL) { struct T_unbind_req *tur; esp_sadb.s_ip_q = WR(q); /* Allocate an unbind... */ esp_ip_unbind = allocb(sizeof (struct T_unbind_req), BPRI_HI); /* * Send down T_BIND_REQ to bind IPPROTO_ESP. * Handle the ACK here in ESP. */ qprocson(q); if (esp_ip_unbind == NULL || !sadb_t_bind_req(esp_sadb.s_ip_q, IPPROTO_ESP)) { if (esp_ip_unbind != NULL) { freeb(esp_ip_unbind); esp_ip_unbind = NULL; } q->q_ptr = NULL; return (ENOMEM); } esp_ip_unbind->b_datap->db_type = M_PROTO; tur = (struct T_unbind_req *)esp_ip_unbind->b_rptr; tur->PRIM_type = T_UNBIND_REQ; } else { qprocson(q); } /* * For now, there's not much I can do. I'll be getting a message * passed down to me from keysock (in my wput), and a T_BIND_ACK * up from IP (in my rput). */ return (0); } /* * ESP module close routine. */ static int ipsecesp_close(queue_t *q) { /* * If esp_sadb.s_ip_q is attached to this instance, send a * T_UNBIND_REQ to IP for the instance before doing * a qprocsoff(). */ if (WR(q) == esp_sadb.s_ip_q && esp_ip_unbind != NULL) { putnext(WR(q), esp_ip_unbind); esp_ip_unbind = NULL; } /* * Clean up q_ptr, if needed. */ qprocsoff(q); /* Keysock queue check is safe, because of OCEXCL perimeter. */ if (q == esp_pfkey_q) { esp0dbg(("ipsecesp_close: Ummm... keysock is closing ESP.\n")); esp_pfkey_q = NULL; /* Detach qtimeouts. */ (void) quntimeout(q, esp_event); } if (WR(q) == esp_sadb.s_ip_q) { /* * If the esp_sadb.s_ip_q is attached to this instance, find * another. The OCEXCL outer perimeter helps us here. */ esp_sadb.s_ip_q = NULL; /* * Find a replacement queue for esp_sadb.s_ip_q. */ if (esp_pfkey_q != NULL && esp_pfkey_q != RD(q)) { /* * See if we can use the pfkey_q. */ esp_sadb.s_ip_q = WR(esp_pfkey_q); } if (esp_sadb.s_ip_q == NULL || !sadb_t_bind_req(esp_sadb.s_ip_q, IPPROTO_ESP)) { esp1dbg(("ipsecesp: Can't reassign ip_q.\n")); esp_sadb.s_ip_q = NULL; } else { esp_ip_unbind = allocb(sizeof (struct T_unbind_req), BPRI_HI); if (esp_ip_unbind != NULL) { struct T_unbind_req *tur; esp_ip_unbind->b_datap->db_type = M_PROTO; tur = (struct T_unbind_req *) esp_ip_unbind->b_rptr; tur->PRIM_type = T_UNBIND_REQ; } /* If it's NULL, I can't do much here. */ } } return (0); } /* * Add a number of bytes to what the SA has protected so far. Return * B_TRUE if the SA can still protect that many bytes. * * Caller must REFRELE the passed-in assoc. This function must REFRELE * any obtained peer SA. */ static boolean_t esp_age_bytes(ipsa_t *assoc, uint64_t bytes, boolean_t inbound) { ipsa_t *inassoc, *outassoc; isaf_t *bucket; boolean_t inrc, outrc, isv6; sadb_t *sp; int outhash; /* No peer? No problem! */ if (!assoc->ipsa_haspeer) { return (sadb_age_bytes(esp_pfkey_q, assoc, bytes, B_TRUE)); } /* * Otherwise, we want to grab both the original assoc and its peer. * There might be a race for this, but if it's a real race, two * expire messages may occur. We limit this by only sending the * expire message on one of the peers, we'll pick the inbound * arbitrarily. * * If we need tight synchronization on the peer SA, then we need to * reconsider. */ /* Use address length to select IPv6/IPv4 */ isv6 = (assoc->ipsa_addrfam == AF_INET6); sp = isv6 ? &esp_sadb.s_v6 : &esp_sadb.s_v4; if (inbound) { inassoc = assoc; if (isv6) { outhash = OUTBOUND_HASH_V6(sp, *((in6_addr_t *) &inassoc->ipsa_dstaddr)); } else { outhash = OUTBOUND_HASH_V4(sp, *((ipaddr_t *) &inassoc->ipsa_dstaddr)); } bucket = &sp->sdb_of[outhash]; mutex_enter(&bucket->isaf_lock); outassoc = ipsec_getassocbyspi(bucket, inassoc->ipsa_spi, inassoc->ipsa_srcaddr, inassoc->ipsa_dstaddr, inassoc->ipsa_addrfam); mutex_exit(&bucket->isaf_lock); if (outassoc == NULL) { /* Q: Do we wish to set haspeer == B_FALSE? */ esp0dbg(("esp_age_bytes: " "can't find peer for inbound.\n")); return (sadb_age_bytes(esp_pfkey_q, inassoc, bytes, B_TRUE)); } } else { outassoc = assoc; bucket = INBOUND_BUCKET(sp, outassoc->ipsa_spi); mutex_enter(&bucket->isaf_lock); inassoc = ipsec_getassocbyspi(bucket, outassoc->ipsa_spi, outassoc->ipsa_srcaddr, outassoc->ipsa_dstaddr, outassoc->ipsa_addrfam); mutex_exit(&bucket->isaf_lock); if (inassoc == NULL) { /* Q: Do we wish to set haspeer == B_FALSE? */ esp0dbg(("esp_age_bytes: " "can't find peer for outbound.\n")); return (sadb_age_bytes(esp_pfkey_q, outassoc, bytes, B_TRUE)); } } inrc = sadb_age_bytes(esp_pfkey_q, inassoc, bytes, B_TRUE); outrc = sadb_age_bytes(esp_pfkey_q, outassoc, bytes, B_FALSE); /* * REFRELE any peer SA. * * Because of the multi-line macro nature of IPSA_REFRELE, keep * them in { }. */ if (inbound) { IPSA_REFRELE(outassoc); } else { IPSA_REFRELE(inassoc); } return (inrc && outrc); } /* * Do incoming NAT-T manipulations for packet. */ static ipsec_status_t esp_fix_natt_checksums(mblk_t *data_mp, ipsa_t *assoc) { ipha_t *ipha = (ipha_t *)data_mp->b_rptr; tcpha_t *tcph; udpha_t *udpha; /* Initialize to our inbound cksum adjustment... */ uint32_t sum = assoc->ipsa_inbound_cksum; switch (ipha->ipha_protocol) { case IPPROTO_TCP: tcph = (tcpha_t *)(data_mp->b_rptr + IPH_HDR_LENGTH(ipha)); #define DOWN_SUM(x) (x) = ((x) & 0xFFFF) + ((x) >> 16) sum += ~ntohs(tcph->tha_sum) & 0xFFFF; DOWN_SUM(sum); DOWN_SUM(sum); tcph->tha_sum = ~htons(sum); break; case IPPROTO_UDP: udpha = (udpha_t *)(data_mp->b_rptr + IPH_HDR_LENGTH(ipha)); if (udpha->uha_checksum != 0) { /* Adujst if the inbound one was not zero. */ sum += ~ntohs(udpha->uha_checksum) & 0xFFFF; DOWN_SUM(sum); DOWN_SUM(sum); udpha->uha_checksum = ~htons(sum); if (udpha->uha_checksum == 0) udpha->uha_checksum = 0xFFFF; } #undef DOWN_SUM break; case IPPROTO_IP: /* * This case is only an issue for self-encapsulated * packets. So for now, fall through. */ break; } return (IPSEC_STATUS_SUCCESS); } /* * Strip ESP header and fix IP header * Returns B_TRUE on success, B_FALSE if an error occured. */ static boolean_t esp_strip_header(mblk_t *data_mp, boolean_t isv4, uint32_t ivlen, kstat_named_t **counter) { ipha_t *ipha; ip6_t *ip6h; uint_t divpoint; mblk_t *scratch; uint8_t nexthdr, padlen; uint8_t lastpad; /* * Strip ESP data and fix IP header. * * XXX In case the beginning of esp_inbound() changes to not do a * pullup, this part of the code can remain unchanged. */ if (isv4) { ASSERT((data_mp->b_wptr - data_mp->b_rptr) >= sizeof (ipha_t)); ipha = (ipha_t *)data_mp->b_rptr; ASSERT((data_mp->b_wptr - data_mp->b_rptr) >= sizeof (esph_t) + IPH_HDR_LENGTH(ipha)); divpoint = IPH_HDR_LENGTH(ipha); } else { ASSERT((data_mp->b_wptr - data_mp->b_rptr) >= sizeof (ip6_t)); ip6h = (ip6_t *)data_mp->b_rptr; divpoint = ip_hdr_length_v6(data_mp, ip6h); } scratch = data_mp; while (scratch->b_cont != NULL) scratch = scratch->b_cont; ASSERT((scratch->b_wptr - scratch->b_rptr) >= 3); /* * "Next header" and padding length are the last two bytes in the * ESP-protected datagram, thus the explicit - 1 and - 2. * lastpad is the last byte of the padding, which can be used for * a quick check to see if the padding is correct. */ nexthdr = *(scratch->b_wptr - 1); padlen = *(scratch->b_wptr - 2); lastpad = *(scratch->b_wptr - 3); if (isv4) { /* Fix part of the IP header. */ ipha->ipha_protocol = nexthdr; /* * Reality check the padlen. The explicit - 2 is for the * padding length and the next-header bytes. */ if (padlen >= ntohs(ipha->ipha_length) - sizeof (ipha_t) - 2 - sizeof (esph_t) - ivlen) { ESP_BUMP_STAT(bad_decrypt); ipsec_rl_strlog(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN, "Possibly corrupt ESP packet."); esp1dbg(("padlen (%d) is greater than:\n", padlen)); esp1dbg(("pkt len(%d) - ip hdr - esp hdr - ivlen(%d) " "= %d.\n", ntohs(ipha->ipha_length), ivlen, (int)(ntohs(ipha->ipha_length) - sizeof (ipha_t) - 2 - sizeof (esph_t) - ivlen))); *counter = &ipdrops_esp_bad_padlen; return (B_FALSE); } /* * Fix the rest of the header. The explicit - 2 is for the * padding length and the next-header bytes. */ ipha->ipha_length = htons(ntohs(ipha->ipha_length) - padlen - 2 - sizeof (esph_t) - ivlen); ipha->ipha_hdr_checksum = 0; ipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(ipha); } else { if (ip6h->ip6_nxt == IPPROTO_ESP) { ip6h->ip6_nxt = nexthdr; } else { ip6_pkt_t ipp; bzero(&ipp, sizeof (ipp)); (void) ip_find_hdr_v6(data_mp, ip6h, &ipp, NULL); if (ipp.ipp_dstopts != NULL) { ipp.ipp_dstopts->ip6d_nxt = nexthdr; } else if (ipp.ipp_rthdr != NULL) { ipp.ipp_rthdr->ip6r_nxt = nexthdr; } else if (ipp.ipp_hopopts != NULL) { ipp.ipp_hopopts->ip6h_nxt = nexthdr; } else { /* Panic a DEBUG kernel. */ ASSERT(ipp.ipp_hopopts != NULL); /* Otherwise, pretend it's IP + ESP. */ cmn_err(CE_WARN, "ESP IPv6 headers wrong.\n"); ip6h->ip6_nxt = nexthdr; } } if (padlen >= ntohs(ip6h->ip6_plen) - 2 - sizeof (esph_t) - ivlen) { ESP_BUMP_STAT(bad_decrypt); ipsec_rl_strlog(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN, "Possibly corrupt ESP packet."); esp1dbg(("padlen (%d) is greater than:\n", padlen)); esp1dbg(("pkt len(%u) - ip hdr - esp hdr - ivlen(%d)" " = %u.\n", (unsigned)(ntohs(ip6h->ip6_plen) + sizeof (ip6_t)), ivlen, (unsigned)(ntohs(ip6h->ip6_plen) - 2 - sizeof (esph_t) - ivlen))); *counter = &ipdrops_esp_bad_padlen; return (B_FALSE); } /* * Fix the rest of the header. The explicit - 2 is for the * padding length and the next-header bytes. IPv6 is nice, * because there's no hdr checksum! */ ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - padlen - 2 - sizeof (esph_t) - ivlen); } if (ipsecesp_padding_check > 0 && padlen != lastpad && padlen != 0) { ipsec_rl_strlog(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN, "Possibly corrupt ESP packet."); esp1dbg(("lastpad (%d) not equal to padlen (%d):\n", lastpad, padlen)); ESP_BUMP_STAT(bad_padding); *counter = &ipdrops_esp_bad_padding; return (B_FALSE); } if (ipsecesp_padding_check > 1) { uint8_t *last = (uint8_t *)(scratch->b_wptr - 3); uint8_t lastval = *last; /* * this assert may have to become an if * and a pullup if we start accepting * multi-dblk mblks. Any packet here will * have been pulled up in esp_inbound. */ ASSERT(MBLKL(scratch) >= lastval + 3); while (lastval != 0) { if (lastval != *last) { ipsec_rl_strlog(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN, "Possibly corrupt ESP packet."); esp1dbg(("padding not in correct" " format:\n")); ESP_BUMP_STAT(bad_padding); *counter = &ipdrops_esp_bad_padding; return (B_FALSE); } lastval--; last--; } } /* Trim off the padding. */ ASSERT(data_mp->b_cont == NULL); data_mp->b_wptr -= (padlen + 2); /* * Remove the ESP header. * * The above assertions about data_mp's size will make this work. * * XXX Question: If I send up and get back a contiguous mblk, * would it be quicker to bcopy over, or keep doing the dupb stuff? * I go with copying for now. */ if (IS_P2ALIGNED(data_mp->b_rptr, sizeof (uint32_t)) && IS_P2ALIGNED(ivlen, sizeof (uint32_t))) { uint8_t *start = data_mp->b_rptr; uint32_t *src, *dst; src = (uint32_t *)(start + divpoint); dst = (uint32_t *)(start + divpoint + sizeof (esph_t) + ivlen); ASSERT(IS_P2ALIGNED(dst, sizeof (uint32_t)) && IS_P2ALIGNED(src, sizeof (uint32_t))); do { src--; dst--; *dst = *src; } while (src != (uint32_t *)start); data_mp->b_rptr = (uchar_t *)dst; } else { uint8_t *start = data_mp->b_rptr; uint8_t *src, *dst; src = start + divpoint; dst = src + sizeof (esph_t) + ivlen; do { src--; dst--; *dst = *src; } while (src != start); data_mp->b_rptr = dst; } esp2dbg(("data_mp after inbound ESP adjustment:\n")); esp2dbg((dump_msg(data_mp))); return (B_TRUE); } /* * Updating use times can be tricky business if the ipsa_haspeer flag is * set. This function is called once in an SA's lifetime. * * Caller has to REFRELE "assoc" which is passed in. This function has * to REFRELE any peer SA that is obtained. */ static void esp_set_usetime(ipsa_t *assoc, boolean_t inbound) { ipsa_t *inassoc, *outassoc; isaf_t *bucket; sadb_t *sp; int outhash; boolean_t isv6; /* No peer? No problem! */ if (!assoc->ipsa_haspeer) { sadb_set_usetime(assoc); return; } /* * Otherwise, we want to grab both the original assoc and its peer. * There might be a race for this, but if it's a real race, the times * will be out-of-synch by at most a second, and since our time * granularity is a second, this won't be a problem. * * If we need tight synchronization on the peer SA, then we need to * reconsider. */ /* Use address length to select IPv6/IPv4 */ isv6 = (assoc->ipsa_addrfam == AF_INET6); sp = isv6 ? &esp_sadb.s_v6 : &esp_sadb.s_v4; if (inbound) { inassoc = assoc; if (isv6) { outhash = OUTBOUND_HASH_V6(sp, *((in6_addr_t *) &inassoc->ipsa_dstaddr)); } else { outhash = OUTBOUND_HASH_V4(sp, *((ipaddr_t *) &inassoc->ipsa_dstaddr)); } bucket = &sp->sdb_of[outhash]; mutex_enter(&bucket->isaf_lock); outassoc = ipsec_getassocbyspi(bucket, inassoc->ipsa_spi, inassoc->ipsa_srcaddr, inassoc->ipsa_dstaddr, inassoc->ipsa_addrfam); mutex_exit(&bucket->isaf_lock); if (outassoc == NULL) { /* Q: Do we wish to set haspeer == B_FALSE? */ esp0dbg(("esp_set_usetime: " "can't find peer for inbound.\n")); sadb_set_usetime(inassoc); return; } } else { outassoc = assoc; bucket = INBOUND_BUCKET(sp, outassoc->ipsa_spi); mutex_enter(&bucket->isaf_lock); inassoc = ipsec_getassocbyspi(bucket, outassoc->ipsa_spi, outassoc->ipsa_srcaddr, outassoc->ipsa_dstaddr, outassoc->ipsa_addrfam); mutex_exit(&bucket->isaf_lock); if (inassoc == NULL) { /* Q: Do we wish to set haspeer == B_FALSE? */ esp0dbg(("esp_set_usetime: " "can't find peer for outbound.\n")); sadb_set_usetime(outassoc); return; } } /* Update usetime on both. */ sadb_set_usetime(inassoc); sadb_set_usetime(outassoc); /* * REFRELE any peer SA. * * Because of the multi-line macro nature of IPSA_REFRELE, keep * them in { }. */ if (inbound) { IPSA_REFRELE(outassoc); } else { IPSA_REFRELE(inassoc); } } /* * Handle ESP inbound data for IPv4 and IPv6. * On success returns B_TRUE, on failure returns B_FALSE and frees the * mblk chain ipsec_in_mp. */ ipsec_status_t esp_inbound(mblk_t *ipsec_in_mp, void *arg) { mblk_t *data_mp = ipsec_in_mp->b_cont; ipsec_in_t *ii = (ipsec_in_t *)ipsec_in_mp->b_rptr; esph_t *esph = (esph_t *)arg; ipsa_t *ipsa = ii->ipsec_in_esp_sa; if (ipsa->ipsa_usetime == 0) esp_set_usetime(ipsa, B_TRUE); /* * We may wish to check replay in-range-only here as an optimization. * Include the reality check of ipsa->ipsa_replay > * ipsa->ipsa_replay_wsize for times when it's the first N packets, * where N == ipsa->ipsa_replay_wsize. * * Another check that may come here later is the "collision" check. * If legitimate packets flow quickly enough, this won't be a problem, * but collisions may cause authentication algorithm crunching to * take place when it doesn't need to. */ if (!sadb_replay_peek(ipsa, esph->esph_replay)) { ESP_BUMP_STAT(replay_early_failures); IP_ESP_BUMP_STAT(in_discards); /* * TODO: Extract inbound interface from the IPSEC_IN * message's ii->ipsec_in_rill_index. */ ip_drop_packet(ipsec_in_mp, B_TRUE, NULL, NULL, &ipdrops_esp_early_replay, &esp_dropper); return (IPSEC_STATUS_FAILED); } /* * Has this packet already been processed by a hardware * IPsec accelerator? */ if (ii->ipsec_in_accelerated) { ipsec_status_t rv; esp3dbg(("esp_inbound: pkt processed by ill=%d isv6=%d\n", ii->ipsec_in_ill_index, !ii->ipsec_in_v4)); rv = esp_inbound_accelerated(ipsec_in_mp, data_mp, ii->ipsec_in_v4, ipsa); return (rv); } ESP_BUMP_STAT(noaccel); /* * Adjust the IP header's payload length to reflect the removal * of the ICV. */ if (!ii->ipsec_in_v4) { ip6_t *ip6h = (ip6_t *)data_mp->b_rptr; ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - ipsa->ipsa_mac_len); } else { ipha_t *ipha = (ipha_t *)data_mp->b_rptr; ipha->ipha_length = htons(ntohs(ipha->ipha_length) - ipsa->ipsa_mac_len); } /* submit the request to the crypto framework */ return (esp_submit_req_inbound(ipsec_in_mp, ipsa, (uint8_t *)esph - data_mp->b_rptr)); } /* * Perform the really difficult work of inserting the proposed situation. * Called while holding the algorithm lock. */ static void esp_insert_prop(sadb_prop_t *prop, ipsacq_t *acqrec, uint_t combs) { sadb_comb_t *comb = (sadb_comb_t *)(prop + 1); ipsec_out_t *io; ipsec_action_t *ap; ipsec_prot_t *prot; ASSERT(MUTEX_HELD(&alg_lock)); io = (ipsec_out_t *)acqrec->ipsacq_mp->b_rptr; ASSERT(io->ipsec_out_type == IPSEC_OUT); prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; prop->sadb_prop_len = SADB_8TO64(sizeof (sadb_prop_t)); *(uint32_t *)(&prop->sadb_prop_replay) = 0; /* Quick zero-out! */ prop->sadb_prop_replay = ipsecesp_replay_size; /* * Based upon algorithm properties, and what-not, prioritize * a proposal. If the IPSEC_OUT message has an algorithm specified, * use it first and foremost. * * For each action in policy list * Add combination. If I've hit limit, return. */ for (ap = acqrec->ipsacq_act; ap != NULL; ap = ap->ipa_next) { ipsec_alginfo_t *ealg = NULL; ipsec_alginfo_t *aalg = NULL; if (ap->ipa_act.ipa_type != IPSEC_POLICY_APPLY) continue; prot = &ap->ipa_act.ipa_apply; if (!(prot->ipp_use_esp)) continue; if (prot->ipp_esp_auth_alg != 0) { aalg = ipsec_alglists[IPSEC_ALG_AUTH] [prot->ipp_esp_auth_alg]; if (aalg == NULL || !ALG_VALID(aalg)) continue; } ASSERT(prot->ipp_encr_alg > 0); ealg = ipsec_alglists[IPSEC_ALG_ENCR][prot->ipp_encr_alg]; if (ealg == NULL || !ALG_VALID(ealg)) continue; comb->sadb_comb_flags = 0; comb->sadb_comb_reserved = 0; comb->sadb_comb_encrypt = ealg->alg_id; comb->sadb_comb_encrypt_minbits = prot->ipp_espe_minbits; comb->sadb_comb_encrypt_maxbits = prot->ipp_espe_maxbits; if (aalg == NULL) { comb->sadb_comb_auth = 0; comb->sadb_comb_auth_minbits = 0; comb->sadb_comb_auth_maxbits = 0; } else { comb->sadb_comb_auth = aalg->alg_id; comb->sadb_comb_auth_minbits = prot->ipp_espa_minbits; comb->sadb_comb_auth_maxbits = prot->ipp_espa_maxbits; } /* * The following may be based on algorithm * properties, but in the meantime, we just pick * some good, sensible numbers. Key mgmt. can * (and perhaps should) be the place to finalize * such decisions. */ /* * No limits on allocations, since we really don't * support that concept currently. */ comb->sadb_comb_soft_allocations = 0; comb->sadb_comb_hard_allocations = 0; /* * These may want to come from policy rule.. */ comb->sadb_comb_soft_bytes = ipsecesp_default_soft_bytes; comb->sadb_comb_hard_bytes = ipsecesp_default_hard_bytes; comb->sadb_comb_soft_addtime = ipsecesp_default_soft_addtime; comb->sadb_comb_hard_addtime = ipsecesp_default_hard_addtime; comb->sadb_comb_soft_usetime = ipsecesp_default_soft_usetime; comb->sadb_comb_hard_usetime = ipsecesp_default_hard_usetime; prop->sadb_prop_len += SADB_8TO64(sizeof (*comb)); if (--combs == 0) break; /* out of space.. */ comb++; } } /* * Prepare and actually send the SADB_ACQUIRE message to PF_KEY. */ static void esp_send_acquire(ipsacq_t *acqrec, mblk_t *extended) { mblk_t *pfkeymp, *msgmp; uint_t allocsize, combs; sadb_msg_t *samsg; sadb_prop_t *prop; uint8_t *cur, *end; ESP_BUMP_STAT(acquire_requests); ASSERT(MUTEX_HELD(&acqrec->ipsacq_lock)); pfkeymp = sadb_keysock_out(0); if (pfkeymp == NULL) { esp0dbg(("esp_send_acquire: 1st allocb() failed.\n")); /* Just bail. */ goto done; } /* * First, allocate a basic ACQUIRE message. Beyond that, * you need to extract certificate info from */ allocsize = sizeof (sadb_msg_t) + sizeof (sadb_address_t) + sizeof (sadb_address_t) + sizeof (sadb_prop_t); switch (acqrec->ipsacq_addrfam) { case AF_INET: allocsize += 2 * sizeof (struct sockaddr_in); break; case AF_INET6: allocsize += 2 * sizeof (struct sockaddr_in6); break; } mutex_enter(&alg_lock); combs = ipsec_nalgs[IPSEC_ALG_AUTH] * ipsec_nalgs[IPSEC_ALG_ENCR]; allocsize += combs * sizeof (sadb_comb_t); /* * XXX If there are: * certificate IDs * proxy address * * add additional allocation size. */ msgmp = allocb(allocsize, BPRI_HI); if (msgmp == NULL) { esp0dbg(("esp_send_acquire: 2nd allocb() failed.\n")); /* Just bail. */ freemsg(pfkeymp); pfkeymp = NULL; goto done; } cur = msgmp->b_rptr; end = cur + allocsize; samsg = (sadb_msg_t *)cur; pfkeymp->b_cont = msgmp; /* Set up ACQUIRE. */ cur = sadb_setup_acquire(cur, end, acqrec); if (cur == NULL) { esp0dbg(("sadb_setup_acquire failed.\n")); /* Just bail. */ freemsg(pfkeymp); pfkeymp = NULL; goto done; } samsg->sadb_msg_satype = SADB_SATYPE_ESP; /* XXX Insert proxy address information here. */ /* XXX Insert identity information here. */ /* XXXMLS Insert sensitivity information here. */ /* Insert proposal here. */ prop = (sadb_prop_t *)(((uint64_t *)samsg) + samsg->sadb_msg_len); esp_insert_prop(prop, acqrec, combs); samsg->sadb_msg_len += prop->sadb_prop_len; msgmp->b_wptr += SADB_64TO8(samsg->sadb_msg_len); done: mutex_exit(&alg_lock); /* * Must mutex_exit() before sending PF_KEY message up, in * order to avoid recursive mutex_enter() if there are no registered * listeners. * * Once I've sent the message, I'm cool anyway. */ mutex_exit(&acqrec->ipsacq_lock); if (esp_pfkey_q != NULL && pfkeymp != NULL) { if (extended != NULL) { putnext(esp_pfkey_q, extended); } putnext(esp_pfkey_q, pfkeymp); return; } /* XXX freemsg() works for extended == NULL. */ freemsg(extended); freemsg(pfkeymp); } /* * Handle the SADB_GETSPI message. Create a larval SA. */ static void esp_getspi(mblk_t *mp, keysock_in_t *ksi) { ipsa_t *newbie, *target; isaf_t *outbound, *inbound; int rc, diagnostic; sadb_sa_t *assoc; keysock_out_t *kso; uint32_t newspi; /* * Randomly generate a proposed SPI value */ (void) random_get_pseudo_bytes((uint8_t *)&newspi, sizeof (uint32_t)); newbie = sadb_getspi(ksi, newspi, &diagnostic); if (newbie == NULL) { sadb_pfkey_error(esp_pfkey_q, mp, ENOMEM, diagnostic, ksi->ks_in_serial); return; } else if (newbie == (ipsa_t *)-1) { sadb_pfkey_error(esp_pfkey_q, mp, EINVAL, diagnostic, ksi->ks_in_serial); return; } /* * XXX - We may randomly collide. We really should recover from this. * Unfortunately, that could require spending way-too-much-time * in here. For now, let the user retry. */ if (newbie->ipsa_addrfam == AF_INET6) { outbound = OUTBOUND_BUCKET_V6(&esp_sadb.s_v6, *(uint32_t *)(newbie->ipsa_dstaddr)); inbound = INBOUND_BUCKET(&esp_sadb.s_v6, newbie->ipsa_spi); } else { ASSERT(newbie->ipsa_addrfam == AF_INET); outbound = OUTBOUND_BUCKET_V4(&esp_sadb.s_v4, *(uint32_t *)(newbie->ipsa_dstaddr)); inbound = INBOUND_BUCKET(&esp_sadb.s_v4, newbie->ipsa_spi); } mutex_enter(&outbound->isaf_lock); mutex_enter(&inbound->isaf_lock); /* * Check for collisions (i.e. did sadb_getspi() return with something * that already exists?). * * Try outbound first. Even though SADB_GETSPI is traditionally * for inbound SAs, you never know what a user might do. */ target = ipsec_getassocbyspi(outbound, newbie->ipsa_spi, newbie->ipsa_srcaddr, newbie->ipsa_dstaddr, newbie->ipsa_addrfam); if (target == NULL) { target = ipsec_getassocbyspi(inbound, newbie->ipsa_spi, newbie->ipsa_srcaddr, newbie->ipsa_dstaddr, newbie->ipsa_addrfam); } /* * I don't have collisions elsewhere! * (Nor will I because I'm still holding inbound/outbound locks.) */ if (target != NULL) { rc = EEXIST; IPSA_REFRELE(target); } else { /* * sadb_insertassoc() also checks for collisions, so * if there's a colliding entry, rc will be set * to EEXIST. */ rc = sadb_insertassoc(newbie, inbound); (void) drv_getparm(TIME, &newbie->ipsa_hardexpiretime); newbie->ipsa_hardexpiretime += ipsecesp_larval_timeout; } /* * Can exit outbound mutex. Hold inbound until we're done * with newbie. */ mutex_exit(&outbound->isaf_lock); if (rc != 0) { mutex_exit(&inbound->isaf_lock); IPSA_REFRELE(newbie); sadb_pfkey_error(esp_pfkey_q, mp, rc, SADB_X_DIAGNOSTIC_NONE, ksi->ks_in_serial); return; } /* Can write here because I'm still holding the bucket lock. */ newbie->ipsa_type = SADB_SATYPE_ESP; /* * Construct successful return message. We have one thing going * for us in PF_KEY v2. That's the fact that * sizeof (sadb_spirange_t) == sizeof (sadb_sa_t) */ assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SPIRANGE]; assoc->sadb_sa_exttype = SADB_EXT_SA; assoc->sadb_sa_spi = newbie->ipsa_spi; *((uint64_t *)(&assoc->sadb_sa_replay)) = 0; mutex_exit(&inbound->isaf_lock); /* Convert KEYSOCK_IN to KEYSOCK_OUT. */ kso = (keysock_out_t *)ksi; kso->ks_out_len = sizeof (*kso); kso->ks_out_serial = ksi->ks_in_serial; kso->ks_out_type = KEYSOCK_OUT; /* * Can safely putnext() to esp_pfkey_q, because this is a turnaround * from the esp_pfkey_q. */ putnext(esp_pfkey_q, mp); } /* * Insert the ESP header into a packet. Duplicate an mblk, and insert a newly * allocated mblk with the ESP header in between the two. */ static boolean_t esp_insert_esp(mblk_t *mp, mblk_t *esp_mp, uint_t divpoint) { mblk_t *split_mp = mp; uint_t wheretodiv = divpoint; while ((split_mp->b_wptr - split_mp->b_rptr) < wheretodiv) { wheretodiv -= (split_mp->b_wptr - split_mp->b_rptr); split_mp = split_mp->b_cont; ASSERT(split_mp != NULL); } if (split_mp->b_wptr - split_mp->b_rptr != wheretodiv) { mblk_t *scratch; /* "scratch" is the 2nd half, split_mp is the first. */ scratch = dupb(split_mp); if (scratch == NULL) { esp1dbg(("esp_insert_esp: can't allocate scratch.\n")); return (B_FALSE); } /* NOTE: dupb() doesn't set b_cont appropriately. */ scratch->b_cont = split_mp->b_cont; scratch->b_rptr += wheretodiv; split_mp->b_wptr = split_mp->b_rptr + wheretodiv; split_mp->b_cont = scratch; } /* * At this point, split_mp is exactly "wheretodiv" bytes long, and * holds the end of the pre-ESP part of the datagram. */ esp_mp->b_cont = split_mp->b_cont; split_mp->b_cont = esp_mp; return (B_TRUE); } /* * Finish processing of an inbound ESP packet after processing by the * crypto framework. * - Remove the ESP header. * - Send packet back to IP. * If authentication was performed on the packet, this function is called * only if the authentication succeeded. * On success returns B_TRUE, on failure returns B_FALSE and frees the * mblk chain ipsec_in_mp. */ static ipsec_status_t esp_in_done(mblk_t *ipsec_in_mp) { ipsec_in_t *ii = (ipsec_in_t *)ipsec_in_mp->b_rptr; mblk_t *data_mp; ipsa_t *assoc; uint_t espstart; uint32_t ivlen = 0; uint_t processed_len; esph_t *esph; kstat_named_t *counter; boolean_t is_natt; assoc = ii->ipsec_in_esp_sa; ASSERT(assoc != NULL); is_natt = ((assoc->ipsa_flags & IPSA_F_NATT) != 0); /* get the pointer to the ESP header */ if (assoc->ipsa_encr_alg == SADB_EALG_NULL) { /* authentication-only ESP */ espstart = ii->ipsec_in_crypto_data.cd_offset; processed_len = ii->ipsec_in_crypto_data.cd_length; } else { /* encryption present */ ivlen = assoc->ipsa_iv_len; if (assoc->ipsa_auth_alg == SADB_AALG_NONE) { /* encryption-only ESP */ espstart = ii->ipsec_in_crypto_data.cd_offset - sizeof (esph_t) - assoc->ipsa_iv_len; processed_len = ii->ipsec_in_crypto_data.cd_length + ivlen; } else { /* encryption with authentication */ espstart = ii->ipsec_in_crypto_dual_data.dd_offset1; processed_len = ii->ipsec_in_crypto_dual_data.dd_len2 + ivlen; } } data_mp = ipsec_in_mp->b_cont; esph = (esph_t *)(data_mp->b_rptr + espstart); if (assoc->ipsa_auth_alg != IPSA_AALG_NONE) { /* authentication passed if we reach this point */ ESP_BUMP_STAT(good_auth); data_mp->b_wptr -= assoc->ipsa_mac_len; /* * Check replay window here! * For right now, assume keysock will set the replay window * size to zero for SAs that have an unspecified sender. * This may change... */ if (!sadb_replay_check(assoc, esph->esph_replay)) { /* * Log the event. As of now we print out an event. * Do not print the replay failure number, or else * syslog cannot collate the error messages. Printing * the replay number that failed opens a denial-of- * service attack. */ ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN, "Replay failed for ESP spi 0x%x, dst %s.\n", assoc->ipsa_spi, assoc->ipsa_dstaddr, assoc->ipsa_addrfam); ESP_BUMP_STAT(replay_failures); counter = &ipdrops_esp_replay; goto drop_and_bail; } } if (!esp_age_bytes(assoc, processed_len, B_TRUE)) { /* The ipsa has hit hard expiration, LOG and AUDIT. */ ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN, "ESP association 0x%x, dst %s had bytes expire.\n", assoc->ipsa_spi, assoc->ipsa_dstaddr, assoc->ipsa_addrfam); ESP_BUMP_STAT(bytes_expired); counter = &ipdrops_esp_bytes_expire; goto drop_and_bail; } /* * Remove ESP header and padding from packet. I hope the compiler * spews "branch, predict taken" code for this. */ if (esp_strip_header(data_mp, ii->ipsec_in_v4, ivlen, &counter)) { if (is_natt) return (esp_fix_natt_checksums(data_mp, assoc)); return (IPSEC_STATUS_SUCCESS); } esp1dbg(("esp_in_done: esp_strip_header() failed\n")); drop_and_bail: IP_ESP_BUMP_STAT(in_discards); /* * TODO: Extract inbound interface from the IPSEC_IN message's * ii->ipsec_in_rill_index. */ ip_drop_packet(ipsec_in_mp, B_TRUE, NULL, NULL, counter, &esp_dropper); return (IPSEC_STATUS_FAILED); } /* * Called upon failing the inbound ICV check. The message passed as * argument is freed. */ static void esp_log_bad_auth(mblk_t *ipsec_in) { ipsec_in_t *ii = (ipsec_in_t *)ipsec_in->b_rptr; ipsa_t *assoc = ii->ipsec_in_esp_sa; /* * Log the event. Don't print to the console, block * potential denial-of-service attack. */ ESP_BUMP_STAT(bad_auth); ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN, "ESP Authentication failed for spi 0x%x, dst %s.\n", assoc->ipsa_spi, assoc->ipsa_dstaddr, assoc->ipsa_addrfam); IP_ESP_BUMP_STAT(in_discards); /* * TODO: Extract inbound interface from the IPSEC_IN * message's ii->ipsec_in_rill_index. */ ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, &ipdrops_esp_bad_auth, &esp_dropper); } /* * Invoked for outbound packets after ESP processing. If the packet * also requires AH, performs the AH SA selection and AH processing. * Returns B_TRUE if the AH processing was not needed or if it was * performed successfully. Returns B_FALSE and consumes the passed mblk * if AH processing was required but could not be performed. */ static boolean_t esp_do_outbound_ah(mblk_t *ipsec_mp) { ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; ipsec_status_t ipsec_rc; ipsec_action_t *ap; ap = io->ipsec_out_act; if (ap == NULL) { ipsec_policy_t *pp = io->ipsec_out_policy; ap = pp->ipsp_act; } if (!ap->ipa_want_ah) return (B_TRUE); ASSERT(io->ipsec_out_ah_done == B_FALSE); if (io->ipsec_out_ah_sa == NULL) { if (!ipsec_outbound_sa(ipsec_mp, IPPROTO_AH)) { sadb_acquire(ipsec_mp, io, B_TRUE, B_FALSE); return (B_FALSE); } } ASSERT(io->ipsec_out_ah_sa != NULL); io->ipsec_out_ah_done = B_TRUE; ipsec_rc = io->ipsec_out_ah_sa->ipsa_output_func(ipsec_mp); return (ipsec_rc == IPSEC_STATUS_SUCCESS); } /* * Kernel crypto framework callback invoked after completion of async * crypto requests. */ static void esp_kcf_callback(void *arg, int status) { mblk_t *ipsec_mp = (mblk_t *)arg; ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; boolean_t is_inbound = (ii->ipsec_in_type == IPSEC_IN); ASSERT(ipsec_mp->b_cont != NULL); if (status == CRYPTO_SUCCESS) { if (is_inbound) { if (esp_in_done(ipsec_mp) != IPSEC_STATUS_SUCCESS) return; /* finish IPsec processing */ ip_fanout_proto_again(ipsec_mp, NULL, NULL, NULL); } else { /* * If a ICV was computed, it was stored by the * crypto framework at the end of the packet. */ ipha_t *ipha = (ipha_t *)ipsec_mp->b_cont->b_rptr; /* do AH processing if needed */ if (!esp_do_outbound_ah(ipsec_mp)) return; /* finish IPsec processing */ if (IPH_HDR_VERSION(ipha) == IP_VERSION) { ip_wput_ipsec_out(NULL, ipsec_mp, ipha, NULL, NULL); } else { ip6_t *ip6h = (ip6_t *)ipha; ip_wput_ipsec_out_v6(NULL, ipsec_mp, ip6h, NULL, NULL); } } } else if (status == CRYPTO_INVALID_MAC) { esp_log_bad_auth(ipsec_mp); } else { esp1dbg(("esp_kcf_callback: crypto failed with 0x%x\n", status)); ESP_BUMP_STAT(crypto_failures); if (is_inbound) IP_ESP_BUMP_STAT(in_discards); else ESP_BUMP_STAT(out_discards); ip_drop_packet(ipsec_mp, is_inbound, NULL, NULL, &ipdrops_esp_crypto_failed, &esp_dropper); } } /* * Invoked on crypto framework failure during inbound and outbound processing. */ static void esp_crypto_failed(mblk_t *mp, boolean_t is_inbound, int kef_rc) { esp1dbg(("crypto failed for %s ESP with 0x%x\n", is_inbound ? "inbound" : "outbound", kef_rc)); ip_drop_packet(mp, is_inbound, NULL, NULL, &ipdrops_esp_crypto_failed, &esp_dropper); ESP_BUMP_STAT(crypto_failures); if (is_inbound) IP_ESP_BUMP_STAT(in_discards); else ESP_BUMP_STAT(out_discards); } #define ESP_INIT_CALLREQ(_cr) { \ (_cr)->cr_flag = CRYPTO_SKIP_REQID|CRYPTO_RESTRICTED; \ (_cr)->cr_callback_arg = ipsec_mp; \ (_cr)->cr_callback_func = esp_kcf_callback; \ } #define ESP_INIT_CRYPTO_MAC(mac, icvlen, icvbuf) { \ (mac)->cd_format = CRYPTO_DATA_RAW; \ (mac)->cd_offset = 0; \ (mac)->cd_length = icvlen; \ (mac)->cd_raw.iov_base = (char *)icvbuf; \ (mac)->cd_raw.iov_len = icvlen; \ } #define ESP_INIT_CRYPTO_DATA(data, mp, off, len) { \ if (MBLKL(mp) >= (len) + (off)) { \ (data)->cd_format = CRYPTO_DATA_RAW; \ (data)->cd_raw.iov_base = (char *)(mp)->b_rptr; \ (data)->cd_raw.iov_len = MBLKL(mp); \ (data)->cd_offset = off; \ } else { \ (data)->cd_format = CRYPTO_DATA_MBLK; \ (data)->cd_mp = mp; \ (data)->cd_offset = off; \ } \ (data)->cd_length = len; \ } #define ESP_INIT_CRYPTO_DUAL_DATA(data, mp, off1, len1, off2, len2) { \ (data)->dd_format = CRYPTO_DATA_MBLK; \ (data)->dd_mp = mp; \ (data)->dd_len1 = len1; \ (data)->dd_offset1 = off1; \ (data)->dd_len2 = len2; \ (data)->dd_offset2 = off2; \ } static ipsec_status_t esp_submit_req_inbound(mblk_t *ipsec_mp, ipsa_t *assoc, uint_t esph_offset) { ipsec_in_t *ii = (ipsec_in_t *)ipsec_mp->b_rptr; boolean_t do_auth; uint_t auth_offset, msg_len, auth_len; crypto_call_req_t call_req; mblk_t *esp_mp; int kef_rc = CRYPTO_FAILED; uint_t icv_len = assoc->ipsa_mac_len; crypto_ctx_template_t auth_ctx_tmpl; boolean_t do_encr; uint_t encr_offset, encr_len; uint_t iv_len = assoc->ipsa_iv_len; crypto_ctx_template_t encr_ctx_tmpl; ASSERT(ii->ipsec_in_type == IPSEC_IN); do_auth = assoc->ipsa_auth_alg != SADB_AALG_NONE; do_encr = assoc->ipsa_encr_alg != SADB_EALG_NULL; /* * An inbound packet is of the form: * IPSEC_IN -> [IP,options,ESP,IV,data,ICV,pad] */ esp_mp = ipsec_mp->b_cont; msg_len = MBLKL(esp_mp); ESP_INIT_CALLREQ(&call_req); if (do_auth) { /* force asynchronous processing? */ if (ipsec_algs_exec_mode[IPSEC_ALG_AUTH] == IPSEC_ALGS_EXEC_ASYNC) call_req.cr_flag |= CRYPTO_ALWAYS_QUEUE; /* authentication context template */ IPSEC_CTX_TMPL(assoc, ipsa_authtmpl, IPSEC_ALG_AUTH, auth_ctx_tmpl); /* ICV to be verified */ ESP_INIT_CRYPTO_MAC(&ii->ipsec_in_crypto_mac, icv_len, esp_mp->b_wptr - icv_len); /* authentication starts at the ESP header */ auth_offset = esph_offset; auth_len = msg_len - auth_offset - icv_len; if (!do_encr) { /* authentication only */ /* initialize input data argument */ ESP_INIT_CRYPTO_DATA(&ii->ipsec_in_crypto_data, esp_mp, auth_offset, auth_len); /* call the crypto framework */ kef_rc = crypto_mac_verify(&assoc->ipsa_amech, &ii->ipsec_in_crypto_data, &assoc->ipsa_kcfauthkey, auth_ctx_tmpl, &ii->ipsec_in_crypto_mac, &call_req); } } if (do_encr) { /* force asynchronous processing? */ if (ipsec_algs_exec_mode[IPSEC_ALG_ENCR] == IPSEC_ALGS_EXEC_ASYNC) call_req.cr_flag |= CRYPTO_ALWAYS_QUEUE; /* encryption template */ IPSEC_CTX_TMPL(assoc, ipsa_encrtmpl, IPSEC_ALG_ENCR, encr_ctx_tmpl); /* skip IV, since it is passed separately */ encr_offset = esph_offset + sizeof (esph_t) + iv_len; encr_len = msg_len - encr_offset; if (!do_auth) { /* decryption only */ /* initialize input data argument */ ESP_INIT_CRYPTO_DATA(&ii->ipsec_in_crypto_data, esp_mp, encr_offset, encr_len); /* specify IV */ ii->ipsec_in_crypto_data.cd_miscdata = (char *)esp_mp->b_rptr + sizeof (esph_t) + esph_offset; /* call the crypto framework */ kef_rc = crypto_decrypt(&assoc->ipsa_emech, &ii->ipsec_in_crypto_data, &assoc->ipsa_kcfencrkey, encr_ctx_tmpl, NULL, &call_req); } } if (do_auth && do_encr) { /* dual operation */ /* initialize input data argument */ ESP_INIT_CRYPTO_DUAL_DATA(&ii->ipsec_in_crypto_dual_data, esp_mp, auth_offset, auth_len, encr_offset, encr_len - icv_len); /* specify IV */ ii->ipsec_in_crypto_dual_data.dd_miscdata = (char *)esp_mp->b_rptr + sizeof (esph_t) + esph_offset; /* call the framework */ kef_rc = crypto_mac_verify_decrypt(&assoc->ipsa_amech, &assoc->ipsa_emech, &ii->ipsec_in_crypto_dual_data, &assoc->ipsa_kcfauthkey, &assoc->ipsa_kcfencrkey, auth_ctx_tmpl, encr_ctx_tmpl, &ii->ipsec_in_crypto_mac, NULL, &call_req); } switch (kef_rc) { case CRYPTO_SUCCESS: ESP_BUMP_STAT(crypto_sync); return (esp_in_done(ipsec_mp)); case CRYPTO_QUEUED: /* esp_kcf_callback() will be invoked on completion */ ESP_BUMP_STAT(crypto_async); return (IPSEC_STATUS_PENDING); case CRYPTO_INVALID_MAC: ESP_BUMP_STAT(crypto_sync); esp_log_bad_auth(ipsec_mp); return (IPSEC_STATUS_FAILED); } esp_crypto_failed(ipsec_mp, B_TRUE, kef_rc); return (IPSEC_STATUS_FAILED); } static ipsec_status_t esp_submit_req_outbound(mblk_t *ipsec_mp, ipsa_t *assoc, uchar_t *icv_buf, uint_t payload_len) { ipsec_out_t *io = (ipsec_out_t *)ipsec_mp->b_rptr; uint_t auth_len; crypto_call_req_t call_req; mblk_t *esp_mp; int kef_rc = CRYPTO_FAILED; uint_t icv_len = assoc->ipsa_mac_len; crypto_ctx_template_t auth_ctx_tmpl; boolean_t do_auth; boolean_t do_encr; uint_t iv_len = assoc->ipsa_iv_len; crypto_ctx_template_t encr_ctx_tmpl; boolean_t is_natt = ((assoc->ipsa_flags & IPSA_F_NATT) != 0); size_t esph_offset = (is_natt ? UDPH_SIZE : 0); esp3dbg(("esp_submit_req_outbound:%s", is_natt ? "natt" : "not natt")); ASSERT(io->ipsec_out_type == IPSEC_OUT); do_encr = assoc->ipsa_encr_alg != SADB_EALG_NULL; do_auth = assoc->ipsa_auth_alg != SADB_AALG_NONE; /* * Outbound IPsec packets are of the form: * IPSEC_OUT -> [IP,options] -> [ESP,IV] -> [data] -> [pad,ICV] * unless it's NATT, then it's * IPSEC_OUT -> [IP,options] -> [udp][ESP,IV] -> [data] -> [pad,ICV] * Get a pointer to the mblk containing the ESP header. */ ASSERT(ipsec_mp->b_cont != NULL && ipsec_mp->b_cont->b_cont != NULL); esp_mp = ipsec_mp->b_cont->b_cont; ESP_INIT_CALLREQ(&call_req); if (do_auth) { /* force asynchronous processing? */ if (ipsec_algs_exec_mode[IPSEC_ALG_AUTH] == IPSEC_ALGS_EXEC_ASYNC) call_req.cr_flag |= CRYPTO_ALWAYS_QUEUE; /* authentication context template */ IPSEC_CTX_TMPL(assoc, ipsa_authtmpl, IPSEC_ALG_AUTH, auth_ctx_tmpl); /* where to store the computed mac */ ESP_INIT_CRYPTO_MAC(&io->ipsec_out_crypto_mac, icv_len, icv_buf); /* authentication starts at the ESP header */ auth_len = payload_len + iv_len + sizeof (esph_t); if (!do_encr) { /* authentication only */ /* initialize input data argument */ ESP_INIT_CRYPTO_DATA(&io->ipsec_out_crypto_data, esp_mp, esph_offset, auth_len); /* call the crypto framework */ kef_rc = crypto_mac(&assoc->ipsa_amech, &io->ipsec_out_crypto_data, &assoc->ipsa_kcfauthkey, auth_ctx_tmpl, &io->ipsec_out_crypto_mac, &call_req); } } if (do_encr) { /* force asynchronous processing? */ if (ipsec_algs_exec_mode[IPSEC_ALG_ENCR] == IPSEC_ALGS_EXEC_ASYNC) call_req.cr_flag |= CRYPTO_ALWAYS_QUEUE; /* encryption context template */ IPSEC_CTX_TMPL(assoc, ipsa_encrtmpl, IPSEC_ALG_ENCR, encr_ctx_tmpl); if (!do_auth) { /* encryption only, skip mblk that contains ESP hdr */ /* initialize input data argument */ ESP_INIT_CRYPTO_DATA(&io->ipsec_out_crypto_data, esp_mp->b_cont, 0, payload_len); /* specify IV */ io->ipsec_out_crypto_data.cd_miscdata = (char *)esp_mp->b_rptr + sizeof (esph_t) + esph_offset; /* call the crypto framework */ kef_rc = crypto_encrypt(&assoc->ipsa_emech, &io->ipsec_out_crypto_data, &assoc->ipsa_kcfencrkey, encr_ctx_tmpl, NULL, &call_req); } } if (do_auth && do_encr) { /* * Encryption and authentication: * Pass the pointer to the mblk chain starting at the ESP * header to the framework. Skip the ESP header mblk * for encryption, which is reflected by an encryption * offset equal to the length of that mblk. Start * the authentication at the ESP header, i.e. use an * authentication offset of zero. */ ESP_INIT_CRYPTO_DUAL_DATA(&io->ipsec_out_crypto_dual_data, esp_mp, MBLKL(esp_mp), payload_len, esph_offset, auth_len); /* specify IV */ io->ipsec_out_crypto_dual_data.dd_miscdata = (char *)esp_mp->b_rptr + sizeof (esph_t) + esph_offset; /* call the framework */ kef_rc = crypto_encrypt_mac(&assoc->ipsa_emech, &assoc->ipsa_amech, NULL, &assoc->ipsa_kcfencrkey, &assoc->ipsa_kcfauthkey, encr_ctx_tmpl, auth_ctx_tmpl, &io->ipsec_out_crypto_dual_data, &io->ipsec_out_crypto_mac, &call_req); } switch (kef_rc) { case CRYPTO_SUCCESS: ESP_BUMP_STAT(crypto_sync); return (IPSEC_STATUS_SUCCESS); case CRYPTO_QUEUED: /* esp_kcf_callback() will be invoked on completion */ ESP_BUMP_STAT(crypto_async); return (IPSEC_STATUS_PENDING); } esp_crypto_failed(ipsec_mp, B_TRUE, kef_rc); return (IPSEC_STATUS_FAILED); } /* * Handle outbound IPsec processing for IPv4 and IPv6 * On success returns B_TRUE, on failure returns B_FALSE and frees the * mblk chain ipsec_in_mp. */ static ipsec_status_t esp_outbound(mblk_t *mp) { mblk_t *ipsec_out_mp, *data_mp, *espmp, *tailmp; ipsec_out_t *io; ipha_t *ipha; ip6_t *ip6h; esph_t *esph; uint_t af; uint8_t *nhp; uintptr_t divpoint, datalen, adj, padlen, i, alloclen; uintptr_t esplen = sizeof (esph_t); uint8_t protocol; ipsa_t *assoc; uint_t iv_len = 0, mac_len = 0; uchar_t *icv_buf; udpha_t *udpha; boolean_t is_natt = B_FALSE; ESP_BUMP_STAT(out_requests); ipsec_out_mp = mp; data_mp = ipsec_out_mp->b_cont; /* * We have to copy the message here, because TCP (for example) * keeps a dupb() of the message lying around for retransmission. * Since ESP changes the whole of the datagram, we have to create our * own copy lest we clobber TCP's data. Since we have to copy anyway, * we might as well make use of msgpullup() and get the mblk into one * contiguous piece! */ ipsec_out_mp->b_cont = msgpullup(data_mp, -1); if (ipsec_out_mp->b_cont == NULL) { esp0dbg(("esp_outbound: msgpullup() failed, " "dropping packet.\n")); ipsec_out_mp->b_cont = data_mp; /* * TODO: Find the outbound IRE for this packet and * pass it to ip_drop_packet(). */ ip_drop_packet(ipsec_out_mp, B_FALSE, NULL, NULL, &ipdrops_esp_nomem, &esp_dropper); return (IPSEC_STATUS_FAILED); } else { freemsg(data_mp); data_mp = ipsec_out_mp->b_cont; } io = (ipsec_out_t *)ipsec_out_mp->b_rptr; /* * Reality check.... */ ipha = (ipha_t *)data_mp->b_rptr; /* So we can call esp_acquire(). */ if (io->ipsec_out_v4) { af = AF_INET; divpoint = IPH_HDR_LENGTH(ipha); datalen = ntohs(ipha->ipha_length) - divpoint; nhp = (uint8_t *)&ipha->ipha_protocol; } else { ip6_pkt_t ipp; af = AF_INET6; ip6h = (ip6_t *)ipha; bzero(&ipp, sizeof (ipp)); divpoint = ip_find_hdr_v6(data_mp, ip6h, &ipp, NULL); if (ipp.ipp_dstopts != NULL && ipp.ipp_dstopts->ip6d_nxt != IPPROTO_ROUTING) { /* * Destination options are tricky. If we get in here, * then we have a terminal header following the * destination options. We need to adjust backwards * so we insert ESP BEFORE the destination options * bag. (So that the dstopts get encrypted!) * * Since this is for outbound packets only, we know * that non-terminal destination options only precede * routing headers. */ divpoint -= ipp.ipp_dstoptslen; } datalen = ntohs(ip6h->ip6_plen) + sizeof (ip6_t) - divpoint; if (ipp.ipp_rthdr != NULL) { nhp = &ipp.ipp_rthdr->ip6r_nxt; } else if (ipp.ipp_hopopts != NULL) { nhp = &ipp.ipp_hopopts->ip6h_nxt; } else { ASSERT(divpoint == sizeof (ip6_t)); /* It's probably IP + ESP. */ nhp = &ip6h->ip6_nxt; } } assoc = io->ipsec_out_esp_sa; ASSERT(assoc != NULL); if (assoc->ipsa_usetime == 0) esp_set_usetime(assoc, B_FALSE); if (assoc->ipsa_auth_alg != SADB_AALG_NONE) mac_len = assoc->ipsa_mac_len; if (assoc->ipsa_flags & IPSA_F_NATT) { /* wedge in fake UDP */ is_natt = B_TRUE; esplen += UDPH_SIZE; } if (assoc->ipsa_encr_alg != SADB_EALG_NULL) iv_len = assoc->ipsa_iv_len; /* * Set up ESP header and encryption padding for ENCR PI request. */ /* * Determine the padding length. Pad to 4-bytes. * * Include the two additional bytes (hence the - 2) for the padding * length and the next header. Take this into account when * calculating the actual length of the padding. */ if (assoc->ipsa_encr_alg != SADB_EALG_NULL) { padlen = ((unsigned)(iv_len - datalen - 2)) % iv_len; } else { padlen = ((unsigned)(sizeof (uint32_t) - datalen - 2)) % sizeof (uint32_t); } /* Allocate ESP header and IV. */ esplen += iv_len; /* * Update association byte-count lifetimes. Don't forget to take * into account the padding length and next-header (hence the + 2). * * Use the amount of data fed into the "encryption algorithm". This * is the IV, the data length, the padding length, and the final two * bytes (padlen, and next-header). * */ if (!esp_age_bytes(assoc, datalen + padlen + iv_len + 2, B_FALSE)) { /* * TODO: Find the outbound IRE for this packet and * pass it to ip_drop_packet(). */ ip_drop_packet(mp, B_FALSE, NULL, NULL, &ipdrops_esp_bytes_expire, &esp_dropper); return (IPSEC_STATUS_FAILED); } espmp = allocb(esplen, BPRI_HI); if (espmp == NULL) { ESP_BUMP_STAT(out_discards); esp1dbg(("esp_outbound: can't allocate espmp.\n")); /* * TODO: Find the outbound IRE for this packet and * pass it to ip_drop_packet(). */ ip_drop_packet(mp, B_FALSE, NULL, NULL, &ipdrops_esp_nomem, &esp_dropper); return (IPSEC_STATUS_FAILED); } espmp->b_wptr += esplen; esph = (esph_t *)espmp->b_rptr; if (is_natt) { esp3dbg(("esp_outbound: NATT")); udpha = (udpha_t *)espmp->b_rptr; udpha->uha_src_port = htons(IPPORT_IKE_NATT); if (assoc->ipsa_remote_port != 0) udpha->uha_dst_port = assoc->ipsa_remote_port; else udpha->uha_dst_port = htons(IPPORT_IKE_NATT); /* * Set the checksum to 0, so that the ip_wput_ipsec_out() * can do the right thing. */ udpha->uha_checksum = 0; esph = (esph_t *)(udpha + 1); } esph->esph_spi = assoc->ipsa_spi; esph->esph_replay = htonl(atomic_add_32_nv(&assoc->ipsa_replay, 1)); if (esph->esph_replay == 0 && assoc->ipsa_replay_wsize != 0) { /* * XXX We have replay counter wrapping. * We probably want to nuke this SA (and its peer). */ ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_CONSOLE | SL_WARN, "Outbound ESP SA (0x%x, %s) has wrapped sequence.\n", esph->esph_spi, assoc->ipsa_dstaddr, af); ESP_BUMP_STAT(out_discards); sadb_replay_delete(assoc); /* * TODO: Find the outbound IRE for this packet and * pass it to ip_drop_packet(). */ ip_drop_packet(mp, B_FALSE, NULL, NULL, &ipdrops_esp_replay, &esp_dropper); return (IPSEC_STATUS_FAILED); } /* * Set the IV to a random quantity. We do not require the * highest quality random bits, but for best security with CBC * mode ciphers, the value must be unlikely to repeat and also * must not be known in advance to an adversary capable of * influencing the plaintext. */ (void) random_get_pseudo_bytes((uint8_t *)(esph + 1), iv_len); /* Fix the IP header. */ alloclen = padlen + 2 + mac_len; adj = alloclen + (espmp->b_wptr - espmp->b_rptr); protocol = *nhp; if (io->ipsec_out_v4) { ipha->ipha_length = htons(ntohs(ipha->ipha_length) + adj); if (is_natt) { *nhp = IPPROTO_UDP; udpha->uha_length = htons(ntohs(ipha->ipha_length) - IPH_HDR_LENGTH(ipha)); } else { *nhp = IPPROTO_ESP; } ipha->ipha_hdr_checksum = 0; ipha->ipha_hdr_checksum = (uint16_t)ip_csum_hdr(ipha); } else { ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) + adj); *nhp = IPPROTO_ESP; } /* I've got the two ESP mblks, now insert them. */ esp2dbg(("data_mp before outbound ESP adjustment:\n")); esp2dbg((dump_msg(data_mp))); if (!esp_insert_esp(data_mp, espmp, divpoint)) { ESP_BUMP_STAT(out_discards); /* NOTE: esp_insert_esp() only fails if there's no memory. */ /* * TODO: Find the outbound IRE for this packet and * pass it to ip_drop_packet(). */ ip_drop_packet(mp, B_FALSE, NULL, NULL, &ipdrops_esp_nomem, &esp_dropper); freeb(espmp); return (IPSEC_STATUS_FAILED); } /* Append padding (and leave room for ICV). */ for (tailmp = data_mp; tailmp->b_cont != NULL; tailmp = tailmp->b_cont) ; if (tailmp->b_wptr + alloclen > tailmp->b_datap->db_lim) { tailmp->b_cont = allocb(alloclen, BPRI_HI); if (tailmp->b_cont == NULL) { ESP_BUMP_STAT(out_discards); esp0dbg(("esp_outbound: Can't allocate tailmp.\n")); /* * TODO: Find the outbound IRE for this packet and * pass it to ip_drop_packet(). */ ip_drop_packet(mp, B_FALSE, NULL, NULL, &ipdrops_esp_nomem, &esp_dropper); return (IPSEC_STATUS_FAILED); } tailmp = tailmp->b_cont; } /* * If there's padding, N bytes of padding must be of the form 0x1, * 0x2, 0x3... 0xN. */ for (i = 0; i < padlen; ) { i++; *tailmp->b_wptr++ = i; } *tailmp->b_wptr++ = i; *tailmp->b_wptr++ = protocol; esp2dbg(("data_Mp before encryption:\n")); esp2dbg((dump_msg(data_mp))); /* * The packet is eligible for hardware acceleration if the * following conditions are satisfied: * * 1. the packet will not be fragmented * 2. the provider supports the algorithms specified by SA * 3. there is no pending control message being exchanged * 4. snoop is not attached * 5. the destination address is not a multicast address * * All five of these conditions are checked by IP prior to * sending the packet to ESP. * * But We, and We Alone, can, nay MUST check if the packet * is over NATT, and then disqualify it from hardware * acceleration. */ if (io->ipsec_out_is_capab_ill && !(assoc->ipsa_flags & IPSA_F_NATT)) { return (esp_outbound_accelerated(ipsec_out_mp, mac_len)); } ESP_BUMP_STAT(noaccel); /* * Okay. I've set up the pre-encryption ESP. Let's do it! */ if (mac_len > 0) { ASSERT(tailmp->b_wptr + mac_len <= tailmp->b_datap->db_lim); icv_buf = tailmp->b_wptr; tailmp->b_wptr += mac_len; } else { icv_buf = NULL; } return (esp_submit_req_outbound(ipsec_out_mp, assoc, icv_buf, datalen + padlen + 2)); } /* * IP calls this to validate the ICMP errors that * we got from the network. */ ipsec_status_t ipsecesp_icmp_error(mblk_t *ipsec_mp) { /* * Unless we get an entire packet back, this function is useless. * Why? * * 1.) Partial packets are useless, because the "next header" * is at the end of the decrypted ESP packet. Without the * whole packet, this is useless. * * 2.) If we every use a stateful cipher, such as a stream or a * one-time pad, we can't do anything. * * Since the chances of us getting an entire packet back are very * very small, we discard here. */ IP_ESP_BUMP_STAT(in_discards); ip_drop_packet(ipsec_mp, B_TRUE, NULL, NULL, &ipdrops_esp_icmp, &esp_dropper); return (IPSEC_STATUS_FAILED); } /* * ESP module read put routine. */ /* ARGSUSED */ static void ipsecesp_rput(queue_t *q, mblk_t *mp) { keysock_in_t *ksi; int *addrtype; ire_t *ire; mblk_t *ire_mp, *last_mp; switch (mp->b_datap->db_type) { case M_CTL: /* * IPsec request of some variety from IP. IPSEC_{IN,OUT} * are the common cases, but even ICMP error messages from IP * may rise up here. * * Ummmm, actually, this can also be the reflected KEYSOCK_IN * message, with an IRE_DB_TYPE hung off at the end. */ switch (((ipsec_info_t *)(mp->b_rptr))->ipsec_info_type) { case KEYSOCK_IN: last_mp = mp; while (last_mp->b_cont != NULL && last_mp->b_cont->b_datap->db_type != IRE_DB_TYPE) last_mp = last_mp->b_cont; if (last_mp->b_cont == NULL) { freemsg(mp); break; /* Out of switch. */ } ire_mp = last_mp->b_cont; last_mp->b_cont = NULL; ksi = (keysock_in_t *)mp->b_rptr; if (ksi->ks_in_srctype == KS_IN_ADDR_UNKNOWN) addrtype = &ksi->ks_in_srctype; else if (ksi->ks_in_dsttype == KS_IN_ADDR_UNKNOWN) addrtype = &ksi->ks_in_dsttype; else if (ksi->ks_in_proxytype == KS_IN_ADDR_UNKNOWN) addrtype = &ksi->ks_in_proxytype; ire = (ire_t *)ire_mp->b_rptr; *addrtype = sadb_addrset(ire); freemsg(ire_mp); if (esp_pfkey_q != NULL) { /* * Decrement counter to make up for * auto-increment in ipsecesp_wput(). * I'm running all MT-hot through here, so * don't worry about perimeters and lateral * puts. */ ESP_DEBUMP_STAT(keysock_in); ipsecesp_wput(WR(esp_pfkey_q), mp); } else { freemsg(mp); } break; default: freemsg(mp); break; } break; case M_PROTO: case M_PCPROTO: /* TPI message of some sort. */ switch (*((t_scalar_t *)mp->b_rptr)) { case T_BIND_ACK: esp3dbg(("Thank you IP from ESP for T_BIND_ACK\n")); break; case T_ERROR_ACK: cmn_err(CE_WARN, "ipsecesp: ESP received T_ERROR_ACK from IP."); /* * Make esp_sadb.s_ip_q NULL, and in the * future, perhaps try again. */ esp_sadb.s_ip_q = NULL; break; case T_OK_ACK: /* Probably from a (rarely sent) T_UNBIND_REQ. */ break; default: esp0dbg(("Unknown M_{,PC}PROTO message.\n")); } freemsg(mp); break; default: /* For now, passthru message. */ esp2dbg(("ESP got unknown mblk type %d.\n", mp->b_datap->db_type)); putnext(q, mp); } } /* * Construct an SADB_REGISTER message with the current algorithms. */ static boolean_t esp_register_out(uint32_t sequence, uint32_t pid, uint_t serial) { mblk_t *pfkey_msg_mp, *keysock_out_mp; sadb_msg_t *samsg; sadb_supported_t *sasupp_auth = NULL; sadb_supported_t *sasupp_encr = NULL; sadb_alg_t *saalg; uint_t allocsize = sizeof (*samsg); uint_t i, numalgs_snap; int current_aalgs; ipsec_alginfo_t **authalgs; uint_t num_aalgs; int current_ealgs; ipsec_alginfo_t **encralgs; uint_t num_ealgs; /* Allocate the KEYSOCK_OUT. */ keysock_out_mp = sadb_keysock_out(serial); if (keysock_out_mp == NULL) { esp0dbg(("esp_register_out: couldn't allocate mblk.\n")); return (B_FALSE); } /* * Allocate the PF_KEY message that follows KEYSOCK_OUT. */ mutex_enter(&alg_lock); /* * Fill SADB_REGISTER message's algorithm descriptors. Hold * down the lock while filling it. * * Return only valid algorithms, so the number of algorithms * to send up may be less than the number of algorithm entries * in the table. */ authalgs = ipsec_alglists[IPSEC_ALG_AUTH]; for (num_aalgs = 0, i = 0; i < IPSEC_MAX_ALGS; i++) if (authalgs[i] != NULL && ALG_VALID(authalgs[i])) num_aalgs++; if (num_aalgs != 0) { allocsize += (num_aalgs * sizeof (*saalg)); allocsize += sizeof (*sasupp_auth); } encralgs = ipsec_alglists[IPSEC_ALG_ENCR]; for (num_ealgs = 0, i = 0; i < IPSEC_MAX_ALGS; i++) if (encralgs[i] != NULL && ALG_VALID(encralgs[i])) num_ealgs++; if (num_ealgs != 0) { allocsize += (num_ealgs * sizeof (*saalg)); allocsize += sizeof (*sasupp_encr); } keysock_out_mp->b_cont = allocb(allocsize, BPRI_HI); if (keysock_out_mp->b_cont == NULL) { mutex_exit(&alg_lock); freemsg(keysock_out_mp); return (B_FALSE); } pfkey_msg_mp = keysock_out_mp->b_cont; pfkey_msg_mp->b_wptr += allocsize; if (num_aalgs != 0) { sasupp_auth = (sadb_supported_t *) (pfkey_msg_mp->b_rptr + sizeof (*samsg)); saalg = (sadb_alg_t *)(sasupp_auth + 1); ASSERT(((ulong_t)saalg & 0x7) == 0); numalgs_snap = 0; for (i = 0; ((i < IPSEC_MAX_ALGS) && (numalgs_snap < num_aalgs)); i++) { if (authalgs[i] == NULL || !ALG_VALID(authalgs[i])) continue; saalg->sadb_alg_id = authalgs[i]->alg_id; saalg->sadb_alg_ivlen = 0; saalg->sadb_alg_minbits = authalgs[i]->alg_ef_minbits; saalg->sadb_alg_maxbits = authalgs[i]->alg_ef_maxbits; saalg->sadb_x_alg_defincr = authalgs[i]->alg_ef_default; saalg->sadb_x_alg_increment = authalgs[i]->alg_increment; numalgs_snap++; saalg++; } ASSERT(numalgs_snap == num_aalgs); #ifdef DEBUG /* * Reality check to make sure I snagged all of the * algorithms. */ for (; i < IPSEC_MAX_ALGS; i++) { if (authalgs[i] != NULL && ALG_VALID(authalgs[i])) { cmn_err(CE_PANIC, "esp_register_out()! " "Missed aalg #%d.\n", i); } } #endif /* DEBUG */ } else { saalg = (sadb_alg_t *)(pfkey_msg_mp->b_rptr + sizeof (*samsg)); } if (num_ealgs != 0) { sasupp_encr = (sadb_supported_t *)saalg; saalg = (sadb_alg_t *)(sasupp_encr + 1); numalgs_snap = 0; for (i = 0; ((i < IPSEC_MAX_ALGS) && (numalgs_snap < num_ealgs)); i++) { if (encralgs[i] == NULL || !ALG_VALID(encralgs[i])) continue; saalg->sadb_alg_id = encralgs[i]->alg_id; saalg->sadb_alg_ivlen = encralgs[i]->alg_datalen; saalg->sadb_alg_minbits = encralgs[i]->alg_ef_minbits; saalg->sadb_alg_maxbits = encralgs[i]->alg_ef_maxbits; saalg->sadb_x_alg_defincr = encralgs[i]->alg_ef_default; saalg->sadb_x_alg_increment = encralgs[i]->alg_increment; numalgs_snap++; saalg++; } ASSERT(numalgs_snap == num_ealgs); #ifdef DEBUG /* * Reality check to make sure I snagged all of the * algorithms. */ for (; i < IPSEC_MAX_ALGS; i++) { if (encralgs[i] != NULL && ALG_VALID(encralgs[i])) { cmn_err(CE_PANIC, "esp_register_out()! " "Missed ealg #%d.\n", i); } } #endif /* DEBUG */ } current_aalgs = num_aalgs; current_ealgs = num_ealgs; mutex_exit(&alg_lock); /* Now fill the rest of the SADB_REGISTER message. */ samsg = (sadb_msg_t *)pfkey_msg_mp->b_rptr; samsg->sadb_msg_version = PF_KEY_V2; samsg->sadb_msg_type = SADB_REGISTER; samsg->sadb_msg_errno = 0; samsg->sadb_msg_satype = SADB_SATYPE_ESP; samsg->sadb_msg_len = SADB_8TO64(allocsize); samsg->sadb_msg_reserved = 0; /* * Assume caller has sufficient sequence/pid number info. If it's one * from me over a new alg., I could give two hoots about sequence. */ samsg->sadb_msg_seq = sequence; samsg->sadb_msg_pid = pid; if (sasupp_auth != NULL) { sasupp_auth->sadb_supported_len = SADB_8TO64(sizeof (*sasupp_auth) + sizeof (*saalg) * current_aalgs); sasupp_auth->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; sasupp_auth->sadb_supported_reserved = 0; } if (sasupp_encr != NULL) { sasupp_encr->sadb_supported_len = SADB_8TO64(sizeof (*sasupp_encr) + sizeof (*saalg) * current_ealgs); sasupp_encr->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; sasupp_encr->sadb_supported_reserved = 0; } if (esp_pfkey_q != NULL) putnext(esp_pfkey_q, keysock_out_mp); else { freemsg(keysock_out_mp); return (B_FALSE); } return (B_TRUE); } /* * Invoked when the algorithm table changes. Causes SADB_REGISTER * messages continaining the current list of algorithms to be * sent up to the ESP listeners. */ void ipsecesp_algs_changed(void) { /* * Time to send a PF_KEY SADB_REGISTER message to ESP listeners * everywhere. (The function itself checks for NULL esp_pfkey_q.) */ (void) esp_register_out(0, 0, 0); } /* * taskq_dispatch handler. */ static void inbound_task(void *arg) { esph_t *esph; mblk_t *mp = (mblk_t *)arg; ipsec_in_t *ii = (ipsec_in_t *)mp->b_rptr; int ipsec_rc; esp2dbg(("in ESP inbound_task")); esph = ipsec_inbound_esp_sa(mp); if (esph == NULL) return; ASSERT(ii->ipsec_in_esp_sa != NULL); ipsec_rc = ii->ipsec_in_esp_sa->ipsa_input_func(mp, esph); if (ipsec_rc != IPSEC_STATUS_SUCCESS) return; ip_fanout_proto_again(mp, NULL, NULL, NULL); } /* * Now that weak-key passed, actually ADD the security association, and * send back a reply ADD message. */ static int esp_add_sa_finish(mblk_t *mp, sadb_msg_t *samsg, keysock_in_t *ksi) { isaf_t *primary, *secondary, *inbound, *outbound; sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA]; sadb_address_t *dstext = (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; struct sockaddr_in *dst; struct sockaddr_in6 *dst6; boolean_t is_ipv4, clone = B_FALSE, is_inbound = B_FALSE; uint32_t *dstaddr; ipsa_t *larval = NULL; ipsacq_t *acqrec; iacqf_t *acq_bucket; mblk_t *acq_msgs = NULL; int rc; sadb_t *sp; int outhash; mblk_t *lpkt; /* * Locate the appropriate table(s). */ dst = (struct sockaddr_in *)(dstext + 1); dst6 = (struct sockaddr_in6 *)dst; is_ipv4 = (dst->sin_family == AF_INET); if (is_ipv4) { sp = &esp_sadb.s_v4; dstaddr = (uint32_t *)(&dst->sin_addr); outhash = OUTBOUND_HASH_V4(sp, *(ipaddr_t *)dstaddr); } else { sp = &esp_sadb.s_v6; dstaddr = (uint32_t *)(&dst6->sin6_addr); outhash = OUTBOUND_HASH_V6(sp, *(in6_addr_t *)dstaddr); } inbound = INBOUND_BUCKET(sp, assoc->sadb_sa_spi); outbound = &sp->sdb_of[outhash]; switch (ksi->ks_in_dsttype) { case KS_IN_ADDR_MBCAST: clone = B_TRUE; /* All mcast SAs can be bidirectional */ /* FALLTHRU */ case KS_IN_ADDR_ME: primary = inbound; secondary = outbound; /* * If the source address is either one of mine, or unspecified * (which is best summed up by saying "not 'not mine'"), * then the association is potentially bi-directional, * in that it can be used for inbound traffic and outbound * traffic. The best example of such an SA is a multicast * SA (which allows me to receive the outbound traffic). */ if (ksi->ks_in_srctype != KS_IN_ADDR_NOTME) clone = B_TRUE; is_inbound = B_TRUE; break; case KS_IN_ADDR_NOTME: primary = outbound; secondary = inbound; /* * If the source address literally not mine (either * unspecified or not mine), then this SA may have an * address that WILL be mine after some configuration. * We pay the price for this by making it a bi-directional * SA. */ if (ksi->ks_in_srctype != KS_IN_ADDR_ME) clone = B_TRUE; break; default: samsg->sadb_x_msg_diagnostic = SADB_X_DIAGNOSTIC_BAD_DST; return (EINVAL); } /* * Find a ACQUIRE list entry if possible. If we've added an SA that * suits the needs of an ACQUIRE list entry, we can eliminate the * ACQUIRE list entry and transmit the enqueued packets. Use the * high-bit of the sequence number to queue it. Key off destination * addr, and change acqrec's state. */ if (samsg->sadb_msg_seq & IACQF_LOWEST_SEQ) { acq_bucket = &sp->sdb_acq[outhash]; mutex_enter(&acq_bucket->iacqf_lock); for (acqrec = acq_bucket->iacqf_ipsacq; acqrec != NULL; acqrec = acqrec->ipsacq_next) { mutex_enter(&acqrec->ipsacq_lock); /* * Q: I only check sequence. Should I check dst? * A: Yes, check dest because those are the packets * that are queued up. */ if (acqrec->ipsacq_seq == samsg->sadb_msg_seq && IPSA_ARE_ADDR_EQUAL(dstaddr, acqrec->ipsacq_dstaddr, acqrec->ipsacq_addrfam)) break; mutex_exit(&acqrec->ipsacq_lock); } if (acqrec != NULL) { /* * AHA! I found an ACQUIRE record for this SA. * Grab the msg list, and free the acquire record. * I already am holding the lock for this record, * so all I have to do is free it. */ acq_msgs = acqrec->ipsacq_mp; acqrec->ipsacq_mp = NULL; mutex_exit(&acqrec->ipsacq_lock); sadb_destroy_acquire(acqrec); } mutex_exit(&acq_bucket->iacqf_lock); } /* * Find PF_KEY message, and see if I'm an update. If so, find entry * in larval list (if there). */ if (samsg->sadb_msg_type == SADB_UPDATE) { mutex_enter(&inbound->isaf_lock); larval = ipsec_getassocbyspi(inbound, assoc->sadb_sa_spi, ALL_ZEROES_PTR, dstaddr, dst->sin_family); mutex_exit(&inbound->isaf_lock); if (larval == NULL) { esp0dbg(("Larval update, but larval disappeared.\n")); return (ESRCH); } /* Else sadb_common_add unlinks it for me! */ } lpkt = NULL; if (larval != NULL) lpkt = sadb_clear_lpkt(larval); rc = sadb_common_add(esp_sadb.s_ip_q, esp_pfkey_q, mp, samsg, ksi, primary, secondary, larval, clone, is_inbound); if (rc == 0 && lpkt != NULL) { rc = !taskq_dispatch(esp_taskq, inbound_task, (void *) lpkt, TQ_NOSLEEP); } if (rc != 0) { ip_drop_packet(lpkt, B_TRUE, NULL, NULL, &ipdrops_sadb_inlarval_timeout, &esp_dropper); } /* * How much more stack will I create with all of these * esp_outbound() calls? */ while (acq_msgs != NULL) { mblk_t *mp = acq_msgs; acq_msgs = acq_msgs->b_next; mp->b_next = NULL; if (rc == 0) { if (ipsec_outbound_sa(mp, IPPROTO_ESP)) { ((ipsec_out_t *)(mp->b_rptr))-> ipsec_out_esp_done = B_TRUE; if (esp_outbound(mp) == IPSEC_STATUS_SUCCESS) { ipha_t *ipha = (ipha_t *) mp->b_cont->b_rptr; /* do AH processing if needed */ if (!esp_do_outbound_ah(mp)) continue; /* finish IPsec processing */ if (is_ipv4) { ip_wput_ipsec_out(NULL, mp, ipha, NULL, NULL); } else { ip6_t *ip6h = (ip6_t *)ipha; ip_wput_ipsec_out_v6(NULL, mp, ip6h, NULL, NULL); } } continue; } } ESP_BUMP_STAT(out_discards); ip_drop_packet(mp, B_FALSE, NULL, NULL, &ipdrops_sadb_acquire_timeout, &esp_dropper); } return (rc); } /* * Add new ESP security association. This may become a generic AH/ESP * routine eventually. */ static int esp_add_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic) { sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA]; sadb_address_t *srcext = (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC]; sadb_address_t *dstext = (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; sadb_address_t *nttext_loc = (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_LOC]; sadb_address_t *nttext_rem = (sadb_address_t *)ksi->ks_in_extv[SADB_X_EXT_ADDRESS_NATT_REM]; sadb_key_t *akey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_AUTH]; sadb_key_t *ekey = (sadb_key_t *)ksi->ks_in_extv[SADB_EXT_KEY_ENCRYPT]; struct sockaddr_in *src, *dst; struct sockaddr_in *natt_loc, *natt_rem; struct sockaddr_in6 *natt_loc6, *natt_rem6; sadb_lifetime_t *soft = (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_SOFT]; sadb_lifetime_t *hard = (sadb_lifetime_t *)ksi->ks_in_extv[SADB_EXT_LIFETIME_HARD]; /* I need certain extensions present for an ADD message. */ if (srcext == NULL) { *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SRC; return (EINVAL); } if (dstext == NULL) { *diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST; return (EINVAL); } if (assoc == NULL) { *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA; return (EINVAL); } if (ekey == NULL && assoc->sadb_sa_encrypt != SADB_EALG_NULL) { *diagnostic = SADB_X_DIAGNOSTIC_MISSING_EKEY; return (EINVAL); } src = (struct sockaddr_in *)(srcext + 1); dst = (struct sockaddr_in *)(dstext + 1); natt_loc = (struct sockaddr_in *)(nttext_loc + 1); natt_loc6 = (struct sockaddr_in6 *)(nttext_loc + 1); natt_rem = (struct sockaddr_in *)(nttext_rem + 1); natt_rem6 = (struct sockaddr_in6 *)(nttext_rem + 1); /* Sundry ADD-specific reality checks. */ /* XXX STATS : Logging/stats here? */ if (assoc->sadb_sa_state != SADB_SASTATE_MATURE) { *diagnostic = SADB_X_DIAGNOSTIC_BAD_SASTATE; return (EINVAL); } if (assoc->sadb_sa_encrypt == SADB_EALG_NONE) { *diagnostic = SADB_X_DIAGNOSTIC_BAD_EALG; return (EINVAL); } if (assoc->sadb_sa_encrypt == SADB_EALG_NULL && assoc->sadb_sa_auth == SADB_AALG_NONE) { *diagnostic = SADB_X_DIAGNOSTIC_BAD_AALG; return (EINVAL); } if (assoc->sadb_sa_flags & ~(SADB_SAFLAGS_NOREPLAY | SADB_X_SAFLAGS_NATT_LOC | SADB_X_SAFLAGS_NATT_REM)) { *diagnostic = SADB_X_DIAGNOSTIC_BAD_SAFLAGS; return (EINVAL); } if ((*diagnostic = sadb_hardsoftchk(hard, soft)) != 0) { return (EINVAL); } if (src->sin_family != dst->sin_family) { *diagnostic = SADB_X_DIAGNOSTIC_AF_MISMATCH; return (EINVAL); } if (assoc->sadb_sa_flags & SADB_X_SAFLAGS_NATT_LOC) { if (nttext_loc == NULL) { *diagnostic = SADB_X_DIAGNOSTIC_MISSING_NATT_LOC; return (EINVAL); } if (natt_loc->sin_family == AF_INET6 && !IN6_IS_ADDR_V4MAPPED(&natt_loc6->sin6_addr)) { *diagnostic = SADB_X_DIAGNOSTIC_MALFORMED_NATT_LOC; return (EINVAL); } } if (assoc->sadb_sa_flags & SADB_X_SAFLAGS_NATT_REM) { if (nttext_rem == NULL) { *diagnostic = SADB_X_DIAGNOSTIC_MISSING_NATT_REM; return (EINVAL); } if (natt_rem->sin_family == AF_INET6 && !IN6_IS_ADDR_V4MAPPED(&natt_rem6->sin6_addr)) { *diagnostic = SADB_X_DIAGNOSTIC_MALFORMED_NATT_REM; return (EINVAL); } } /* Stuff I don't support, for now. XXX Diagnostic? */ if (ksi->ks_in_extv[SADB_EXT_LIFETIME_CURRENT] != NULL || ksi->ks_in_extv[SADB_EXT_SENSITIVITY] != NULL) return (EOPNOTSUPP); /* * XXX Policy : I'm not checking identities or sensitivity * labels at this time, but if I did, I'd do them here, before I sent * the weak key check up to the algorithm. */ mutex_enter(&alg_lock); /* * First locate the authentication algorithm. */ if (akey != NULL) { ipsec_alginfo_t *aalg; aalg = ipsec_alglists[IPSEC_ALG_AUTH][assoc->sadb_sa_auth]; if (aalg == NULL || !ALG_VALID(aalg)) { mutex_exit(&alg_lock); esp1dbg(("Couldn't find auth alg #%d.\n", assoc->sadb_sa_auth)); *diagnostic = SADB_X_DIAGNOSTIC_BAD_AALG; return (EINVAL); } ASSERT(aalg->alg_mech_type != CRYPTO_MECHANISM_INVALID); /* sanity check key sizes */ if (!ipsec_valid_key_size(akey->sadb_key_bits, aalg)) { mutex_exit(&alg_lock); *diagnostic = SADB_X_DIAGNOSTIC_BAD_AKEYBITS; return (EINVAL); } /* check key and fix parity if needed */ if (ipsec_check_key(aalg->alg_mech_type, akey, B_TRUE, diagnostic) != 0) { mutex_exit(&alg_lock); return (EINVAL); } } /* * Then locate the encryption algorithm. */ if (ekey != NULL) { ipsec_alginfo_t *ealg; ealg = ipsec_alglists[IPSEC_ALG_ENCR][assoc->sadb_sa_encrypt]; if (ealg == NULL || !ALG_VALID(ealg)) { mutex_exit(&alg_lock); esp1dbg(("Couldn't find encr alg #%d.\n", assoc->sadb_sa_encrypt)); *diagnostic = SADB_X_DIAGNOSTIC_BAD_EALG; return (EINVAL); } ASSERT(ealg->alg_mech_type != CRYPTO_MECHANISM_INVALID); /* sanity check key sizes */ if (!ipsec_valid_key_size(ekey->sadb_key_bits, ealg)) { mutex_exit(&alg_lock); *diagnostic = SADB_X_DIAGNOSTIC_BAD_EKEYBITS; return (EINVAL); } /* check key */ if (ipsec_check_key(ealg->alg_mech_type, ekey, B_FALSE, diagnostic) != 0) { mutex_exit(&alg_lock); return (EINVAL); } } mutex_exit(&alg_lock); return (esp_add_sa_finish(mp, (sadb_msg_t *)mp->b_cont->b_rptr, ksi)); } /* * Update a security association. Updates come in two varieties. The first * is an update of lifetimes on a non-larval SA. The second is an update of * a larval SA, which ends up looking a lot more like an add. */ static int esp_update_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic) { sadb_address_t *dstext = (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; struct sockaddr_in *sin; if (dstext == NULL) { *diagnostic = SADB_X_DIAGNOSTIC_MISSING_DST; return (EINVAL); } sin = (struct sockaddr_in *)(dstext + 1); return (sadb_update_sa(mp, ksi, (sin->sin_family == AF_INET6) ? &esp_sadb.s_v6 : &esp_sadb.s_v4, diagnostic, esp_pfkey_q, esp_add_sa)); } /* * Delete a security association. This is REALLY likely to be code common to * both AH and ESP. Find the association, then unlink it. */ static int esp_del_sa(mblk_t *mp, keysock_in_t *ksi, int *diagnostic) { sadb_sa_t *assoc = (sadb_sa_t *)ksi->ks_in_extv[SADB_EXT_SA]; sadb_address_t *dstext = (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_DST]; sadb_address_t *srcext = (sadb_address_t *)ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC]; struct sockaddr_in *sin; if (assoc == NULL) { if (dstext != NULL) { sin = (struct sockaddr_in *)(dstext + 1); } else if (srcext != NULL) { sin = (struct sockaddr_in *)(srcext + 1); } else { *diagnostic = SADB_X_DIAGNOSTIC_MISSING_SA; return (EINVAL); } return sadb_purge_sa(mp, ksi, (sin->sin_family == AF_INET6) ? &esp_sadb.s_v6 : &esp_sadb.s_v4, diagnostic, esp_pfkey_q, esp_sadb.s_ip_q); } return (sadb_del_sa(mp, ksi, &esp_sadb, diagnostic, esp_pfkey_q)); } /* * Convert the entire contents of all of ESP's SA tables into PF_KEY SADB_DUMP * messages. */ static void esp_dump(mblk_t *mp, keysock_in_t *ksi) { int error; sadb_msg_t *samsg; /* * Dump each fanout, bailing if error is non-zero. */ error = sadb_dump(esp_pfkey_q, mp, ksi->ks_in_serial, &esp_sadb.s_v4); if (error != 0) goto bail; error = sadb_dump(esp_pfkey_q, mp, ksi->ks_in_serial, &esp_sadb.s_v6); bail: ASSERT(mp->b_cont != NULL); samsg = (sadb_msg_t *)mp->b_cont->b_rptr; samsg->sadb_msg_errno = (uint8_t)error; sadb_pfkey_echo(esp_pfkey_q, mp, (sadb_msg_t *)mp->b_cont->b_rptr, ksi, NULL); } /* * ESP parsing of PF_KEY messages. Keysock did most of the really silly * error cases. What I receive is a fully-formed, syntactically legal * PF_KEY message. I then need to check semantics... * * This code may become common to AH and ESP. Stay tuned. * * I also make the assumption that db_ref's are cool. If this assumption * is wrong, this means that someone other than keysock or me has been * mucking with PF_KEY messages. */ static void esp_parse_pfkey(mblk_t *mp) { mblk_t *msg = mp->b_cont; sadb_msg_t *samsg; keysock_in_t *ksi; int error; int diagnostic = SADB_X_DIAGNOSTIC_NONE; ASSERT(msg != NULL); samsg = (sadb_msg_t *)msg->b_rptr; ksi = (keysock_in_t *)mp->b_rptr; /* * If applicable, convert unspecified AF_INET6 to unspecified * AF_INET. */ sadb_srcaddrfix(ksi); switch (samsg->sadb_msg_type) { case SADB_ADD: error = esp_add_sa(mp, ksi, &diagnostic); if (error != 0) { sadb_pfkey_error(esp_pfkey_q, mp, error, diagnostic, ksi->ks_in_serial); } /* else esp_add_sa() took care of things. */ break; case SADB_DELETE: error = esp_del_sa(mp, ksi, &diagnostic); if (error != 0) { sadb_pfkey_error(esp_pfkey_q, mp, error, diagnostic, ksi->ks_in_serial); } /* Else esp_del_sa() took care of things. */ break; case SADB_GET: error = sadb_get_sa(mp, ksi, &esp_sadb, &diagnostic, esp_pfkey_q); if (error != 0) { sadb_pfkey_error(esp_pfkey_q, mp, error, diagnostic, ksi->ks_in_serial); } /* Else sadb_get_sa() took care of things. */ break; case SADB_FLUSH: sadbp_flush(&esp_sadb); sadb_pfkey_echo(esp_pfkey_q, mp, samsg, ksi, NULL); break; case SADB_REGISTER: /* * Hmmm, let's do it! Check for extensions (there should * be none), extract the fields, call esp_register_out(), * then either free or report an error. * * Keysock takes care of the PF_KEY bookkeeping for this. */ if (esp_register_out(samsg->sadb_msg_seq, samsg->sadb_msg_pid, ksi->ks_in_serial)) { freemsg(mp); } else { /* * Only way this path hits is if there is a memory * failure. It will not return B_FALSE because of * lack of esp_pfkey_q if I am in wput(). */ sadb_pfkey_error(esp_pfkey_q, mp, ENOMEM, diagnostic, ksi->ks_in_serial); } break; case SADB_UPDATE: /* * Find a larval, if not there, find a full one and get * strict. */ error = esp_update_sa(mp, ksi, &diagnostic); if (error != 0) { sadb_pfkey_error(esp_pfkey_q, mp, error, diagnostic, ksi->ks_in_serial); } /* else esp_update_sa() took care of things. */ break; case SADB_GETSPI: /* * Reserve a new larval entry. */ esp_getspi(mp, ksi); break; case SADB_ACQUIRE: /* * Find larval and/or ACQUIRE record and kill it (them), I'm * most likely an error. Inbound ACQUIRE messages should only * have the base header. */ sadb_in_acquire(samsg, &esp_sadb, esp_pfkey_q); freemsg(mp); break; case SADB_DUMP: /* * Dump all entries. */ esp_dump(mp, ksi); /* esp_dump will take care of the return message, etc. */ break; case SADB_EXPIRE: /* Should never reach me. */ sadb_pfkey_error(esp_pfkey_q, mp, EOPNOTSUPP, diagnostic, ksi->ks_in_serial); break; default: sadb_pfkey_error(esp_pfkey_q, mp, EINVAL, SADB_X_DIAGNOSTIC_UNKNOWN_MSG, ksi->ks_in_serial); break; } } /* * Handle case where PF_KEY says it can't find a keysock for one of my * ACQUIRE messages. */ static void esp_keysock_no_socket(mblk_t *mp) { sadb_msg_t *samsg; keysock_out_err_t *kse = (keysock_out_err_t *)mp->b_rptr; if (mp->b_cont == NULL) { freemsg(mp); return; } samsg = (sadb_msg_t *)mp->b_cont->b_rptr; /* * If keysock can't find any registered, delete the acquire record * immediately, and handle errors. */ if (samsg->sadb_msg_type == SADB_ACQUIRE) { samsg->sadb_msg_errno = kse->ks_err_errno; samsg->sadb_msg_len = SADB_8TO64(sizeof (*samsg)); /* * Use the write-side of the esp_pfkey_q, in case there is * no esp_sadb.s_ip_q. */ sadb_in_acquire(samsg, &esp_sadb, WR(esp_pfkey_q)); } freemsg(mp); } /* * First-cut reality check for an inbound PF_KEY message. */ static boolean_t esp_pfkey_reality_failures(mblk_t *mp, keysock_in_t *ksi) { int diagnostic; if (ksi->ks_in_extv[SADB_EXT_PROPOSAL] != NULL) { diagnostic = SADB_X_DIAGNOSTIC_PROP_PRESENT; goto badmsg; } if (ksi->ks_in_extv[SADB_EXT_SUPPORTED_AUTH] != NULL || ksi->ks_in_extv[SADB_EXT_SUPPORTED_ENCRYPT] != NULL) { diagnostic = SADB_X_DIAGNOSTIC_SUPP_PRESENT; goto badmsg; } if (ksi->ks_in_srctype == KS_IN_ADDR_MBCAST) { diagnostic = SADB_X_DIAGNOSTIC_BAD_SRC; goto badmsg; } if (ksi->ks_in_dsttype == KS_IN_ADDR_UNSPEC) { diagnostic = SADB_X_DIAGNOSTIC_BAD_DST; goto badmsg; } return (B_FALSE); /* False ==> no failures */ badmsg: sadb_pfkey_error(esp_pfkey_q, mp, EINVAL, diagnostic, ksi->ks_in_serial); return (B_TRUE); /* True ==> failures */ } /* * ESP module write put routine. */ static void ipsecesp_wput(queue_t *q, mblk_t *mp) { ipsec_info_t *ii; keysock_in_t *ksi; int rc; struct iocblk *iocp; esp3dbg(("In esp_wput().\n")); /* NOTE: Each case must take care of freeing or passing mp. */ switch (mp->b_datap->db_type) { case M_CTL: if ((mp->b_wptr - mp->b_rptr) < sizeof (ipsec_info_t)) { /* Not big enough message. */ freemsg(mp); break; } ii = (ipsec_info_t *)mp->b_rptr; switch (ii->ipsec_info_type) { case KEYSOCK_OUT_ERR: esp1dbg(("Got KEYSOCK_OUT_ERR message.\n")); esp_keysock_no_socket(mp); break; case KEYSOCK_IN: ESP_BUMP_STAT(keysock_in); esp3dbg(("Got KEYSOCK_IN message.\n")); ksi = (keysock_in_t *)ii; /* * Some common reality checks. */ if (esp_pfkey_reality_failures(mp, ksi)) return; /* * Use 'q' instead of esp_sadb.s_ip_q, since * it's the write side already, and it'll go * down to IP. Use esp_pfkey_q because we * wouldn't get here if that weren't set, and * the RD(q) has been done already. */ if (ksi->ks_in_srctype == KS_IN_ADDR_UNKNOWN) { rc = sadb_addrcheck(q, esp_pfkey_q, mp, ksi->ks_in_extv[SADB_EXT_ADDRESS_SRC], ksi->ks_in_serial); if (rc == KS_IN_ADDR_UNKNOWN) return; else ksi->ks_in_srctype = rc; } if (ksi->ks_in_dsttype == KS_IN_ADDR_UNKNOWN) { rc = sadb_addrcheck(q, esp_pfkey_q, mp, ksi->ks_in_extv[SADB_EXT_ADDRESS_DST], ksi->ks_in_serial); if (rc == KS_IN_ADDR_UNKNOWN) return; else ksi->ks_in_dsttype = rc; } /* * XXX Proxy may be a different address family. */ if (ksi->ks_in_proxytype == KS_IN_ADDR_UNKNOWN) { rc = sadb_addrcheck(q, esp_pfkey_q, mp, ksi->ks_in_extv[SADB_EXT_ADDRESS_PROXY], ksi->ks_in_serial); if (rc == KS_IN_ADDR_UNKNOWN) return; else ksi->ks_in_proxytype = rc; } esp_parse_pfkey(mp); break; case KEYSOCK_HELLO: sadb_keysock_hello(&esp_pfkey_q, q, mp, esp_ager, &esp_event, SADB_SATYPE_ESP); break; default: esp2dbg(("Got M_CTL from above of 0x%x.\n", ii->ipsec_info_type)); freemsg(mp); break; } break; case M_IOCTL: iocp = (struct iocblk *)mp->b_rptr; switch (iocp->ioc_cmd) { case ND_SET: case ND_GET: if (nd_getset(q, ipsecesp_g_nd, mp)) { qreply(q, mp); return; } else { iocp->ioc_error = ENOENT; } /* FALLTHRU */ default: /* We really don't support any other ioctls, do we? */ /* Return EINVAL */ if (iocp->ioc_error != ENOENT) iocp->ioc_error = EINVAL; iocp->ioc_count = 0; mp->b_datap->db_type = M_IOCACK; qreply(q, mp); return; } default: esp3dbg(("Got default message, type %d, passing to IP.\n", mp->b_datap->db_type)); putnext(q, mp); } } /* * Process an outbound ESP packet that can be accelerated by a IPsec * hardware acceleration capable Provider. * The caller already inserted and initialized the ESP header. * This function allocates a tagging M_CTL, and adds room at the end * of the packet to hold the ICV if authentication is needed. * * On success returns B_TRUE, on failure returns B_FALSE and frees the * mblk chain ipsec_out. */ static ipsec_status_t esp_outbound_accelerated(mblk_t *ipsec_out, uint_t icv_len) { ipsec_out_t *io; mblk_t *lastmp; ESP_BUMP_STAT(out_accelerated); io = (ipsec_out_t *)ipsec_out->b_rptr; /* mark packet as being accelerated in IPSEC_OUT */ ASSERT(io->ipsec_out_accelerated == B_FALSE); io->ipsec_out_accelerated = B_TRUE; /* * add room at the end of the packet for the ICV if needed */ if (icv_len > 0) { /* go to last mblk */ lastmp = ipsec_out; /* For following while loop. */ do { lastmp = lastmp->b_cont; } while (lastmp->b_cont != NULL); /* if not enough available room, allocate new mblk */ if ((lastmp->b_wptr + icv_len) > lastmp->b_datap->db_lim) { lastmp->b_cont = allocb(icv_len, BPRI_HI); if (lastmp->b_cont == NULL) { ESP_BUMP_STAT(out_discards); ip_drop_packet(ipsec_out, B_FALSE, NULL, NULL, &ipdrops_esp_nomem, &esp_dropper); return (IPSEC_STATUS_FAILED); } lastmp = lastmp->b_cont; } lastmp->b_wptr += icv_len; } return (IPSEC_STATUS_SUCCESS); } /* * Process an inbound accelerated ESP packet. * On success returns B_TRUE, on failure returns B_FALSE and frees the * mblk chain ipsec_in. */ static ipsec_status_t esp_inbound_accelerated(mblk_t *ipsec_in, mblk_t *data_mp, boolean_t isv4, ipsa_t *assoc) { ipsec_in_t *ii; mblk_t *hada_mp; uint32_t icv_len = 0; da_ipsec_t *hada; ipha_t *ipha; ip6_t *ip6h; kstat_named_t *counter; ESP_BUMP_STAT(in_accelerated); ii = (ipsec_in_t *)ipsec_in->b_rptr; hada_mp = ii->ipsec_in_da; ASSERT(hada_mp != NULL); hada = (da_ipsec_t *)hada_mp->b_rptr; /* * We only support one level of decapsulation in hardware, so * nuke the pointer. */ ii->ipsec_in_da = NULL; ii->ipsec_in_accelerated = B_FALSE; if (assoc->ipsa_auth_alg != IPSA_AALG_NONE) { /* * ESP with authentication. We expect the Provider to have * computed the ICV and placed it in the hardware acceleration * data attributes. * * Extract ICV length from attributes M_CTL and sanity check * its value. We allow the mblk to be smaller than da_ipsec_t * for a small ICV, as long as the entire ICV fits within the * mblk. * * Also ensures that the ICV length computed by Provider * corresponds to the ICV length of the agorithm specified by * the SA. */ icv_len = hada->da_icv_len; if ((icv_len != assoc->ipsa_mac_len) || (icv_len > DA_ICV_MAX_LEN) || (MBLKL(hada_mp) < (sizeof (da_ipsec_t) - DA_ICV_MAX_LEN + icv_len))) { esp0dbg(("esp_inbound_accelerated: " "ICV len (%u) incorrect or mblk too small (%u)\n", icv_len, (uint32_t)(MBLKL(hada_mp)))); counter = &ipdrops_esp_bad_auth; goto esp_in_discard; } } /* get pointers to IP header */ if (isv4) { ipha = (ipha_t *)data_mp->b_rptr; } else { ip6h = (ip6_t *)data_mp->b_rptr; } /* * Compare ICV in ESP packet vs ICV computed by adapter. * We also remove the ICV from the end of the packet since * it will no longer be needed. * * Assume that esp_inbound() already ensured that the pkt * was in one mblk. */ ASSERT(data_mp->b_cont == NULL); data_mp->b_wptr -= icv_len; /* adjust IP header */ if (isv4) ipha->ipha_length = htons(ntohs(ipha->ipha_length) - icv_len); else ip6h->ip6_plen = htons(ntohs(ip6h->ip6_plen) - icv_len); if (icv_len && bcmp(hada->da_icv, data_mp->b_wptr, icv_len)) { int af; void *addr; if (isv4) { addr = &ipha->ipha_dst; af = AF_INET; } else { addr = &ip6h->ip6_dst; af = AF_INET6; } /* * Log the event. Don't print to the console, block * potential denial-of-service attack. */ ESP_BUMP_STAT(bad_auth); ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN, "ESP Authentication failed spi %x, dst_addr %s", assoc->ipsa_spi, addr, af); counter = &ipdrops_esp_bad_auth; goto esp_in_discard; } esp3dbg(("esp_inbound_accelerated: ESP authentication succeeded, " "checking replay\n")); ipsec_in->b_cont = data_mp; /* * Remove ESP header and padding from packet. */ if (!esp_strip_header(data_mp, ii->ipsec_in_v4, assoc->ipsa_iv_len, &counter)) { esp1dbg(("esp_inbound_accelerated: " "esp_strip_header() failed\n")); goto esp_in_discard; } freeb(hada_mp); /* * Account for usage.. */ if (!esp_age_bytes(assoc, msgdsize(data_mp), B_TRUE)) { /* The ipsa has hit hard expiration, LOG and AUDIT. */ ESP_BUMP_STAT(bytes_expired); IP_ESP_BUMP_STAT(in_discards); ipsec_assocfailure(info.mi_idnum, 0, 0, SL_ERROR | SL_WARN, "ESP association 0x%x, dst %s had bytes expire.\n", assoc->ipsa_spi, assoc->ipsa_dstaddr, assoc->ipsa_addrfam); ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, &ipdrops_esp_bytes_expire, &esp_dropper); return (IPSEC_STATUS_FAILED); } /* done processing the packet */ return (IPSEC_STATUS_SUCCESS); esp_in_discard: IP_ESP_BUMP_STAT(in_discards); freeb(hada_mp); ipsec_in->b_cont = data_mp; /* For ip_drop_packet()'s sake... */ ip_drop_packet(ipsec_in, B_TRUE, NULL, NULL, counter, &esp_dropper); return (IPSEC_STATUS_FAILED); } /* * Wrapper to allow IP to trigger an ESP association failure message * during inbound SA selection. */ void ipsecesp_in_assocfailure(mblk_t *mp, char level, ushort_t sl, char *fmt, uint32_t spi, void *addr, int af) { if (ipsecesp_log_unknown_spi) { ipsec_assocfailure(info.mi_idnum, 0, level, sl, fmt, spi, addr, af); } ip_drop_packet(mp, B_TRUE, NULL, NULL, &ipdrops_esp_no_sa, &esp_dropper); } /* * Initialize the ESP input and output processing functions. */ void ipsecesp_init_funcs(ipsa_t *sa) { if (sa->ipsa_output_func == NULL) sa->ipsa_output_func = esp_outbound; if (sa->ipsa_input_func == NULL) sa->ipsa_input_func = esp_inbound; }