/* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 1988, 1991, 1993 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)rtsock.c 8.6 (Berkeley) 2/11/95 */ /* * This file contains routines that processes routing socket requests. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define RTS_MSG_SIZE(type, rtm_addrs, af, sacnt) \ (rts_data_msg_size(rtm_addrs, af, sacnt) + rts_header_msg_size(type)) static size_t rts_copyfromsockaddr(struct sockaddr *sa, in6_addr_t *addrp); static void rts_fill_msg(int type, int rtm_addrs, ipaddr_t dst, ipaddr_t mask, ipaddr_t gateway, ipaddr_t src_addr, ipaddr_t brd_addr, ipaddr_t author, const ipif_t *ipif, mblk_t *mp, uint_t, const tsol_gc_t *); static int rts_getaddrs(rt_msghdr_t *rtm, in6_addr_t *dst_addrp, in6_addr_t *gw_addrp, in6_addr_t *net_maskp, in6_addr_t *authorp, in6_addr_t *if_addrp, in6_addr_t *src_addrp, ushort_t *indexp, sa_family_t *afp, tsol_rtsecattr_t *rtsecattr, int *error); static void rts_getifdata(if_data_t *if_data, const ipif_t *ipif); static int rts_getmetrics(ire_t *ire, rt_metrics_t *metrics); static mblk_t *rts_rtmget(mblk_t *mp, ire_t *ire, ire_t *sire, sa_family_t af); static void rts_setmetrics(ire_t *ire, uint_t which, rt_metrics_t *metrics); static void ip_rts_request_retry(ipsq_t *, queue_t *q, mblk_t *mp, void *); /* * Send `mp' to all eligible routing queues. A queue is ineligible if: * * 1. SO_USELOOPBACK is off and it is not the originating queue. * 2. RTAW_UNDER_IPMP is on and RTSQ_UNDER_IPMP is clear in `flags'. * 3. RTAW_UNDER_IPMP is off and RTSQ_NORMAL is clear in `flags'. * 4. It is not the same address family as `af', and `af' isn't AF_UNSPEC. */ void rts_queue_input(mblk_t *mp, conn_t *o_connp, sa_family_t af, uint_t flags, ip_stack_t *ipst) { mblk_t *mp1; conn_t *connp, *next_connp; /* * Since we don't have an ill_t here, RTSQ_DEFAULT must already be * resolved to one or more of RTSQ_NORMAL|RTSQ_UNDER_IPMP by now. */ ASSERT(!(flags & RTSQ_DEFAULT)); mutex_enter(&ipst->ips_rts_clients->connf_lock); connp = ipst->ips_rts_clients->connf_head; for (; connp != NULL; connp = next_connp) { next_connp = connp->conn_next; /* * If there was a family specified when this routing socket was * created and it doesn't match the family of the message to * copy, then continue. */ if ((connp->conn_proto != AF_UNSPEC) && (connp->conn_proto != af)) continue; /* * Queue the message only if the conn_t and flags match. */ if (connp->conn_rtaware & RTAW_UNDER_IPMP) { if (!(flags & RTSQ_UNDER_IPMP)) continue; } else { if (!(flags & RTSQ_NORMAL)) continue; } /* * For the originating queue, we only copy the message upstream * if loopback is set. For others reading on the routing * socket, we check if there is room upstream for a copy of the * message. */ if ((o_connp == connp) && connp->conn_loopback == 0) { connp = connp->conn_next; continue; } CONN_INC_REF(connp); mutex_exit(&ipst->ips_rts_clients->connf_lock); /* Pass to rts_input */ if ((IPCL_IS_NONSTR(connp) && !PROTO_FLOW_CNTRLD(connp))|| (!IPCL_IS_NONSTR(connp) && canputnext(CONNP_TO_RQ(connp)))) { mp1 = dupmsg(mp); if (mp1 == NULL) mp1 = copymsg(mp); if (mp1 != NULL) (connp->conn_recv)(connp, mp1, NULL); } mutex_enter(&ipst->ips_rts_clients->connf_lock); /* reload next_connp since conn_next may have changed */ next_connp = connp->conn_next; CONN_DEC_REF(connp); } mutex_exit(&ipst->ips_rts_clients->connf_lock); freemsg(mp); } /* * Takes an ire and sends an ack to all the routing sockets. This * routine is used * - when a route is created/deleted through the ioctl interface. * - when ire_expire deletes a stale redirect */ void ip_rts_rtmsg(int type, ire_t *ire, int error, ip_stack_t *ipst) { mblk_t *mp; rt_msghdr_t *rtm; int rtm_addrs = (RTA_DST | RTA_NETMASK | RTA_GATEWAY); sa_family_t af; in6_addr_t gw_addr_v6; if (ire == NULL) return; ASSERT(ire->ire_ipversion == IPV4_VERSION || ire->ire_ipversion == IPV6_VERSION); if (ire->ire_flags & RTF_SETSRC) rtm_addrs |= RTA_SRC; switch (ire->ire_ipversion) { case IPV4_VERSION: af = AF_INET; mp = rts_alloc_msg(type, rtm_addrs, af, 0); if (mp == NULL) return; rts_fill_msg(type, rtm_addrs, ire->ire_addr, ire->ire_mask, ire->ire_gateway_addr, ire->ire_src_addr, 0, 0, NULL, mp, 0, NULL); break; case IPV6_VERSION: af = AF_INET6; mp = rts_alloc_msg(type, rtm_addrs, af, 0); if (mp == NULL) return; mutex_enter(&ire->ire_lock); gw_addr_v6 = ire->ire_gateway_addr_v6; mutex_exit(&ire->ire_lock); rts_fill_msg_v6(type, rtm_addrs, &ire->ire_addr_v6, &ire->ire_mask_v6, &gw_addr_v6, &ire->ire_src_addr_v6, &ipv6_all_zeros, &ipv6_all_zeros, NULL, mp, 0, NULL); break; } rtm = (rt_msghdr_t *)mp->b_rptr; mp->b_wptr = (uchar_t *)&mp->b_rptr[rtm->rtm_msglen]; rtm->rtm_addrs = rtm_addrs; rtm->rtm_flags = ire->ire_flags; if (error != 0) rtm->rtm_errno = error; else rtm->rtm_flags |= RTF_DONE; rts_queue_input(mp, NULL, af, RTSQ_ALL, ipst); } /* ARGSUSED */ static void ip_rts_request_retry(ipsq_t *dummy_sq, queue_t *q, mblk_t *mp, void *dummy) { (void) ip_rts_request(q, mp, DB_CRED(mp)); } /* * This is a call from the RTS module * indicating that this is a Routing Socket * Stream. Insert this conn_t in routing * socket client list. */ void ip_rts_register(conn_t *connp) { ip_stack_t *ipst = connp->conn_netstack->netstack_ip; connp->conn_loopback = 1; ipcl_hash_insert_wildcard(ipst->ips_rts_clients, connp); } /* * This is a call from the RTS module indicating that it is closing. */ void ip_rts_unregister(conn_t *connp) { ipcl_hash_remove(connp); } /* * Processes requests received on a routing socket. It extracts all the * arguments and calls the appropriate function to process the request. * * RTA_SRC bit flag requests are sent by 'route -setsrc'. * * In general, this function does not consume the message supplied but rather * sends the message upstream with an appropriate UNIX errno. * * We may need to restart this operation if the ipif cannot be looked up * due to an exclusive operation that is currently in progress. The restart * entry point is ip_rts_request_retry. While the request is enqueud in the * ipsq the ioctl could be aborted and the conn close. To ensure that we don't * have stale conn pointers, ip_wput_ioctl does a conn refhold. This is * released at the completion of the rts ioctl at the end of this function * by calling CONN_OPER_PENDING_DONE or when the ioctl is aborted and * conn close occurs in conn_ioctl_cleanup. */ int ip_rts_request_common(queue_t *q, mblk_t *mp, conn_t *connp, cred_t *ioc_cr) { rt_msghdr_t *rtm = NULL; in6_addr_t dst_addr_v6; in6_addr_t src_addr_v6; in6_addr_t gw_addr_v6; in6_addr_t net_mask_v6; in6_addr_t author_v6; in6_addr_t if_addr_v6; mblk_t *mp1, *ioc_mp = mp; ire_t *ire = NULL; ire_t *sire = NULL; int error = 0; int match_flags = MATCH_IRE_DSTONLY; int match_flags_local = MATCH_IRE_TYPE | MATCH_IRE_GW; int found_addrs; sa_family_t af; ipaddr_t dst_addr; ipaddr_t gw_addr; ipaddr_t src_addr; ipaddr_t net_mask; ushort_t index; ipif_t *ipif = NULL; ipif_t *tmp_ipif = NULL; IOCP iocp = (IOCP)mp->b_rptr; boolean_t gcgrp_xtraref = B_FALSE; tsol_gcgrp_addr_t ga; tsol_rtsecattr_t rtsecattr; struct rtsa_s *rtsap = NULL; tsol_gcgrp_t *gcgrp = NULL; tsol_gc_t *gc = NULL; ts_label_t *tsl = NULL; zoneid_t zoneid; ip_stack_t *ipst; ip1dbg(("ip_rts_request: mp is %x\n", DB_TYPE(mp))); zoneid = connp->conn_zoneid; ipst = connp->conn_netstack->netstack_ip; ASSERT(mp->b_cont != NULL); /* ioc_mp holds mp */ mp = mp->b_cont; /* * The Routing Socket data starts on * next block. If there is no next block * this is an indication from routing module * that it is a routing socket stream queue. * We need to support that for compatibility with SDP since * it has a contract private interface to use IP_IOC_RTS_REQUEST. */ if (mp->b_cont == NULL) { /* * This is a message from SDP * indicating that this is a Routing Socket * Stream. Insert this conn_t in routing * socket client list. */ connp->conn_loopback = 1; ipcl_hash_insert_wildcard(ipst->ips_rts_clients, connp); goto done; } mp1 = dupmsg(mp->b_cont); if (mp1 == NULL) { error = ENOBUFS; goto done; } mp = mp1; if (mp->b_cont != NULL && !pullupmsg(mp, -1)) { freemsg(mp); error = EINVAL; goto done; } if ((mp->b_wptr - mp->b_rptr) < sizeof (rt_msghdr_t)) { freemsg(mp); error = EINVAL; goto done; } /* * Check the routing message for basic consistency including the * version number and that the number of octets written is the same * as specified by the rtm_msglen field. * * At this point, an error can be delivered back via rtm_errno. */ rtm = (rt_msghdr_t *)mp->b_rptr; if ((mp->b_wptr - mp->b_rptr) != rtm->rtm_msglen) { error = EINVAL; goto done; } if (rtm->rtm_version != RTM_VERSION) { error = EPROTONOSUPPORT; goto done; } /* Only allow RTM_GET or RTM_RESOLVE for unprivileged process */ if (rtm->rtm_type != RTM_GET && rtm->rtm_type != RTM_RESOLVE && (ioc_cr == NULL || secpolicy_ip_config(ioc_cr, B_FALSE) != 0)) { error = EPERM; goto done; } found_addrs = rts_getaddrs(rtm, &dst_addr_v6, &gw_addr_v6, &net_mask_v6, &author_v6, &if_addr_v6, &src_addr_v6, &index, &af, &rtsecattr, &error); if (error != 0) goto done; if ((found_addrs & RTA_DST) == 0) { error = EINVAL; goto done; } /* * Based on the address family of the destination address, determine * the destination, gateway and netmask and return the appropriate error * if an unknown address family was specified (following the errno * values that 4.4BSD-Lite2 returns.) */ switch (af) { case AF_INET: IN6_V4MAPPED_TO_IPADDR(&dst_addr_v6, dst_addr); IN6_V4MAPPED_TO_IPADDR(&src_addr_v6, src_addr); IN6_V4MAPPED_TO_IPADDR(&gw_addr_v6, gw_addr); if (((found_addrs & RTA_NETMASK) == 0) || (rtm->rtm_flags & RTF_HOST)) net_mask = IP_HOST_MASK; else IN6_V4MAPPED_TO_IPADDR(&net_mask_v6, net_mask); break; case AF_INET6: if (((found_addrs & RTA_NETMASK) == 0) || (rtm->rtm_flags & RTF_HOST)) net_mask_v6 = ipv6_all_ones; break; default: /* * These errno values are meant to be compatible with * 4.4BSD-Lite2 for the given message types. */ switch (rtm->rtm_type) { case RTM_ADD: case RTM_DELETE: error = ESRCH; goto done; case RTM_GET: case RTM_CHANGE: error = EAFNOSUPPORT; goto done; default: error = EOPNOTSUPP; goto done; } } /* * At this point, the address family must be something known. */ ASSERT(af == AF_INET || af == AF_INET6); if (index != 0) { ill_t *ill; lookup: /* * IPC must be refheld somewhere in ip_wput_nondata or * ip_wput_ioctl etc... and cleaned up if ioctl is killed. * If ILL_CHANGING the request is queued in the ipsq. */ ill = ill_lookup_on_ifindex(index, af == AF_INET6, CONNP_TO_WQ(connp), ioc_mp, ip_rts_request_retry, &error, ipst); if (ill == NULL) { if (error != EINPROGRESS) error = EINVAL; goto done; } /* * Since all interfaces in an IPMP group must be equivalent, * we prevent changes to a specific underlying interface's * routing configuration. However, for backward compatibility, * we intepret a request to add a route on an underlying * interface as a request to add a route on its IPMP interface. */ if (IS_UNDER_IPMP(ill)) { switch (rtm->rtm_type) { case RTM_CHANGE: case RTM_DELETE: ill_refrele(ill); error = EINVAL; goto done; case RTM_ADD: index = ipmp_ill_get_ipmp_ifindex(ill); ill_refrele(ill); if (index == 0) { error = EINVAL; goto done; } goto lookup; } } ipif = ipif_get_next_ipif(NULL, ill); ill_refrele(ill); match_flags |= MATCH_IRE_ILL; } /* * If a netmask was supplied in the message, then subsequent route * lookups will attempt to match on the netmask as well. */ if ((found_addrs & RTA_NETMASK) != 0) match_flags |= MATCH_IRE_MASK; /* * We only process any passed-in route security attributes for * either RTM_ADD or RTM_CHANGE message; We overload them * to do an RTM_GET as a different label; ignore otherwise. */ if (rtm->rtm_type == RTM_ADD || rtm->rtm_type == RTM_CHANGE || rtm->rtm_type == RTM_GET) { ASSERT(rtsecattr.rtsa_cnt <= TSOL_RTSA_REQUEST_MAX); if (rtsecattr.rtsa_cnt > 0) rtsap = &rtsecattr.rtsa_attr[0]; } switch (rtm->rtm_type) { case RTM_ADD: /* if we are adding a route, gateway is a must */ if ((found_addrs & RTA_GATEWAY) == 0) { error = EINVAL; goto done; } /* Multirouting does not support net routes. */ if ((rtm->rtm_flags & (RTF_MULTIRT | RTF_HOST)) == RTF_MULTIRT) { error = EADDRNOTAVAIL; goto done; } /* * Multirouting and user-specified source addresses * do not support interface based routing. * Assigning a source address to an interface based * route is achievable by plumbing a new ipif and * setting up the interface route via this ipif, * though. */ if (rtm->rtm_flags & (RTF_MULTIRT | RTF_SETSRC)) { if ((rtm->rtm_flags & RTF_GATEWAY) == 0) { error = EADDRNOTAVAIL; goto done; } } switch (af) { case AF_INET: if (src_addr != INADDR_ANY) { /* * The RTF_SETSRC flag is present, check that * the supplied src address is not the loopback * address. This would produce martian packets. */ if (src_addr == htonl(INADDR_LOOPBACK)) { error = EINVAL; goto done; } /* * Also check that the supplied address is a * valid, local one. */ tmp_ipif = ipif_lookup_addr(src_addr, NULL, ALL_ZONES, CONNP_TO_WQ(connp), ioc_mp, ip_rts_request_retry, &error, ipst); if (tmp_ipif == NULL) { if (error != EINPROGRESS) error = EADDRNOTAVAIL; goto done; } if (!(tmp_ipif->ipif_flags & IPIF_UP) || (tmp_ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST))) { error = EINVAL; goto done; } } else { /* * The RTF_SETSRC modifier must be associated * to a non-null source address. */ if (rtm->rtm_flags & RTF_SETSRC) { error = EINVAL; goto done; } } error = ip_rt_add(dst_addr, net_mask, gw_addr, src_addr, rtm->rtm_flags, ipif, &ire, B_FALSE, WR(q), ioc_mp, ip_rts_request_retry, rtsap, ipst); if (ipif != NULL) ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); break; case AF_INET6: if (!IN6_IS_ADDR_UNSPECIFIED(&src_addr_v6)) { /* * The RTF_SETSRC flag is present, check that * the supplied src address is not the loopback * address. This would produce martian packets. */ if (IN6_IS_ADDR_LOOPBACK(&src_addr_v6)) { error = EINVAL; goto done; } /* * Also check that the supplied address is a * valid, local one. */ tmp_ipif = ipif_lookup_addr_v6(&src_addr_v6, NULL, ALL_ZONES, CONNP_TO_WQ(connp), ioc_mp, ip_rts_request_retry, &error, ipst); if (tmp_ipif == NULL) { if (error != EINPROGRESS) error = EADDRNOTAVAIL; goto done; } if (!(tmp_ipif->ipif_flags & IPIF_UP) || (tmp_ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST))) { error = EINVAL; goto done; } error = ip_rt_add_v6(&dst_addr_v6, &net_mask_v6, &gw_addr_v6, &src_addr_v6, rtm->rtm_flags, ipif, &ire, WR(q), ioc_mp, ip_rts_request_retry, rtsap, ipst); break; } /* * The RTF_SETSRC modifier must be associated * to a non-null source address. */ if (rtm->rtm_flags & RTF_SETSRC) { error = EINVAL; goto done; } error = ip_rt_add_v6(&dst_addr_v6, &net_mask_v6, &gw_addr_v6, NULL, rtm->rtm_flags, ipif, &ire, WR(q), ioc_mp, ip_rts_request_retry, rtsap, ipst); if (ipif != NULL) ASSERT(!MUTEX_HELD(&ipif->ipif_ill->ill_lock)); break; } if (error != 0) goto done; ASSERT(ire != NULL); rts_setmetrics(ire, rtm->rtm_inits, &rtm->rtm_rmx); break; case RTM_DELETE: /* if we are deleting a route, gateway is a must */ if ((found_addrs & RTA_GATEWAY) == 0) { error = EINVAL; goto done; } /* * The RTF_SETSRC modifier does not make sense * when deleting a route. */ if (rtm->rtm_flags & RTF_SETSRC) { error = EINVAL; goto done; } switch (af) { case AF_INET: error = ip_rt_delete(dst_addr, net_mask, gw_addr, found_addrs, rtm->rtm_flags, ipif, B_FALSE, WR(q), ioc_mp, ip_rts_request_retry, ipst); break; case AF_INET6: error = ip_rt_delete_v6(&dst_addr_v6, &net_mask_v6, &gw_addr_v6, found_addrs, rtm->rtm_flags, ipif, WR(q), ioc_mp, ip_rts_request_retry, ipst); break; } break; case RTM_GET: case RTM_CHANGE: /* * In the case of RTM_GET, the forwarding table should be * searched recursively with default being matched if the * specific route doesn't exist. Also, if a gateway was * specified then the gateway address must also be matched. * * In the case of RTM_CHANGE, the gateway address (if supplied) * is the new gateway address so matching on the gateway address * is not done. This can lead to ambiguity when looking up the * route to change as usually only the destination (and netmask, * if supplied) is used for the lookup. However if a RTA_IFP * sockaddr is also supplied, it can disambiguate which route to * change provided the ambigous routes are tied to distinct * ill's (or interface indices). If the routes are not tied to * any particular interfaces (for example, with traditional * gateway routes), then a RTA_IFP sockaddr will be of no use as * it won't match any such routes. * RTA_SRC is not supported for RTM_GET and RTM_CHANGE, * except when RTM_CHANGE is combined to RTF_SETSRC. */ if (((found_addrs & RTA_SRC) != 0) && ((rtm->rtm_type == RTM_GET) || !(rtm->rtm_flags & RTF_SETSRC))) { error = EOPNOTSUPP; goto done; } if (rtm->rtm_type == RTM_GET) { match_flags |= (MATCH_IRE_DEFAULT | MATCH_IRE_RECURSIVE | MATCH_IRE_SECATTR); match_flags_local |= MATCH_IRE_SECATTR; if ((found_addrs & RTA_GATEWAY) != 0) match_flags |= MATCH_IRE_GW; if (ioc_cr) tsl = crgetlabel(ioc_cr); if (rtsap != NULL) { if (rtsa_validate(rtsap) != 0) { error = EINVAL; goto done; } if (tsl != NULL && crgetzoneid(ioc_cr) != GLOBAL_ZONEID && (tsl->tsl_doi != rtsap->rtsa_doi || !bldominates(&tsl->tsl_label, &rtsap->rtsa_slrange.lower_bound))) { error = EPERM; goto done; } tsl = labelalloc( &rtsap->rtsa_slrange.lower_bound, rtsap->rtsa_doi, KM_NOSLEEP); } } if (rtm->rtm_type == RTM_CHANGE) { if ((found_addrs & RTA_GATEWAY) && (rtm->rtm_flags & RTF_SETSRC)) { /* * Do not want to change the gateway, * but rather the source address. */ match_flags |= MATCH_IRE_GW; } } /* * If the netmask is all ones (either as supplied or as derived * above), then first check for an IRE_LOOPBACK or * IRE_LOCAL entry. * * If we didn't check for or find an IRE_LOOPBACK or IRE_LOCAL * entry, then look in the forwarding table. */ switch (af) { case AF_INET: if (net_mask == IP_HOST_MASK) { ire = ire_ctable_lookup(dst_addr, gw_addr, IRE_LOCAL | IRE_LOOPBACK, NULL, zoneid, tsl, match_flags_local, ipst); /* * If we found an IRE_LOCAL, make sure * it is one that would be used by this * zone to send packets. */ if (ire != NULL && ire->ire_type == IRE_LOCAL && ipst->ips_ip_restrict_interzone_loopback && !ire_local_ok_across_zones(ire, zoneid, &dst_addr, tsl, ipst)) { ire_refrele(ire); ire = NULL; } } if (ire == NULL) { ire = ire_ftable_lookup(dst_addr, net_mask, gw_addr, 0, ipif, &sire, zoneid, 0, tsl, match_flags, ipst); } break; case AF_INET6: if (IN6_ARE_ADDR_EQUAL(&net_mask_v6, &ipv6_all_ones)) { ire = ire_ctable_lookup_v6(&dst_addr_v6, &gw_addr_v6, IRE_LOCAL | IRE_LOOPBACK, NULL, zoneid, tsl, match_flags_local, ipst); /* * If we found an IRE_LOCAL, make sure * it is one that would be used by this * zone to send packets. */ if (ire != NULL && ire->ire_type == IRE_LOCAL && ipst->ips_ip_restrict_interzone_loopback && !ire_local_ok_across_zones(ire, zoneid, (void *)&dst_addr_v6, tsl, ipst)) { ire_refrele(ire); ire = NULL; } } if (ire == NULL) { ire = ire_ftable_lookup_v6(&dst_addr_v6, &net_mask_v6, &gw_addr_v6, 0, ipif, &sire, zoneid, 0, tsl, match_flags, ipst); } break; } if (tsl != NULL && tsl != crgetlabel(ioc_cr)) label_rele(tsl); if (ire == NULL) { error = ESRCH; goto done; } /* we know the IRE before we come here */ switch (rtm->rtm_type) { case RTM_GET: mp1 = rts_rtmget(mp, ire, sire, af); if (mp1 == NULL) { error = ENOBUFS; goto done; } freemsg(mp); mp = mp1; rtm = (rt_msghdr_t *)mp->b_rptr; break; case RTM_CHANGE: /* * Do not allow to the multirouting state of a route * to be changed. This aims to prevent undesirable * stages where both multirt and non-multirt routes * for the same destination are declared. */ if ((ire->ire_flags & RTF_MULTIRT) != (rtm->rtm_flags & RTF_MULTIRT)) { error = EINVAL; goto done; } /* * Note that we do not need to do * ire_flush_cache_*(IRE_FLUSH_ADD) as a change * in metrics or gateway will not affect existing * routes since it does not create a more specific * route. */ switch (af) { case AF_INET: ire_flush_cache_v4(ire, IRE_FLUSH_DELETE); if ((found_addrs & RTA_GATEWAY) != 0 && (ire->ire_gateway_addr != gw_addr)) { ire->ire_gateway_addr = gw_addr; } if (rtsap != NULL) { ga.ga_af = AF_INET; IN6_IPADDR_TO_V4MAPPED( ire->ire_gateway_addr, &ga.ga_addr); gcgrp = gcgrp_lookup(&ga, B_TRUE); if (gcgrp == NULL) { error = ENOMEM; goto done; } } if ((found_addrs & RTA_SRC) != 0 && (rtm->rtm_flags & RTF_SETSRC) != 0 && (ire->ire_src_addr != src_addr)) { if (src_addr != INADDR_ANY) { /* * The RTF_SETSRC flag is * present, check that the * supplied src address is not * the loopback address. This * would produce martian * packets. */ if (src_addr == htonl(INADDR_LOOPBACK)) { error = EINVAL; goto done; } /* * Also check that the the * supplied addr is a valid * local address. */ tmp_ipif = ipif_lookup_addr( src_addr, NULL, ALL_ZONES, WR(q), ioc_mp, ip_rts_request_retry, &error, ipst); if (tmp_ipif == NULL) { error = (error == EINPROGRESS) ? error : EADDRNOTAVAIL; goto done; } if (!(tmp_ipif->ipif_flags & IPIF_UP) || (tmp_ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST))) { error = EINVAL; goto done; } ire->ire_flags |= RTF_SETSRC; } else { ire->ire_flags &= ~RTF_SETSRC; } ire->ire_src_addr = src_addr; } break; case AF_INET6: ire_flush_cache_v6(ire, IRE_FLUSH_DELETE); mutex_enter(&ire->ire_lock); if ((found_addrs & RTA_GATEWAY) != 0 && !IN6_ARE_ADDR_EQUAL( &ire->ire_gateway_addr_v6, &gw_addr_v6)) { ire->ire_gateway_addr_v6 = gw_addr_v6; } if (rtsap != NULL) { ga.ga_af = AF_INET6; ga.ga_addr = ire->ire_gateway_addr_v6; gcgrp = gcgrp_lookup(&ga, B_TRUE); if (gcgrp == NULL) { error = ENOMEM; goto done; } } if ((found_addrs & RTA_SRC) != 0 && (rtm->rtm_flags & RTF_SETSRC) != 0 && !IN6_ARE_ADDR_EQUAL( &ire->ire_src_addr_v6, &src_addr_v6)) { if (!IN6_IS_ADDR_UNSPECIFIED( &src_addr_v6)) { /* * The RTF_SETSRC flag is * present, check that the * supplied src address is not * the loopback address. This * would produce martian * packets. */ if (IN6_IS_ADDR_LOOPBACK( &src_addr_v6)) { mutex_exit( &ire->ire_lock); error = EINVAL; goto done; } /* * Also check that the the * supplied addr is a valid * local address. */ tmp_ipif = ipif_lookup_addr_v6( &src_addr_v6, NULL, ALL_ZONES, CONNP_TO_WQ(connp), ioc_mp, ip_rts_request_retry, &error, ipst); if (tmp_ipif == NULL) { mutex_exit( &ire->ire_lock); error = (error == EINPROGRESS) ? error : EADDRNOTAVAIL; goto done; } if (!(tmp_ipif->ipif_flags & IPIF_UP) || (tmp_ipif->ipif_flags & (IPIF_NOLOCAL | IPIF_ANYCAST))) { mutex_exit( &ire->ire_lock); error = EINVAL; goto done; } ire->ire_flags |= RTF_SETSRC; } else { ire->ire_flags &= ~RTF_SETSRC; } ire->ire_src_addr_v6 = src_addr_v6; } mutex_exit(&ire->ire_lock); break; } if (rtsap != NULL) { in_addr_t ga_addr4; ASSERT(gcgrp != NULL); /* * Create and add the security attribute to * prefix IRE; it will add a reference to the * group upon allocating a new entry. If it * finds an already-existing entry for the * security attribute, it simply returns it * and no new group reference is made. */ gc = gc_create(rtsap, gcgrp, &gcgrp_xtraref); if (gc == NULL || (error = tsol_ire_init_gwattr(ire, ire->ire_ipversion, gc, NULL)) != 0) { if (gc != NULL) { GC_REFRELE(gc); } else { /* gc_create failed */ error = ENOMEM; } goto done; } /* * Now delete any existing gateway IRE caches * as well as all caches using the gateway, * and allow them to be created on demand * through ip_newroute{_v6}. */ IN6_V4MAPPED_TO_IPADDR(&ga.ga_addr, ga_addr4); if (af == AF_INET) { ire_clookup_delete_cache_gw( ga_addr4, ALL_ZONES, ipst); } else { ire_clookup_delete_cache_gw_v6( &ga.ga_addr, ALL_ZONES, ipst); } } rts_setmetrics(ire, rtm->rtm_inits, &rtm->rtm_rmx); break; } break; default: error = EOPNOTSUPP; break; } done: if (ire != NULL) ire_refrele(ire); if (sire != NULL) ire_refrele(sire); if (ipif != NULL) ipif_refrele(ipif); if (tmp_ipif != NULL) ipif_refrele(tmp_ipif); if (gcgrp_xtraref) GCGRP_REFRELE(gcgrp); if (error == EINPROGRESS) { if (rtm != NULL) freemsg(mp); return (error); } if (rtm != NULL) { ASSERT(mp->b_wptr <= mp->b_datap->db_lim); if (error != 0) { rtm->rtm_errno = error; /* Send error ACK */ ip1dbg(("ip_rts_request: error %d\n", error)); } else { rtm->rtm_flags |= RTF_DONE; /* OK ACK already set up by caller except this */ ip2dbg(("ip_rts_request: OK ACK\n")); } rts_queue_input(mp, connp, af, RTSQ_ALL, ipst); } iocp->ioc_error = error; ioc_mp->b_datap->db_type = M_IOCACK; if (iocp->ioc_error != 0) iocp->ioc_count = 0; (connp->conn_recv)(connp, ioc_mp, NULL); /* conn was refheld in ip_wput_ioctl. */ CONN_OPER_PENDING_DONE(connp); return (error); } int ip_rts_request(queue_t *q, mblk_t *mp, cred_t *ioc_cr) { return (ip_rts_request_common(q, mp, Q_TO_CONN(q), ioc_cr)); } /* * Build a reply to the RTM_GET request contained in the given message block * using the retrieved IRE of the destination address, the parent IRE (if it * exists) and the address family. * * Returns a pointer to a message block containing the reply if successful, * otherwise NULL is returned. */ static mblk_t * rts_rtmget(mblk_t *mp, ire_t *ire, ire_t *sire, sa_family_t af) { rt_msghdr_t *rtm; rt_msghdr_t *new_rtm; mblk_t *new_mp; int rtm_addrs; int rtm_flags; in6_addr_t gw_addr_v6; tsol_ire_gw_secattr_t *attrp = NULL; tsol_gc_t *gc = NULL; tsol_gcgrp_t *gcgrp = NULL; int sacnt = 0; ASSERT(ire->ire_ipif != NULL); rtm = (rt_msghdr_t *)mp->b_rptr; if (sire != NULL && sire->ire_gw_secattr != NULL) attrp = sire->ire_gw_secattr; else if (ire->ire_gw_secattr != NULL) attrp = ire->ire_gw_secattr; if (attrp != NULL) { mutex_enter(&attrp->igsa_lock); if ((gc = attrp->igsa_gc) != NULL) { gcgrp = gc->gc_grp; ASSERT(gcgrp != NULL); rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); sacnt = 1; } else if ((gcgrp = attrp->igsa_gcgrp) != NULL) { rw_enter(&gcgrp->gcgrp_rwlock, RW_READER); gc = gcgrp->gcgrp_head; sacnt = gcgrp->gcgrp_count; } mutex_exit(&attrp->igsa_lock); /* do nothing if there's no gc to report */ if (gc == NULL) { ASSERT(sacnt == 0); if (gcgrp != NULL) { /* we might as well drop the lock now */ rw_exit(&gcgrp->gcgrp_rwlock); gcgrp = NULL; } attrp = NULL; } ASSERT(gc == NULL || (gcgrp != NULL && RW_LOCK_HELD(&gcgrp->gcgrp_rwlock))); } ASSERT(sacnt == 0 || gc != NULL); /* * Always return RTA_DST, RTA_GATEWAY and RTA_NETMASK. * * The 4.4BSD-Lite2 code (net/rtsock.c) returns both * RTA_IFP and RTA_IFA if either is defined, and also * returns RTA_BRD if the appropriate interface is * point-to-point. */ rtm_addrs = (RTA_DST | RTA_GATEWAY | RTA_NETMASK); if (rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) { rtm_addrs |= (RTA_IFP | RTA_IFA); if (ire->ire_ipif->ipif_flags & IPIF_POINTOPOINT) rtm_addrs |= RTA_BRD; } new_mp = rts_alloc_msg(RTM_GET, rtm_addrs, af, sacnt); if (new_mp == NULL) { if (gcgrp != NULL) rw_exit(&gcgrp->gcgrp_rwlock); return (NULL); } /* * We set the destination address, gateway address, * netmask and flags in the RTM_GET response depending * on whether we found a parent IRE or not. * In particular, if we did find a parent IRE during the * recursive search, use that IRE's gateway address. * Otherwise, we use the IRE's source address for the * gateway address. */ ASSERT(af == AF_INET || af == AF_INET6); switch (af) { case AF_INET: if (sire == NULL) { rtm_flags = ire->ire_flags; rts_fill_msg(RTM_GET, rtm_addrs, ire->ire_addr, ire->ire_mask, ire->ire_src_addr, ire->ire_src_addr, ire->ire_ipif->ipif_pp_dst_addr, 0, ire->ire_ipif, new_mp, sacnt, gc); } else { if (sire->ire_flags & RTF_SETSRC) rtm_addrs |= RTA_SRC; rtm_flags = sire->ire_flags; rts_fill_msg(RTM_GET, rtm_addrs, sire->ire_addr, sire->ire_mask, sire->ire_gateway_addr, (sire->ire_flags & RTF_SETSRC) ? sire->ire_src_addr : ire->ire_src_addr, ire->ire_ipif->ipif_pp_dst_addr, 0, ire->ire_ipif, new_mp, sacnt, gc); } break; case AF_INET6: if (sire == NULL) { rtm_flags = ire->ire_flags; rts_fill_msg_v6(RTM_GET, rtm_addrs, &ire->ire_addr_v6, &ire->ire_mask_v6, &ire->ire_src_addr_v6, &ire->ire_src_addr_v6, &ire->ire_ipif->ipif_v6pp_dst_addr, &ipv6_all_zeros, ire->ire_ipif, new_mp, sacnt, gc); } else { if (sire->ire_flags & RTF_SETSRC) rtm_addrs |= RTA_SRC; rtm_flags = sire->ire_flags; mutex_enter(&sire->ire_lock); gw_addr_v6 = sire->ire_gateway_addr_v6; mutex_exit(&sire->ire_lock); rts_fill_msg_v6(RTM_GET, rtm_addrs, &sire->ire_addr_v6, &sire->ire_mask_v6, &gw_addr_v6, (sire->ire_flags & RTF_SETSRC) ? &sire->ire_src_addr_v6 : &ire->ire_src_addr_v6, &ire->ire_ipif->ipif_v6pp_dst_addr, &ipv6_all_zeros, ire->ire_ipif, new_mp, sacnt, gc); } break; } if (gcgrp != NULL) rw_exit(&gcgrp->gcgrp_rwlock); new_rtm = (rt_msghdr_t *)new_mp->b_rptr; /* * The rtm_msglen, rtm_version and rtm_type fields in * RTM_GET response are filled in by rts_fill_msg. * * rtm_addrs and rtm_flags are filled in based on what * was requested and the state of the IREs looked up * above. * * rtm_inits and rtm_rmx are filled in with metrics * based on whether a parent IRE was found or not. * * TODO: rtm_index and rtm_use should probably be * filled in with something resonable here and not just * copied from the request. */ new_rtm->rtm_index = rtm->rtm_index; new_rtm->rtm_pid = rtm->rtm_pid; new_rtm->rtm_seq = rtm->rtm_seq; new_rtm->rtm_use = rtm->rtm_use; new_rtm->rtm_addrs = rtm_addrs; new_rtm->rtm_flags = rtm_flags; if (sire == NULL) new_rtm->rtm_inits = rts_getmetrics(ire, &new_rtm->rtm_rmx); else new_rtm->rtm_inits = rts_getmetrics(sire, &new_rtm->rtm_rmx); return (new_mp); } /* * Fill the given if_data_t with interface statistics. */ static void rts_getifdata(if_data_t *if_data, const ipif_t *ipif) { if_data->ifi_type = ipif->ipif_type; /* ethernet, tokenring, etc */ if_data->ifi_addrlen = 0; /* media address length */ if_data->ifi_hdrlen = 0; /* media header length */ if_data->ifi_mtu = ipif->ipif_mtu; /* maximum transmission unit */ if_data->ifi_metric = ipif->ipif_metric; /* metric (external only) */ if_data->ifi_baudrate = 0; /* linespeed */ if_data->ifi_ipackets = 0; /* packets received on if */ if_data->ifi_ierrors = 0; /* input errors on interface */ if_data->ifi_opackets = 0; /* packets sent on interface */ if_data->ifi_oerrors = 0; /* output errors on if */ if_data->ifi_collisions = 0; /* collisions on csma if */ if_data->ifi_ibytes = 0; /* total number received */ if_data->ifi_obytes = 0; /* total number sent */ if_data->ifi_imcasts = 0; /* multicast packets received */ if_data->ifi_omcasts = 0; /* multicast packets sent */ if_data->ifi_iqdrops = 0; /* dropped on input */ if_data->ifi_noproto = 0; /* destined for unsupported */ /* protocol. */ } /* * Set the metrics on a forwarding table route. */ static void rts_setmetrics(ire_t *ire, uint_t which, rt_metrics_t *metrics) { clock_t rtt; clock_t rtt_sd; ipif_t *ipif; ifrt_t *ifrt; mblk_t *mp; in6_addr_t gw_addr_v6; /* * Bypass obtaining the lock and searching ipif_saved_ire_mp in the * common case of no metrics. */ if (which == 0) return; ire->ire_uinfo.iulp_set = B_TRUE; /* * iulp_rtt and iulp_rtt_sd are in milliseconds, but 4.4BSD-Lite2's * says: rmx_rtt and rmx_rttvar are stored as * microseconds. */ if (which & RTV_RTT) rtt = metrics->rmx_rtt / 1000; if (which & RTV_RTTVAR) rtt_sd = metrics->rmx_rttvar / 1000; /* * Update the metrics in the IRE itself. */ mutex_enter(&ire->ire_lock); if (which & RTV_MTU) ire->ire_max_frag = metrics->rmx_mtu; if (which & RTV_RTT) ire->ire_uinfo.iulp_rtt = rtt; if (which & RTV_SSTHRESH) ire->ire_uinfo.iulp_ssthresh = metrics->rmx_ssthresh; if (which & RTV_RTTVAR) ire->ire_uinfo.iulp_rtt_sd = rtt_sd; if (which & RTV_SPIPE) ire->ire_uinfo.iulp_spipe = metrics->rmx_sendpipe; if (which & RTV_RPIPE) ire->ire_uinfo.iulp_rpipe = metrics->rmx_recvpipe; mutex_exit(&ire->ire_lock); /* * Search through the ifrt_t chain hanging off the IPIF in order to * reflect the metric change there. */ ipif = ire->ire_ipif; if (ipif == NULL) return; ASSERT((ipif->ipif_isv6 && ire->ire_ipversion == IPV6_VERSION) || ((!ipif->ipif_isv6 && ire->ire_ipversion == IPV4_VERSION))); if (ipif->ipif_isv6) { mutex_enter(&ire->ire_lock); gw_addr_v6 = ire->ire_gateway_addr_v6; mutex_exit(&ire->ire_lock); } mutex_enter(&ipif->ipif_saved_ire_lock); for (mp = ipif->ipif_saved_ire_mp; mp != NULL; mp = mp->b_cont) { /* * On a given ipif, the triple of address, gateway and mask is * unique for each saved IRE (in the case of ordinary interface * routes, the gateway address is all-zeroes). */ ifrt = (ifrt_t *)mp->b_rptr; if (ipif->ipif_isv6) { if (!IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6addr, &ire->ire_addr_v6) || !IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6gateway_addr, &gw_addr_v6) || !IN6_ARE_ADDR_EQUAL(&ifrt->ifrt_v6mask, &ire->ire_mask_v6)) continue; } else { if (ifrt->ifrt_addr != ire->ire_addr || ifrt->ifrt_gateway_addr != ire->ire_gateway_addr || ifrt->ifrt_mask != ire->ire_mask) continue; } if (which & RTV_MTU) ifrt->ifrt_max_frag = metrics->rmx_mtu; if (which & RTV_RTT) ifrt->ifrt_iulp_info.iulp_rtt = rtt; if (which & RTV_SSTHRESH) { ifrt->ifrt_iulp_info.iulp_ssthresh = metrics->rmx_ssthresh; } if (which & RTV_RTTVAR) ifrt->ifrt_iulp_info.iulp_rtt_sd = metrics->rmx_rttvar; if (which & RTV_SPIPE) ifrt->ifrt_iulp_info.iulp_spipe = metrics->rmx_sendpipe; if (which & RTV_RPIPE) ifrt->ifrt_iulp_info.iulp_rpipe = metrics->rmx_recvpipe; break; } mutex_exit(&ipif->ipif_saved_ire_lock); } /* * Get the metrics from a forwarding table route. */ static int rts_getmetrics(ire_t *ire, rt_metrics_t *metrics) { int metrics_set = 0; bzero(metrics, sizeof (rt_metrics_t)); /* * iulp_rtt and iulp_rtt_sd are in milliseconds, but 4.4BSD-Lite2's * says: rmx_rtt and rmx_rttvar are stored as * microseconds. */ metrics->rmx_rtt = ire->ire_uinfo.iulp_rtt * 1000; metrics_set |= RTV_RTT; metrics->rmx_mtu = ire->ire_max_frag; metrics_set |= RTV_MTU; metrics->rmx_ssthresh = ire->ire_uinfo.iulp_ssthresh; metrics_set |= RTV_SSTHRESH; metrics->rmx_rttvar = ire->ire_uinfo.iulp_rtt_sd * 1000; metrics_set |= RTV_RTTVAR; metrics->rmx_sendpipe = ire->ire_uinfo.iulp_spipe; metrics_set |= RTV_SPIPE; metrics->rmx_recvpipe = ire->ire_uinfo.iulp_rpipe; metrics_set |= RTV_RPIPE; return (metrics_set); } /* * Takes a pointer to a routing message and extracts necessary info by looking * at the rtm->rtm_addrs bits and store the requested sockaddrs in the pointers * passed (all of which must be valid). * * The bitmask of sockaddrs actually found in the message is returned, or zero * is returned in the case of an error. */ static int rts_getaddrs(rt_msghdr_t *rtm, in6_addr_t *dst_addrp, in6_addr_t *gw_addrp, in6_addr_t *net_maskp, in6_addr_t *authorp, in6_addr_t *if_addrp, in6_addr_t *in_src_addrp, ushort_t *indexp, sa_family_t *afp, tsol_rtsecattr_t *rtsecattr, int *error) { struct sockaddr *sa; int i; int addr_bits; int length; int found_addrs = 0; caddr_t cp; size_t size; struct sockaddr_dl *sdl; *dst_addrp = ipv6_all_zeros; *gw_addrp = ipv6_all_zeros; *net_maskp = ipv6_all_zeros; *authorp = ipv6_all_zeros; *if_addrp = ipv6_all_zeros; *in_src_addrp = ipv6_all_zeros; *indexp = 0; *afp = AF_UNSPEC; rtsecattr->rtsa_cnt = 0; *error = 0; /* * At present we handle only RTA_DST, RTA_GATEWAY, RTA_NETMASK, RTA_IFP, * RTA_IFA and RTA_AUTHOR. The rest will be added as we need them. */ cp = (caddr_t)&rtm[1]; length = rtm->rtm_msglen; for (i = 0; (i < RTA_NUMBITS) && ((cp - (caddr_t)rtm) < length); i++) { /* * The address family we are working with starts out as * AF_UNSPEC, but is set to the one specified with the * destination address. * * If the "working" address family that has been set to * something other than AF_UNSPEC, then the address family of * subsequent sockaddrs must either be AF_UNSPEC (for * compatibility with older programs) or must be the same as our * "working" one. * * This code assumes that RTA_DST (1) comes first in the loop. */ sa = (struct sockaddr *)cp; addr_bits = (rtm->rtm_addrs & (1 << i)); if (addr_bits == 0) continue; switch (addr_bits) { case RTA_DST: size = rts_copyfromsockaddr(sa, dst_addrp); *afp = sa->sa_family; break; case RTA_GATEWAY: if (sa->sa_family != *afp && sa->sa_family != AF_UNSPEC) return (0); size = rts_copyfromsockaddr(sa, gw_addrp); break; case RTA_NETMASK: if (sa->sa_family != *afp && sa->sa_family != AF_UNSPEC) return (0); size = rts_copyfromsockaddr(sa, net_maskp); break; case RTA_IFP: if (sa->sa_family != AF_LINK && sa->sa_family != AF_UNSPEC) return (0); sdl = (struct sockaddr_dl *)cp; *indexp = sdl->sdl_index; size = sizeof (struct sockaddr_dl); break; case RTA_SRC: /* Source address of the incoming packet */ size = rts_copyfromsockaddr(sa, in_src_addrp); *afp = sa->sa_family; break; case RTA_IFA: if (sa->sa_family != *afp && sa->sa_family != AF_UNSPEC) return (0); size = rts_copyfromsockaddr(sa, if_addrp); break; case RTA_AUTHOR: if (sa->sa_family != *afp && sa->sa_family != AF_UNSPEC) return (0); size = rts_copyfromsockaddr(sa, authorp); break; default: return (0); } if (size == 0) return (0); cp += size; found_addrs |= addr_bits; } /* * Parse the routing message and look for any security- * related attributes for the route. For each valid * attribute, allocate/obtain the corresponding kernel * route security attributes. */ *error = tsol_rtsa_init(rtm, rtsecattr, cp); ASSERT(rtsecattr->rtsa_cnt <= TSOL_RTSA_REQUEST_MAX); return (found_addrs); } /* * Fills the message with the given info. */ static void rts_fill_msg(int type, int rtm_addrs, ipaddr_t dst, ipaddr_t mask, ipaddr_t gateway, ipaddr_t src_addr, ipaddr_t brd_addr, ipaddr_t author, const ipif_t *ipif, mblk_t *mp, uint_t sacnt, const tsol_gc_t *gc) { rt_msghdr_t *rtm; sin_t *sin; size_t data_size, header_size; uchar_t *cp; int i; ASSERT(mp != NULL); ASSERT(sacnt == 0 || gc != NULL); /* * First find the type of the message * and its length. */ header_size = rts_header_msg_size(type); /* * Now find the size of the data * that follows the message header. */ data_size = rts_data_msg_size(rtm_addrs, AF_INET, sacnt); rtm = (rt_msghdr_t *)mp->b_rptr; mp->b_wptr = &mp->b_rptr[header_size]; cp = mp->b_wptr; bzero(cp, data_size); for (i = 0; i < RTA_NUMBITS; i++) { sin = (sin_t *)cp; switch (rtm_addrs & (1 << i)) { case RTA_DST: sin->sin_addr.s_addr = dst; sin->sin_family = AF_INET; cp += sizeof (sin_t); break; case RTA_GATEWAY: sin->sin_addr.s_addr = gateway; sin->sin_family = AF_INET; cp += sizeof (sin_t); break; case RTA_NETMASK: sin->sin_addr.s_addr = mask; sin->sin_family = AF_INET; cp += sizeof (sin_t); break; case RTA_IFP: cp += ill_dls_info((struct sockaddr_dl *)cp, ipif); break; case RTA_IFA: case RTA_SRC: sin->sin_addr.s_addr = src_addr; sin->sin_family = AF_INET; cp += sizeof (sin_t); break; case RTA_AUTHOR: sin->sin_addr.s_addr = author; sin->sin_family = AF_INET; cp += sizeof (sin_t); break; case RTA_BRD: /* * RTA_BRD is used typically to specify a point-to-point * destination address. */ sin->sin_addr.s_addr = brd_addr; sin->sin_family = AF_INET; cp += sizeof (sin_t); break; } } if (gc != NULL) { rtm_ext_t *rtm_ext; struct rtsa_s *rp_dst; tsol_rtsecattr_t *rsap; int i; ASSERT(gc->gc_grp != NULL); ASSERT(RW_LOCK_HELD(&gc->gc_grp->gcgrp_rwlock)); ASSERT(sacnt > 0); rtm_ext = (rtm_ext_t *)cp; rtm_ext->rtmex_type = RTMEX_GATEWAY_SECATTR; rtm_ext->rtmex_len = TSOL_RTSECATTR_SIZE(sacnt); rsap = (tsol_rtsecattr_t *)(rtm_ext + 1); rsap->rtsa_cnt = sacnt; rp_dst = rsap->rtsa_attr; for (i = 0; i < sacnt; i++, gc = gc->gc_next, rp_dst++) { ASSERT(gc->gc_db != NULL); bcopy(&gc->gc_db->gcdb_attr, rp_dst, sizeof (*rp_dst)); } cp = (uchar_t *)rp_dst; } mp->b_wptr = cp; mp->b_cont = NULL; /* * set the fields that are common to * to different messages. */ rtm->rtm_msglen = (short)(header_size + data_size); rtm->rtm_version = RTM_VERSION; rtm->rtm_type = (uchar_t)type; } /* * Allocates and initializes a routing socket message. */ mblk_t * rts_alloc_msg(int type, int rtm_addrs, sa_family_t af, uint_t sacnt) { size_t length; mblk_t *mp; length = RTS_MSG_SIZE(type, rtm_addrs, af, sacnt); mp = allocb(length, BPRI_MED); if (mp == NULL) return (mp); bzero(mp->b_rptr, length); return (mp); } /* * Returns the size of the routing * socket message header size. */ size_t rts_header_msg_size(int type) { switch (type) { case RTM_DELADDR: case RTM_NEWADDR: return (sizeof (ifa_msghdr_t)); case RTM_IFINFO: return (sizeof (if_msghdr_t)); default: return (sizeof (rt_msghdr_t)); } } /* * Returns the size of the message needed with the given rtm_addrs and family. * * It is assumed that all of the sockaddrs (with the exception of RTA_IFP) are * of the same family (currently either AF_INET or AF_INET6). */ size_t rts_data_msg_size(int rtm_addrs, sa_family_t af, uint_t sacnt) { int i; size_t length = 0; for (i = 0; i < RTA_NUMBITS; i++) { switch (rtm_addrs & (1 << i)) { case RTA_IFP: length += sizeof (struct sockaddr_dl); break; case RTA_DST: case RTA_GATEWAY: case RTA_NETMASK: case RTA_SRC: case RTA_IFA: case RTA_AUTHOR: case RTA_BRD: ASSERT(af == AF_INET || af == AF_INET6); switch (af) { case AF_INET: length += sizeof (sin_t); break; case AF_INET6: length += sizeof (sin6_t); break; } break; } } if (sacnt > 0) length += sizeof (rtm_ext_t) + TSOL_RTSECATTR_SIZE(sacnt); return (length); } /* * This routine is called to generate a message to the routing * socket indicating that a redirect has occured, a routing lookup * has failed, or that a protocol has detected timeouts to a particular * destination. This routine is called for message types RTM_LOSING, * RTM_REDIRECT, and RTM_MISS. */ void ip_rts_change(int type, ipaddr_t dst_addr, ipaddr_t gw_addr, ipaddr_t net_mask, ipaddr_t source, ipaddr_t author, int flags, int error, int rtm_addrs, ip_stack_t *ipst) { rt_msghdr_t *rtm; mblk_t *mp; if (rtm_addrs == 0) return; mp = rts_alloc_msg(type, rtm_addrs, AF_INET, 0); if (mp == NULL) return; rts_fill_msg(type, rtm_addrs, dst_addr, net_mask, gw_addr, source, 0, author, NULL, mp, 0, NULL); rtm = (rt_msghdr_t *)mp->b_rptr; rtm->rtm_flags = flags; rtm->rtm_errno = error; rtm->rtm_flags |= RTF_DONE; rtm->rtm_addrs = rtm_addrs; rts_queue_input(mp, NULL, AF_INET, RTSQ_ALL, ipst); } /* * This routine is called to generate a message to the routing * socket indicating that the status of a network interface has changed. * Message type generated RTM_IFINFO. */ void ip_rts_ifmsg(const ipif_t *ipif, uint_t flags) { ip_rts_xifmsg(ipif, 0, 0, flags); } void ip_rts_xifmsg(const ipif_t *ipif, uint64_t set, uint64_t clear, uint_t flags) { if_msghdr_t *ifm; mblk_t *mp; sa_family_t af; ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; /* * This message should be generated only when the physical interface * is changing state. */ if (ipif->ipif_id != 0) return; if (ipif->ipif_isv6) { af = AF_INET6; mp = rts_alloc_msg(RTM_IFINFO, RTA_IFP, af, 0); if (mp == NULL) return; rts_fill_msg_v6(RTM_IFINFO, RTA_IFP, &ipv6_all_zeros, &ipv6_all_zeros, &ipv6_all_zeros, &ipv6_all_zeros, &ipv6_all_zeros, &ipv6_all_zeros, ipif, mp, 0, NULL); } else { af = AF_INET; mp = rts_alloc_msg(RTM_IFINFO, RTA_IFP, af, 0); if (mp == NULL) return; rts_fill_msg(RTM_IFINFO, RTA_IFP, 0, 0, 0, 0, 0, 0, ipif, mp, 0, NULL); } ifm = (if_msghdr_t *)mp->b_rptr; ifm->ifm_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; ifm->ifm_flags = (ipif->ipif_flags | ipif->ipif_ill->ill_flags | ipif->ipif_ill->ill_phyint->phyint_flags | set) & ~clear; rts_getifdata(&ifm->ifm_data, ipif); ifm->ifm_addrs = RTA_IFP; if (flags & RTSQ_DEFAULT) { flags = RTSQ_ALL; /* * If this message is for an underlying interface, prevent * "normal" (IPMP-unaware) routing sockets from seeing it. */ if (IS_UNDER_IPMP(ipif->ipif_ill)) flags &= ~RTSQ_NORMAL; } rts_queue_input(mp, NULL, af, flags, ipst); } /* * This is called to generate messages to the routing socket * indicating a network interface has had addresses associated with it. * The structure of the code is based on the 4.4BSD-Lite2 . */ void ip_rts_newaddrmsg(int cmd, int error, const ipif_t *ipif, uint_t flags) { int pass; int ncmd; int rtm_addrs; mblk_t *mp; ifa_msghdr_t *ifam; rt_msghdr_t *rtm; sa_family_t af; ip_stack_t *ipst = ipif->ipif_ill->ill_ipst; if (ipif->ipif_isv6) af = AF_INET6; else af = AF_INET; if (flags & RTSQ_DEFAULT) { flags = RTSQ_ALL; /* * If this message is for an underlying interface, prevent * "normal" (IPMP-unaware) routing sockets from seeing it. */ if (IS_UNDER_IPMP(ipif->ipif_ill)) flags &= ~RTSQ_NORMAL; } /* * If the request is DELETE, send RTM_DELETE and RTM_DELADDR. * if the request is ADD, send RTM_NEWADDR and RTM_ADD. */ for (pass = 1; pass < 3; pass++) { if ((cmd == RTM_ADD && pass == 1) || (cmd == RTM_DELETE && pass == 2)) { ncmd = ((cmd == RTM_ADD) ? RTM_NEWADDR : RTM_DELADDR); rtm_addrs = (RTA_IFA | RTA_NETMASK | RTA_BRD | RTA_IFP); mp = rts_alloc_msg(ncmd, rtm_addrs, af, 0); if (mp == NULL) continue; switch (af) { case AF_INET: rts_fill_msg(ncmd, rtm_addrs, 0, ipif->ipif_net_mask, 0, ipif->ipif_lcl_addr, ipif->ipif_pp_dst_addr, 0, ipif, mp, 0, NULL); break; case AF_INET6: rts_fill_msg_v6(ncmd, rtm_addrs, &ipv6_all_zeros, &ipif->ipif_v6net_mask, &ipv6_all_zeros, &ipif->ipif_v6lcl_addr, &ipif->ipif_v6pp_dst_addr, &ipv6_all_zeros, ipif, mp, 0, NULL); break; } ifam = (ifa_msghdr_t *)mp->b_rptr; ifam->ifam_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; ifam->ifam_metric = ipif->ipif_metric; ifam->ifam_flags = ((cmd == RTM_ADD) ? RTF_UP : 0); ifam->ifam_addrs = rtm_addrs; rts_queue_input(mp, NULL, af, flags, ipst); } if ((cmd == RTM_ADD && pass == 2) || (cmd == RTM_DELETE && pass == 1)) { rtm_addrs = (RTA_DST | RTA_NETMASK); mp = rts_alloc_msg(cmd, rtm_addrs, af, 0); if (mp == NULL) continue; switch (af) { case AF_INET: rts_fill_msg(cmd, rtm_addrs, ipif->ipif_lcl_addr, ipif->ipif_net_mask, 0, 0, 0, 0, NULL, mp, 0, NULL); break; case AF_INET6: rts_fill_msg_v6(cmd, rtm_addrs, &ipif->ipif_v6lcl_addr, &ipif->ipif_v6net_mask, &ipv6_all_zeros, &ipv6_all_zeros, &ipv6_all_zeros, &ipv6_all_zeros, NULL, mp, 0, NULL); break; } rtm = (rt_msghdr_t *)mp->b_rptr; rtm->rtm_index = ipif->ipif_ill->ill_phyint->phyint_ifindex; rtm->rtm_flags = ((cmd == RTM_ADD) ? RTF_UP : 0); rtm->rtm_errno = error; if (error == 0) rtm->rtm_flags |= RTF_DONE; rtm->rtm_addrs = rtm_addrs; rts_queue_input(mp, NULL, af, flags, ipst); } } } /* * Based on the address family specified in a sockaddr, copy the address field * into an in6_addr_t. * * In the case of AF_UNSPEC, we assume the family is actually AF_INET for * compatibility with programs that leave the family cleared in the sockaddr. * Callers of rts_copyfromsockaddr should check the family themselves if they * wish to verify its value. * * In the case of AF_INET6, a check is made to ensure that address is not an * IPv4-mapped address. */ size_t rts_copyfromsockaddr(struct sockaddr *sa, in6_addr_t *addrp) { switch (sa->sa_family) { case AF_INET: case AF_UNSPEC: IN6_IPADDR_TO_V4MAPPED(((sin_t *)sa)->sin_addr.s_addr, addrp); return (sizeof (sin_t)); case AF_INET6: *addrp = ((sin6_t *)sa)->sin6_addr; if (IN6_IS_ADDR_V4MAPPED(addrp)) return (0); return (sizeof (sin6_t)); default: return (0); } }