/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* Copyright (c) 1990 Mentat Inc. */ #ifndef _INET_IP_H #define _INET_IP_H #ifdef __cplusplus extern "C" { #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _KERNEL #include #include #include #include #include #include #include #include #include #include #include #ifdef DEBUG #define CONN_DEBUG #endif #define IP_DEBUG /* * The mt-streams(9F) flags for the IP module; put here so that other * "drivers" that are actually IP (e.g., ICMP, UDP) can use the same set * of flags. */ #define IP_DEVMTFLAGS D_MP #endif /* _KERNEL */ #define IP_MOD_NAME "ip" #define IP_DEV_NAME "/dev/ip" #define IP6_DEV_NAME "/dev/ip6" #define UDP_MOD_NAME "udp" #define UDP_DEV_NAME "/dev/udp" #define UDP6_DEV_NAME "/dev/udp6" #define TCP_MOD_NAME "tcp" #define TCP_DEV_NAME "/dev/tcp" #define TCP6_DEV_NAME "/dev/tcp6" #define SCTP_MOD_NAME "sctp" #ifndef _IPADDR_T #define _IPADDR_T typedef uint32_t ipaddr_t; #endif /* Number of bits in an address */ #define IP_ABITS 32 #define IPV6_ABITS 128 #define IP_HOST_MASK (ipaddr_t)0xffffffffU #define IP_CSUM(mp, off, sum) (~ip_cksum(mp, off, sum) & 0xFFFF) #define IP_CSUM_PARTIAL(mp, off, sum) ip_cksum(mp, off, sum) #define IP_BCSUM_PARTIAL(bp, len, sum) bcksum(bp, len, sum) #define IP_MD_CSUM(pd, off, sum) (~ip_md_cksum(pd, off, sum) & 0xffff) #define IP_MD_CSUM_PARTIAL(pd, off, sum) ip_md_cksum(pd, off, sum) /* * Flag to IP write side to indicate that the appln has sent in a pre-built * IP header. Stored in ipha_ident (which is otherwise zero). */ #define IP_HDR_INCLUDED 0xFFFF #define ILL_FRAG_HASH_TBL_COUNT ((unsigned int)64) #define ILL_FRAG_HASH_TBL_SIZE (ILL_FRAG_HASH_TBL_COUNT * sizeof (ipfb_t)) #define IPV4_ADDR_LEN 4 #define IP_ADDR_LEN IPV4_ADDR_LEN #define IP_ARP_PROTO_TYPE 0x0800 #define IPV4_VERSION 4 #define IP_VERSION IPV4_VERSION #define IP_SIMPLE_HDR_LENGTH_IN_WORDS 5 #define IP_SIMPLE_HDR_LENGTH 20 #define IP_MAX_HDR_LENGTH 60 #define IP_MAX_OPT_LENGTH (IP_MAX_HDR_LENGTH-IP_SIMPLE_HDR_LENGTH) #define IP_MIN_MTU (IP_MAX_HDR_LENGTH + 8) /* 68 bytes */ /* * XXX IP_MAXPACKET is defined in as well. At some point the * 2 files should be cleaned up to remove all redundant definitions. */ #define IP_MAXPACKET 65535 #define IP_SIMPLE_HDR_VERSION \ ((IP_VERSION << 4) | IP_SIMPLE_HDR_LENGTH_IN_WORDS) #define UDPH_SIZE 8 /* Leave room for ip_newroute to tack on the src and target addresses */ #define OK_RESOLVER_MP(mp) \ ((mp) && ((mp)->b_wptr - (mp)->b_rptr) >= (2 * IP_ADDR_LEN)) /* * Constants and type definitions to support IP IOCTL commands */ #define IP_IOCTL (('i'<<8)|'p') #define IP_IOC_IRE_DELETE 4 #define IP_IOC_IRE_DELETE_NO_REPLY 5 #define IP_IOC_IRE_ADVISE_NO_REPLY 6 #define IP_IOC_RTS_REQUEST 7 /* Common definitions used by IP IOCTL data structures */ typedef struct ipllcmd_s { uint_t ipllc_cmd; uint_t ipllc_name_offset; uint_t ipllc_name_length; } ipllc_t; /* IP IRE Change Command Structure. */ typedef struct ipic_s { ipllc_t ipic_ipllc; uint_t ipic_ire_type; uint_t ipic_max_frag; uint_t ipic_addr_offset; uint_t ipic_addr_length; uint_t ipic_mask_offset; uint_t ipic_mask_length; uint_t ipic_src_addr_offset; uint_t ipic_src_addr_length; uint_t ipic_ll_hdr_offset; uint_t ipic_ll_hdr_length; uint_t ipic_gateway_addr_offset; uint_t ipic_gateway_addr_length; clock_t ipic_rtt; uint32_t ipic_ssthresh; clock_t ipic_rtt_sd; uchar_t ipic_ire_marks; } ipic_t; #define ipic_cmd ipic_ipllc.ipllc_cmd #define ipic_ll_name_length ipic_ipllc.ipllc_name_length #define ipic_ll_name_offset ipic_ipllc.ipllc_name_offset /* IP IRE Delete Command Structure. */ typedef struct ipid_s { ipllc_t ipid_ipllc; uint_t ipid_ire_type; uint_t ipid_addr_offset; uint_t ipid_addr_length; uint_t ipid_mask_offset; uint_t ipid_mask_length; } ipid_t; #define ipid_cmd ipid_ipllc.ipllc_cmd #ifdef _KERNEL /* * Temporary state for ip options parser. */ typedef struct ipoptp_s { uint8_t *ipoptp_next; /* next option to look at */ uint8_t *ipoptp_end; /* end of options */ uint8_t *ipoptp_cur; /* start of current option */ uint8_t ipoptp_len; /* length of current option */ uint32_t ipoptp_flags; } ipoptp_t; /* * Flag(s) for ipoptp_flags */ #define IPOPTP_ERROR 0x00000001 #endif /* _KERNEL */ /* Controls forwarding of IP packets, set via ndd */ #define IP_FORWARD_NEVER 0 #define IP_FORWARD_ALWAYS 1 #define WE_ARE_FORWARDING(ipst) ((ipst)->ips_ip_g_forward == IP_FORWARD_ALWAYS) #define IPH_HDR_LENGTH(ipha) \ ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length & 0xF) << 2) #define IPH_HDR_VERSION(ipha) \ ((int)(((ipha_t *)ipha)->ipha_version_and_hdr_length) >> 4) #ifdef _KERNEL /* * IP reassembly macros. We hide starting and ending offsets in b_next and * b_prev of messages on the reassembly queue. The messages are chained using * b_cont. These macros are used in ip_reassemble() so we don't have to see * the ugly casts and assignments. * Note that the offsets are <= 64k i.e. a uint_t is sufficient to represent * them. */ #define IP_REASS_START(mp) ((uint_t)(uintptr_t)((mp)->b_next)) #define IP_REASS_SET_START(mp, u) \ ((mp)->b_next = (mblk_t *)(uintptr_t)(u)) #define IP_REASS_END(mp) ((uint_t)(uintptr_t)((mp)->b_prev)) #define IP_REASS_SET_END(mp, u) \ ((mp)->b_prev = (mblk_t *)(uintptr_t)(u)) #define IP_REASS_COMPLETE 0x1 #define IP_REASS_PARTIAL 0x2 #define IP_REASS_FAILED 0x4 /* * Test to determine whether this is a module instance of IP or a * driver instance of IP. */ #define CONN_Q(q) (WR(q)->q_next == NULL) #define Q_TO_CONN(q) ((conn_t *)(q)->q_ptr) #define Q_TO_TCP(q) (Q_TO_CONN((q))->conn_tcp) #define Q_TO_UDP(q) (Q_TO_CONN((q))->conn_udp) #define Q_TO_ICMP(q) (Q_TO_CONN((q))->conn_icmp) #define Q_TO_RTS(q) (Q_TO_CONN((q))->conn_rts) /* * The following two macros are used by IP to get the appropriate * wq and rq for a conn. If it is a TCP conn, then we need * tcp_wq/tcp_rq else, conn_wq/conn_rq. IP can use conn_wq and conn_rq * from a conn directly if it knows that the conn is not TCP. */ #define CONNP_TO_WQ(connp) \ (IPCL_IS_TCP(connp) ? (connp)->conn_tcp->tcp_wq : (connp)->conn_wq) #define CONNP_TO_RQ(connp) RD(CONNP_TO_WQ(connp)) #define GRAB_CONN_LOCK(q) { \ if (q != NULL && CONN_Q(q)) \ mutex_enter(&(Q_TO_CONN(q))->conn_lock); \ } #define RELEASE_CONN_LOCK(q) { \ if (q != NULL && CONN_Q(q)) \ mutex_exit(&(Q_TO_CONN(q))->conn_lock); \ } /* "Congestion controlled" protocol */ #define IP_FLOW_CONTROLLED_ULP(p) ((p) == IPPROTO_TCP || (p) == IPPROTO_SCTP) /* * Complete the pending operation. Usually an ioctl. Can also * be a bind or option management request that got enqueued * in an ipsq_t. Called on completion of the operation. */ #define CONN_OPER_PENDING_DONE(connp) { \ mutex_enter(&(connp)->conn_lock); \ (connp)->conn_oper_pending_ill = NULL; \ cv_broadcast(&(connp)->conn_refcv); \ mutex_exit(&(connp)->conn_lock); \ CONN_DEC_REF(connp); \ } /* * Flags for the various ip_fanout_* routines. */ #define IP_FF_SEND_ICMP 0x01 /* Send an ICMP error */ #define IP_FF_HDR_COMPLETE 0x02 /* Call ip_hdr_complete if error */ #define IP_FF_CKSUM 0x04 /* Recompute ipha_cksum if error */ #define IP_FF_RAWIP 0x08 /* Use rawip mib variable */ #define IP_FF_SRC_QUENCH 0x10 /* OK to send ICMP_SOURCE_QUENCH */ #define IP_FF_SYN_ADDIRE 0x20 /* Add IRE if TCP syn packet */ #define IP_FF_IPINFO 0x80 /* Used for both V4 and V6 */ #define IP_FF_SEND_SLLA 0x100 /* Send source link layer info ? */ #define IPV6_REACHABILITY_CONFIRMATION 0x200 /* Flags for ip_xmit_v6 */ #define IP_FF_NO_MCAST_LOOP 0x400 /* No multicasts for sending zone */ /* * Following flags are used by IPQoS to determine if policy processing is * required. */ #define IP6_NO_IPPOLICY 0x800 /* Don't do IPQoS processing */ #define IP6_IN_LLMCAST 0x1000 /* Multicast */ #define IP_FF_LOOPBACK 0x2000 /* Loopback fanout */ #define IP_FF_SCTP_CSUM_ERR 0x4000 /* sctp pkt has failed chksum */ #ifndef IRE_DB_TYPE #define IRE_DB_TYPE M_SIG #endif #ifndef IRE_DB_REQ_TYPE #define IRE_DB_REQ_TYPE M_PCSIG #endif #ifndef IRE_ARPRESOLVE_TYPE #define IRE_ARPRESOLVE_TYPE M_EVENT #endif /* * Values for squeue switch: */ #define IP_SQUEUE_ENTER_NODRAIN 1 #define IP_SQUEUE_ENTER 2 /* * This is part of the interface between Transport provider and * IP which can be used to set policy information. This is usually * accompanied with O_T_BIND_REQ/T_BIND_REQ.ip_bind assumes that * only IPSEC_POLICY_SET is there when it is found in the chain. * The information contained is an struct ipsec_req_t. On success * or failure, either the T_BIND_ACK or the T_ERROR_ACK is returned. * IPSEC_POLICY_SET is never returned. */ #define IPSEC_POLICY_SET M_SETOPTS #define IRE_IS_LOCAL(ire) ((ire != NULL) && \ ((ire)->ire_type & (IRE_LOCAL | IRE_LOOPBACK))) #define IRE_IS_TARGET(ire) ((ire != NULL) && \ ((ire)->ire_type != IRE_BROADCAST)) /* IP Fragmentation Reassembly Header */ typedef struct ipf_s { struct ipf_s *ipf_hash_next; struct ipf_s **ipf_ptphn; /* Pointer to previous hash next. */ uint32_t ipf_ident; /* Ident to match. */ uint8_t ipf_protocol; /* Protocol to match. */ uchar_t ipf_last_frag_seen : 1; /* Last fragment seen ? */ time_t ipf_timestamp; /* Reassembly start time. */ mblk_t *ipf_mp; /* mblk we live in. */ mblk_t *ipf_tail_mp; /* Frag queue tail pointer. */ int ipf_hole_cnt; /* Number of holes (hard-case). */ int ipf_end; /* Tail end offset (0 -> hard-case). */ uint_t ipf_gen; /* Frag queue generation */ size_t ipf_count; /* Count of bytes used by frag */ uint_t ipf_nf_hdr_len; /* Length of nonfragmented header */ in6_addr_t ipf_v6src; /* IPv6 source address */ in6_addr_t ipf_v6dst; /* IPv6 dest address */ uint_t ipf_prev_nexthdr_offset; /* Offset for nexthdr value */ uint8_t ipf_ecn; /* ECN info for the fragments */ uint8_t ipf_num_dups; /* Number of times dup frags recvd */ uint16_t ipf_checksum_flags; /* Hardware checksum flags */ uint32_t ipf_checksum; /* Partial checksum of fragment data */ } ipf_t; /* * IPv4 Fragments */ #define IS_V4_FRAGMENT(ipha_fragment_offset_and_flags) \ (((ntohs(ipha_fragment_offset_and_flags) & IPH_OFFSET) != 0) || \ ((ntohs(ipha_fragment_offset_and_flags) & IPH_MF) != 0)) #define ipf_src V4_PART_OF_V6(ipf_v6src) #define ipf_dst V4_PART_OF_V6(ipf_v6dst) typedef enum { IB_PKT = 0x01, OB_PKT = 0x02 } ip_pkt_t; #define UPDATE_IB_PKT_COUNT(ire)\ { \ (ire)->ire_ib_pkt_count++; \ if ((ire)->ire_ipif != NULL) { \ /* \ * forwarding packet \ */ \ if ((ire)->ire_type & (IRE_LOCAL|IRE_BROADCAST)) \ atomic_add_32(&(ire)->ire_ipif->ipif_ib_pkt_count, 1);\ else \ atomic_add_32(&(ire)->ire_ipif->ipif_fo_pkt_count, 1);\ } \ } #define UPDATE_OB_PKT_COUNT(ire)\ { \ (ire)->ire_ob_pkt_count++;\ if ((ire)->ire_ipif != NULL) { \ atomic_add_32(&(ire)->ire_ipif->ipif_ob_pkt_count, 1); \ } \ } #define IP_RPUT_LOCAL(q, mp, ipha, ire, recv_ill) \ { \ switch (ipha->ipha_protocol) { \ case IPPROTO_UDP: \ ip_udp_input(q, mp, ipha, ire, recv_ill); \ break; \ default: \ ip_proto_input(q, mp, ipha, ire, recv_ill, 0); \ break; \ } \ } /* * NCE_EXPIRED is TRUE when we have a non-permanent nce that was * found to be REACHABLE more than ip_ire_arp_interval ms ago. * This macro is used to age existing nce_t entries. The * nce's will get cleaned up in the following circumstances: * - ip_ire_trash_reclaim will free nce's using ndp_cache_reclaim * when memory is low, * - ip_arp_news, when updates are received. * - if the nce is NCE_EXPIRED(), it will deleted, so that a new * arp request will need to be triggered from an ND_INITIAL nce. * * Note that the nce state transition follows the pattern: * ND_INITIAL -> ND_INCOMPLETE -> ND_REACHABLE * after which the nce is deleted when it has expired. * * nce_last is the timestamp that indicates when the nce_res_mp in the * nce_t was last updated to a valid link-layer address. nce_last gets * modified/updated : * - when the nce is created * - every time we get a sane arp response for the nce. */ #define NCE_EXPIRED(nce, ipst) (nce->nce_last > 0 && \ ((nce->nce_flags & NCE_F_PERMANENT) == 0) && \ ((TICK_TO_MSEC(lbolt64) - nce->nce_last) > \ (ipst)->ips_ip_ire_arp_interval)) #endif /* _KERNEL */ /* ICMP types */ #define ICMP_ECHO_REPLY 0 #define ICMP_DEST_UNREACHABLE 3 #define ICMP_SOURCE_QUENCH 4 #define ICMP_REDIRECT 5 #define ICMP_ECHO_REQUEST 8 #define ICMP_ROUTER_ADVERTISEMENT 9 #define ICMP_ROUTER_SOLICITATION 10 #define ICMP_TIME_EXCEEDED 11 #define ICMP_PARAM_PROBLEM 12 #define ICMP_TIME_STAMP_REQUEST 13 #define ICMP_TIME_STAMP_REPLY 14 #define ICMP_INFO_REQUEST 15 #define ICMP_INFO_REPLY 16 #define ICMP_ADDRESS_MASK_REQUEST 17 #define ICMP_ADDRESS_MASK_REPLY 18 /* ICMP_TIME_EXCEEDED codes */ #define ICMP_TTL_EXCEEDED 0 #define ICMP_REASSEMBLY_TIME_EXCEEDED 1 /* ICMP_DEST_UNREACHABLE codes */ #define ICMP_NET_UNREACHABLE 0 #define ICMP_HOST_UNREACHABLE 1 #define ICMP_PROTOCOL_UNREACHABLE 2 #define ICMP_PORT_UNREACHABLE 3 #define ICMP_FRAGMENTATION_NEEDED 4 #define ICMP_SOURCE_ROUTE_FAILED 5 #define ICMP_DEST_NET_UNKNOWN 6 #define ICMP_DEST_HOST_UNKNOWN 7 #define ICMP_SRC_HOST_ISOLATED 8 #define ICMP_DEST_NET_UNREACH_ADMIN 9 #define ICMP_DEST_HOST_UNREACH_ADMIN 10 #define ICMP_DEST_NET_UNREACH_TOS 11 #define ICMP_DEST_HOST_UNREACH_TOS 12 /* ICMP Header Structure */ typedef struct icmph_s { uint8_t icmph_type; uint8_t icmph_code; uint16_t icmph_checksum; union { struct { /* ECHO request/response structure */ uint16_t u_echo_ident; uint16_t u_echo_seqnum; } u_echo; struct { /* Destination unreachable structure */ uint16_t u_du_zero; uint16_t u_du_mtu; } u_du; struct { /* Parameter problem structure */ uint8_t u_pp_ptr; uint8_t u_pp_rsvd[3]; } u_pp; struct { /* Redirect structure */ ipaddr_t u_rd_gateway; } u_rd; } icmph_u; } icmph_t; #define icmph_echo_ident icmph_u.u_echo.u_echo_ident #define icmph_echo_seqnum icmph_u.u_echo.u_echo_seqnum #define icmph_du_zero icmph_u.u_du.u_du_zero #define icmph_du_mtu icmph_u.u_du.u_du_mtu #define icmph_pp_ptr icmph_u.u_pp.u_pp_ptr #define icmph_rd_gateway icmph_u.u_rd.u_rd_gateway #define ICMPH_SIZE 8 /* * Minimum length of transport layer header included in an ICMP error * message for it to be considered valid. */ #define ICMP_MIN_TP_HDR_LEN 8 /* Aligned IP header */ typedef struct ipha_s { uint8_t ipha_version_and_hdr_length; uint8_t ipha_type_of_service; uint16_t ipha_length; uint16_t ipha_ident; uint16_t ipha_fragment_offset_and_flags; uint8_t ipha_ttl; uint8_t ipha_protocol; uint16_t ipha_hdr_checksum; ipaddr_t ipha_src; ipaddr_t ipha_dst; } ipha_t; /* * IP Flags * * Some of these constant names are copied for the DTrace IP provider in * usr/src/lib/libdtrace/common/{ip.d.in, ip.sed.in}, which should be kept * in sync. */ #define IPH_DF 0x4000 /* Don't fragment */ #define IPH_MF 0x2000 /* More fragments to come */ #define IPH_OFFSET 0x1FFF /* Where the offset lives */ #define IPH_FRAG_HDR 0x8000 /* IPv6 don't fragment bit */ /* ECN code points for IPv4 TOS byte and IPv6 traffic class octet. */ #define IPH_ECN_NECT 0x0 /* Not ECN-Capable Transport */ #define IPH_ECN_ECT1 0x1 /* ECN-Capable Transport, ECT(1) */ #define IPH_ECN_ECT0 0x2 /* ECN-Capable Transport, ECT(0) */ #define IPH_ECN_CE 0x3 /* ECN-Congestion Experienced (CE) */ struct ill_s; typedef boolean_t ip_v6intfid_func_t(struct ill_s *, in6_addr_t *); typedef boolean_t ip_v6mapinfo_func_t(uint_t, uint8_t *, uint8_t *, uint32_t *, in6_addr_t *); typedef boolean_t ip_v4mapinfo_func_t(uint_t, uint8_t *, uint8_t *, uint32_t *, ipaddr_t *); /* IP Mac info structure */ typedef struct ip_m_s { t_uscalar_t ip_m_mac_type; /* From */ int ip_m_type; /* From */ ip_v4mapinfo_func_t *ip_m_v4mapinfo; ip_v6mapinfo_func_t *ip_m_v6mapinfo; ip_v6intfid_func_t *ip_m_v6intfid; } ip_m_t; /* * The following functions attempt to reduce the link layer dependency * of the IP stack. The current set of link specific operations are: * a. map from IPv4 class D (224.0/4) multicast address range to the link * layer multicast address range. * b. map from IPv6 multicast address range (ff00::/8) to the link * layer multicast address range. * c. derive the default IPv6 interface identifier from the interface. * d. derive the default IPv6 destination interface identifier from * the interface (point-to-point only). */ #define MEDIA_V4MINFO(ip_m, plen, bphys, maddr, hwxp, v4ptr) \ (((ip_m)->ip_m_v4mapinfo != NULL) && \ (*(ip_m)->ip_m_v4mapinfo)(plen, bphys, maddr, hwxp, v4ptr)) #define MEDIA_V6MINFO(ip_m, plen, bphys, maddr, hwxp, v6ptr) \ (((ip_m)->ip_m_v6mapinfo != NULL) && \ (*(ip_m)->ip_m_v6mapinfo)(plen, bphys, maddr, hwxp, v6ptr)) #define MEDIA_V6INTFID(ip_m, ill, v6ptr) \ (((ip_m)->ip_m_v6intfid != NULL) && \ (*(ip_m)->ip_m_v6intfid)(ill, v6ptr)) #define MEDIA_V6DESTINTFID(ip_m, ill, v6ptr) \ (((ip_m)->ip_m_v6destintfid != NULL) && \ (*(ip_m)->ip_m_v6destintfid)(ill, v6ptr)) /* Router entry types */ #define IRE_BROADCAST 0x0001 /* Route entry for broadcast address */ #define IRE_DEFAULT 0x0002 /* Route entry for default gateway */ #define IRE_LOCAL 0x0004 /* Route entry for local address */ #define IRE_LOOPBACK 0x0008 /* Route entry for loopback address */ #define IRE_PREFIX 0x0010 /* Route entry for prefix routes */ #define IRE_CACHE 0x0020 /* Cached Route entry */ #define IRE_IF_NORESOLVER 0x0040 /* Route entry for local interface */ /* net without any address mapping. */ #define IRE_IF_RESOLVER 0x0080 /* Route entry for local interface */ /* net with resolver. */ #define IRE_HOST 0x0100 /* Host route entry */ #define IRE_HOST_REDIRECT 0x0200 /* only used for T_SVR4_OPTMGMT_REQ */ #define IRE_INTERFACE (IRE_IF_NORESOLVER | IRE_IF_RESOLVER) #define IRE_OFFSUBNET (IRE_DEFAULT | IRE_PREFIX | IRE_HOST) #define IRE_CACHETABLE (IRE_CACHE | IRE_BROADCAST | IRE_LOCAL | \ IRE_LOOPBACK) #define IRE_FORWARDTABLE (IRE_INTERFACE | IRE_OFFSUBNET) /* * If an IRE is marked with IRE_MARK_CONDEMNED, the last walker of * the bucket should delete this IRE from this bucket. */ #define IRE_MARK_CONDEMNED 0x0001 /* * An IRE with IRE_MARK_PMTU has ire_max_frag set from an ICMP error. */ #define IRE_MARK_PMTU 0x0002 /* * An IRE with IRE_MARK_TESTHIDDEN is used by in.mpathd for test traffic. It * can only be looked up by requesting MATCH_IRE_MARK_TESTHIDDEN. */ #define IRE_MARK_TESTHIDDEN 0x0004 /* * An IRE with IRE_MARK_NOADD is created in ip_newroute_ipif when the outgoing * interface is specified by e.g. IP_PKTINFO. The IRE is not added to the IRE * cache table. */ #define IRE_MARK_NOADD 0x0008 /* Mark not to add ire in cache */ /* * IRE marked with IRE_MARK_TEMPORARY means that this IRE has been used * either for forwarding a packet or has not been used for sending * traffic on TCP connections terminated on this system. In both * cases, this IRE is the first to go when IRE is being cleaned up. */ #define IRE_MARK_TEMPORARY 0x0010 /* * IRE marked with IRE_MARK_USESRC_CHECK means that while adding an IRE with * this mark, additional atomic checks need to be performed. For eg: by the * time an IRE_CACHE is created, sent up to ARP and then comes back to IP; the * usesrc grouping could have changed in which case we want to fail adding * the IRE_CACHE entry */ #define IRE_MARK_USESRC_CHECK 0x0020 /* * IRE_MARK_PRIVATE_ADDR is used for IP_NEXTHOP. When IP_NEXTHOP is set, the * routing table lookup for the destination is bypassed and the packet is * sent directly to the specified nexthop. The associated IRE_CACHE entries * should be marked with IRE_MARK_PRIVATE_ADDR flag so that they don't show up * in regular ire cache lookups. */ #define IRE_MARK_PRIVATE_ADDR 0x0040 /* * When we send an ARP resolution query for the nexthop gateway's ire, * we use esballoc to create the ire_t in the AR_ENTRY_QUERY mblk * chain, and mark its ire_marks with IRE_MARK_UNCACHED. This flag * indicates that information from ARP has not been transferred to a * permanent IRE_CACHE entry. The flag is reset only when the * information is successfully transferred to an ire_cache entry (in * ire_add()). Attempting to free the AR_ENTRY_QUERY mblk chain prior * to ire_add (e.g., from arp, or from ip`ip_wput_nondata) will * require that the resources (incomplete ire_cache and/or nce) must * be cleaned up. The free callback routine (ire_freemblk()) checks * for IRE_MARK_UNCACHED to see if any resources that are pinned down * will need to be cleaned up or not. */ #define IRE_MARK_UNCACHED 0x0080 /* * The comment below (and for other netstack_t references) refers * to the fact that we only do netstack_hold in particular cases, * such as the references from open streams (ill_t and conn_t's * pointers). Internally within IP we rely on IP's ability to cleanup e.g. * ire_t's when an ill goes away. */ typedef struct ire_expire_arg_s { int iea_flush_flag; ip_stack_t *iea_ipst; /* Does not have a netstack_hold */ } ire_expire_arg_t; /* Flags with ire_expire routine */ #define FLUSH_ARP_TIME 0x0001 /* ARP info potentially stale timer */ #define FLUSH_REDIRECT_TIME 0x0002 /* Redirects potentially stale */ #define FLUSH_MTU_TIME 0x0004 /* Include path MTU per RFC 1191 */ /* Arguments to ire_flush_cache() */ #define IRE_FLUSH_DELETE 0 #define IRE_FLUSH_ADD 1 /* * Open/close synchronization flags. * These are kept in a separate field in the conn and the synchronization * depends on the atomic 32 bit access to that field. */ #define CONN_CLOSING 0x01 /* ip_close waiting for ip_wsrv */ #define CONN_IPSEC_LOAD_WAIT 0x02 /* waiting for load */ #define CONN_CONDEMNED 0x04 /* conn is closing, no more refs */ #define CONN_INCIPIENT 0x08 /* conn not yet visible, no refs */ #define CONN_QUIESCED 0x10 /* conn is now quiescent */ /* Used to check connection state flags before caching the IRE */ #define CONN_CACHE_IRE(connp) \ (!((connp)->conn_state_flags & (CONN_CLOSING|CONN_CONDEMNED))) /* * Parameter to ip_output giving the identity of the caller. * IP_WSRV means the packet was enqueued in the STREAMS queue * due to flow control and is now being reprocessed in the context of * the STREAMS service procedure, consequent to flow control relief. * IRE_SEND means the packet is being reprocessed consequent to an * ire cache creation and addition and this may or may not be happening * in the service procedure context. Anything other than the above 2 * cases is identified as IP_WPUT. Most commonly this is the case of * packets coming down from the application. */ #ifdef _KERNEL #define IP_WSRV 1 /* Called from ip_wsrv */ #define IP_WPUT 2 /* Called from ip_wput */ #define IRE_SEND 3 /* Called from ire_send */ /* * Extra structures need for per-src-addr filtering (IGMPv3/MLDv2) */ #define MAX_FILTER_SIZE 64 typedef struct slist_s { int sl_numsrc; in6_addr_t sl_addr[MAX_FILTER_SIZE]; } slist_t; /* * Following struct is used to maintain retransmission state for * a multicast group. One rtx_state_t struct is an in-line field * of the ilm_t struct; the slist_ts in the rtx_state_t struct are * alloc'd as needed. */ typedef struct rtx_state_s { uint_t rtx_timer; /* retrans timer */ int rtx_cnt; /* retrans count */ int rtx_fmode_cnt; /* retrans count for fmode change */ slist_t *rtx_allow; slist_t *rtx_block; } rtx_state_t; /* * Used to construct list of multicast address records that will be * sent in a single listener report. */ typedef struct mrec_s { struct mrec_s *mrec_next; uint8_t mrec_type; uint8_t mrec_auxlen; /* currently unused */ in6_addr_t mrec_group; slist_t mrec_srcs; } mrec_t; /* Group membership list per upper conn */ /* * XXX add ilg info for ifaddr/ifindex. * XXX can we make ilg survive an ifconfig unplumb + plumb * by setting the ipif/ill to NULL and recover that later? * * ilg_ipif is used by IPv4 as multicast groups are joined using an interface * address (ipif). * ilg_ill is used by IPv6 as multicast groups are joined using an interface * index (phyint->phyint_ifindex). * ilg_ill is NULL for IPv4 and ilg_ipif is NULL for IPv6. * * ilg records the state of multicast memberships of a socket end point. * ilm records the state of multicast memberships with the driver and is * maintained per interface. * * There is no direct link between a given ilg and ilm. If the * application has joined a group G with ifindex I, we will have * an ilg with ilg_v6group and ilg_ill. There will be a corresponding * ilm with ilm_ill/ilm_v6addr recording the multicast membership. * To delete the membership: * * a) Search for ilg matching on G and I with ilg_v6group * and ilg_ill. Delete ilg_ill. * b) Search the corresponding ilm matching on G and I with * ilm_v6addr and ilm_ill. Delete ilm. * * For IPv4 the only difference is that we look using ipifs, not ills. */ /* * The ilg_t and ilm_t members are protected by ipsq. They can be changed only * by a thread executing in the ipsq. In other words add/delete of a * multicast group has to execute in the ipsq. */ #define ILG_DELETED 0x1 /* ilg_flags */ typedef struct ilg_s { in6_addr_t ilg_v6group; struct ipif_s *ilg_ipif; /* Logical interface we are member on */ struct ill_s *ilg_ill; /* Used by IPv6 */ uint_t ilg_flags; mcast_record_t ilg_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */ slist_t *ilg_filter; } ilg_t; /* * Multicast address list entry for ill. * ilm_ipif is used by IPv4 as multicast groups are joined using ipif. * ilm_ill is used by IPv6 as multicast groups are joined using ill. * ilm_ill is NULL for IPv4 and ilm_ipif is NULL for IPv6. * * The comment below (and for other netstack_t references) refers * to the fact that we only do netstack_hold in particular cases, * such as the references from open streams (ill_t and conn_t's * pointers). Internally within IP we rely on IP's ability to cleanup e.g. * ire_t's when an ill goes away. */ #define ILM_DELETED 0x1 /* ilm_flags */ typedef struct ilm_s { in6_addr_t ilm_v6addr; int ilm_refcnt; uint_t ilm_timer; /* IGMP/MLD query resp timer, in msec */ struct ipif_s *ilm_ipif; /* Back pointer to ipif for IPv4 */ struct ilm_s *ilm_next; /* Linked list for each ill */ uint_t ilm_state; /* state of the membership */ struct ill_s *ilm_ill; /* Back pointer to ill for IPv6 */ uint_t ilm_flags; boolean_t ilm_notify_driver; /* Need to notify the driver */ zoneid_t ilm_zoneid; int ilm_no_ilg_cnt; /* number of joins w/ no ilg */ mcast_record_t ilm_fmode; /* MODE_IS_INCLUDE/MODE_IS_EXCLUDE */ slist_t *ilm_filter; /* source filter list */ slist_t *ilm_pendsrcs; /* relevant src addrs for pending req */ rtx_state_t ilm_rtx; /* SCR retransmission state */ ip_stack_t *ilm_ipst; /* Does not have a netstack_hold */ } ilm_t; #define ilm_addr V4_PART_OF_V6(ilm_v6addr) typedef struct ilm_walker { struct ill_s *ilw_ill; /* associated ill */ struct ill_s *ilw_ipmp_ill; /* associated ipmp ill (if any) */ struct ill_s *ilw_walk_ill; /* current ill being walked */ } ilm_walker_t; /* * Soft reference to an IPsec SA. * * On relative terms, conn's can be persistent (living as long as the * processes which create them), while SA's are ephemeral (dying when * they hit their time-based or byte-based lifetimes). * * We could hold a hard reference to an SA from an ipsec_latch_t, * but this would cause expired SA's to linger for a potentially * unbounded time. * * Instead, we remember the hash bucket number and bucket generation * in addition to the pointer. The bucket generation is incremented on * each deletion. */ typedef struct ipsa_ref_s { struct ipsa_s *ipsr_sa; struct isaf_s *ipsr_bucket; uint64_t ipsr_gen; } ipsa_ref_t; /* * IPsec "latching" state. * * In the presence of IPsec policy, fully-bound conn's bind a connection * to more than just the 5-tuple, but also a specific IPsec action and * identity-pair. * * As an optimization, we also cache soft references to IPsec SA's * here so that we can fast-path around most of the work needed for * outbound IPsec SA selection. * * Were it not for TCP's detached connections, this state would be * in-line in conn_t; instead, this is in a separate structure so it * can be handed off to TCP when a connection is detached. */ typedef struct ipsec_latch_s { kmutex_t ipl_lock; uint32_t ipl_refcnt; uint64_t ipl_unique; struct ipsec_policy_s *ipl_in_policy; /* latched policy (in) */ struct ipsec_policy_s *ipl_out_policy; /* latched policy (out) */ struct ipsec_action_s *ipl_in_action; /* latched action (in) */ struct ipsec_action_s *ipl_out_action; /* latched action (out) */ cred_t *ipl_local_id; struct ipsid_s *ipl_local_cid; struct ipsid_s *ipl_remote_cid; unsigned int ipl_out_action_latched : 1, ipl_in_action_latched : 1, ipl_out_policy_latched : 1, ipl_in_policy_latched : 1, ipl_ids_latched : 1, ipl_pad_to_bit_31 : 27; ipsa_ref_t ipl_ref[2]; /* 0: ESP, 1: AH */ } ipsec_latch_t; #define IPLATCH_REFHOLD(ipl) { \ atomic_add_32(&(ipl)->ipl_refcnt, 1); \ ASSERT((ipl)->ipl_refcnt != 0); \ } #define IPLATCH_REFRELE(ipl, ns) { \ ASSERT((ipl)->ipl_refcnt != 0); \ membar_exit(); \ if (atomic_add_32_nv(&(ipl)->ipl_refcnt, -1) == 0) \ iplatch_free(ipl, ns); \ } /* * peer identity structure. */ typedef struct conn_s conn_t; /* * The old IP client structure "ipc_t" is gone. All the data is stored in the * connection structure "conn_t" now. The mapping of old and new fields looks * like this: * * ipc_ulp conn_ulp * ipc_rq conn_rq * ipc_wq conn_wq * * ipc_laddr conn_src * ipc_faddr conn_rem * ipc_v6laddr conn_srcv6 * ipc_v6faddr conn_remv6 * * ipc_lport conn_lport * ipc_fport conn_fport * ipc_ports conn_ports * * ipc_policy conn_policy * ipc_latch conn_latch * * ipc_irc_lock conn_lock * ipc_ire_cache conn_ire_cache * * ipc_state_flags conn_state_flags * ipc_outgoing_ill conn_outgoing_ill * * ipc_dontroute conn_dontroute * ipc_loopback conn_loopback * ipc_broadcast conn_broadcast * ipc_reuseaddr conn_reuseaddr * * ipc_multicast_loop conn_multicast_loop * ipc_multi_router conn_multi_router * ipc_draining conn_draining * * ipc_did_putbq conn_did_putbq * ipc_unspec_src conn_unspec_src * ipc_policy_cached conn_policy_cached * * ipc_in_enforce_policy conn_in_enforce_policy * ipc_out_enforce_policy conn_out_enforce_policy * ipc_af_isv6 conn_af_isv6 * ipc_pkt_isv6 conn_pkt_isv6 * * ipc_ipv6_recvpktinfo conn_ipv6_recvpktinfo * * ipc_ipv6_recvhoplimit conn_ipv6_recvhoplimit * ipc_ipv6_recvhopopts conn_ipv6_recvhopopts * ipc_ipv6_recvdstopts conn_ipv6_recvdstopts * * ipc_ipv6_recvrthdr conn_ipv6_recvrthdr * ipc_ipv6_recvrtdstopts conn_ipv6_recvrtdstopts * ipc_fully_bound conn_fully_bound * * ipc_recvif conn_recvif * * ipc_recvslla conn_recvslla * ipc_acking_unbind conn_acking_unbind * ipc_pad_to_bit_31 conn_pad_to_bit_31 * * ipc_proto conn_proto * ipc_incoming_ill conn_incoming_ill * ipc_pending_ill conn_pending_ill * ipc_unbind_mp conn_unbind_mp * ipc_ilg conn_ilg * ipc_ilg_allocated conn_ilg_allocated * ipc_ilg_inuse conn_ilg_inuse * ipc_ilg_walker_cnt conn_ilg_walker_cnt * ipc_refcv conn_refcv * ipc_multicast_ipif conn_multicast_ipif * ipc_multicast_ill conn_multicast_ill * ipc_drain_next conn_drain_next * ipc_drain_prev conn_drain_prev * ipc_idl conn_idl */ /* * This is used to match an inbound/outbound datagram with policy. */ typedef struct ipsec_selector { in6_addr_t ips_local_addr_v6; in6_addr_t ips_remote_addr_v6; uint16_t ips_local_port; uint16_t ips_remote_port; uint8_t ips_icmp_type; uint8_t ips_icmp_code; uint8_t ips_protocol; uint8_t ips_isv4 : 1, ips_is_icmp_inv_acq: 1; } ipsec_selector_t; /* * Note that we put v4 addresses in the *first* 32-bit word of the * selector rather than the last to simplify the prefix match/mask code * in spd.c */ #define ips_local_addr_v4 ips_local_addr_v6.s6_addr32[0] #define ips_remote_addr_v4 ips_remote_addr_v6.s6_addr32[0] /* Values used in IP by IPSEC Code */ #define IPSEC_OUTBOUND B_TRUE #define IPSEC_INBOUND B_FALSE /* * There are two variants in policy failures. The packet may come in * secure when not needed (IPSEC_POLICY_???_NOT_NEEDED) or it may not * have the desired level of protection (IPSEC_POLICY_MISMATCH). */ #define IPSEC_POLICY_NOT_NEEDED 0 #define IPSEC_POLICY_MISMATCH 1 #define IPSEC_POLICY_AUTH_NOT_NEEDED 2 #define IPSEC_POLICY_ENCR_NOT_NEEDED 3 #define IPSEC_POLICY_SE_NOT_NEEDED 4 #define IPSEC_POLICY_MAX 5 /* Always max + 1. */ /* * Folowing macro is used whenever the code does not know whether there * is a M_CTL present in the front and it needs to examine the actual mp * i.e the IP header. As a M_CTL message could be in the front, this * extracts the packet into mp and the M_CTL mp into first_mp. If M_CTL * mp is not present, both first_mp and mp point to the same message. */ #define EXTRACT_PKT_MP(mp, first_mp, mctl_present) \ (first_mp) = (mp); \ if ((mp)->b_datap->db_type == M_CTL) { \ (mp) = (mp)->b_cont; \ (mctl_present) = B_TRUE; \ } else { \ (mctl_present) = B_FALSE; \ } /* * Check with IPSEC inbound policy if * * 1) per-socket policy is present - indicated by conn_in_enforce_policy. * 2) Or if we have not cached policy on the conn and the global policy is * non-empty. */ #define CONN_INBOUND_POLICY_PRESENT(connp, ipss) \ ((connp)->conn_in_enforce_policy || \ (!((connp)->conn_policy_cached) && \ (ipss)->ipsec_inbound_v4_policy_present)) #define CONN_INBOUND_POLICY_PRESENT_V6(connp, ipss) \ ((connp)->conn_in_enforce_policy || \ (!(connp)->conn_policy_cached && \ (ipss)->ipsec_inbound_v6_policy_present)) #define CONN_OUTBOUND_POLICY_PRESENT(connp, ipss) \ ((connp)->conn_out_enforce_policy || \ (!((connp)->conn_policy_cached) && \ (ipss)->ipsec_outbound_v4_policy_present)) #define CONN_OUTBOUND_POLICY_PRESENT_V6(connp, ipss) \ ((connp)->conn_out_enforce_policy || \ (!(connp)->conn_policy_cached && \ (ipss)->ipsec_outbound_v6_policy_present)) /* * Information cached in IRE for upper layer protocol (ULP). * * Notice that ire_max_frag is not included in the iulp_t structure, which * it may seem that it should. But ire_max_frag cannot really be cached. It * is fixed for each interface. For MTU found by PMTUd, we may want to cache * it. But currently, we do not do that. */ typedef struct iulp_s { boolean_t iulp_set; /* Is any metric set? */ uint32_t iulp_ssthresh; /* Slow start threshold (TCP). */ clock_t iulp_rtt; /* Guestimate in millisecs. */ clock_t iulp_rtt_sd; /* Cached value of RTT variance. */ uint32_t iulp_spipe; /* Send pipe size. */ uint32_t iulp_rpipe; /* Receive pipe size. */ uint32_t iulp_rtomax; /* Max round trip timeout. */ uint32_t iulp_sack; /* Use SACK option (TCP)? */ uint32_t iulp_tstamp_ok : 1, /* Use timestamp option (TCP)? */ iulp_wscale_ok : 1, /* Use window scale option (TCP)? */ iulp_ecn_ok : 1, /* Enable ECN (for TCP)? */ iulp_pmtud_ok : 1, /* Enable PMTUd? */ iulp_not_used : 28; } iulp_t; /* Zero iulp_t. */ extern const iulp_t ire_uinfo_null; /* * The conn drain list structure (idl_t). * The list is protected by idl_lock. Each conn_t inserted in the list * points back at this idl_t using conn_idl. IP primes the draining of the * conns queued in these lists, by qenabling the 1st conn of each list. This * occurs when STREAMS backenables ip_wsrv on the IP module. Each conn instance * of ip_wsrv successively qenables the next conn in the list. * idl_lock protects all other members of idl_t and conn_drain_next * and conn_drain_prev of conn_t. The conn_lock protects IPCF_DRAIN_DISABLED * flag of the conn_t and conn_idl. * * The conn drain list, idl_t, itself is part of tx cookie list structure. * A tx cookie list points to a blocked Tx ring and contains the list of * all conn's that are blocked due to the flow-controlled Tx ring (via * the idl drain list). Note that a link can have multiple Tx rings. The * drain list will store the conn's blocked due to Tx ring being flow * controlled. */ typedef uintptr_t ip_mac_tx_cookie_t; typedef struct idl_s idl_t; typedef struct idl_tx_list_s idl_tx_list_t; struct idl_tx_list_s { ip_mac_tx_cookie_t txl_cookie; kmutex_t txl_lock; /* Lock for this list */ idl_t *txl_drain_list; int txl_drain_index; }; struct idl_s { conn_t *idl_conn; /* Head of drain list */ kmutex_t idl_lock; /* Lock for this list */ conn_t *idl_conn_draining; /* conn that is draining */ uint32_t idl_repeat : 1, /* Last conn must re-enable */ /* drain list again */ idl_unused : 31; idl_tx_list_t *idl_itl; }; #define CONN_DRAIN_LIST_LOCK(connp) (&((connp)->conn_idl->idl_lock)) /* * Interface route structure which holds the necessary information to recreate * routes that are tied to an interface (namely where ire_ipif != NULL). * These routes which were initially created via a routing socket or via the * SIOCADDRT ioctl may be gateway routes (RTF_GATEWAY being set) or may be * traditional interface routes. When an interface comes back up after being * marked down, this information will be used to recreate the routes. These * are part of an mblk_t chain that hangs off of the IPIF (ipif_saved_ire_mp). */ typedef struct ifrt_s { ushort_t ifrt_type; /* Type of IRE */ in6_addr_t ifrt_v6addr; /* Address IRE represents. */ in6_addr_t ifrt_v6gateway_addr; /* Gateway if IRE_OFFSUBNET */ in6_addr_t ifrt_v6src_addr; /* Src addr if RTF_SETSRC */ in6_addr_t ifrt_v6mask; /* Mask for matching IRE. */ uint32_t ifrt_flags; /* flags related to route */ uint_t ifrt_max_frag; /* MTU (next hop or path). */ iulp_t ifrt_iulp_info; /* Cached IRE ULP info. */ } ifrt_t; #define ifrt_addr V4_PART_OF_V6(ifrt_v6addr) #define ifrt_gateway_addr V4_PART_OF_V6(ifrt_v6gateway_addr) #define ifrt_src_addr V4_PART_OF_V6(ifrt_v6src_addr) #define ifrt_mask V4_PART_OF_V6(ifrt_v6mask) /* Number of IP addresses that can be hosted on a physical interface */ #define MAX_ADDRS_PER_IF 8192 /* * Number of Source addresses to be considered for source address * selection. Used by ipif_select_source[_v6]. */ #define MAX_IPIF_SELECT_SOURCE 50 #ifdef IP_DEBUG /* * Trace refholds and refreles for debugging. */ #define TR_STACK_DEPTH 14 typedef struct tr_buf_s { int tr_depth; clock_t tr_time; pc_t tr_stack[TR_STACK_DEPTH]; } tr_buf_t; typedef struct th_trace_s { int th_refcnt; uint_t th_trace_lastref; kthread_t *th_id; #define TR_BUF_MAX 38 tr_buf_t th_trbuf[TR_BUF_MAX]; } th_trace_t; typedef struct th_hash_s { list_node_t thh_link; mod_hash_t *thh_hash; ip_stack_t *thh_ipst; } th_hash_t; #endif /* The following are ipif_state_flags */ #define IPIF_CONDEMNED 0x1 /* The ipif is being removed */ #define IPIF_CHANGING 0x2 /* A critcal ipif field is changing */ #define IPIF_SET_LINKLOCAL 0x10 /* transient flag during bringup */ #define IPIF_ZERO_SOURCE 0x20 /* transient flag during bringup */ /* IP interface structure, one per local address */ typedef struct ipif_s { struct ipif_s *ipif_next; struct ill_s *ipif_ill; /* Back pointer to our ill */ int ipif_id; /* Logical unit number */ uint_t ipif_mtu; /* Starts at ipif_ill->ill_max_frag */ in6_addr_t ipif_v6lcl_addr; /* Local IP address for this if. */ in6_addr_t ipif_v6src_addr; /* Source IP address for this if. */ in6_addr_t ipif_v6subnet; /* Subnet prefix for this if. */ in6_addr_t ipif_v6net_mask; /* Net mask for this interface. */ in6_addr_t ipif_v6brd_addr; /* Broadcast addr for this interface. */ in6_addr_t ipif_v6pp_dst_addr; /* Point-to-point dest address. */ uint64_t ipif_flags; /* Interface flags. */ uint_t ipif_metric; /* BSD if metric, for compatibility. */ uint_t ipif_ire_type; /* IRE_LOCAL or IRE_LOOPBACK */ mblk_t *ipif_arp_del_mp; /* Allocated at time arp comes up, to */ /* prevent awkward out of mem */ /* condition later */ mblk_t *ipif_saved_ire_mp; /* Allocated for each extra */ /* IRE_IF_NORESOLVER/IRE_IF_RESOLVER */ /* on this interface so that they */ /* can survive ifconfig down. */ kmutex_t ipif_saved_ire_lock; /* Protects ipif_saved_ire_mp */ mrec_t *ipif_igmp_rpt; /* List of group memberships which */ /* will be reported on. Used when */ /* handling an igmp timeout. */ /* * The packet counts in the ipif contain the sum of the * packet counts in dead IREs that were affiliated with * this ipif. */ uint_t ipif_fo_pkt_count; /* Forwarded thru our dead IREs */ uint_t ipif_ib_pkt_count; /* Inbound packets for our dead IREs */ uint_t ipif_ob_pkt_count; /* Outbound packets to our dead IREs */ /* Exclusive bit fields, protected by ipsq_t */ unsigned int ipif_multicast_up : 1, /* ipif_multicast_up() successful */ ipif_was_up : 1, /* ipif was up before */ ipif_addr_ready : 1, /* DAD is done */ ipif_was_dup : 1, /* DAD had failed */ ipif_joined_allhosts : 1, /* allhosts joined */ ipif_added_nce : 1, /* nce added for local address */ ipif_pad_to_31 : 26; uint_t ipif_seqid; /* unique index across all ills */ uint_t ipif_state_flags; /* See IPIF_* flag defs above */ uint_t ipif_refcnt; /* active consistent reader cnt */ /* Number of ire's and ilm's referencing this ipif */ uint_t ipif_ire_cnt; uint_t ipif_ilm_cnt; uint_t ipif_saved_ire_cnt; zoneid_t ipif_zoneid; /* zone ID number */ timeout_id_t ipif_recovery_id; /* Timer for DAD recovery */ boolean_t ipif_trace_disable; /* True when alloc fails */ /* * For an IPMP interface, ipif_bound_ill tracks the ill whose hardware * information this ipif is associated with via ARP/NDP. We can use * an ill pointer (rather than an index) because only ills that are * part of a group will be pointed to, and an ill cannot disappear * while it's in a group. */ struct ill_s *ipif_bound_ill; struct ipif_s *ipif_bound_next; /* bound ipif chain */ boolean_t ipif_bound; /* B_TRUE if we successfully bound */ } ipif_t; /* * IPIF_FREE_OK() means that there are no incoming references * to the ipif. Incoming refs would prevent the ipif from being freed. */ #define IPIF_FREE_OK(ipif) \ ((ipif)->ipif_ire_cnt == 0 && (ipif)->ipif_ilm_cnt == 0) /* * IPIF_DOWN_OK() determines whether the incoming pointer reference counts * would permit the ipif to be considered quiescent. In order for * an ipif or ill to be considered quiescent, the ire and nce references * to that ipif/ill must be zero. * * We do not require the ilm references to go to zero for quiescence * because the quiescence checks are done to ensure that * outgoing packets do not use addresses from the ipif/ill after it * has been marked down, and incoming packets to addresses on a * queiscent interface are rejected. This implies that all the * ire/nce's using that source address need to be deleted and future * creation of any ires using that source address must be prevented. * Similarly incoming unicast packets destined to the 'down' address * will not be accepted once that ire is gone. However incoming * multicast packets are not destined to the downed address. * They are only related to the ill in question. Furthermore * the current API behavior allows applications to join or leave * multicast groups, i.e., IP_ADD_MEMBERSHIP / LEAVE_MEMBERSHIP, using a * down address. Therefore the ilm references are not included in * the _DOWN_OK macros. */ #define IPIF_DOWN_OK(ipif) ((ipif)->ipif_ire_cnt == 0) /* * The following table lists the protection levels of the various members * of the ipif_t. The following notation is used. * * Write once - Written to only once at the time of bringing up * the interface and can be safely read after the bringup without any lock. * * ipsq - Need to execute in the ipsq to perform the indicated access. * * ill_lock - Need to hold this mutex to perform the indicated access. * * ill_g_lock - Need to hold this rw lock as reader/writer for read access or * write access respectively. * * down ill - Written to only when the ill is down (i.e all ipifs are down) * up ill - Read only when the ill is up (i.e. at least 1 ipif is up) * * Table of ipif_t members and their protection * * ipif_next ipsq + ill_lock + ipsq OR ill_lock OR * ill_g_lock ill_g_lock * ipif_ill ipsq + down ipif write once * ipif_id ipsq + down ipif write once * ipif_mtu ipsq * ipif_v6lcl_addr ipsq + down ipif up ipif * ipif_v6src_addr ipsq + down ipif up ipif * ipif_v6subnet ipsq + down ipif up ipif * ipif_v6net_mask ipsq + down ipif up ipif * * ipif_v6brd_addr * ipif_v6pp_dst_addr * ipif_flags ill_lock ill_lock * ipif_metric * ipif_ire_type ipsq + down ill up ill * * ipif_arp_del_mp ipsq ipsq * ipif_saved_ire_mp ipif_saved_ire_lock ipif_saved_ire_lock * ipif_igmp_rpt ipsq ipsq * * ipif_fo_pkt_count Approx * ipif_ib_pkt_count Approx * ipif_ob_pkt_count Approx * * bit fields ill_lock ill_lock * * ipif_seqid ipsq Write once * * ipif_state_flags ill_lock ill_lock * ipif_refcnt ill_lock ill_lock * ipif_ire_cnt ill_lock ill_lock * ipif_ilm_cnt ill_lock ill_lock * ipif_saved_ire_cnt * * ipif_bound_ill ipsq + ipmp_lock ipsq OR ipmp_lock * ipif_bound_next ipsq ipsq * ipif_bound ipsq ipsq */ #define IP_TR_HASH(tid) ((((uintptr_t)tid) >> 6) & (IP_TR_HASH_MAX - 1)) #ifdef DEBUG #define IPIF_TRACE_REF(ipif) ipif_trace_ref(ipif) #define ILL_TRACE_REF(ill) ill_trace_ref(ill) #define IPIF_UNTRACE_REF(ipif) ipif_untrace_ref(ipif) #define ILL_UNTRACE_REF(ill) ill_untrace_ref(ill) #else #define IPIF_TRACE_REF(ipif) #define ILL_TRACE_REF(ill) #define IPIF_UNTRACE_REF(ipif) #define ILL_UNTRACE_REF(ill) #endif /* IPv4 compatibility macros */ #define ipif_lcl_addr V4_PART_OF_V6(ipif_v6lcl_addr) #define ipif_src_addr V4_PART_OF_V6(ipif_v6src_addr) #define ipif_subnet V4_PART_OF_V6(ipif_v6subnet) #define ipif_net_mask V4_PART_OF_V6(ipif_v6net_mask) #define ipif_brd_addr V4_PART_OF_V6(ipif_v6brd_addr) #define ipif_pp_dst_addr V4_PART_OF_V6(ipif_v6pp_dst_addr) /* Macros for easy backreferences to the ill. */ #define ipif_wq ipif_ill->ill_wq #define ipif_rq ipif_ill->ill_rq #define ipif_net_type ipif_ill->ill_net_type #define ipif_ipif_up_count ipif_ill->ill_ipif_up_count #define ipif_type ipif_ill->ill_type #define ipif_isv6 ipif_ill->ill_isv6 #define SIOCLIFADDR_NDX 112 /* ndx of SIOCLIFADDR in the ndx ioctl table */ /* * mode value for ip_ioctl_finish for finishing an ioctl */ #define CONN_CLOSE 1 /* No mi_copy */ #define COPYOUT 2 /* do an mi_copyout if needed */ #define NO_COPYOUT 3 /* do an mi_copy_done */ #define IPI2MODE(ipi) ((ipi)->ipi_flags & IPI_GET_CMD ? COPYOUT : NO_COPYOUT) /* * The IP-MT design revolves around the serialization objects ipsq_t (IPSQ) * and ipxop_t (exclusive operation or "xop"). Becoming "writer" on an IPSQ * ensures that no other threads can become "writer" on any IPSQs sharing that * IPSQ's xop until the writer thread is done. * * Each phyint points to one IPSQ that remains fixed over the phyint's life. * Each IPSQ points to one xop that can change over the IPSQ's life. If a * phyint is *not* in an IPMP group, then its IPSQ will refer to the IPSQ's * "own" xop (ipsq_ownxop). If a phyint *is* part of an IPMP group, then its * IPSQ will refer to the "group" xop, which is shorthand for the xop of the * IPSQ of the IPMP meta-interface's phyint. Thus, all phyints that are part * of the same IPMP group will have their IPSQ's point to the group xop, and * thus becoming "writer" on any phyint in the group will prevent any other * writer on any other phyint in the group. All IPSQs sharing the same xop * are chained together through ipsq_next (in the degenerate common case, * ipsq_next simply refers to itself). Note that the group xop is guaranteed * to exist at least as long as there are members in the group, since the IPMP * meta-interface can only be destroyed if the group is empty. * * Incoming exclusive operation requests are enqueued on the IPSQ they arrived * on rather than the xop. This makes switching xop's (as would happen when a * phyint leaves an IPMP group) simple, because after the phyint leaves the * group, any operations enqueued on its IPSQ can be safely processed with * respect to its new xop, and any operations enqueued on the IPSQs of its * former group can be processed with respect to their existing group xop. * Even so, switching xops is a subtle dance; see ipsq_dq() for details. * * An IPSQ's "own" xop is embedded within the IPSQ itself since they have have * identical lifetimes, and because doing so simplifies pointer management. * While each phyint and IPSQ point to each other, it is not possible to free * the IPSQ when the phyint is freed, since we may still *inside* the IPSQ * when the phyint is being freed. Thus, ipsq_phyint is set to NULL when the * phyint is freed, and the IPSQ free is later done in ipsq_exit(). * * ipsq_t synchronization: read write * * ipsq_xopq_mphead ipx_lock ipx_lock * ipsq_xopq_mptail ipx_lock ipx_lock * ipsq_xop_switch_mp ipsq_lock ipsq_lock * ipsq_phyint write once write once * ipsq_next RW_READER ill_g_lock RW_WRITER ill_g_lock * ipsq_xop ipsq_lock or ipsq ipsq_lock + ipsq * ipsq_swxop ipsq ipsq * ipsq_ownxop see ipxop_t see ipxop_t * ipsq_ipst write once write once * * ipxop_t synchronization: read write * * ipx_writer ipx_lock ipx_lock * ipx_xop_queued ipx_lock ipx_lock * ipx_mphead ipx_lock ipx_lock * ipx_mptail ipx_lock ipx_lock * ipx_ipsq write once write once * ips_ipsq_queued ipx_lock ipx_lock * ipx_waitfor ipsq or ipx_lock ipsq + ipx_lock * ipx_reentry_cnt ipsq or ipx_lock ipsq + ipx_lock * ipx_current_done ipsq ipsq * ipx_current_ioctl ipsq ipsq * ipx_current_ipif ipsq or ipx_lock ipsq + ipx_lock * ipx_pending_ipif ipsq or ipx_lock ipsq + ipx_lock * ipx_pending_mp ipsq or ipx_lock ipsq + ipx_lock * ipx_forced ipsq ipsq * ipx_depth ipsq ipsq * ipx_stack ipsq ipsq */ typedef struct ipxop_s { kmutex_t ipx_lock; /* see above */ kthread_t *ipx_writer; /* current owner */ mblk_t *ipx_mphead; /* messages tied to this op */ mblk_t *ipx_mptail; struct ipsq_s *ipx_ipsq; /* associated ipsq */ boolean_t ipx_ipsq_queued; /* ipsq using xop has queued op */ int ipx_waitfor; /* waiting; values encoded below */ int ipx_reentry_cnt; boolean_t ipx_current_done; /* is the current operation done? */ int ipx_current_ioctl; /* current ioctl, or 0 if no ioctl */ ipif_t *ipx_current_ipif; /* ipif for current op */ ipif_t *ipx_pending_ipif; /* ipif for ipsq_pending_mp */ mblk_t *ipx_pending_mp; /* current ioctl mp while waiting */ boolean_t ipx_forced; /* debugging aid */ #ifdef DEBUG int ipx_depth; /* debugging aid */ #define IPX_STACK_DEPTH 15 pc_t ipx_stack[IPX_STACK_DEPTH]; /* debugging aid */ #endif } ipxop_t; typedef struct ipsq_s { kmutex_t ipsq_lock; /* see above */ mblk_t *ipsq_switch_mp; /* op to handle right after switch */ mblk_t *ipsq_xopq_mphead; /* list of excl ops (mostly ioctls) */ mblk_t *ipsq_xopq_mptail; struct phyint *ipsq_phyint; /* associated phyint */ struct ipsq_s *ipsq_next; /* next ipsq sharing ipsq_xop */ struct ipxop_s *ipsq_xop; /* current xop synchronization info */ struct ipxop_s *ipsq_swxop; /* switch xop to on ipsq_exit() */ struct ipxop_s ipsq_ownxop; /* our own xop (may not be in-use) */ ip_stack_t *ipsq_ipst; /* does not have a netstack_hold */ } ipsq_t; /* * ipx_waitfor values: */ enum { IPIF_DOWN = 1, /* ipif_down() waiting for refcnts to drop */ ILL_DOWN, /* ill_down() waiting for refcnts to drop */ IPIF_FREE, /* ipif_free() waiting for refcnts to drop */ ILL_FREE /* ill unplumb waiting for refcnts to drop */ }; /* Operation types for ipsq_try_enter() */ #define CUR_OP 0 /* request writer within current operation */ #define NEW_OP 1 /* request writer for a new operation */ #define SWITCH_OP 2 /* request writer once IPSQ XOP switches */ /* * Kstats tracked on each IPMP meta-interface. Order here must match * ipmp_kstats[] in ip/ipmp.c. */ enum { IPMP_KSTAT_OBYTES, IPMP_KSTAT_OBYTES64, IPMP_KSTAT_RBYTES, IPMP_KSTAT_RBYTES64, IPMP_KSTAT_OPACKETS, IPMP_KSTAT_OPACKETS64, IPMP_KSTAT_OERRORS, IPMP_KSTAT_IPACKETS, IPMP_KSTAT_IPACKETS64, IPMP_KSTAT_IERRORS, IPMP_KSTAT_MULTIRCV, IPMP_KSTAT_MULTIXMT, IPMP_KSTAT_BRDCSTRCV, IPMP_KSTAT_BRDCSTXMT, IPMP_KSTAT_LINK_UP, IPMP_KSTAT_MAX /* keep last */ }; /* * phyint represents state that is common to both IPv4 and IPv6 interfaces. * There is a separate ill_t representing IPv4 and IPv6 which has a * backpointer to the phyint structure for accessing common state. */ typedef struct phyint { struct ill_s *phyint_illv4; struct ill_s *phyint_illv6; uint_t phyint_ifindex; /* SIOCSLIFINDEX */ uint64_t phyint_flags; avl_node_t phyint_avl_by_index; /* avl tree by index */ avl_node_t phyint_avl_by_name; /* avl tree by name */ kmutex_t phyint_lock; struct ipsq_s *phyint_ipsq; /* back pointer to ipsq */ struct ipmp_grp_s *phyint_grp; /* associated IPMP group */ char phyint_name[LIFNAMSIZ]; /* physical interface name */ uint64_t phyint_kstats0[IPMP_KSTAT_MAX]; /* baseline kstats */ } phyint_t; #define CACHE_ALIGN_SIZE 64 #define CACHE_ALIGN(align_struct) P2ROUNDUP(sizeof (struct align_struct),\ CACHE_ALIGN_SIZE) struct _phyint_list_s_ { avl_tree_t phyint_list_avl_by_index; /* avl tree by index */ avl_tree_t phyint_list_avl_by_name; /* avl tree by name */ }; typedef union phyint_list_u { struct _phyint_list_s_ phyint_list_s; char phyint_list_filler[CACHE_ALIGN(_phyint_list_s_)]; } phyint_list_t; #define phyint_list_avl_by_index phyint_list_s.phyint_list_avl_by_index #define phyint_list_avl_by_name phyint_list_s.phyint_list_avl_by_name /* * Fragmentation hash bucket */ typedef struct ipfb_s { struct ipf_s *ipfb_ipf; /* List of ... */ size_t ipfb_count; /* Count of bytes used by frag(s) */ kmutex_t ipfb_lock; /* Protect all ipf in list */ uint_t ipfb_frag_pkts; /* num of distinct fragmented pkts */ } ipfb_t; /* * IRE bucket structure. Usually there is an array of such structures, * each pointing to a linked list of ires. irb_refcnt counts the number * of walkers of a given hash bucket. Usually the reference count is * bumped up if the walker wants no IRES to be DELETED while walking the * list. Bumping up does not PREVENT ADDITION. This allows walking a given * hash bucket without stumbling up on a free pointer. * * irb_t structures in ip_ftable are dynamically allocated and freed. * In order to identify the irb_t structures that can be safely kmem_free'd * we need to ensure that * - the irb_refcnt is quiescent, indicating no other walkers, * - no other threads or ire's are holding references to the irb, * i.e., irb_nire == 0, * - there are no active ire's in the bucket, i.e., irb_ire_cnt == 0 */ typedef struct irb { struct ire_s *irb_ire; /* First ire in this bucket */ /* Should be first in this struct */ krwlock_t irb_lock; /* Protect this bucket */ uint_t irb_refcnt; /* Protected by irb_lock */ uchar_t irb_marks; /* CONDEMNED ires in this bucket ? */ #define IRB_MARK_CONDEMNED 0x0001 #define IRB_MARK_FTABLE 0x0002 uint_t irb_ire_cnt; /* Num of active IRE in this bucket */ uint_t irb_tmp_ire_cnt; /* Num of temporary IRE */ struct ire_s *irb_rr_origin; /* origin for round-robin */ int irb_nire; /* Num of ftable ire's that ref irb */ ip_stack_t *irb_ipst; /* Does not have a netstack_hold */ } irb_t; #define IRB2RT(irb) (rt_t *)((caddr_t)(irb) - offsetof(rt_t, rt_irb)) /* The following are return values of ip_xmit_v4() */ typedef enum { SEND_PASSED = 0, /* sent packet out on wire */ SEND_FAILED, /* sending of packet failed */ LOOKUP_IN_PROGRESS, /* ire cache found, ARP resolution in progress */ LLHDR_RESLV_FAILED /* macaddr resl of onlink dst or nexthop failed */ } ipxmit_state_t; #define IP_V4_G_HEAD 0 #define IP_V6_G_HEAD 1 #define MAX_G_HEADS 2 /* * unpadded ill_if structure */ struct _ill_if_s_ { union ill_if_u *illif_next; union ill_if_u *illif_prev; avl_tree_t illif_avl_by_ppa; /* AVL tree sorted on ppa */ vmem_t *illif_ppa_arena; /* ppa index space */ uint16_t illif_mcast_v1; /* hints for */ uint16_t illif_mcast_v2; /* [igmp|mld]_slowtimo */ int illif_name_len; /* name length */ char illif_name[LIFNAMSIZ]; /* name of interface type */ }; /* cache aligned ill_if structure */ typedef union ill_if_u { struct _ill_if_s_ ill_if_s; char illif_filler[CACHE_ALIGN(_ill_if_s_)]; } ill_if_t; #define illif_next ill_if_s.illif_next #define illif_prev ill_if_s.illif_prev #define illif_avl_by_ppa ill_if_s.illif_avl_by_ppa #define illif_ppa_arena ill_if_s.illif_ppa_arena #define illif_mcast_v1 ill_if_s.illif_mcast_v1 #define illif_mcast_v2 ill_if_s.illif_mcast_v2 #define illif_name ill_if_s.illif_name #define illif_name_len ill_if_s.illif_name_len typedef struct ill_walk_context_s { int ctx_current_list; /* current list being searched */ int ctx_last_list; /* last list to search */ } ill_walk_context_t; /* * ill_g_heads structure, one for IPV4 and one for IPV6 */ struct _ill_g_head_s_ { ill_if_t *ill_g_list_head; ill_if_t *ill_g_list_tail; }; typedef union ill_g_head_u { struct _ill_g_head_s_ ill_g_head_s; char ill_g_head_filler[CACHE_ALIGN(_ill_g_head_s_)]; } ill_g_head_t; #define ill_g_list_head ill_g_head_s.ill_g_list_head #define ill_g_list_tail ill_g_head_s.ill_g_list_tail #define IP_V4_ILL_G_LIST(ipst) \ (ipst)->ips_ill_g_heads[IP_V4_G_HEAD].ill_g_list_head #define IP_V6_ILL_G_LIST(ipst) \ (ipst)->ips_ill_g_heads[IP_V6_G_HEAD].ill_g_list_head #define IP_VX_ILL_G_LIST(i, ipst) \ (ipst)->ips_ill_g_heads[i].ill_g_list_head #define ILL_START_WALK_V4(ctx_ptr, ipst) \ ill_first(IP_V4_G_HEAD, IP_V4_G_HEAD, ctx_ptr, ipst) #define ILL_START_WALK_V6(ctx_ptr, ipst) \ ill_first(IP_V6_G_HEAD, IP_V6_G_HEAD, ctx_ptr, ipst) #define ILL_START_WALK_ALL(ctx_ptr, ipst) \ ill_first(MAX_G_HEADS, MAX_G_HEADS, ctx_ptr, ipst) /* * Capabilities, possible flags for ill_capabilities. */ #define ILL_CAPAB_AH 0x01 /* IPsec AH acceleration */ #define ILL_CAPAB_ESP 0x02 /* IPsec ESP acceleration */ #define ILL_CAPAB_MDT 0x04 /* Multidata Transmit */ #define ILL_CAPAB_HCKSUM 0x08 /* Hardware checksumming */ #define ILL_CAPAB_ZEROCOPY 0x10 /* Zero-copy */ #define ILL_CAPAB_DLD 0x20 /* DLD capabilities */ #define ILL_CAPAB_DLD_POLL 0x40 /* Polling */ #define ILL_CAPAB_DLD_DIRECT 0x80 /* Direct function call */ #define ILL_CAPAB_DLD_LSO 0x100 /* Large Segment Offload */ /* * Per-ill Multidata Transmit capabilities. */ typedef struct ill_mdt_capab_s ill_mdt_capab_t; /* * Per-ill IPsec capabilities. */ typedef struct ill_ipsec_capab_s ill_ipsec_capab_t; /* * Per-ill Hardware Checksumming capbilities. */ typedef struct ill_hcksum_capab_s ill_hcksum_capab_t; /* * Per-ill Zero-copy capabilities. */ typedef struct ill_zerocopy_capab_s ill_zerocopy_capab_t; /* * DLD capbilities. */ typedef struct ill_dld_capab_s ill_dld_capab_t; /* * Per-ill polling resource map. */ typedef struct ill_rx_ring ill_rx_ring_t; /* * Per-ill Large Segment Offload capabilities. */ typedef struct ill_lso_capab_s ill_lso_capab_t; /* The following are ill_state_flags */ #define ILL_LL_SUBNET_PENDING 0x01 /* Waiting for DL_INFO_ACK from drv */ #define ILL_CONDEMNED 0x02 /* No more new ref's to the ILL */ #define ILL_CHANGING 0x04 /* ILL not globally visible */ #define ILL_DL_UNBIND_IN_PROGRESS 0x08 /* UNBIND_REQ is sent */ /* Is this an ILL whose source address is used by other ILL's ? */ #define IS_USESRC_ILL(ill) \ (((ill)->ill_usesrc_ifindex == 0) && \ ((ill)->ill_usesrc_grp_next != NULL)) /* Is this a client/consumer of the usesrc ILL ? */ #define IS_USESRC_CLI_ILL(ill) \ (((ill)->ill_usesrc_ifindex != 0) && \ ((ill)->ill_usesrc_grp_next != NULL)) /* Is this an virtual network interface (vni) ILL ? */ #define IS_VNI(ill) \ (((ill) != NULL) && \ (((ill)->ill_phyint->phyint_flags & (PHYI_LOOPBACK|PHYI_VIRTUAL)) == \ PHYI_VIRTUAL)) /* Is this a loopback ILL? */ #define IS_LOOPBACK(ill) \ ((ill)->ill_phyint->phyint_flags & PHYI_LOOPBACK) /* Is this an IPMP meta-interface ILL? */ #define IS_IPMP(ill) \ ((ill)->ill_phyint->phyint_flags & PHYI_IPMP) /* Is this ILL under an IPMP meta-interface? (aka "in a group?") */ #define IS_UNDER_IPMP(ill) \ ((ill)->ill_grp != NULL && !IS_IPMP(ill)) /* Is ill1 in the same illgrp as ill2? */ #define IS_IN_SAME_ILLGRP(ill1, ill2) \ ((ill1)->ill_grp != NULL && ((ill1)->ill_grp == (ill2)->ill_grp)) /* Is ill1 on the same LAN as ill2? */ #define IS_ON_SAME_LAN(ill1, ill2) \ ((ill1) == (ill2) || IS_IN_SAME_ILLGRP(ill1, ill2)) #define ILL_OTHER(ill) \ ((ill)->ill_isv6 ? (ill)->ill_phyint->phyint_illv4 : \ (ill)->ill_phyint->phyint_illv6) /* * IPMP group ILL state structure -- up to two per IPMP group (V4 and V6). * Created when the V4 and/or V6 IPMP meta-interface is I_PLINK'd. It is * guaranteed to persist while there are interfaces of that type in the group. * In general, most fields are accessed outside of the IPSQ (e.g., in the * datapath), and thus use locks in addition to the IPSQ for protection. * * synchronization: read write * * ig_if ipsq or ill_g_lock ipsq and ill_g_lock * ig_actif ipsq or ipmp_lock ipsq and ipmp_lock * ig_nactif ipsq or ipmp_lock ipsq and ipmp_lock * ig_next_ill ipsq or ipmp_lock ipsq and ipmp_lock * ig_ipmp_ill write once write once * ig_cast_ill ipsq or ipmp_lock ipsq and ipmp_lock * ig_arpent ipsq ipsq * ig_mtu ipsq ipsq */ typedef struct ipmp_illgrp_s { list_t ig_if; /* list of all interfaces */ list_t ig_actif; /* list of active interfaces */ uint_t ig_nactif; /* number of active interfaces */ struct ill_s *ig_next_ill; /* next active interface to use */ struct ill_s *ig_ipmp_ill; /* backpointer to IPMP meta-interface */ struct ill_s *ig_cast_ill; /* nominated ill for multi/broadcast */ list_t ig_arpent; /* list of ARP entries */ uint_t ig_mtu; /* ig_ipmp_ill->ill_max_mtu */ } ipmp_illgrp_t; /* * IPMP group state structure -- one per IPMP group. Created when the * IPMP meta-interface is plumbed; it is guaranteed to persist while there * are interfaces in it. * * ipmp_grp_t synchronization: read write * * gr_name ipmp_lock ipmp_lock * gr_ifname write once write once * gr_mactype ipmp_lock ipmp_lock * gr_phyint write once write once * gr_nif ipmp_lock ipmp_lock * gr_nactif ipsq ipsq * gr_v4 ipmp_lock ipmp_lock * gr_v6 ipmp_lock ipmp_lock * gr_nv4 ipmp_lock ipmp_lock * gr_nv6 ipmp_lock ipmp_lock * gr_pendv4 ipmp_lock ipmp_lock * gr_pendv6 ipmp_lock ipmp_lock * gr_linkdownmp ipsq ipsq * gr_ksp ipmp_lock ipmp_lock * gr_kstats0 atomic atomic */ typedef struct ipmp_grp_s { char gr_name[LIFGRNAMSIZ]; /* group name */ char gr_ifname[LIFNAMSIZ]; /* interface name */ t_uscalar_t gr_mactype; /* DLPI mactype of group */ phyint_t *gr_phyint; /* IPMP group phyint */ uint_t gr_nif; /* number of interfaces in group */ uint_t gr_nactif; /* number of active interfaces */ ipmp_illgrp_t *gr_v4; /* V4 group information */ ipmp_illgrp_t *gr_v6; /* V6 group information */ uint_t gr_nv4; /* number of ills in V4 group */ uint_t gr_nv6; /* number of ills in V6 group */ uint_t gr_pendv4; /* number of pending ills in V4 group */ uint_t gr_pendv6; /* number of pending ills in V6 group */ mblk_t *gr_linkdownmp; /* message used to bring link down */ kstat_t *gr_ksp; /* group kstat pointer */ uint64_t gr_kstats0[IPMP_KSTAT_MAX]; /* baseline group kstats */ } ipmp_grp_t; /* * IPMP ARP entry -- one per SIOCS*ARP entry tied to the group. Used to keep * ARP up-to-date as the active set of interfaces in the group changes. */ typedef struct ipmp_arpent_s { mblk_t *ia_area_mp; /* AR_ENTRY_ADD pointer */ ipaddr_t ia_ipaddr; /* IP address for this entry */ boolean_t ia_proxyarp; /* proxy ARP entry? */ boolean_t ia_notified; /* ARP notified about this entry? */ list_node_t ia_node; /* next ARP entry in list */ } ipmp_arpent_t; /* * IP Lower level Structure. * Instance data structure in ip_open when there is a device below us. */ typedef struct ill_s { ill_if_t *ill_ifptr; /* pointer to interface type */ queue_t *ill_rq; /* Read queue. */ queue_t *ill_wq; /* Write queue. */ int ill_error; /* Error value sent up by device. */ ipif_t *ill_ipif; /* Interface chain for this ILL. */ uint_t ill_ipif_up_count; /* Number of IPIFs currently up. */ uint_t ill_max_frag; /* Max IDU from DLPI. */ char *ill_name; /* Our name. */ uint_t ill_ipif_dup_count; /* Number of duplicate addresses. */ uint_t ill_name_length; /* Name length, incl. terminator. */ char *ill_ndd_name; /* Name + ":ip?_forwarding" for NDD. */ uint_t ill_net_type; /* IRE_IF_RESOLVER/IRE_IF_NORESOLVER. */ /* * Physical Point of Attachment num. If DLPI style 1 provider * then this is derived from the devname. */ uint_t ill_ppa; t_uscalar_t ill_sap; t_scalar_t ill_sap_length; /* Including sign (for position) */ uint_t ill_phys_addr_length; /* Excluding the sap. */ uint_t ill_bcast_addr_length; /* Only set when the DL provider */ /* supports broadcast. */ t_uscalar_t ill_mactype; uint8_t *ill_frag_ptr; /* Reassembly state. */ timeout_id_t ill_frag_timer_id; /* timeout id for the frag timer */ ipfb_t *ill_frag_hash_tbl; /* Fragment hash list head. */ ipif_t *ill_pending_ipif; /* IPIF waiting for DL operation. */ ilm_t *ill_ilm; /* Multicast membership for ill */ uint_t ill_global_timer; /* for IGMPv3/MLDv2 general queries */ int ill_mcast_type; /* type of router which is querier */ /* on this interface */ uint16_t ill_mcast_v1_time; /* # slow timeouts since last v1 qry */ uint16_t ill_mcast_v2_time; /* # slow timeouts since last v2 qry */ uint8_t ill_mcast_v1_tset; /* 1 => timer is set; 0 => not set */ uint8_t ill_mcast_v2_tset; /* 1 => timer is set; 0 => not set */ uint8_t ill_mcast_rv; /* IGMPv3/MLDv2 robustness variable */ int ill_mcast_qi; /* IGMPv3/MLDv2 query interval var */ mblk_t *ill_pending_mp; /* IOCTL/DLPI awaiting completion. */ /* * All non-NULL cells between 'ill_first_mp_to_free' and * 'ill_last_mp_to_free' are freed in ill_delete. */ #define ill_first_mp_to_free ill_bcast_mp mblk_t *ill_bcast_mp; /* DLPI header for broadcasts. */ mblk_t *ill_resolver_mp; /* Resolver template. */ mblk_t *ill_unbind_mp; /* unbind mp from ill_dl_up() */ mblk_t *ill_promiscoff_mp; /* for ill_leave_allmulti() */ mblk_t *ill_dlpi_deferred; /* b_next chain of control messages */ mblk_t *ill_ardeact_mp; /* deact mp from ipmp_ill_activate() */ mblk_t *ill_replumb_mp; /* replumb mp from ill_replumb() */ mblk_t *ill_phys_addr_mp; /* mblk which holds ill_phys_addr */ #define ill_last_mp_to_free ill_phys_addr_mp cred_t *ill_credp; /* opener's credentials */ uint8_t *ill_phys_addr; /* ill_phys_addr_mp->b_rptr + off */ uint_t ill_state_flags; /* see ILL_* flags above */ /* Following bit fields protected by ipsq_t */ uint_t ill_needs_attach : 1, ill_reserved : 1, ill_isv6 : 1, ill_dlpi_style_set : 1, ill_ifname_pending : 1, ill_join_allmulti : 1, ill_logical_down : 1, ill_is_6to4tun : 1, /* Interface is a 6to4 tunnel */ ill_promisc_on_phys : 1, /* phys interface in promisc mode */ ill_dl_up : 1, ill_up_ipifs : 1, ill_note_link : 1, /* supports link-up notification */ ill_capab_reneg : 1, /* capability renegotiation to be done */ ill_dld_capab_inprog : 1, /* direct dld capab call in prog */ ill_need_recover_multicast : 1, ill_pad_to_bit_31 : 17; /* Following bit fields protected by ill_lock */ uint_t ill_fragtimer_executing : 1, ill_fragtimer_needrestart : 1, ill_ilm_cleanup_reqd : 1, ill_arp_closing : 1, ill_arp_bringup_pending : 1, ill_arp_extend : 1, /* ARP has DAD extensions */ ill_pad_bit_31 : 26; /* * Used in SIOCSIFMUXID and SIOCGIFMUXID for 'ifconfig unplumb'. */ int ill_arp_muxid; /* muxid returned from plink for arp */ int ill_ip_muxid; /* muxid returned from plink for ip */ /* Used for IP frag reassembly throttling on a per ILL basis. */ uint_t ill_ipf_gen; /* Generation of next fragment queue */ uint_t ill_frag_count; /* Count of all reassembly mblk bytes */ uint_t ill_frag_free_num_pkts; /* num of fragmented packets to free */ clock_t ill_last_frag_clean_time; /* time when frag's were pruned */ int ill_type; /* From */ uint_t ill_dlpi_multicast_state; /* See below IDS_* */ uint_t ill_dlpi_fastpath_state; /* See below IDS_* */ /* * Capabilities related fields. */ uint_t ill_dlpi_capab_state; /* State of capability query, IDCS_* */ uint_t ill_capab_pending_cnt; uint64_t ill_capabilities; /* Enabled capabilities, ILL_CAPAB_* */ ill_mdt_capab_t *ill_mdt_capab; /* Multidata Transmit capabilities */ ill_ipsec_capab_t *ill_ipsec_capab_ah; /* IPsec AH capabilities */ ill_ipsec_capab_t *ill_ipsec_capab_esp; /* IPsec ESP capabilities */ ill_hcksum_capab_t *ill_hcksum_capab; /* H/W cksumming capabilities */ ill_zerocopy_capab_t *ill_zerocopy_capab; /* Zero-copy capabilities */ ill_dld_capab_t *ill_dld_capab; /* DLD capabilities */ ill_lso_capab_t *ill_lso_capab; /* Large Segment Offload capabilities */ mblk_t *ill_capab_reset_mp; /* Preallocated mblk for capab reset */ /* * New fields for IPv6 */ uint8_t ill_max_hops; /* Maximum hops for any logical interface */ uint_t ill_max_mtu; /* Maximum MTU for any logical interface */ uint_t ill_user_mtu; /* User-specified MTU via SIOCSLIFLNKINFO */ uint32_t ill_reachable_time; /* Value for ND algorithm in msec */ uint32_t ill_reachable_retrans_time; /* Value for ND algorithm msec */ uint_t ill_max_buf; /* Max # of req to buffer for ND */ in6_addr_t ill_token; uint_t ill_token_length; uint32_t ill_xmit_count; /* ndp max multicast xmits */ mib2_ipIfStatsEntry_t *ill_ip_mib; /* ver indep. interface mib */ mib2_ipv6IfIcmpEntry_t *ill_icmp6_mib; /* Per interface mib */ /* * Following two mblks are allocated common to all * the ipifs when the first interface is coming up. * It is sent up to arp when the last ipif is coming * down. */ mblk_t *ill_arp_down_mp; mblk_t *ill_arp_del_mapping_mp; /* * Used for implementing IFF_NOARP. As IFF_NOARP is used * to turn off for all the logicals, it is here instead * of the ipif. */ mblk_t *ill_arp_on_mp; phyint_t *ill_phyint; uint64_t ill_flags; kmutex_t ill_lock; /* Please see table below */ /* * The ill_nd_lla* fields handle the link layer address option * from neighbor discovery. This is used for external IPv6 * address resolution. */ mblk_t *ill_nd_lla_mp; /* mblk which holds ill_nd_lla */ uint8_t *ill_nd_lla; /* Link Layer Address */ uint_t ill_nd_lla_len; /* Link Layer Address length */ /* * We now have 3 phys_addr_req's sent down. This field keeps track * of which one is pending. */ t_uscalar_t ill_phys_addr_pend; /* which dl_phys_addr_req pending */ /* * Used to save errors that occur during plumbing */ uint_t ill_ifname_pending_err; avl_node_t ill_avl_byppa; /* avl node based on ppa */ void *ill_fastpath_list; /* both ire and nce hang off this */ uint_t ill_refcnt; /* active refcnt by threads */ uint_t ill_ire_cnt; /* ires associated with this ill */ kcondvar_t ill_cv; uint_t ill_ilm_walker_cnt; /* snmp ilm walkers */ uint_t ill_nce_cnt; /* nces associated with this ill */ uint_t ill_waiters; /* threads waiting in ipsq_enter */ /* * Contains the upper read queue pointer of the module immediately * beneath IP. This field allows IP to validate sub-capability * acknowledgments coming up from downstream. */ queue_t *ill_lmod_rq; /* read queue pointer of module below */ uint_t ill_lmod_cnt; /* number of modules beneath IP */ ip_m_t *ill_media; /* media specific params/functions */ t_uscalar_t ill_dlpi_pending; /* Last DLPI primitive issued */ uint_t ill_usesrc_ifindex; /* use src addr from this ILL */ struct ill_s *ill_usesrc_grp_next; /* Next ILL in the usesrc group */ boolean_t ill_trace_disable; /* True when alloc fails */ zoneid_t ill_zoneid; ip_stack_t *ill_ipst; /* Corresponds to a netstack_hold */ uint32_t ill_dhcpinit; /* IP_DHCPINIT_IFs for ill */ void *ill_flownotify_mh; /* Tx flow ctl, mac cb handle */ uint_t ill_ilm_cnt; /* ilms referencing this ill */ uint_t ill_ipallmulti_cnt; /* ip_join_allmulti() calls */ /* * IPMP fields. */ ipmp_illgrp_t *ill_grp; /* IPMP group information */ list_node_t ill_actnode; /* next active ill in group */ list_node_t ill_grpnode; /* next ill in group */ ipif_t *ill_src_ipif; /* source address selection rotor */ ipif_t *ill_move_ipif; /* ipif awaiting move to new ill */ boolean_t ill_nom_cast; /* nominated for mcast/bcast */ uint_t ill_bound_cnt; /* # of data addresses bound to ill */ ipif_t *ill_bound_ipif; /* ipif chain bound to ill */ timeout_id_t ill_refresh_tid; /* ill refresh retry timeout id */ } ill_t; /* * ILL_FREE_OK() means that there are no incoming pointer references * to the ill. */ #define ILL_FREE_OK(ill) \ ((ill)->ill_ire_cnt == 0 && (ill)->ill_ilm_cnt == 0 && \ (ill)->ill_nce_cnt == 0) /* * An ipif/ill can be marked down only when the ire and nce references * to that ipif/ill goes to zero. ILL_DOWN_OK() is a necessary condition * quiescence checks. See comments above IPIF_DOWN_OK for details * on why ires and nces are selectively considered for this macro. */ #define ILL_DOWN_OK(ill) (ill->ill_ire_cnt == 0 && ill->ill_nce_cnt == 0) /* * The following table lists the protection levels of the various members * of the ill_t. Same notation as that used for ipif_t above is used. * * Write Read * * ill_ifptr ill_g_lock + s Write once * ill_rq ipsq Write once * ill_wq ipsq Write once * * ill_error ipsq None * ill_ipif ill_g_lock + ipsq ill_g_lock OR ipsq * ill_ipif_up_count ill_lock + ipsq ill_lock OR ipsq * ill_max_frag ipsq Write once * * ill_name ill_g_lock + ipsq Write once * ill_name_length ill_g_lock + ipsq Write once * ill_ndd_name ipsq Write once * ill_net_type ipsq Write once * ill_ppa ill_g_lock + ipsq Write once * ill_sap ipsq + down ill Write once * ill_sap_length ipsq + down ill Write once * ill_phys_addr_length ipsq + down ill Write once * * ill_bcast_addr_length ipsq ipsq * ill_mactype ipsq ipsq * ill_frag_ptr ipsq ipsq * * ill_frag_timer_id ill_lock ill_lock * ill_frag_hash_tbl ipsq up ill * ill_ilm ipsq + ill_lock ill_lock * ill_mcast_type ill_lock ill_lock * ill_mcast_v1_time ill_lock ill_lock * ill_mcast_v2_time ill_lock ill_lock * ill_mcast_v1_tset ill_lock ill_lock * ill_mcast_v2_tset ill_lock ill_lock * ill_mcast_rv ill_lock ill_lock * ill_mcast_qi ill_lock ill_lock * ill_pending_mp ill_lock ill_lock * * ill_bcast_mp ipsq ipsq * ill_resolver_mp ipsq only when ill is up * ill_down_mp ipsq ipsq * ill_dlpi_deferred ill_lock ill_lock * ill_dlpi_pending ill_lock ill_lock * ill_phys_addr_mp ipsq + down ill only when ill is up * ill_phys_addr ipsq + down ill only when ill is up * * ill_state_flags ill_lock ill_lock * exclusive bit flags ipsq_t ipsq_t * shared bit flags ill_lock ill_lock * * ill_arp_muxid ipsq Not atomic * ill_ip_muxid ipsq Not atomic * * ill_ipf_gen Not atomic * ill_frag_count atomics atomics * ill_type ipsq + down ill only when ill is up * ill_dlpi_multicast_state ill_lock ill_lock * ill_dlpi_fastpath_state ill_lock ill_lock * ill_dlpi_capab_state ipsq ipsq * ill_max_hops ipsq Not atomic * * ill_max_mtu * * ill_user_mtu ipsq + ill_lock ill_lock * ill_reachable_time ipsq + ill_lock ill_lock * ill_reachable_retrans_time ipsq + ill_lock ill_lock * ill_max_buf ipsq + ill_lock ill_lock * * Next 2 fields need ill_lock because of the get ioctls. They should not * report partially updated results without executing in the ipsq. * ill_token ipsq + ill_lock ill_lock * ill_token_length ipsq + ill_lock ill_lock * ill_xmit_count ipsq + down ill write once * ill_ip6_mib ipsq + down ill only when ill is up * ill_icmp6_mib ipsq + down ill only when ill is up * ill_arp_down_mp ipsq ipsq * ill_arp_del_mapping_mp ipsq ipsq * ill_arp_on_mp ipsq ipsq * * ill_phyint ipsq, ill_g_lock, ill_lock Any of them * ill_flags ill_lock ill_lock * ill_nd_lla_mp ipsq + down ill only when ill is up * ill_nd_lla ipsq + down ill only when ill is up * ill_nd_lla_len ipsq + down ill only when ill is up * ill_phys_addr_pend ipsq + down ill only when ill is up * ill_ifname_pending_err ipsq ipsq * ill_avl_byppa ipsq, ill_g_lock write once * * ill_fastpath_list ill_lock ill_lock * ill_refcnt ill_lock ill_lock * ill_ire_cnt ill_lock ill_lock * ill_cv ill_lock ill_lock * ill_ilm_walker_cnt ill_lock ill_lock * ill_nce_cnt ill_lock ill_lock * ill_ilm_cnt ill_lock ill_lock * ill_src_ipif ill_g_lock ill_g_lock * ill_trace ill_lock ill_lock * ill_usesrc_grp_next ill_g_usesrc_lock ill_g_usesrc_lock * ill_dhcpinit atomics atomics * ill_flownotify_mh write once write once * ill_capab_pending_cnt ipsq ipsq * * ill_bound_cnt ipsq ipsq * ill_bound_ipif ipsq ipsq * ill_actnode ipsq + ipmp_lock ipsq OR ipmp_lock * ill_grpnode ipsq + ill_g_lock ipsq OR ill_g_lock * ill_src_ipif ill_g_lock ill_g_lock * ill_move_ipif ipsq ipsq * ill_nom_cast ipsq ipsq OR advisory * ill_refresh_tid ill_lock ill_lock * ill_grp (for IPMP ill) write once write once * ill_grp (for underlying ill) ipsq + ill_g_lock ipsq OR ill_g_lock * * NOTE: It's OK to make heuristic decisions on an underlying interface * by using IS_UNDER_IPMP() or comparing ill_grp's raw pointer value. */ /* * For ioctl restart mechanism see ip_reprocess_ioctl() */ struct ip_ioctl_cmd_s; typedef int (*ifunc_t)(ipif_t *, struct sockaddr_in *, queue_t *, mblk_t *, struct ip_ioctl_cmd_s *, void *); typedef struct ip_ioctl_cmd_s { int ipi_cmd; size_t ipi_copyin_size; uint_t ipi_flags; uint_t ipi_cmd_type; ifunc_t ipi_func; ifunc_t ipi_func_restart; } ip_ioctl_cmd_t; /* * ipi_cmd_type: * * IF_CMD 1 old style ifreq cmd * LIF_CMD 2 new style lifreq cmd * TUN_CMD 3 tunnel related * ARP_CMD 4 arpreq cmd * XARP_CMD 5 xarpreq cmd * MSFILT_CMD 6 multicast source filter cmd * MISC_CMD 7 misc cmd (not a more specific one above) */ enum { IF_CMD = 1, LIF_CMD, TUN_CMD, ARP_CMD, XARP_CMD, MSFILT_CMD, MISC_CMD }; #define IPI_DONTCARE 0 /* For ioctl encoded values that don't matter */ /* Flag values in ipi_flags */ #define IPI_PRIV 0x1 /* Root only command */ #define IPI_MODOK 0x2 /* Permitted on mod instance of IP */ #define IPI_WR 0x4 /* Need to grab writer access */ #define IPI_GET_CMD 0x8 /* branch to mi_copyout on success */ /* unused 0x10 */ #define IPI_NULL_BCONT 0x20 /* ioctl has not data and hence no b_cont */ #define IPI_PASS_DOWN 0x40 /* pass this ioctl down when a module only */ extern ip_ioctl_cmd_t ip_ndx_ioctl_table[]; extern ip_ioctl_cmd_t ip_misc_ioctl_table[]; extern int ip_ndx_ioctl_count; extern int ip_misc_ioctl_count; /* Passed down by ARP to IP during I_PLINK/I_PUNLINK */ typedef struct ipmx_s { char ipmx_name[LIFNAMSIZ]; /* if name */ uint_t ipmx_arpdev_stream : 1, /* This is the arp stream */ ipmx_notused : 31; } ipmx_t; /* * State for detecting if a driver supports certain features. * Support for DL_ENABMULTI_REQ uses ill_dlpi_multicast_state. * Support for DLPI M_DATA fastpath uses ill_dlpi_fastpath_state. */ #define IDS_UNKNOWN 0 /* No DLPI request sent */ #define IDS_INPROGRESS 1 /* DLPI request sent */ #define IDS_OK 2 /* DLPI request completed successfully */ #define IDS_FAILED 3 /* DLPI request failed */ /* Support for DL_CAPABILITY_REQ uses ill_dlpi_capab_state. */ enum { IDCS_UNKNOWN, IDCS_PROBE_SENT, IDCS_OK, IDCS_RESET_SENT, IDCS_RENEG, IDCS_FAILED }; /* Named Dispatch Parameter Management Structure */ typedef struct ipparam_s { uint_t ip_param_min; uint_t ip_param_max; uint_t ip_param_value; char *ip_param_name; } ipparam_t; /* Extended NDP Management Structure */ typedef struct ipndp_s { ndgetf_t ip_ndp_getf; ndsetf_t ip_ndp_setf; caddr_t ip_ndp_data; char *ip_ndp_name; } ipndp_t; /* * The kernel stores security attributes of all gateways in a database made * up of one or more tsol_gcdb_t elements. Each tsol_gcdb_t contains the * security-related credentials of the gateway. More than one gateways may * share entries in the database. * * The tsol_gc_t structure represents the gateway to credential association, * and refers to an entry in the database. One or more tsol_gc_t entities are * grouped together to form one or more tsol_gcgrp_t, each representing the * list of security attributes specific to the gateway. A gateway may be * associated with at most one credentials group. */ struct tsol_gcgrp_s; extern uchar_t ip6opt_ls; /* TX IPv6 enabler */ /* * Gateway security credential record. */ typedef struct tsol_gcdb_s { uint_t gcdb_refcnt; /* reference count */ struct rtsa_s gcdb_attr; /* security attributes */ #define gcdb_mask gcdb_attr.rtsa_mask #define gcdb_doi gcdb_attr.rtsa_doi #define gcdb_slrange gcdb_attr.rtsa_slrange } tsol_gcdb_t; /* * Gateway to credential association. */ typedef struct tsol_gc_s { uint_t gc_refcnt; /* reference count */ struct tsol_gcgrp_s *gc_grp; /* pointer to group */ struct tsol_gc_s *gc_prev; /* previous in list */ struct tsol_gc_s *gc_next; /* next in list */ tsol_gcdb_t *gc_db; /* pointer to actual credentials */ } tsol_gc_t; /* * Gateway credentials group address. */ typedef struct tsol_gcgrp_addr_s { int ga_af; /* address family */ in6_addr_t ga_addr; /* IPv4 mapped or IPv6 address */ } tsol_gcgrp_addr_t; /* * Gateway credentials group. */ typedef struct tsol_gcgrp_s { uint_t gcgrp_refcnt; /* reference count */ krwlock_t gcgrp_rwlock; /* lock to protect following */ uint_t gcgrp_count; /* number of credentials */ tsol_gc_t *gcgrp_head; /* first credential in list */ tsol_gc_t *gcgrp_tail; /* last credential in list */ tsol_gcgrp_addr_t gcgrp_addr; /* next-hop gateway address */ } tsol_gcgrp_t; extern kmutex_t gcgrp_lock; #define GC_REFRELE(p) { \ ASSERT((p)->gc_grp != NULL); \ rw_enter(&(p)->gc_grp->gcgrp_rwlock, RW_WRITER); \ ASSERT((p)->gc_refcnt > 0); \ if (--((p)->gc_refcnt) == 0) \ gc_inactive(p); \ else \ rw_exit(&(p)->gc_grp->gcgrp_rwlock); \ } #define GCGRP_REFHOLD(p) { \ mutex_enter(&gcgrp_lock); \ ++((p)->gcgrp_refcnt); \ ASSERT((p)->gcgrp_refcnt != 0); \ mutex_exit(&gcgrp_lock); \ } #define GCGRP_REFRELE(p) { \ mutex_enter(&gcgrp_lock); \ ASSERT((p)->gcgrp_refcnt > 0); \ if (--((p)->gcgrp_refcnt) == 0) \ gcgrp_inactive(p); \ ASSERT(MUTEX_HELD(&gcgrp_lock)); \ mutex_exit(&gcgrp_lock); \ } /* * IRE gateway security attributes structure, pointed to by tsol_ire_gw_secattr */ struct tsol_tnrhc; typedef struct tsol_ire_gw_secattr_s { kmutex_t igsa_lock; /* lock to protect following */ struct tsol_tnrhc *igsa_rhc; /* host entry for gateway */ tsol_gc_t *igsa_gc; /* for prefix IREs */ tsol_gcgrp_t *igsa_gcgrp; /* for cache IREs */ } tsol_ire_gw_secattr_t; /* * Following are the macros to increment/decrement the reference * count of the IREs and IRBs (ire bucket). * * 1) We bump up the reference count of an IRE to make sure that * it does not get deleted and freed while we are using it. * Typically all the lookup functions hold the bucket lock, * and look for the IRE. If it finds an IRE, it bumps up the * reference count before dropping the lock. Sometimes we *may* want * to bump up the reference count after we *looked* up i.e without * holding the bucket lock. So, the IRE_REFHOLD macro does not assert * on the bucket lock being held. Any thread trying to delete from * the hash bucket can still do so but cannot free the IRE if * ire_refcnt is not 0. * * 2) We bump up the reference count on the bucket where the IRE resides * (IRB), when we want to prevent the IREs getting deleted from a given * hash bucket. This makes life easier for ire_walk type functions which * wants to walk the IRE list, call a function, but needs to drop * the bucket lock to prevent recursive rw_enters. While the * lock is dropped, the list could be changed by other threads or * the same thread could end up deleting the ire or the ire pointed by * ire_next. IRE_REFHOLDing the ire or ire_next is not sufficient as * a delete will still remove the ire from the bucket while we have * dropped the lock and hence the ire_next would be NULL. Thus, we * need a mechanism to prevent deletions from a given bucket. * * To prevent deletions, we bump up the reference count on the * bucket. If the bucket is held, ire_delete just marks IRE_MARK_CONDEMNED * both on the ire's ire_marks and the bucket's irb_marks. When the * reference count on the bucket drops to zero, all the CONDEMNED ires * are deleted. We don't have to bump up the reference count on the * bucket if we are walking the bucket and never have to drop the bucket * lock. Note that IRB_REFHOLD does not prevent addition of new ires * in the list. It is okay because addition of new ires will not cause * ire_next to point to freed memory. We do IRB_REFHOLD only when * all of the 3 conditions are true : * * 1) The code needs to walk the IRE bucket from start to end. * 2) It may have to drop the bucket lock sometimes while doing (1) * 3) It does not want any ires to be deleted meanwhile. */ /* * Bump up the reference count on the IRE. We cannot assert that the * bucket lock is being held as it is legal to bump up the reference * count after the first lookup has returned the IRE without * holding the lock. Currently ip_wput does this for caching IRE_CACHEs. */ #ifdef DEBUG #define IRE_UNTRACE_REF(ire) ire_untrace_ref(ire); #define IRE_TRACE_REF(ire) ire_trace_ref(ire); #else #define IRE_UNTRACE_REF(ire) #define IRE_TRACE_REF(ire) #endif #define IRE_REFHOLD_NOTR(ire) { \ atomic_add_32(&(ire)->ire_refcnt, 1); \ ASSERT((ire)->ire_refcnt != 0); \ } #define IRE_REFHOLD(ire) { \ IRE_REFHOLD_NOTR(ire); \ IRE_TRACE_REF(ire); \ } #define IRE_REFHOLD_LOCKED(ire) { \ IRE_TRACE_REF(ire); \ (ire)->ire_refcnt++; \ } /* * Decrement the reference count on the IRE. * In architectures e.g sun4u, where atomic_add_32_nv is just * a cas, we need to maintain the right memory barrier semantics * as that of mutex_exit i.e all the loads and stores should complete * before the cas is executed. membar_exit() does that here. * * NOTE : This macro is used only in places where we want performance. * To avoid bloating the code, we use the function "ire_refrele" * which essentially calls the macro. */ #define IRE_REFRELE_NOTR(ire) { \ ASSERT((ire)->ire_refcnt != 0); \ membar_exit(); \ if (atomic_add_32_nv(&(ire)->ire_refcnt, -1) == 0) \ ire_inactive(ire); \ } #define IRE_REFRELE(ire) { \ if (ire->ire_bucket != NULL) { \ IRE_UNTRACE_REF(ire); \ } \ IRE_REFRELE_NOTR(ire); \ } /* * Bump up the reference count on the hash bucket - IRB to * prevent ires from being deleted in this bucket. */ #define IRB_REFHOLD(irb) { \ rw_enter(&(irb)->irb_lock, RW_WRITER); \ (irb)->irb_refcnt++; \ ASSERT((irb)->irb_refcnt != 0); \ rw_exit(&(irb)->irb_lock); \ } #define IRB_REFHOLD_LOCKED(irb) { \ ASSERT(RW_WRITE_HELD(&(irb)->irb_lock)); \ (irb)->irb_refcnt++; \ ASSERT((irb)->irb_refcnt != 0); \ } void irb_refrele_ftable(irb_t *); /* * Note: when IRB_MARK_FTABLE (i.e., IRE_CACHETABLE entry), the irb_t * is statically allocated, so that when the irb_refcnt goes to 0, * we simply clean up the ire list and continue. */ #define IRB_REFRELE(irb) { \ if ((irb)->irb_marks & IRB_MARK_FTABLE) { \ irb_refrele_ftable((irb)); \ } else { \ rw_enter(&(irb)->irb_lock, RW_WRITER); \ ASSERT((irb)->irb_refcnt != 0); \ if (--(irb)->irb_refcnt == 0 && \ ((irb)->irb_marks & IRE_MARK_CONDEMNED)) { \ ire_t *ire_list; \ \ ire_list = ire_unlink(irb); \ rw_exit(&(irb)->irb_lock); \ ASSERT(ire_list != NULL); \ ire_cleanup(ire_list); \ } else { \ rw_exit(&(irb)->irb_lock); \ } \ } \ } extern struct kmem_cache *rt_entry_cache; /* * Lock the fast path mp for access, since the fp_mp can be deleted * due a DL_NOTE_FASTPATH_FLUSH in the case of IRE_BROADCAST */ #define LOCK_IRE_FP_MP(ire) { \ if ((ire)->ire_type == IRE_BROADCAST) \ mutex_enter(&ire->ire_nce->nce_lock); \ } #define UNLOCK_IRE_FP_MP(ire) { \ if ((ire)->ire_type == IRE_BROADCAST) \ mutex_exit(&ire->ire_nce->nce_lock); \ } typedef struct ire4 { ipaddr_t ire4_src_addr; /* Source address to use. */ ipaddr_t ire4_mask; /* Mask for matching this IRE. */ ipaddr_t ire4_addr; /* Address this IRE represents. */ ipaddr_t ire4_gateway_addr; /* Gateway if IRE_CACHE/IRE_OFFSUBNET */ ipaddr_t ire4_cmask; /* Mask from parent prefix route */ } ire4_t; typedef struct ire6 { in6_addr_t ire6_src_addr; /* Source address to use. */ in6_addr_t ire6_mask; /* Mask for matching this IRE. */ in6_addr_t ire6_addr; /* Address this IRE represents. */ in6_addr_t ire6_gateway_addr; /* Gateway if IRE_CACHE/IRE_OFFSUBNET */ in6_addr_t ire6_cmask; /* Mask from parent prefix route */ } ire6_t; typedef union ire_addr { ire6_t ire6_u; ire4_t ire4_u; } ire_addr_u_t; /* Internet Routing Entry */ typedef struct ire_s { struct ire_s *ire_next; /* The hash chain must be first. */ struct ire_s **ire_ptpn; /* Pointer to previous next. */ uint32_t ire_refcnt; /* Number of references */ mblk_t *ire_mp; /* Non-null if allocated as mblk */ queue_t *ire_rfq; /* recv from this queue */ queue_t *ire_stq; /* send to this queue */ union { uint_t *max_fragp; /* Used only during ire creation */ uint_t max_frag; /* MTU (next hop or path). */ } imf_u; #define ire_max_frag imf_u.max_frag #define ire_max_fragp imf_u.max_fragp uint32_t ire_frag_flag; /* IPH_DF or zero. */ uint32_t ire_ident; /* Per IRE IP ident. */ uint32_t ire_tire_mark; /* Used for reclaim of unused. */ uchar_t ire_ipversion; /* IPv4/IPv6 version */ uchar_t ire_marks; /* IRE_MARK_CONDEMNED etc. */ ushort_t ire_type; /* Type of IRE */ uint_t ire_ib_pkt_count; /* Inbound packets for ire_addr */ uint_t ire_ob_pkt_count; /* Outbound packets to ire_addr */ uint_t ire_ll_hdr_length; /* Non-zero if we do M_DATA prepends */ time_t ire_create_time; /* Time (in secs) IRE was created. */ uint32_t ire_phandle; /* Associate prefix IREs to cache */ uint32_t ire_ihandle; /* Associate interface IREs to cache */ ipif_t *ire_ipif; /* the interface that this ire uses */ uint32_t ire_flags; /* flags related to route (RTF_*) */ uint_t ire_ipsec_overhead; /* IPSEC overhead */ /* * Neighbor Cache Entry for IPv6; arp info for IPv4 */ struct nce_s *ire_nce; uint_t ire_masklen; /* # bits in ire_mask{,_v6} */ ire_addr_u_t ire_u; /* IPv4/IPv6 address info. */ irb_t *ire_bucket; /* Hash bucket when ire_ptphn is set */ iulp_t ire_uinfo; /* Upper layer protocol info. */ /* * Protects ire_uinfo, ire_max_frag, and ire_frag_flag. */ kmutex_t ire_lock; uint_t ire_ipif_seqid; /* ipif_seqid of ire_ipif */ uint_t ire_ipif_ifindex; /* ifindex associated with ipif */ clock_t ire_last_used_time; /* Last used time */ tsol_ire_gw_secattr_t *ire_gw_secattr; /* gateway security attributes */ zoneid_t ire_zoneid; /* for local address discrimination */ /* * ire's that are embedded inside mblk_t and sent to the external * resolver use the ire_stq_ifindex to track the ifindex of the * ire_stq, so that the ill (if it exists) can be correctly recovered * for cleanup in the esbfree routine when arp failure occurs. * Similarly, the ire_stackid is used to recover the ip_stack_t. */ uint_t ire_stq_ifindex; netstackid_t ire_stackid; uint_t ire_defense_count; /* number of ARP conflicts */ uint_t ire_defense_time; /* last time defended (secs) */ boolean_t ire_trace_disable; /* True when alloc fails */ ip_stack_t *ire_ipst; /* Does not have a netstack_hold */ } ire_t; /* IPv4 compatibility macros */ #define ire_src_addr ire_u.ire4_u.ire4_src_addr #define ire_mask ire_u.ire4_u.ire4_mask #define ire_addr ire_u.ire4_u.ire4_addr #define ire_gateway_addr ire_u.ire4_u.ire4_gateway_addr #define ire_cmask ire_u.ire4_u.ire4_cmask #define ire_src_addr_v6 ire_u.ire6_u.ire6_src_addr #define ire_mask_v6 ire_u.ire6_u.ire6_mask #define ire_addr_v6 ire_u.ire6_u.ire6_addr #define ire_gateway_addr_v6 ire_u.ire6_u.ire6_gateway_addr #define ire_cmask_v6 ire_u.ire6_u.ire6_cmask /* Convenient typedefs for sockaddrs */ typedef struct sockaddr_in sin_t; typedef struct sockaddr_in6 sin6_t; /* Address structure used for internal bind with IP */ typedef struct ipa_conn_s { ipaddr_t ac_laddr; ipaddr_t ac_faddr; uint16_t ac_fport; uint16_t ac_lport; } ipa_conn_t; typedef struct ipa6_conn_s { in6_addr_t ac6_laddr; in6_addr_t ac6_faddr; uint16_t ac6_fport; uint16_t ac6_lport; } ipa6_conn_t; /* * Using ipa_conn_x_t or ipa6_conn_x_t allows us to modify the behavior of IP's * bind handler. */ typedef struct ipa_conn_extended_s { uint64_t acx_flags; ipa_conn_t acx_conn; } ipa_conn_x_t; typedef struct ipa6_conn_extended_s { uint64_t ac6x_flags; ipa6_conn_t ac6x_conn; } ipa6_conn_x_t; /* flag values for ipa_conn_x_t and ipa6_conn_x_t. */ #define ACX_VERIFY_DST 0x1ULL /* verify destination address is reachable */ /* Name/Value Descriptor. */ typedef struct nv_s { uint64_t nv_value; char *nv_name; } nv_t; #define ILL_FRAG_HASH(s, i) \ ((ntohl(s) ^ ((i) ^ ((i) >> 8))) % ILL_FRAG_HASH_TBL_COUNT) /* * The MAX number of allowed fragmented packets per hash bucket * calculation is based on the most common mtu size of 1500. This limit * will work well for other mtu sizes as well. */ #define COMMON_IP_MTU 1500 #define MAX_FRAG_MIN 10 #define MAX_FRAG_PKTS(ipst) \ MAX(MAX_FRAG_MIN, (2 * (ipst->ips_ip_reass_queue_bytes / \ (COMMON_IP_MTU * ILL_FRAG_HASH_TBL_COUNT)))) /* * Maximum dups allowed per packet. */ extern uint_t ip_max_frag_dups; /* * Per-packet information for received packets and transmitted. * Used by the transport protocols when converting between the packet * and ancillary data and socket options. * * Note: This private data structure and related IPPF_* constant * definitions are exposed to enable compilation of some debugging tools * like lsof which use struct tcp_t in . This is intended to be * a temporary hack and long term alternate interfaces should be defined * to support the needs of such tools and private definitions moved to * private headers. */ struct ip6_pkt_s { uint_t ipp_fields; /* Which fields are valid */ uint_t ipp_sticky_ignored; /* sticky fields to ignore */ uint_t ipp_ifindex; /* pktinfo ifindex */ in6_addr_t ipp_addr; /* pktinfo src/dst addr */ uint_t ipp_unicast_hops; /* IPV6_UNICAST_HOPS */ uint_t ipp_multicast_hops; /* IPV6_MULTICAST_HOPS */ uint_t ipp_hoplimit; /* IPV6_HOPLIMIT */ uint_t ipp_hopoptslen; uint_t ipp_rtdstoptslen; uint_t ipp_rthdrlen; uint_t ipp_dstoptslen; uint_t ipp_pathmtulen; uint_t ipp_fraghdrlen; ip6_hbh_t *ipp_hopopts; ip6_dest_t *ipp_rtdstopts; ip6_rthdr_t *ipp_rthdr; ip6_dest_t *ipp_dstopts; ip6_frag_t *ipp_fraghdr; struct ip6_mtuinfo *ipp_pathmtu; in6_addr_t ipp_nexthop; /* Transmit only */ uint8_t ipp_tclass; int8_t ipp_use_min_mtu; }; typedef struct ip6_pkt_s ip6_pkt_t; extern void ip6_pkt_free(ip6_pkt_t *); /* free storage inside ip6_pkt_t */ /* * This struct is used by ULP_opt_set() functions to return value of IPv4 * ancillary options. Currently this is only used by udp and icmp and only * IP_PKTINFO option is supported. */ typedef struct ip4_pkt_s { uint_t ip4_ill_index; /* interface index */ ipaddr_t ip4_addr; /* source address */ } ip4_pkt_t; /* * Used by ULP's to pass options info to ip_output * currently only IP_PKTINFO is supported. */ typedef struct ip_opt_info_s { uint_t ip_opt_ill_index; uint_t ip_opt_flags; } ip_opt_info_t; /* * value for ip_opt_flags */ #define IP_VERIFY_SRC 0x1 /* * This structure is used to convey information from IP and the ULP. * Currently used for the IP_RECVSLLA, IP_RECVIF and IP_RECVPKTINFO options. * The type of information field is set to IN_PKTINFO (i.e inbound pkt info) */ typedef struct ip_pktinfo { uint32_t ip_pkt_ulp_type; /* type of info sent */ uint32_t ip_pkt_flags; /* what is sent up by IP */ uint32_t ip_pkt_ifindex; /* inbound interface index */ struct sockaddr_dl ip_pkt_slla; /* has source link layer addr */ struct in_addr ip_pkt_match_addr; /* matched address */ } ip_pktinfo_t; /* * flags to tell UDP what IP is sending; in_pkt_flags */ #define IPF_RECVIF 0x01 /* inbound interface index */ #define IPF_RECVSLLA 0x02 /* source link layer address */ /* * Inbound interface index + matched address. * Used only by IPV4. */ #define IPF_RECVADDR 0x04 /* ipp_fields values */ #define IPPF_IFINDEX 0x0001 /* Part of in6_pktinfo: ifindex */ #define IPPF_ADDR 0x0002 /* Part of in6_pktinfo: src/dst addr */ #define IPPF_SCOPE_ID 0x0004 /* Add xmit ip6i_t for sin6_scope_id */ #define IPPF_NO_CKSUM 0x0008 /* Add xmit ip6i_t for IP6I_NO_*_CKSUM */ #define IPPF_RAW_CKSUM 0x0010 /* Add xmit ip6i_t for IP6I_RAW_CHECKSUM */ #define IPPF_HOPLIMIT 0x0020 #define IPPF_HOPOPTS 0x0040 #define IPPF_RTHDR 0x0080 #define IPPF_RTDSTOPTS 0x0100 #define IPPF_DSTOPTS 0x0200 #define IPPF_NEXTHOP 0x0400 #define IPPF_PATHMTU 0x0800 #define IPPF_TCLASS 0x1000 #define IPPF_DONTFRAG 0x2000 #define IPPF_USE_MIN_MTU 0x04000 #define IPPF_MULTICAST_HOPS 0x08000 #define IPPF_UNICAST_HOPS 0x10000 #define IPPF_FRAGHDR 0x20000 #define IPPF_HAS_IP6I \ (IPPF_IFINDEX|IPPF_ADDR|IPPF_NEXTHOP|IPPF_SCOPE_ID| \ IPPF_NO_CKSUM|IPPF_RAW_CKSUM|IPPF_HOPLIMIT|IPPF_DONTFRAG| \ IPPF_USE_MIN_MTU|IPPF_MULTICAST_HOPS|IPPF_UNICAST_HOPS) #define TCP_PORTS_OFFSET 0 #define UDP_PORTS_OFFSET 0 /* * lookups return the ill/ipif only if the flags are clear OR Iam writer. * ill / ipif lookup functions increment the refcnt on the ill / ipif only * after calling these macros. This ensures that the refcnt on the ipif or * ill will eventually drop down to zero. */ #define ILL_LOOKUP_FAILED 1 /* Used as error code */ #define IPIF_LOOKUP_FAILED 2 /* Used as error code */ #define ILL_CAN_LOOKUP(ill) \ (!((ill)->ill_state_flags & (ILL_CONDEMNED | ILL_CHANGING)) || \ IAM_WRITER_ILL(ill)) #define ILL_CAN_WAIT(ill, q) \ (((q) != NULL) && !((ill)->ill_state_flags & (ILL_CONDEMNED))) #define IPIF_CAN_LOOKUP(ipif) \ (!((ipif)->ipif_state_flags & (IPIF_CONDEMNED | IPIF_CHANGING)) || \ IAM_WRITER_IPIF(ipif)) /* * If the parameter 'q' is NULL, the caller is not interested in wait and * restart of the operation if the ILL or IPIF cannot be looked up when it is * marked as 'CHANGING'. Typically a thread that tries to send out data will * end up passing NULLs as the last 4 parameters to ill_lookup_on_ifindex and * in this case 'q' is NULL */ #define IPIF_CAN_WAIT(ipif, q) \ (((q) != NULL) && !((ipif)->ipif_state_flags & (IPIF_CONDEMNED))) #define IPIF_CAN_LOOKUP_WALKER(ipif) \ (!((ipif)->ipif_state_flags & (IPIF_CONDEMNED)) || \ IAM_WRITER_IPIF(ipif)) #define ILL_UNMARK_CHANGING(ill) \ (ill)->ill_state_flags &= ~ILL_CHANGING; /* Macros used to assert that this thread is a writer */ #define IAM_WRITER_IPSQ(ipsq) ((ipsq)->ipsq_xop->ipx_writer == curthread) #define IAM_WRITER_ILL(ill) IAM_WRITER_IPSQ((ill)->ill_phyint->phyint_ipsq) #define IAM_WRITER_IPIF(ipif) IAM_WRITER_ILL((ipif)->ipif_ill) /* * Grab ill locks in the proper order. The order is highest addressed * ill is locked first. */ #define GRAB_ILL_LOCKS(ill_1, ill_2) \ { \ if ((ill_1) > (ill_2)) { \ if (ill_1 != NULL) \ mutex_enter(&(ill_1)->ill_lock); \ if (ill_2 != NULL) \ mutex_enter(&(ill_2)->ill_lock); \ } else { \ if (ill_2 != NULL) \ mutex_enter(&(ill_2)->ill_lock); \ if (ill_1 != NULL && ill_1 != ill_2) \ mutex_enter(&(ill_1)->ill_lock); \ } \ } #define RELEASE_ILL_LOCKS(ill_1, ill_2) \ { \ if (ill_1 != NULL) \ mutex_exit(&(ill_1)->ill_lock); \ if (ill_2 != NULL && ill_2 != ill_1) \ mutex_exit(&(ill_2)->ill_lock); \ } /* Get the other protocol instance ill */ #define ILL_OTHER(ill) \ ((ill)->ill_isv6 ? (ill)->ill_phyint->phyint_illv4 : \ (ill)->ill_phyint->phyint_illv6) /* ioctl command info: Ioctl properties extracted and stored in here */ typedef struct cmd_info_s { ipif_t *ci_ipif; /* ipif associated with [l]ifreq ioctl's */ sin_t *ci_sin; /* the sin struct passed down */ sin6_t *ci_sin6; /* the sin6_t struct passed down */ struct lifreq *ci_lifr; /* the lifreq struct passed down */ } cmd_info_t; /* * List of AH and ESP IPsec acceleration capable ills */ typedef struct ipsec_capab_ill_s { uint_t ill_index; boolean_t ill_isv6; struct ipsec_capab_ill_s *next; } ipsec_capab_ill_t; extern struct kmem_cache *ire_cache; extern ipaddr_t ip_g_all_ones; extern uint_t ip_loopback_mtu; /* /etc/system */ extern vmem_t *ip_minor_arena_sa; extern vmem_t *ip_minor_arena_la; /* * ip_g_forward controls IP forwarding. It takes two values: * 0: IP_FORWARD_NEVER Don't forward packets ever. * 1: IP_FORWARD_ALWAYS Forward packets for elsewhere. * * RFC1122 says there must be a configuration switch to control forwarding, * but that the default MUST be to not forward packets ever. Implicit * control based on configuration of multiple interfaces MUST NOT be * implemented (Section 3.1). SunOS 4.1 did provide the "automatic" capability * and, in fact, it was the default. That capability is now provided in the * /etc/rc2.d/S69inet script. */ #define ips_ip_respond_to_address_mask_broadcast ips_param_arr[0].ip_param_value #define ips_ip_g_resp_to_echo_bcast ips_param_arr[1].ip_param_value #define ips_ip_g_resp_to_echo_mcast ips_param_arr[2].ip_param_value #define ips_ip_g_resp_to_timestamp ips_param_arr[3].ip_param_value #define ips_ip_g_resp_to_timestamp_bcast ips_param_arr[4].ip_param_value #define ips_ip_g_send_redirects ips_param_arr[5].ip_param_value #define ips_ip_g_forward_directed_bcast ips_param_arr[6].ip_param_value #define ips_ip_mrtdebug ips_param_arr[7].ip_param_value #define ips_ip_timer_interval ips_param_arr[8].ip_param_value #define ips_ip_ire_arp_interval ips_param_arr[9].ip_param_value #define ips_ip_ire_redir_interval ips_param_arr[10].ip_param_value #define ips_ip_def_ttl ips_param_arr[11].ip_param_value #define ips_ip_forward_src_routed ips_param_arr[12].ip_param_value #define ips_ip_wroff_extra ips_param_arr[13].ip_param_value #define ips_ip_ire_pathmtu_interval ips_param_arr[14].ip_param_value #define ips_ip_icmp_return ips_param_arr[15].ip_param_value #define ips_ip_path_mtu_discovery ips_param_arr[16].ip_param_value #define ips_ip_ignore_delete_time ips_param_arr[17].ip_param_value #define ips_ip_ignore_redirect ips_param_arr[18].ip_param_value #define ips_ip_output_queue ips_param_arr[19].ip_param_value #define ips_ip_broadcast_ttl ips_param_arr[20].ip_param_value #define ips_ip_icmp_err_interval ips_param_arr[21].ip_param_value #define ips_ip_icmp_err_burst ips_param_arr[22].ip_param_value #define ips_ip_reass_queue_bytes ips_param_arr[23].ip_param_value #define ips_ip_strict_dst_multihoming ips_param_arr[24].ip_param_value #define ips_ip_addrs_per_if ips_param_arr[25].ip_param_value #define ips_ipsec_override_persocket_policy ips_param_arr[26].ip_param_value #define ips_icmp_accept_clear_messages ips_param_arr[27].ip_param_value #define ips_igmp_accept_clear_messages ips_param_arr[28].ip_param_value /* IPv6 configuration knobs */ #define ips_delay_first_probe_time ips_param_arr[29].ip_param_value #define ips_max_unicast_solicit ips_param_arr[30].ip_param_value #define ips_ipv6_def_hops ips_param_arr[31].ip_param_value #define ips_ipv6_icmp_return ips_param_arr[32].ip_param_value #define ips_ipv6_forward_src_routed ips_param_arr[33].ip_param_value #define ips_ipv6_resp_echo_mcast ips_param_arr[34].ip_param_value #define ips_ipv6_send_redirects ips_param_arr[35].ip_param_value #define ips_ipv6_ignore_redirect ips_param_arr[36].ip_param_value #define ips_ipv6_strict_dst_multihoming ips_param_arr[37].ip_param_value #define ips_ip_ire_reclaim_fraction ips_param_arr[38].ip_param_value #define ips_ipsec_policy_log_interval ips_param_arr[39].ip_param_value #define ips_pim_accept_clear_messages ips_param_arr[40].ip_param_value #define ips_ip_ndp_unsolicit_interval ips_param_arr[41].ip_param_value #define ips_ip_ndp_unsolicit_count ips_param_arr[42].ip_param_value #define ips_ipv6_ignore_home_address_opt ips_param_arr[43].ip_param_value /* Misc IP configuration knobs */ #define ips_ip_policy_mask ips_param_arr[44].ip_param_value #define ips_ip_multirt_resolution_interval ips_param_arr[45].ip_param_value #define ips_ip_multirt_ttl ips_param_arr[46].ip_param_value #define ips_ip_multidata_outbound ips_param_arr[47].ip_param_value #define ips_ip_ndp_defense_interval ips_param_arr[48].ip_param_value #define ips_ip_max_temp_idle ips_param_arr[49].ip_param_value #define ips_ip_max_temp_defend ips_param_arr[50].ip_param_value #define ips_ip_max_defend ips_param_arr[51].ip_param_value #define ips_ip_defend_interval ips_param_arr[52].ip_param_value #define ips_ip_dup_recovery ips_param_arr[53].ip_param_value #define ips_ip_restrict_interzone_loopback ips_param_arr[54].ip_param_value #define ips_ip_lso_outbound ips_param_arr[55].ip_param_value #define ips_igmp_max_version ips_param_arr[56].ip_param_value #define ips_mld_max_version ips_param_arr[57].ip_param_value #define ips_ip_pmtu_min ips_param_arr[58].ip_param_value #define ips_ipv6_drop_inbound_icmpv6 ips_param_arr[59].ip_param_value extern int dohwcksum; /* use h/w cksum if supported by the h/w */ #ifdef ZC_TEST extern int noswcksum; #endif extern char ipif_loopback_name[]; extern nv_t *ire_nv_tbl; extern struct module_info ip_mod_info; #define HOOKS4_INTERESTED_PHYSICAL_IN(ipst) \ ((ipst)->ips_ip4_physical_in_event.he_interested) #define HOOKS6_INTERESTED_PHYSICAL_IN(ipst) \ ((ipst)->ips_ip6_physical_in_event.he_interested) #define HOOKS4_INTERESTED_PHYSICAL_OUT(ipst) \ ((ipst)->ips_ip4_physical_out_event.he_interested) #define HOOKS6_INTERESTED_PHYSICAL_OUT(ipst) \ ((ipst)->ips_ip6_physical_out_event.he_interested) #define HOOKS4_INTERESTED_FORWARDING(ipst) \ ((ipst)->ips_ip4_forwarding_event.he_interested) #define HOOKS6_INTERESTED_FORWARDING(ipst) \ ((ipst)->ips_ip6_forwarding_event.he_interested) #define HOOKS4_INTERESTED_LOOPBACK_IN(ipst) \ ((ipst)->ips_ip4_loopback_in_event.he_interested) #define HOOKS6_INTERESTED_LOOPBACK_IN(ipst) \ ((ipst)->ips_ip6_loopback_in_event.he_interested) #define HOOKS4_INTERESTED_LOOPBACK_OUT(ipst) \ ((ipst)->ips_ip4_loopback_out_event.he_interested) #define HOOKS6_INTERESTED_LOOPBACK_OUT(ipst) \ ((ipst)->ips_ip6_loopback_out_event.he_interested) /* * Hooks macros used inside of ip */ #define FW_HOOKS(_hook, _event, _ilp, _olp, _iph, _fm, _m, _llm, ipst) \ \ if ((_hook).he_interested) { \ hook_pkt_event_t info; \ \ _NOTE(CONSTCOND) \ ASSERT((_ilp != NULL) || (_olp != NULL)); \ \ FW_SET_ILL_INDEX(info.hpe_ifp, (ill_t *)_ilp); \ FW_SET_ILL_INDEX(info.hpe_ofp, (ill_t *)_olp); \ info.hpe_protocol = ipst->ips_ipv4_net_data; \ info.hpe_hdr = _iph; \ info.hpe_mp = &(_fm); \ info.hpe_mb = _m; \ info.hpe_flags = _llm; \ if (hook_run(ipst->ips_ipv4_net_data->netd_hooks, \ _event, (hook_data_t)&info) != 0) { \ ip2dbg(("%s hook dropped mblk chain %p hdr %p\n",\ (_hook).he_name, (void *)_fm, (void *)_m)); \ freemsg(_fm); \ _fm = NULL; \ _iph = NULL; \ _m = NULL; \ } else { \ _iph = info.hpe_hdr; \ _m = info.hpe_mb; \ } \ } #define FW_HOOKS6(_hook, _event, _ilp, _olp, _iph, _fm, _m, _llm, ipst) \ \ if ((_hook).he_interested) { \ hook_pkt_event_t info; \ \ _NOTE(CONSTCOND) \ ASSERT((_ilp != NULL) || (_olp != NULL)); \ \ FW_SET_ILL_INDEX(info.hpe_ifp, (ill_t *)_ilp); \ FW_SET_ILL_INDEX(info.hpe_ofp, (ill_t *)_olp); \ info.hpe_protocol = ipst->ips_ipv6_net_data; \ info.hpe_hdr = _iph; \ info.hpe_mp = &(_fm); \ info.hpe_mb = _m; \ info.hpe_flags = _llm; \ if (hook_run(ipst->ips_ipv6_net_data->netd_hooks, \ _event, (hook_data_t)&info) != 0) { \ ip2dbg(("%s hook dropped mblk chain %p hdr %p\n",\ (_hook).he_name, (void *)_fm, (void *)_m)); \ freemsg(_fm); \ _fm = NULL; \ _iph = NULL; \ _m = NULL; \ } else { \ _iph = info.hpe_hdr; \ _m = info.hpe_mb; \ } \ } #define FW_SET_ILL_INDEX(fp, ill) \ _NOTE(CONSTCOND) \ if ((ill) == NULL || (ill)->ill_phyint == NULL) { \ (fp) = 0; \ _NOTE(CONSTCOND) \ } else if (IS_UNDER_IPMP(ill)) { \ (fp) = ipmp_ill_get_ipmp_ifindex(ill); \ } else { \ (fp) = (ill)->ill_phyint->phyint_ifindex; \ } /* * Network byte order macros */ #ifdef _BIG_ENDIAN #define N_IN_CLASSA_NET IN_CLASSA_NET #define N_IN_CLASSD_NET IN_CLASSD_NET #define N_INADDR_UNSPEC_GROUP INADDR_UNSPEC_GROUP #define N_IN_LOOPBACK_NET (ipaddr_t)0x7f000000U #else /* _BIG_ENDIAN */ #define N_IN_CLASSA_NET (ipaddr_t)0x000000ffU #define N_IN_CLASSD_NET (ipaddr_t)0x000000f0U #define N_INADDR_UNSPEC_GROUP (ipaddr_t)0x000000e0U #define N_IN_LOOPBACK_NET (ipaddr_t)0x0000007fU #endif /* _BIG_ENDIAN */ #define CLASSD(addr) (((addr) & N_IN_CLASSD_NET) == N_INADDR_UNSPEC_GROUP) #define CLASSE(addr) (((addr) & N_IN_CLASSD_NET) == N_IN_CLASSD_NET) #define IP_LOOPBACK_ADDR(addr) \ (((addr) & N_IN_CLASSA_NET == N_IN_LOOPBACK_NET)) #ifdef DEBUG /* IPsec HW acceleration debugging support */ #define IPSECHW_CAPAB 0x0001 /* capability negotiation */ #define IPSECHW_SADB 0x0002 /* SADB exchange */ #define IPSECHW_PKT 0x0004 /* general packet flow */ #define IPSECHW_PKTIN 0x0008 /* driver in pkt processing details */ #define IPSECHW_PKTOUT 0x0010 /* driver out pkt processing details */ #define IPSECHW_DEBUG(f, x) if (ipsechw_debug & (f)) { (void) printf x; } #define IPSECHW_CALL(f, r, x) if (ipsechw_debug & (f)) { (void) r x; } extern uint32_t ipsechw_debug; #else #define IPSECHW_DEBUG(f, x) {} #define IPSECHW_CALL(f, r, x) {} #endif extern int ip_debug; extern uint_t ip_thread_data; extern krwlock_t ip_thread_rwlock; extern list_t ip_thread_list; #ifdef IP_DEBUG #include #include #define ip0dbg(a) printf a #define ip1dbg(a) if (ip_debug > 2) printf a #define ip2dbg(a) if (ip_debug > 3) printf a #define ip3dbg(a) if (ip_debug > 4) printf a #else #define ip0dbg(a) /* */ #define ip1dbg(a) /* */ #define ip2dbg(a) /* */ #define ip3dbg(a) /* */ #endif /* IP_DEBUG */ /* Default MAC-layer address string length for mac_colon_addr */ #define MAC_STR_LEN 128 struct ipsec_out_s; struct mac_header_info_s; extern void ill_frag_timer(void *); extern ill_t *ill_first(int, int, ill_walk_context_t *, ip_stack_t *); extern ill_t *ill_next(ill_walk_context_t *, ill_t *); extern void ill_frag_timer_start(ill_t *); extern void ill_nic_event_dispatch(ill_t *, lif_if_t, nic_event_t, nic_event_data_t, size_t); extern mblk_t *ip_carve_mp(mblk_t **, ssize_t); extern mblk_t *ip_dlpi_alloc(size_t, t_uscalar_t); extern mblk_t *ip_dlnotify_alloc(uint_t, uint_t); extern char *ip_dot_addr(ipaddr_t, char *); extern const char *mac_colon_addr(const uint8_t *, size_t, char *, size_t); extern void ip_lwput(queue_t *, mblk_t *); extern boolean_t icmp_err_rate_limit(ip_stack_t *); extern void icmp_time_exceeded(queue_t *, mblk_t *, uint8_t, zoneid_t, ip_stack_t *); extern void icmp_unreachable(queue_t *, mblk_t *, uint8_t, zoneid_t, ip_stack_t *); extern mblk_t *ip_add_info(mblk_t *, ill_t *, uint_t, zoneid_t, ip_stack_t *); cred_t *ip_best_cred(mblk_t *, conn_t *); extern mblk_t *ip_bind_v4(queue_t *, mblk_t *, conn_t *); extern boolean_t ip_bind_ipsec_policy_set(conn_t *, mblk_t *); extern int ip_bind_laddr_v4(conn_t *, mblk_t **, uint8_t, ipaddr_t, uint16_t, boolean_t); extern int ip_proto_bind_laddr_v4(conn_t *, mblk_t **, uint8_t, ipaddr_t, uint16_t, boolean_t); extern int ip_proto_bind_connected_v4(conn_t *, mblk_t **, uint8_t, ipaddr_t *, uint16_t, ipaddr_t, uint16_t, boolean_t, boolean_t, cred_t *); extern int ip_bind_connected_v4(conn_t *, mblk_t **, uint8_t, ipaddr_t *, uint16_t, ipaddr_t, uint16_t, boolean_t, boolean_t, cred_t *); extern uint_t ip_cksum(mblk_t *, int, uint32_t); extern int ip_close(queue_t *, int); extern uint16_t ip_csum_hdr(ipha_t *); extern void ip_proto_not_sup(queue_t *, mblk_t *, uint_t, zoneid_t, ip_stack_t *); extern void ip_ire_g_fini(void); extern void ip_ire_g_init(void); extern void ip_ire_fini(ip_stack_t *); extern void ip_ire_init(ip_stack_t *); extern int ip_openv4(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp); extern int ip_openv6(queue_t *q, dev_t *devp, int flag, int sflag, cred_t *credp); extern int ip_reassemble(mblk_t *, ipf_t *, uint_t, boolean_t, ill_t *, size_t); extern int ip_opt_set_ill(conn_t *, int, boolean_t, boolean_t, int, int, mblk_t *); extern void ip_rput(queue_t *, mblk_t *); extern void ip_input(ill_t *, ill_rx_ring_t *, mblk_t *, struct mac_header_info_s *); extern mblk_t *ip_accept_tcp(ill_t *, ill_rx_ring_t *, squeue_t *, mblk_t *, mblk_t **, uint_t *cnt); extern void ip_rput_dlpi(queue_t *, mblk_t *); extern void ip_rput_forward(ire_t *, ipha_t *, mblk_t *, ill_t *); extern void ip_rput_forward_multicast(ipaddr_t, mblk_t *, ipif_t *); extern void ip_mib2_add_ip_stats(mib2_ipIfStatsEntry_t *, mib2_ipIfStatsEntry_t *); extern void ip_mib2_add_icmp6_stats(mib2_ipv6IfIcmpEntry_t *, mib2_ipv6IfIcmpEntry_t *); extern void ip_udp_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *); extern void ip_proto_input(queue_t *, mblk_t *, ipha_t *, ire_t *, ill_t *, uint32_t); extern void ip_rput_other(ipsq_t *, queue_t *, mblk_t *, void *); extern ire_t *ip_check_multihome(void *, ire_t *, ill_t *); extern void ip_setpktversion(conn_t *, boolean_t, boolean_t, ip_stack_t *); extern void ip_trash_ire_reclaim(void *); extern void ip_trash_timer_expire(void *); extern void ip_wput(queue_t *, mblk_t *); extern void ip_output(void *, mblk_t *, void *, int); extern void ip_output_options(void *, mblk_t *, void *, int, ip_opt_info_t *); extern void ip_wput_ire(queue_t *, mblk_t *, ire_t *, conn_t *, int, zoneid_t); extern void ip_wput_local(queue_t *, ill_t *, ipha_t *, mblk_t *, ire_t *, int, zoneid_t); extern void ip_wput_multicast(queue_t *, mblk_t *, ipif_t *, zoneid_t); extern void ip_wput_nondata(ipsq_t *, queue_t *, mblk_t *, void *); extern void ip_wsrv(queue_t *); extern char *ip_nv_lookup(nv_t *, int); extern boolean_t ip_local_addr_ok_v6(const in6_addr_t *, const in6_addr_t *); extern boolean_t ip_remote_addr_ok_v6(const in6_addr_t *, const in6_addr_t *); extern ipaddr_t ip_massage_options(ipha_t *, netstack_t *); extern ipaddr_t ip_net_mask(ipaddr_t); extern void ip_newroute(queue_t *, mblk_t *, ipaddr_t, conn_t *, zoneid_t, ip_stack_t *); extern ipxmit_state_t ip_xmit_v4(mblk_t *, ire_t *, struct ipsec_out_s *, boolean_t, conn_t *); extern int ip_hdr_complete(ipha_t *, zoneid_t, ip_stack_t *); extern struct qinit iprinitv6; extern struct qinit ipwinitv6; extern void ipmp_init(ip_stack_t *); extern void ipmp_destroy(ip_stack_t *); extern ipmp_grp_t *ipmp_grp_create(const char *, phyint_t *); extern void ipmp_grp_destroy(ipmp_grp_t *); extern void ipmp_grp_info(const ipmp_grp_t *, lifgroupinfo_t *); extern int ipmp_grp_rename(ipmp_grp_t *, const char *); extern ipmp_grp_t *ipmp_grp_lookup(const char *, ip_stack_t *); extern int ipmp_grp_vet_phyint(ipmp_grp_t *, phyint_t *); extern ipmp_illgrp_t *ipmp_illgrp_create(ill_t *); extern void ipmp_illgrp_destroy(ipmp_illgrp_t *); extern ill_t *ipmp_illgrp_add_ipif(ipmp_illgrp_t *, ipif_t *); extern void ipmp_illgrp_del_ipif(ipmp_illgrp_t *, ipif_t *); extern ill_t *ipmp_illgrp_next_ill(ipmp_illgrp_t *); extern ill_t *ipmp_illgrp_hold_next_ill(ipmp_illgrp_t *); extern ill_t *ipmp_illgrp_cast_ill(ipmp_illgrp_t *); extern ill_t *ipmp_illgrp_hold_cast_ill(ipmp_illgrp_t *); extern ill_t *ipmp_illgrp_ipmp_ill(ipmp_illgrp_t *); extern void ipmp_illgrp_refresh_mtu(ipmp_illgrp_t *); extern ipmp_arpent_t *ipmp_illgrp_create_arpent(ipmp_illgrp_t *, mblk_t *, boolean_t); extern void ipmp_illgrp_destroy_arpent(ipmp_illgrp_t *, ipmp_arpent_t *); extern ipmp_arpent_t *ipmp_illgrp_lookup_arpent(ipmp_illgrp_t *, ipaddr_t *); extern void ipmp_illgrp_refresh_arpent(ipmp_illgrp_t *); extern void ipmp_illgrp_mark_arpent(ipmp_illgrp_t *, ipmp_arpent_t *); extern ill_t *ipmp_illgrp_find_ill(ipmp_illgrp_t *, uchar_t *, uint_t); extern void ipmp_illgrp_link_grp(ipmp_illgrp_t *, ipmp_grp_t *); extern int ipmp_illgrp_unlink_grp(ipmp_illgrp_t *); extern uint_t ipmp_ill_get_ipmp_ifindex(const ill_t *); extern void ipmp_ill_join_illgrp(ill_t *, ipmp_illgrp_t *); extern void ipmp_ill_leave_illgrp(ill_t *); extern ill_t *ipmp_ill_hold_ipmp_ill(ill_t *); extern boolean_t ipmp_ill_is_active(ill_t *); extern void ipmp_ill_refresh_active(ill_t *); extern void ipmp_phyint_join_grp(phyint_t *, ipmp_grp_t *); extern void ipmp_phyint_leave_grp(phyint_t *); extern void ipmp_phyint_refresh_active(phyint_t *); extern ill_t *ipmp_ipif_bound_ill(const ipif_t *); extern ill_t *ipmp_ipif_hold_bound_ill(const ipif_t *); extern boolean_t ipmp_ipif_is_dataaddr(const ipif_t *); extern boolean_t ipmp_ipif_is_stubaddr(const ipif_t *); extern void conn_drain_insert(conn_t *, idl_tx_list_t *); extern int conn_ipsec_length(conn_t *); extern void ip_wput_ipsec_out(queue_t *, mblk_t *, ipha_t *, ill_t *, ire_t *); extern ipaddr_t ip_get_dst(ipha_t *); extern int ipsec_out_extra_length(mblk_t *); extern int ipsec_in_extra_length(mblk_t *); extern mblk_t *ipsec_in_alloc(boolean_t, netstack_t *); extern boolean_t ipsec_in_is_secure(mblk_t *); extern void ipsec_out_process(queue_t *, mblk_t *, ire_t *, uint_t); extern void ipsec_out_to_in(mblk_t *); extern void ip_fanout_proto_again(mblk_t *, ill_t *, ill_t *, ire_t *); extern void ire_cleanup(ire_t *); extern void ire_inactive(ire_t *); extern boolean_t irb_inactive(irb_t *); extern ire_t *ire_unlink(irb_t *); #ifdef DEBUG extern boolean_t th_trace_ref(const void *, ip_stack_t *); extern void th_trace_unref(const void *); extern void th_trace_cleanup(const void *, boolean_t); extern void ire_trace_ref(ire_t *); extern void ire_untrace_ref(ire_t *); #endif extern int ip_srcid_insert(const in6_addr_t *, zoneid_t, ip_stack_t *); extern int ip_srcid_remove(const in6_addr_t *, zoneid_t, ip_stack_t *); extern void ip_srcid_find_id(uint_t, in6_addr_t *, zoneid_t, netstack_t *); extern uint_t ip_srcid_find_addr(const in6_addr_t *, zoneid_t, netstack_t *); extern uint8_t ipoptp_next(ipoptp_t *); extern uint8_t ipoptp_first(ipoptp_t *, ipha_t *); extern int ip_opt_get_user(const ipha_t *, uchar_t *); extern int ipsec_req_from_conn(conn_t *, ipsec_req_t *, int); extern int ip_snmp_get(queue_t *q, mblk_t *mctl, int level); extern int ip_snmp_set(queue_t *q, int, int, uchar_t *, int); extern void ip_process_ioctl(ipsq_t *, queue_t *, mblk_t *, void *); extern void ip_quiesce_conn(conn_t *); extern void ip_reprocess_ioctl(ipsq_t *, queue_t *, mblk_t *, void *); extern void ip_restart_optmgmt(ipsq_t *, queue_t *, mblk_t *, void *); extern void ip_ioctl_finish(queue_t *, mblk_t *, int, int, ipsq_t *); extern boolean_t ip_cmpbuf(const void *, uint_t, boolean_t, const void *, uint_t); extern boolean_t ip_allocbuf(void **, uint_t *, boolean_t, const void *, uint_t); extern void ip_savebuf(void **, uint_t *, boolean_t, const void *, uint_t); extern boolean_t ipsq_pending_mp_cleanup(ill_t *, conn_t *); extern void conn_ioctl_cleanup(conn_t *); extern ill_t *conn_get_held_ill(conn_t *, ill_t **, int *); struct tcp_stack; extern void ip_xmit_reset_serialize(mblk_t *, int, zoneid_t, struct tcp_stack *, conn_t *); struct multidata_s; struct pdesc_s; extern mblk_t *ip_mdinfo_alloc(ill_mdt_capab_t *); extern mblk_t *ip_mdinfo_return(ire_t *, conn_t *, char *, ill_mdt_capab_t *); extern mblk_t *ip_lsoinfo_alloc(ill_lso_capab_t *); extern mblk_t *ip_lsoinfo_return(ire_t *, conn_t *, char *, ill_lso_capab_t *); extern uint_t ip_md_cksum(struct pdesc_s *, int, uint_t); extern boolean_t ip_md_addr_attr(struct multidata_s *, struct pdesc_s *, const mblk_t *); extern boolean_t ip_md_hcksum_attr(struct multidata_s *, struct pdesc_s *, uint32_t, uint32_t, uint32_t, uint32_t); extern boolean_t ip_md_zcopy_attr(struct multidata_s *, struct pdesc_s *, uint_t); extern void ip_unbind(conn_t *connp); extern void tnet_init(void); extern void tnet_fini(void); /* Hooks for CGTP (multirt routes) filtering module */ #define CGTP_FILTER_REV_1 1 #define CGTP_FILTER_REV_2 2 #define CGTP_FILTER_REV_3 3 #define CGTP_FILTER_REV CGTP_FILTER_REV_3 /* cfo_filter and cfo_filter_v6 hooks return values */ #define CGTP_IP_PKT_NOT_CGTP 0 #define CGTP_IP_PKT_PREMIUM 1 #define CGTP_IP_PKT_DUPLICATE 2 /* Version 3 of the filter interface */ typedef struct cgtp_filter_ops { int cfo_filter_rev; /* CGTP_FILTER_REV_3 */ int (*cfo_change_state)(netstackid_t, int); int (*cfo_add_dest_v4)(netstackid_t, ipaddr_t, ipaddr_t, ipaddr_t, ipaddr_t); int (*cfo_del_dest_v4)(netstackid_t, ipaddr_t, ipaddr_t); int (*cfo_add_dest_v6)(netstackid_t, in6_addr_t *, in6_addr_t *, in6_addr_t *, in6_addr_t *); int (*cfo_del_dest_v6)(netstackid_t, in6_addr_t *, in6_addr_t *); int (*cfo_filter)(netstackid_t, uint_t, mblk_t *); int (*cfo_filter_v6)(netstackid_t, uint_t, ip6_t *, ip6_frag_t *); } cgtp_filter_ops_t; #define CGTP_MCAST_SUCCESS 1 /* * The separate CGTP module needs this global symbol so that it * can check the version and determine whether to use the old or the new * version of the filtering interface. */ extern int ip_cgtp_filter_rev; extern int ip_cgtp_filter_supported(void); extern int ip_cgtp_filter_register(netstackid_t, cgtp_filter_ops_t *); extern int ip_cgtp_filter_unregister(netstackid_t); extern int ip_cgtp_filter_is_registered(netstackid_t); /* Flags for ire_multirt_lookup() */ #define MULTIRT_USESTAMP 0x0001 #define MULTIRT_SETSTAMP 0x0002 #define MULTIRT_CACHEGW 0x0004 /* Debug stuff for multirt route resolution. */ #if defined(DEBUG) && !defined(__lint) /* Our "don't send, rather drop" flag. */ #define MULTIRT_DEBUG_FLAG 0x8000 #define MULTIRT_TRACE(x) ip2dbg(x) #define MULTIRT_DEBUG_TAG(mblk) \ do { \ ASSERT(mblk != NULL); \ MULTIRT_TRACE(("%s[%d]: tagging mblk %p, tag was %d\n", \ __FILE__, __LINE__, \ (void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \ (mblk)->b_flag |= MULTIRT_DEBUG_FLAG; \ } while (0) #define MULTIRT_DEBUG_UNTAG(mblk) \ do { \ ASSERT(mblk != NULL); \ MULTIRT_TRACE(("%s[%d]: untagging mblk %p, tag was %d\n", \ __FILE__, __LINE__, \ (void *)(mblk), (mblk)->b_flag & MULTIRT_DEBUG_FLAG)); \ (mblk)->b_flag &= ~MULTIRT_DEBUG_FLAG; \ } while (0) #define MULTIRT_DEBUG_TAGGED(mblk) \ (((mblk)->b_flag & MULTIRT_DEBUG_FLAG) ? B_TRUE : B_FALSE) #else #define MULTIRT_DEBUG_TAG(mblk) ASSERT(mblk != NULL) #define MULTIRT_DEBUG_UNTAG(mblk) ASSERT(mblk != NULL) #define MULTIRT_DEBUG_TAGGED(mblk) B_FALSE #endif /* * IP observability hook support */ /* * ipobs_hooktype_t describes the hook types supported * by the ip module. IPOBS_HOOK_LOCAL refers to packets * which are looped back internally within the ip module. */ typedef enum ipobs_hook_type { IPOBS_HOOK_LOCAL, IPOBS_HOOK_OUTBOUND, IPOBS_HOOK_INBOUND } ipobs_hook_type_t; typedef void ipobs_cbfunc_t(mblk_t *); typedef struct ipobs_cb { ipobs_cbfunc_t *ipobs_cbfunc; list_node_t ipobs_cbnext; } ipobs_cb_t; /* * This structure holds the data passed back from the ip module to * observability consumers. * * ihd_mp Pointer to the IP packet. * ihd_zsrc Source zoneid; set to ALL_ZONES when unknown. * ihd_zdst Destination zoneid; set to ALL_ZONES when unknown. * ihd_htype IPobs hook type, see above for the defined types. * ihd_ipver IP version of the packet. * ihd_ifindex Interface index that the packet was received/sent over. * For local packets, this is the index of the interface * associated with the local destination address. * ihd_grifindex IPMP group interface index (zero unless ihd_ifindex * is an IPMP underlying interface). * ihd_stack Netstack the packet is from. */ typedef struct ipobs_hook_data { mblk_t *ihd_mp; zoneid_t ihd_zsrc; zoneid_t ihd_zdst; ipobs_hook_type_t ihd_htype; uint16_t ihd_ipver; uint64_t ihd_ifindex; uint64_t ihd_grifindex; netstack_t *ihd_stack; } ipobs_hook_data_t; /* * Per-ILL Multidata Transmit capabilities. */ struct ill_mdt_capab_s { uint_t ill_mdt_version; /* interface version */ uint_t ill_mdt_on; /* on/off switch for MDT on this ILL */ uint_t ill_mdt_hdr_head; /* leading header fragment extra space */ uint_t ill_mdt_hdr_tail; /* trailing header fragment extra space */ uint_t ill_mdt_max_pld; /* maximum payload buffers per Multidata */ uint_t ill_mdt_span_limit; /* maximum payload span per packet */ }; struct ill_hcksum_capab_s { uint_t ill_hcksum_version; /* interface version */ uint_t ill_hcksum_txflags; /* capabilities on transmit */ }; struct ill_zerocopy_capab_s { uint_t ill_zerocopy_version; /* interface version */ uint_t ill_zerocopy_flags; /* capabilities */ }; struct ill_lso_capab_s { uint_t ill_lso_on; /* on/off switch for LSO on this ILL */ uint_t ill_lso_flags; /* capabilities */ uint_t ill_lso_max; /* maximum size of payload */ }; /* * rr_ring_state cycles in the order shown below from RR_FREE through * RR_FREE_IN_PROG and back to RR_FREE. */ typedef enum { RR_FREE, /* Free slot */ RR_SQUEUE_UNBOUND, /* Ring's squeue is unbound */ RR_SQUEUE_BIND_INPROG, /* Ring's squeue bind in progress */ RR_SQUEUE_BOUND, /* Ring's squeue bound to cpu */ RR_FREE_INPROG /* Ring is being freed */ } ip_ring_state_t; #define ILL_MAX_RINGS 256 /* Max num of rx rings we can manage */ #define ILL_POLLING 0x01 /* Polling in use */ /* * These functions pointer types are exported by the mac/dls layer. * we need to duplicate the definitions here because we cannot * include mac/dls header files here. */ typedef void (*ip_mac_intr_disable_t)(void *); typedef void (*ip_mac_intr_enable_t)(void *); typedef ip_mac_tx_cookie_t (*ip_dld_tx_t)(void *, mblk_t *, uint64_t, uint16_t); typedef void (*ip_flow_enable_t)(void *, ip_mac_tx_cookie_t); typedef void *(*ip_dld_callb_t)(void *, ip_flow_enable_t, void *); typedef boolean_t (*ip_dld_fctl_t)(void *, ip_mac_tx_cookie_t); typedef int (*ip_capab_func_t)(void *, uint_t, void *, uint_t); /* * POLLING README * sq_get_pkts() is called to pick packets from softring in poll mode. It * calls rr_rx to get the chain and process it with rr_ip_accept. * rr_rx = mac_soft_ring_poll() to pick packets * rr_ip_accept = ip_accept_tcp() to process packets */ /* * XXX: With protocol, service specific squeues, they will have * specific acceptor functions. */ typedef mblk_t *(*ip_mac_rx_t)(void *, size_t); typedef mblk_t *(*ip_accept_t)(ill_t *, ill_rx_ring_t *, squeue_t *, mblk_t *, mblk_t **, uint_t *); /* * rr_intr_enable, rr_intr_disable, rr_rx_handle, rr_rx: * May be accessed while in the squeue AND after checking that SQS_POLL_CAPAB * is set. * * rr_ring_state: Protected by ill_lock. */ struct ill_rx_ring { ip_mac_intr_disable_t rr_intr_disable; /* Interrupt disabling func */ ip_mac_intr_enable_t rr_intr_enable; /* Interrupt enabling func */ void *rr_intr_handle; /* Handle interrupt funcs */ ip_mac_rx_t rr_rx; /* Driver receive function */ ip_accept_t rr_ip_accept; /* IP accept function */ void *rr_rx_handle; /* Handle for Rx ring */ squeue_t *rr_sqp; /* Squeue the ring is bound to */ ill_t *rr_ill; /* back pointer to ill */ ip_ring_state_t rr_ring_state; /* State of this ring */ }; /* * IP - DLD direct function call capability * Suffixes, df - dld function, dh - dld handle, * cf - client (IP) function, ch - client handle */ typedef struct ill_dld_direct_s { /* DLD provided driver Tx */ ip_dld_tx_t idd_tx_df; /* str_mdata_fastpath_put */ void *idd_tx_dh; /* dld_str_t *dsp */ ip_dld_callb_t idd_tx_cb_df; /* mac_tx_srs_notify */ void *idd_tx_cb_dh; /* mac_client_handle_t *mch */ ip_dld_fctl_t idd_tx_fctl_df; /* mac_tx_is_flow_blocked */ void *idd_tx_fctl_dh; /* mac_client_handle */ } ill_dld_direct_t; /* IP - DLD polling capability */ typedef struct ill_dld_poll_s { ill_rx_ring_t idp_ring_tbl[ILL_MAX_RINGS]; } ill_dld_poll_t; /* Describes ill->ill_dld_capab */ struct ill_dld_capab_s { ip_capab_func_t idc_capab_df; /* dld_capab_func */ void *idc_capab_dh; /* dld_str_t *dsp */ ill_dld_direct_t idc_direct; ill_dld_poll_t idc_poll; }; /* * IP squeues exports */ extern boolean_t ip_squeue_fanout; #define IP_SQUEUE_GET(hint) ip_squeue_random(hint) extern void ip_squeue_init(void (*)(squeue_t *)); extern squeue_t *ip_squeue_random(uint_t); extern squeue_t *ip_squeue_get(ill_rx_ring_t *); extern squeue_t *ip_squeue_getfree(pri_t); extern int ip_squeue_cpu_move(squeue_t *, processorid_t); extern void *ip_squeue_add_ring(ill_t *, void *); extern void ip_squeue_bind_ring(ill_t *, ill_rx_ring_t *, processorid_t); extern void ip_squeue_clean_ring(ill_t *, ill_rx_ring_t *); extern void ip_squeue_quiesce_ring(ill_t *, ill_rx_ring_t *); extern void ip_squeue_restart_ring(ill_t *, ill_rx_ring_t *); extern void ip_squeue_clean_all(ill_t *); extern void tcp_wput(queue_t *, mblk_t *); extern int ip_fill_mtuinfo(struct in6_addr *, in_port_t, struct ip6_mtuinfo *, netstack_t *); extern ipif_t *conn_get_held_ipif(conn_t *, ipif_t **, int *); extern void ipobs_register_hook(netstack_t *, ipobs_cbfunc_t *); extern void ipobs_unregister_hook(netstack_t *, ipobs_cbfunc_t *); extern void ipobs_hook(mblk_t *, int, zoneid_t, zoneid_t, const ill_t *, int, uint32_t, ip_stack_t *); typedef void (*ipsq_func_t)(ipsq_t *, queue_t *, mblk_t *, void *); /* * Squeue tags. Tags only need to be unique when the callback function is the * same to distinguish between different calls, but we use unique tags for * convenience anyway. */ #define SQTAG_IP_INPUT 1 #define SQTAG_TCP_INPUT_ICMP_ERR 2 #define SQTAG_TCP6_INPUT_ICMP_ERR 3 #define SQTAG_IP_TCP_INPUT 4 #define SQTAG_IP6_TCP_INPUT 5 #define SQTAG_IP_TCP_CLOSE 6 #define SQTAG_TCP_OUTPUT 7 #define SQTAG_TCP_TIMER 8 #define SQTAG_TCP_TIMEWAIT 9 #define SQTAG_TCP_ACCEPT_FINISH 10 #define SQTAG_TCP_ACCEPT_FINISH_Q0 11 #define SQTAG_TCP_ACCEPT_PENDING 12 #define SQTAG_TCP_LISTEN_DISCON 13 #define SQTAG_TCP_CONN_REQ_1 14 #define SQTAG_TCP_EAGER_BLOWOFF 15 #define SQTAG_TCP_EAGER_CLEANUP 16 #define SQTAG_TCP_EAGER_CLEANUP_Q0 17 #define SQTAG_TCP_CONN_IND 18 #define SQTAG_TCP_RSRV 19 #define SQTAG_TCP_ABORT_BUCKET 20 #define SQTAG_TCP_REINPUT 21 #define SQTAG_TCP_REINPUT_EAGER 22 #define SQTAG_TCP_INPUT_MCTL 23 #define SQTAG_TCP_RPUTOTHER 24 #define SQTAG_IP_PROTO_AGAIN 25 #define SQTAG_IP_FANOUT_TCP 26 #define SQTAG_IPSQ_CLEAN_RING 27 #define SQTAG_TCP_WPUT_OTHER 28 #define SQTAG_TCP_CONN_REQ_UNBOUND 29 #define SQTAG_TCP_SEND_PENDING 30 #define SQTAG_BIND_RETRY 31 #define SQTAG_UDP_FANOUT 32 #define SQTAG_UDP_INPUT 33 #define SQTAG_UDP_WPUT 34 #define SQTAG_UDP_OUTPUT 35 #define SQTAG_TCP_KSSL_INPUT 36 #define SQTAG_TCP_DROP_Q0 37 #define SQTAG_TCP_CONN_REQ_2 38 #define SQTAG_IP_INPUT_RX_RING 39 #define SQTAG_SQUEUE_CHANGE 40 #define SQTAG_CONNECT_FINISH 41 #define SQTAG_SYNCHRONOUS_OP 42 #define SQTAG_TCP_SHUTDOWN_OUTPUT 43 #define SQTAG_XMIT_EARLY_RESET 44 #define NOT_OVER_IP(ip_wq) \ (ip_wq->q_next != NULL || \ (ip_wq->q_qinfo->qi_minfo->mi_idname) == NULL || \ strcmp(ip_wq->q_qinfo->qi_minfo->mi_idname, \ IP_MOD_NAME) != 0 || \ ip_wq->q_qinfo->qi_minfo->mi_idnum != IP_MOD_ID) #define PROTO_FLOW_CNTRLD(connp) (connp->conn_flow_cntrld) #endif /* _KERNEL */ #ifdef __cplusplus } #endif #endif /* _INET_IP_H */