/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * ZFS volume emulation driver. * * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes. * Volumes are accessed through the symbolic links named: * * /dev/zvol/dsk// * /dev/zvol/rdsk// * * These links are created by the ZFS-specific devfsadm link generator. * Volumes are persistent through reboot. No user command needs to be * run before opening and using a device. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_namecheck.h" #define ZVOL_OBJ 1ULL #define ZVOL_ZAP_OBJ 2ULL static void *zvol_state; /* * This lock protects the zvol_state structure from being modified * while it's being used, e.g. an open that comes in before a create * finishes. It also protects temporary opens of the dataset so that, * e.g., an open doesn't get a spurious EBUSY. */ static kmutex_t zvol_state_lock; static uint32_t zvol_minors; /* * The in-core state of each volume. */ typedef struct zvol_state { char zv_name[MAXPATHLEN]; /* pool/dd name */ uint64_t zv_volsize; /* amount of space we advertise */ minor_t zv_minor; /* minor number */ uint8_t zv_min_bs; /* minimum addressable block shift */ uint8_t zv_readonly; /* hard readonly; like write-protect */ objset_t *zv_objset; /* objset handle */ uint32_t zv_mode; /* DS_MODE_* flags at open time */ uint32_t zv_open_count[OTYPCNT]; /* open counts */ uint32_t zv_total_opens; /* total open count */ zilog_t *zv_zilog; /* ZIL handle */ uint64_t zv_txg_assign; /* txg to assign during ZIL replay */ krwlock_t zv_dslock; /* dmu_sync() rwlock */ } zvol_state_t; static void zvol_size_changed(zvol_state_t *zv, dev_t dev) { dev = makedevice(getmajor(dev), zv->zv_minor); VERIFY(ddi_prop_update_int64(dev, zfs_dip, "Size", zv->zv_volsize) == DDI_SUCCESS); VERIFY(ddi_prop_update_int64(dev, zfs_dip, "Nblocks", lbtodb(zv->zv_volsize)) == DDI_SUCCESS); } int zvol_check_volsize(uint64_t volsize, uint64_t blocksize) { if (volsize == 0) return (EINVAL); if (volsize % blocksize != 0) return (EINVAL); #ifdef _ILP32 if (volsize - 1 > SPEC_MAXOFFSET_T) return (EOVERFLOW); #endif return (0); } int zvol_check_volblocksize(uint64_t volblocksize) { if (volblocksize < SPA_MINBLOCKSIZE || volblocksize > SPA_MAXBLOCKSIZE || !ISP2(volblocksize)) return (EDOM); return (0); } static void zvol_readonly_changed_cb(void *arg, uint64_t newval) { zvol_state_t *zv = arg; zv->zv_readonly = (uint8_t)newval; } int zvol_get_stats(objset_t *os, nvlist_t *nv) { int error; dmu_object_info_t doi; uint64_t val; error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val); if (error) return (error); dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val); error = dmu_object_info(os, ZVOL_OBJ, &doi); if (error == 0) { dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE, doi.doi_data_block_size); } return (error); } /* * Find a free minor number. */ static minor_t zvol_minor_alloc(void) { minor_t minor; ASSERT(MUTEX_HELD(&zvol_state_lock)); for (minor = 1; minor <= ZVOL_MAX_MINOR; minor++) if (ddi_get_soft_state(zvol_state, minor) == NULL) return (minor); return (0); } static zvol_state_t * zvol_minor_lookup(const char *name) { minor_t minor; zvol_state_t *zv; ASSERT(MUTEX_HELD(&zvol_state_lock)); for (minor = 1; minor <= ZVOL_MAX_MINOR; minor++) { zv = ddi_get_soft_state(zvol_state, minor); if (zv == NULL) continue; if (strcmp(zv->zv_name, name) == 0) break; } return (zv); } void zvol_create_cb(objset_t *os, void *arg, dmu_tx_t *tx) { zfs_create_data_t *zc = arg; int error; uint64_t volblocksize, volsize; VERIFY(nvlist_lookup_uint64(zc->zc_props, zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0); if (nvlist_lookup_uint64(zc->zc_props, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0) volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE); /* * These properites must be removed from the list so the generic * property setting step won't apply to them. */ VERIFY(nvlist_remove_all(zc->zc_props, zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0); (void) nvlist_remove_all(zc->zc_props, zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE)); error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize, DMU_OT_NONE, 0, tx); ASSERT(error == 0); error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP, DMU_OT_NONE, 0, tx); ASSERT(error == 0); error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx); ASSERT(error == 0); } /* * Replay a TX_WRITE ZIL transaction that didn't get committed * after a system failure */ static int zvol_replay_write(zvol_state_t *zv, lr_write_t *lr, boolean_t byteswap) { objset_t *os = zv->zv_objset; char *data = (char *)(lr + 1); /* data follows lr_write_t */ uint64_t off = lr->lr_offset; uint64_t len = lr->lr_length; dmu_tx_t *tx; int error; if (byteswap) byteswap_uint64_array(lr, sizeof (*lr)); tx = dmu_tx_create(os); dmu_tx_hold_write(tx, ZVOL_OBJ, off, len); error = dmu_tx_assign(tx, zv->zv_txg_assign); if (error) { dmu_tx_abort(tx); } else { dmu_write(os, ZVOL_OBJ, off, len, data, tx); dmu_tx_commit(tx); } return (error); } /* ARGSUSED */ static int zvol_replay_err(zvol_state_t *zv, lr_t *lr, boolean_t byteswap) { return (ENOTSUP); } /* * Callback vectors for replaying records. * Only TX_WRITE is needed for zvol. */ zil_replay_func_t *zvol_replay_vector[TX_MAX_TYPE] = { zvol_replay_err, /* 0 no such transaction type */ zvol_replay_err, /* TX_CREATE */ zvol_replay_err, /* TX_MKDIR */ zvol_replay_err, /* TX_MKXATTR */ zvol_replay_err, /* TX_SYMLINK */ zvol_replay_err, /* TX_REMOVE */ zvol_replay_err, /* TX_RMDIR */ zvol_replay_err, /* TX_LINK */ zvol_replay_err, /* TX_RENAME */ zvol_replay_write, /* TX_WRITE */ zvol_replay_err, /* TX_TRUNCATE */ zvol_replay_err, /* TX_SETATTR */ zvol_replay_err, /* TX_ACL */ }; /* * Create a minor node for the specified volume. */ int zvol_create_minor(const char *name, dev_t dev) { zvol_state_t *zv; objset_t *os; uint64_t volsize; minor_t minor = 0; struct pathname linkpath; int ds_mode = DS_MODE_PRIMARY; vnode_t *vp = NULL; char *devpath; size_t devpathlen = strlen(ZVOL_FULL_DEV_DIR) + 1 + strlen(name) + 1; char chrbuf[30], blkbuf[30]; int error; mutex_enter(&zvol_state_lock); if ((zv = zvol_minor_lookup(name)) != NULL) { mutex_exit(&zvol_state_lock); return (EEXIST); } if (strchr(name, '@') != 0) ds_mode |= DS_MODE_READONLY; error = dmu_objset_open(name, DMU_OST_ZVOL, ds_mode, &os); if (error) { mutex_exit(&zvol_state_lock); return (error); } error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize); if (error) { dmu_objset_close(os); mutex_exit(&zvol_state_lock); return (error); } /* * If there's an existing /dev/zvol symlink, try to use the * same minor number we used last time. */ devpath = kmem_alloc(devpathlen, KM_SLEEP); (void) sprintf(devpath, "%s/%s", ZVOL_FULL_DEV_DIR, name); error = lookupname(devpath, UIO_SYSSPACE, NO_FOLLOW, NULL, &vp); kmem_free(devpath, devpathlen); if (error == 0 && vp->v_type != VLNK) error = EINVAL; if (error == 0) { pn_alloc(&linkpath); error = pn_getsymlink(vp, &linkpath, kcred); if (error == 0) { char *ms = strstr(linkpath.pn_path, ZVOL_PSEUDO_DEV); if (ms != NULL) { ms += strlen(ZVOL_PSEUDO_DEV); minor = stoi(&ms); } } pn_free(&linkpath); } if (vp != NULL) VN_RELE(vp); /* * If we found a minor but it's already in use, we must pick a new one. */ if (minor != 0 && ddi_get_soft_state(zvol_state, minor) != NULL) minor = 0; if (minor == 0) minor = zvol_minor_alloc(); if (minor == 0) { dmu_objset_close(os); mutex_exit(&zvol_state_lock); return (ENXIO); } if (ddi_soft_state_zalloc(zvol_state, minor) != DDI_SUCCESS) { dmu_objset_close(os); mutex_exit(&zvol_state_lock); return (EAGAIN); } (void) ddi_prop_update_string(minor, zfs_dip, ZVOL_PROP_NAME, (char *)name); (void) sprintf(chrbuf, "%uc,raw", minor); if (ddi_create_minor_node(zfs_dip, chrbuf, S_IFCHR, minor, DDI_PSEUDO, 0) == DDI_FAILURE) { ddi_soft_state_free(zvol_state, minor); dmu_objset_close(os); mutex_exit(&zvol_state_lock); return (EAGAIN); } (void) sprintf(blkbuf, "%uc", minor); if (ddi_create_minor_node(zfs_dip, blkbuf, S_IFBLK, minor, DDI_PSEUDO, 0) == DDI_FAILURE) { ddi_remove_minor_node(zfs_dip, chrbuf); ddi_soft_state_free(zvol_state, minor); dmu_objset_close(os); mutex_exit(&zvol_state_lock); return (EAGAIN); } zv = ddi_get_soft_state(zvol_state, minor); (void) strcpy(zv->zv_name, name); zv->zv_min_bs = DEV_BSHIFT; zv->zv_minor = minor; zv->zv_volsize = volsize; zv->zv_objset = os; zv->zv_mode = ds_mode; zv->zv_zilog = zil_open(os, NULL); rw_init(&zv->zv_dslock, NULL, RW_DEFAULT, NULL); zil_replay(os, zv, &zv->zv_txg_assign, zvol_replay_vector, NULL); zvol_size_changed(zv, dev); /* XXX this should handle the possible i/o error */ VERIFY(dsl_prop_register(dmu_objset_ds(zv->zv_objset), "readonly", zvol_readonly_changed_cb, zv) == 0); zvol_minors++; mutex_exit(&zvol_state_lock); return (0); } /* * Remove minor node for the specified volume. */ int zvol_remove_minor(const char *name) { zvol_state_t *zv; char namebuf[30]; mutex_enter(&zvol_state_lock); if ((zv = zvol_minor_lookup(name)) == NULL) { mutex_exit(&zvol_state_lock); return (ENXIO); } if (zv->zv_total_opens != 0) { mutex_exit(&zvol_state_lock); return (EBUSY); } (void) sprintf(namebuf, "%uc,raw", zv->zv_minor); ddi_remove_minor_node(zfs_dip, namebuf); (void) sprintf(namebuf, "%uc", zv->zv_minor); ddi_remove_minor_node(zfs_dip, namebuf); VERIFY(dsl_prop_unregister(dmu_objset_ds(zv->zv_objset), "readonly", zvol_readonly_changed_cb, zv) == 0); zil_close(zv->zv_zilog); zv->zv_zilog = NULL; dmu_objset_close(zv->zv_objset); zv->zv_objset = NULL; ddi_soft_state_free(zvol_state, zv->zv_minor); zvol_minors--; mutex_exit(&zvol_state_lock); return (0); } int zvol_set_volsize(const char *name, dev_t dev, uint64_t volsize) { zvol_state_t *zv; dmu_tx_t *tx; int error; dmu_object_info_t doi; mutex_enter(&zvol_state_lock); if ((zv = zvol_minor_lookup(name)) == NULL) { mutex_exit(&zvol_state_lock); return (ENXIO); } if ((error = dmu_object_info(zv->zv_objset, ZVOL_OBJ, &doi)) != 0 || (error = zvol_check_volsize(volsize, doi.doi_data_block_size)) != 0) { mutex_exit(&zvol_state_lock); return (error); } if (zv->zv_readonly || (zv->zv_mode & DS_MODE_READONLY)) { mutex_exit(&zvol_state_lock); return (EROFS); } tx = dmu_tx_create(zv->zv_objset); dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL); dmu_tx_hold_free(tx, ZVOL_OBJ, volsize, DMU_OBJECT_END); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); mutex_exit(&zvol_state_lock); return (error); } error = zap_update(zv->zv_objset, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx); if (error == 0) { error = dmu_free_range(zv->zv_objset, ZVOL_OBJ, volsize, DMU_OBJECT_END, tx); } dmu_tx_commit(tx); if (error == 0) { zv->zv_volsize = volsize; zvol_size_changed(zv, dev); } mutex_exit(&zvol_state_lock); return (error); } int zvol_set_volblocksize(const char *name, uint64_t volblocksize) { zvol_state_t *zv; dmu_tx_t *tx; int error; mutex_enter(&zvol_state_lock); if ((zv = zvol_minor_lookup(name)) == NULL) { mutex_exit(&zvol_state_lock); return (ENXIO); } if (zv->zv_readonly || (zv->zv_mode & DS_MODE_READONLY)) { mutex_exit(&zvol_state_lock); return (EROFS); } tx = dmu_tx_create(zv->zv_objset); dmu_tx_hold_bonus(tx, ZVOL_OBJ); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); } else { error = dmu_object_set_blocksize(zv->zv_objset, ZVOL_OBJ, volblocksize, 0, tx); if (error == ENOTSUP) error = EBUSY; dmu_tx_commit(tx); } mutex_exit(&zvol_state_lock); return (error); } /*ARGSUSED*/ int zvol_open(dev_t *devp, int flag, int otyp, cred_t *cr) { minor_t minor = getminor(*devp); zvol_state_t *zv; if (minor == 0) /* This is the control device */ return (0); mutex_enter(&zvol_state_lock); zv = ddi_get_soft_state(zvol_state, minor); if (zv == NULL) { mutex_exit(&zvol_state_lock); return (ENXIO); } ASSERT(zv->zv_objset != NULL); if ((flag & FWRITE) && (zv->zv_readonly || (zv->zv_mode & DS_MODE_READONLY))) { mutex_exit(&zvol_state_lock); return (EROFS); } if (zv->zv_open_count[otyp] == 0 || otyp == OTYP_LYR) { zv->zv_open_count[otyp]++; zv->zv_total_opens++; } mutex_exit(&zvol_state_lock); return (0); } /*ARGSUSED*/ int zvol_close(dev_t dev, int flag, int otyp, cred_t *cr) { minor_t minor = getminor(dev); zvol_state_t *zv; if (minor == 0) /* This is the control device */ return (0); mutex_enter(&zvol_state_lock); zv = ddi_get_soft_state(zvol_state, minor); if (zv == NULL) { mutex_exit(&zvol_state_lock); return (ENXIO); } /* * The next statement is a workaround for the following DDI bug: * 6343604 specfs race: multiple "last-close" of the same device */ if (zv->zv_total_opens == 0) { mutex_exit(&zvol_state_lock); return (0); } /* * If the open count is zero, this is a spurious close. * That indicates a bug in the kernel / DDI framework. */ ASSERT(zv->zv_open_count[otyp] != 0); ASSERT(zv->zv_total_opens != 0); /* * You may get multiple opens, but only one close. */ zv->zv_open_count[otyp]--; zv->zv_total_opens--; mutex_exit(&zvol_state_lock); return (0); } /* * Create and return an immediate write ZIL transaction. */ itx_t * zvol_immediate_itx(offset_t off, ssize_t len, char *addr) { itx_t *itx; lr_write_t *lr; itx = zil_itx_create(TX_WRITE, sizeof (*lr) + len); lr = (lr_write_t *)&itx->itx_lr; lr->lr_foid = ZVOL_OBJ; lr->lr_offset = off; lr->lr_length = len; lr->lr_blkoff = 0; BP_ZERO(&lr->lr_blkptr); bcopy(addr, (char *)itx + offsetof(itx_t, itx_lr) + sizeof (*lr), len); itx->itx_wr_state = WR_COPIED; return (itx); } /* * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions. * * We store data in the log buffers if it's small enough. * Otherwise we flush the data out via dmu_sync(). */ ssize_t zvol_immediate_write_sz = 65536; int zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, offset_t off, ssize_t len, char *addr) { dmu_object_info_t doi; ssize_t nbytes; itx_t *itx; lr_write_t *lr; objset_t *os; dmu_buf_t *db; uint64_t txg; uint64_t boff; int error; uint32_t blocksize; /* handle common case */ if (len <= zvol_immediate_write_sz) { itx = zvol_immediate_itx(off, len, addr); (void) zil_itx_assign(zv->zv_zilog, itx, tx); return (0); } txg = dmu_tx_get_txg(tx); os = zv->zv_objset; /* * We need to dmu_sync() each block in the range. * For this we need the blocksize. */ error = dmu_object_info(os, ZVOL_OBJ, &doi); if (error) return (error); blocksize = doi.doi_data_block_size; /* * We need to immediate write or dmu_sync() each block in the range. */ while (len) { nbytes = MIN(len, blocksize - P2PHASE(off, blocksize)); if (nbytes <= zvol_immediate_write_sz) { itx = zvol_immediate_itx(off, nbytes, addr); } else { boff = P2ALIGN_TYPED(off, blocksize, uint64_t); itx = zil_itx_create(TX_WRITE, sizeof (*lr)); lr = (lr_write_t *)&itx->itx_lr; lr->lr_foid = ZVOL_OBJ; lr->lr_offset = off; lr->lr_length = nbytes; lr->lr_blkoff = off - boff; BP_ZERO(&lr->lr_blkptr); /* XXX - we should do these IOs in parallel */ VERIFY(0 == dmu_buf_hold(os, ZVOL_OBJ, boff, FTAG, &db)); ASSERT(boff == db->db_offset); error = dmu_sync(NULL, db, &lr->lr_blkptr, txg, NULL, NULL); dmu_buf_rele(db, FTAG); if (error) { kmem_free(itx, offsetof(itx_t, itx_lr)); return (error); } itx->itx_wr_state = WR_COPIED; } (void) zil_itx_assign(zv->zv_zilog, itx, tx); len -= nbytes; off += nbytes; } return (0); } int zvol_strategy(buf_t *bp) { zvol_state_t *zv = ddi_get_soft_state(zvol_state, getminor(bp->b_edev)); uint64_t off, volsize; size_t size, resid; char *addr; objset_t *os; int error = 0; int sync; int reading; int txg_sync_needed = B_FALSE; if (zv == NULL) { bioerror(bp, ENXIO); biodone(bp); return (0); } if (getminor(bp->b_edev) == 0) { bioerror(bp, EINVAL); biodone(bp); return (0); } if ((zv->zv_readonly || (zv->zv_mode & DS_MODE_READONLY)) && !(bp->b_flags & B_READ)) { bioerror(bp, EROFS); biodone(bp); return (0); } off = ldbtob(bp->b_blkno); volsize = zv->zv_volsize; os = zv->zv_objset; ASSERT(os != NULL); sync = !(bp->b_flags & B_ASYNC) && !(zil_disable); bp_mapin(bp); addr = bp->b_un.b_addr; resid = bp->b_bcount; /* * There must be no buffer changes when doing a dmu_sync() because * we can't change the data whilst calculating the checksum. * A better approach than a per zvol rwlock would be to lock ranges. */ reading = bp->b_flags & B_READ; if (reading || resid <= zvol_immediate_write_sz) rw_enter(&zv->zv_dslock, RW_READER); else rw_enter(&zv->zv_dslock, RW_WRITER); while (resid != 0 && off < volsize) { size = MIN(resid, 1UL << 20); /* cap at 1MB per tx */ if (size > volsize - off) /* don't write past the end */ size = volsize - off; if (reading) { error = dmu_read(os, ZVOL_OBJ, off, size, addr); } else { dmu_tx_t *tx = dmu_tx_create(os); dmu_tx_hold_write(tx, ZVOL_OBJ, off, size); error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); } else { dmu_write(os, ZVOL_OBJ, off, size, addr, tx); if (sync) { /* use the ZIL to commit this write */ if (zvol_log_write(zv, tx, off, size, addr) != 0) { txg_sync_needed = B_TRUE; } } dmu_tx_commit(tx); } } if (error) break; off += size; addr += size; resid -= size; } rw_exit(&zv->zv_dslock); if ((bp->b_resid = resid) == bp->b_bcount) bioerror(bp, off > volsize ? EINVAL : error); biodone(bp); if (sync) { if (txg_sync_needed) txg_wait_synced(dmu_objset_pool(os), 0); else zil_commit(zv->zv_zilog, UINT64_MAX, 0); } return (0); } /*ARGSUSED*/ int zvol_read(dev_t dev, uio_t *uiop, cred_t *cr) { return (physio(zvol_strategy, NULL, dev, B_READ, minphys, uiop)); } /*ARGSUSED*/ int zvol_write(dev_t dev, uio_t *uiop, cred_t *cr) { return (physio(zvol_strategy, NULL, dev, B_WRITE, minphys, uiop)); } /*ARGSUSED*/ int zvol_aread(dev_t dev, struct aio_req *aio, cred_t *cr) { return (aphysio(zvol_strategy, anocancel, dev, B_READ, minphys, aio)); } /*ARGSUSED*/ int zvol_awrite(dev_t dev, struct aio_req *aio, cred_t *cr) { return (aphysio(zvol_strategy, anocancel, dev, B_WRITE, minphys, aio)); } /* * Dirtbag ioctls to support mkfs(1M) for UFS filesystems. See dkio(7I). */ /*ARGSUSED*/ int zvol_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp) { zvol_state_t *zv; struct dk_cinfo dkc; struct dk_minfo dkm; dk_efi_t efi; efi_gpt_t gpt; efi_gpe_t gpe; struct uuid uuid = EFI_RESERVED; uint32_t crc; int error = 0; mutex_enter(&zvol_state_lock); zv = ddi_get_soft_state(zvol_state, getminor(dev)); if (zv == NULL) { mutex_exit(&zvol_state_lock); return (ENXIO); } switch (cmd) { case DKIOCINFO: bzero(&dkc, sizeof (dkc)); (void) strcpy(dkc.dki_cname, "zvol"); (void) strcpy(dkc.dki_dname, "zvol"); dkc.dki_ctype = DKC_UNKNOWN; dkc.dki_maxtransfer = 1 << (SPA_MAXBLOCKSHIFT - zv->zv_min_bs); mutex_exit(&zvol_state_lock); if (ddi_copyout(&dkc, (void *)arg, sizeof (dkc), flag)) error = EFAULT; return (error); case DKIOCGMEDIAINFO: bzero(&dkm, sizeof (dkm)); dkm.dki_lbsize = 1U << zv->zv_min_bs; dkm.dki_capacity = zv->zv_volsize >> zv->zv_min_bs; dkm.dki_media_type = DK_UNKNOWN; mutex_exit(&zvol_state_lock); if (ddi_copyout(&dkm, (void *)arg, sizeof (dkm), flag)) error = EFAULT; return (error); case DKIOCGETEFI: if (ddi_copyin((void *)arg, &efi, sizeof (dk_efi_t), flag)) { mutex_exit(&zvol_state_lock); return (EFAULT); } bzero(&gpt, sizeof (gpt)); bzero(&gpe, sizeof (gpe)); efi.dki_data = (void *)(uintptr_t)efi.dki_data_64; if (efi.dki_length < sizeof (gpt) + sizeof (gpe)) { mutex_exit(&zvol_state_lock); return (EINVAL); } efi.dki_length = sizeof (gpt) + sizeof (gpe); gpt.efi_gpt_Signature = LE_64(EFI_SIGNATURE); gpt.efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT); gpt.efi_gpt_HeaderSize = LE_32(sizeof (gpt)); gpt.efi_gpt_FirstUsableLBA = LE_64(0ULL); gpt.efi_gpt_LastUsableLBA = LE_64((zv->zv_volsize >> zv->zv_min_bs) - 1); gpt.efi_gpt_NumberOfPartitionEntries = LE_32(1); gpt.efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (gpe)); UUID_LE_CONVERT(gpe.efi_gpe_PartitionTypeGUID, uuid); gpe.efi_gpe_StartingLBA = gpt.efi_gpt_FirstUsableLBA; gpe.efi_gpe_EndingLBA = gpt.efi_gpt_LastUsableLBA; CRC32(crc, &gpe, sizeof (gpe), -1U, crc32_table); gpt.efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc); CRC32(crc, &gpt, sizeof (gpt), -1U, crc32_table); gpt.efi_gpt_HeaderCRC32 = LE_32(~crc); mutex_exit(&zvol_state_lock); if (ddi_copyout(&gpt, efi.dki_data, sizeof (gpt), flag) || ddi_copyout(&gpe, efi.dki_data + 1, sizeof (gpe), flag)) error = EFAULT; return (error); default: error = ENOTSUP; break; } mutex_exit(&zvol_state_lock); return (error); } int zvol_busy(void) { return (zvol_minors != 0); } void zvol_init(void) { VERIFY(ddi_soft_state_init(&zvol_state, sizeof (zvol_state_t), 1) == 0); mutex_init(&zvol_state_lock, NULL, MUTEX_DEFAULT, NULL); } void zvol_fini(void) { mutex_destroy(&zvol_state_lock); ddi_soft_state_fini(&zvol_state); }