/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2013 by Delphix. All rights reserved. */ /* Portions Copyright 2010 Robert Milkowski */ #include #include #include #include #include #include #include #include #include #include #include #include #include "fs/fs_subr.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_comutil.h" int zfsfstype; vfsops_t *zfs_vfsops = NULL; static major_t zfs_major; static minor_t zfs_minor; static kmutex_t zfs_dev_mtx; extern int sys_shutdown; static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); static int zfs_root(vfs_t *vfsp, vnode_t **vpp); static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); static void zfs_freevfs(vfs_t *vfsp); static const fs_operation_def_t zfs_vfsops_template[] = { VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, VFSNAME_ROOT, { .vfs_root = zfs_root }, VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, VFSNAME_SYNC, { .vfs_sync = zfs_sync }, VFSNAME_VGET, { .vfs_vget = zfs_vget }, VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, NULL, NULL }; static const fs_operation_def_t zfs_vfsops_eio_template[] = { VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, NULL, NULL }; /* * We need to keep a count of active fs's. * This is necessary to prevent our module * from being unloaded after a umount -f */ static uint32_t zfs_active_fs_count = 0; static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; /* * MO_DEFAULT is not used since the default value is determined * by the equivalent property. */ static mntopt_t mntopts[] = { { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } }; static mntopts_t zfs_mntopts = { sizeof (mntopts) / sizeof (mntopt_t), mntopts }; /*ARGSUSED*/ int zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) { /* * Data integrity is job one. We don't want a compromised kernel * writing to the storage pool, so we never sync during panic. */ if (panicstr) return (0); /* * SYNC_ATTR is used by fsflush() to force old filesystems like UFS * to sync metadata, which they would otherwise cache indefinitely. * Semantically, the only requirement is that the sync be initiated. * The DMU syncs out txgs frequently, so there's nothing to do. */ if (flag & SYNC_ATTR) return (0); if (vfsp != NULL) { /* * Sync a specific filesystem. */ zfsvfs_t *zfsvfs = vfsp->vfs_data; dsl_pool_t *dp; ZFS_ENTER(zfsvfs); dp = dmu_objset_pool(zfsvfs->z_os); /* * If the system is shutting down, then skip any * filesystems which may exist on a suspended pool. */ if (sys_shutdown && spa_suspended(dp->dp_spa)) { ZFS_EXIT(zfsvfs); return (0); } if (zfsvfs->z_log != NULL) zil_commit(zfsvfs->z_log, 0); ZFS_EXIT(zfsvfs); } else { /* * Sync all ZFS filesystems. This is what happens when you * run sync(1M). Unlike other filesystems, ZFS honors the * request by waiting for all pools to commit all dirty data. */ spa_sync_allpools(); } return (0); } static int zfs_create_unique_device(dev_t *dev) { major_t new_major; do { ASSERT3U(zfs_minor, <=, MAXMIN32); minor_t start = zfs_minor; do { mutex_enter(&zfs_dev_mtx); if (zfs_minor >= MAXMIN32) { /* * If we're still using the real major * keep out of /dev/zfs and /dev/zvol minor * number space. If we're using a getudev()'ed * major number, we can use all of its minors. */ if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) zfs_minor = ZFS_MIN_MINOR; else zfs_minor = 0; } else { zfs_minor++; } *dev = makedevice(zfs_major, zfs_minor); mutex_exit(&zfs_dev_mtx); } while (vfs_devismounted(*dev) && zfs_minor != start); if (zfs_minor == start) { /* * We are using all ~262,000 minor numbers for the * current major number. Create a new major number. */ if ((new_major = getudev()) == (major_t)-1) { cmn_err(CE_WARN, "zfs_mount: Can't get unique major " "device number."); return (-1); } mutex_enter(&zfs_dev_mtx); zfs_major = new_major; zfs_minor = 0; mutex_exit(&zfs_dev_mtx); } else { break; } /* CONSTANTCONDITION */ } while (1); return (0); } static void atime_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval == TRUE) { zfsvfs->z_atime = TRUE; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); } else { zfsvfs->z_atime = FALSE; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); } } static void xattr_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval == TRUE) { /* XXX locking on vfs_flag? */ zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); } else { /* XXX locking on vfs_flag? */ zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); } } static void blksz_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os))); ASSERT3U(newval, >=, SPA_MINBLOCKSIZE); ASSERT(ISP2(newval)); zfsvfs->z_max_blksz = newval; zfsvfs->z_vfs->vfs_bsize = newval; } static void readonly_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval) { /* XXX locking on vfs_flag? */ zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); } else { /* XXX locking on vfs_flag? */ zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); } } static void devices_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval == FALSE) { zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); } else { zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); } } static void setuid_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval == FALSE) { zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); } else { zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); } } static void exec_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval == FALSE) { zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); } else { zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); } } /* * The nbmand mount option can be changed at mount time. * We can't allow it to be toggled on live file systems or incorrect * behavior may be seen from cifs clients * * This property isn't registered via dsl_prop_register(), but this callback * will be called when a file system is first mounted */ static void nbmand_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; if (newval == FALSE) { vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); } else { vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); } } static void snapdir_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; zfsvfs->z_show_ctldir = newval; } static void vscan_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; zfsvfs->z_vscan = newval; } static void acl_mode_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; zfsvfs->z_acl_mode = newval; } static void acl_inherit_changed_cb(void *arg, uint64_t newval) { zfsvfs_t *zfsvfs = arg; zfsvfs->z_acl_inherit = newval; } static int zfs_register_callbacks(vfs_t *vfsp) { struct dsl_dataset *ds = NULL; objset_t *os = NULL; zfsvfs_t *zfsvfs = NULL; uint64_t nbmand; boolean_t readonly = B_FALSE; boolean_t do_readonly = B_FALSE; boolean_t setuid = B_FALSE; boolean_t do_setuid = B_FALSE; boolean_t exec = B_FALSE; boolean_t do_exec = B_FALSE; boolean_t devices = B_FALSE; boolean_t do_devices = B_FALSE; boolean_t xattr = B_FALSE; boolean_t do_xattr = B_FALSE; boolean_t atime = B_FALSE; boolean_t do_atime = B_FALSE; int error = 0; ASSERT(vfsp); zfsvfs = vfsp->vfs_data; ASSERT(zfsvfs); os = zfsvfs->z_os; /* * The act of registering our callbacks will destroy any mount * options we may have. In order to enable temporary overrides * of mount options, we stash away the current values and * restore them after we register the callbacks. */ if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) || !spa_writeable(dmu_objset_spa(os))) { readonly = B_TRUE; do_readonly = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { readonly = B_FALSE; do_readonly = B_TRUE; } if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { devices = B_FALSE; setuid = B_FALSE; do_devices = B_TRUE; do_setuid = B_TRUE; } else { if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { devices = B_FALSE; do_devices = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { devices = B_TRUE; do_devices = B_TRUE; } if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { setuid = B_FALSE; do_setuid = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { setuid = B_TRUE; do_setuid = B_TRUE; } } if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { exec = B_FALSE; do_exec = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { exec = B_TRUE; do_exec = B_TRUE; } if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { xattr = B_FALSE; do_xattr = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { xattr = B_TRUE; do_xattr = B_TRUE; } if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { atime = B_FALSE; do_atime = B_TRUE; } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { atime = B_TRUE; do_atime = B_TRUE; } /* * nbmand is a special property. It can only be changed at * mount time. * * This is weird, but it is documented to only be changeable * at mount time. */ if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { nbmand = B_FALSE; } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { nbmand = B_TRUE; } else { char osname[MAXNAMELEN]; dmu_objset_name(os, osname); if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, NULL)) { return (error); } } /* * Register property callbacks. * * It would probably be fine to just check for i/o error from * the first prop_register(), but I guess I like to go * overboard... */ ds = dmu_objset_ds(os); dsl_pool_config_enter(dmu_objset_pool(os), FTAG); error = dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb, zfsvfs); error = error ? error : dsl_prop_register(ds, zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs); dsl_pool_config_exit(dmu_objset_pool(os), FTAG); if (error) goto unregister; /* * Invoke our callbacks to restore temporary mount options. */ if (do_readonly) readonly_changed_cb(zfsvfs, readonly); if (do_setuid) setuid_changed_cb(zfsvfs, setuid); if (do_exec) exec_changed_cb(zfsvfs, exec); if (do_devices) devices_changed_cb(zfsvfs, devices); if (do_xattr) xattr_changed_cb(zfsvfs, xattr); if (do_atime) atime_changed_cb(zfsvfs, atime); nbmand_changed_cb(zfsvfs, nbmand); return (0); unregister: /* * We may attempt to unregister some callbacks that are not * registered, but this is OK; it will simply return ENOMSG, * which we will ignore. */ (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb, zfsvfs); (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs); return (error); } static int zfs_space_delta_cb(dmu_object_type_t bonustype, void *data, uint64_t *userp, uint64_t *groupp) { /* * Is it a valid type of object to track? */ if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA) return (SET_ERROR(ENOENT)); /* * If we have a NULL data pointer * then assume the id's aren't changing and * return EEXIST to the dmu to let it know to * use the same ids */ if (data == NULL) return (SET_ERROR(EEXIST)); if (bonustype == DMU_OT_ZNODE) { znode_phys_t *znp = data; *userp = znp->zp_uid; *groupp = znp->zp_gid; } else { int hdrsize; sa_hdr_phys_t *sap = data; sa_hdr_phys_t sa = *sap; boolean_t swap = B_FALSE; ASSERT(bonustype == DMU_OT_SA); if (sa.sa_magic == 0) { /* * This should only happen for newly created * files that haven't had the znode data filled * in yet. */ *userp = 0; *groupp = 0; return (0); } if (sa.sa_magic == BSWAP_32(SA_MAGIC)) { sa.sa_magic = SA_MAGIC; sa.sa_layout_info = BSWAP_16(sa.sa_layout_info); swap = B_TRUE; } else { VERIFY3U(sa.sa_magic, ==, SA_MAGIC); } hdrsize = sa_hdrsize(&sa); VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t)); *userp = *((uint64_t *)((uintptr_t)data + hdrsize + SA_UID_OFFSET)); *groupp = *((uint64_t *)((uintptr_t)data + hdrsize + SA_GID_OFFSET)); if (swap) { *userp = BSWAP_64(*userp); *groupp = BSWAP_64(*groupp); } } return (0); } static void fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr, char *domainbuf, int buflen, uid_t *ridp) { uint64_t fuid; const char *domain; fuid = strtonum(fuidstr, NULL); domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid)); if (domain) (void) strlcpy(domainbuf, domain, buflen); else domainbuf[0] = '\0'; *ridp = FUID_RID(fuid); } static uint64_t zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type) { switch (type) { case ZFS_PROP_USERUSED: return (DMU_USERUSED_OBJECT); case ZFS_PROP_GROUPUSED: return (DMU_GROUPUSED_OBJECT); case ZFS_PROP_USERQUOTA: return (zfsvfs->z_userquota_obj); case ZFS_PROP_GROUPQUOTA: return (zfsvfs->z_groupquota_obj); } return (0); } int zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, uint64_t *cookiep, void *vbuf, uint64_t *bufsizep) { int error; zap_cursor_t zc; zap_attribute_t za; zfs_useracct_t *buf = vbuf; uint64_t obj; if (!dmu_objset_userspace_present(zfsvfs->z_os)) return (SET_ERROR(ENOTSUP)); obj = zfs_userquota_prop_to_obj(zfsvfs, type); if (obj == 0) { *bufsizep = 0; return (0); } for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep); (error = zap_cursor_retrieve(&zc, &za)) == 0; zap_cursor_advance(&zc)) { if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) > *bufsizep) break; fuidstr_to_sid(zfsvfs, za.za_name, buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid); buf->zu_space = za.za_first_integer; buf++; } if (error == ENOENT) error = 0; ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep); *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf; *cookiep = zap_cursor_serialize(&zc); zap_cursor_fini(&zc); return (error); } /* * buf must be big enough (eg, 32 bytes) */ static int id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid, char *buf, boolean_t addok) { uint64_t fuid; int domainid = 0; if (domain && domain[0]) { domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok); if (domainid == -1) return (SET_ERROR(ENOENT)); } fuid = FUID_ENCODE(domainid, rid); (void) sprintf(buf, "%llx", (longlong_t)fuid); return (0); } int zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, const char *domain, uint64_t rid, uint64_t *valp) { char buf[32]; int err; uint64_t obj; *valp = 0; if (!dmu_objset_userspace_present(zfsvfs->z_os)) return (SET_ERROR(ENOTSUP)); obj = zfs_userquota_prop_to_obj(zfsvfs, type); if (obj == 0) return (0); err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE); if (err) return (err); err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp); if (err == ENOENT) err = 0; return (err); } int zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, const char *domain, uint64_t rid, uint64_t quota) { char buf[32]; int err; dmu_tx_t *tx; uint64_t *objp; boolean_t fuid_dirtied; if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA) return (SET_ERROR(EINVAL)); if (zfsvfs->z_version < ZPL_VERSION_USERSPACE) return (SET_ERROR(ENOTSUP)); objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj : &zfsvfs->z_groupquota_obj; err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE); if (err) return (err); fuid_dirtied = zfsvfs->z_fuid_dirty; tx = dmu_tx_create(zfsvfs->z_os); dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL); if (*objp == 0) { dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, zfs_userquota_prop_prefixes[type]); } if (fuid_dirtied) zfs_fuid_txhold(zfsvfs, tx); err = dmu_tx_assign(tx, TXG_WAIT); if (err) { dmu_tx_abort(tx); return (err); } mutex_enter(&zfsvfs->z_lock); if (*objp == 0) { *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA, DMU_OT_NONE, 0, tx); VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, zfs_userquota_prop_prefixes[type], 8, 1, objp, tx)); } mutex_exit(&zfsvfs->z_lock); if (quota == 0) { err = zap_remove(zfsvfs->z_os, *objp, buf, tx); if (err == ENOENT) err = 0; } else { err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx); } ASSERT(err == 0); if (fuid_dirtied) zfs_fuid_sync(zfsvfs, tx); dmu_tx_commit(tx); return (err); } boolean_t zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid) { char buf[32]; uint64_t used, quota, usedobj, quotaobj; int err; usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; if (quotaobj == 0 || zfsvfs->z_replay) return (B_FALSE); (void) sprintf(buf, "%llx", (longlong_t)fuid); err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a); if (err != 0) return (B_FALSE); err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used); if (err != 0) return (B_FALSE); return (used >= quota); } boolean_t zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup) { uint64_t fuid; uint64_t quotaobj; quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; fuid = isgroup ? zp->z_gid : zp->z_uid; if (quotaobj == 0 || zfsvfs->z_replay) return (B_FALSE); return (zfs_fuid_overquota(zfsvfs, isgroup, fuid)); } int zfsvfs_create(const char *osname, zfsvfs_t **zfvp) { objset_t *os; zfsvfs_t *zfsvfs; uint64_t zval; int i, error; uint64_t sa_obj; zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); /* * We claim to always be readonly so we can open snapshots; * other ZPL code will prevent us from writing to snapshots. */ error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os); if (error) { kmem_free(zfsvfs, sizeof (zfsvfs_t)); return (error); } /* * Initialize the zfs-specific filesystem structure. * Should probably make this a kmem cache, shuffle fields, * and just bzero up to z_hold_mtx[]. */ zfsvfs->z_vfs = NULL; zfsvfs->z_parent = zfsvfs; zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE; zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; zfsvfs->z_os = os; error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); if (error) { goto out; } else if (zfsvfs->z_version > zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) { (void) printf("Can't mount a version %lld file system " "on a version %lld pool\n. Pool must be upgraded to mount " "this file system.", (u_longlong_t)zfsvfs->z_version, (u_longlong_t)spa_version(dmu_objset_spa(os))); error = SET_ERROR(ENOTSUP); goto out; } if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0) goto out; zfsvfs->z_norm = (int)zval; if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0) goto out; zfsvfs->z_utf8 = (zval != 0); if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0) goto out; zfsvfs->z_case = (uint_t)zval; /* * Fold case on file systems that are always or sometimes case * insensitive. */ if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || zfsvfs->z_case == ZFS_CASE_MIXED) zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); if (zfsvfs->z_use_sa) { /* should either have both of these objects or none */ error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj); if (error) return (error); } else { /* * Pre SA versions file systems should never touch * either the attribute registration or layout objects. */ sa_obj = 0; } error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, &zfsvfs->z_attr_table); if (error) goto out; if (zfsvfs->z_version >= ZPL_VERSION_SA) sa_register_update_callback(os, zfs_sa_upgrade); error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &zfsvfs->z_root); if (error) goto out; ASSERT(zfsvfs->z_root != 0); error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, &zfsvfs->z_unlinkedobj); if (error) goto out; error = zap_lookup(os, MASTER_NODE_OBJ, zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 8, 1, &zfsvfs->z_userquota_obj); if (error && error != ENOENT) goto out; error = zap_lookup(os, MASTER_NODE_OBJ, zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 8, 1, &zfsvfs->z_groupquota_obj); if (error && error != ENOENT) goto out; error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj); if (error && error != ENOENT) goto out; error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, &zfsvfs->z_shares_dir); if (error && error != ENOENT) goto out; mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), offsetof(znode_t, z_link_node)); rrm_init(&zfsvfs->z_teardown_lock, B_FALSE); rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); *zfvp = zfsvfs; return (0); out: dmu_objset_disown(os, zfsvfs); *zfvp = NULL; kmem_free(zfsvfs, sizeof (zfsvfs_t)); return (error); } static int zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) { int error; error = zfs_register_callbacks(zfsvfs->z_vfs); if (error) return (error); /* * Set the objset user_ptr to track its zfsvfs. */ mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); dmu_objset_set_user(zfsvfs->z_os, zfsvfs); mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); /* * If we are not mounting (ie: online recv), then we don't * have to worry about replaying the log as we blocked all * operations out since we closed the ZIL. */ if (mounting) { boolean_t readonly; /* * During replay we remove the read only flag to * allow replays to succeed. */ readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; if (readonly != 0) zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; else zfs_unlinked_drain(zfsvfs); /* * Parse and replay the intent log. * * Because of ziltest, this must be done after * zfs_unlinked_drain(). (Further note: ziltest * doesn't use readonly mounts, where * zfs_unlinked_drain() isn't called.) This is because * ziltest causes spa_sync() to think it's committed, * but actually it is not, so the intent log contains * many txg's worth of changes. * * In particular, if object N is in the unlinked set in * the last txg to actually sync, then it could be * actually freed in a later txg and then reallocated * in a yet later txg. This would write a "create * object N" record to the intent log. Normally, this * would be fine because the spa_sync() would have * written out the fact that object N is free, before * we could write the "create object N" intent log * record. * * But when we are in ziltest mode, we advance the "open * txg" without actually spa_sync()-ing the changes to * disk. So we would see that object N is still * allocated and in the unlinked set, and there is an * intent log record saying to allocate it. */ if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) { if (zil_replay_disable) { zil_destroy(zfsvfs->z_log, B_FALSE); } else { zfsvfs->z_replay = B_TRUE; zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector); zfsvfs->z_replay = B_FALSE; } } zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ } return (0); } void zfsvfs_free(zfsvfs_t *zfsvfs) { int i; extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */ /* * This is a barrier to prevent the filesystem from going away in * zfs_znode_move() until we can safely ensure that the filesystem is * not unmounted. We consider the filesystem valid before the barrier * and invalid after the barrier. */ rw_enter(&zfsvfs_lock, RW_READER); rw_exit(&zfsvfs_lock); zfs_fuid_destroy(zfsvfs); mutex_destroy(&zfsvfs->z_znodes_lock); mutex_destroy(&zfsvfs->z_lock); list_destroy(&zfsvfs->z_all_znodes); rrm_destroy(&zfsvfs->z_teardown_lock); rw_destroy(&zfsvfs->z_teardown_inactive_lock); rw_destroy(&zfsvfs->z_fuid_lock); for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) mutex_destroy(&zfsvfs->z_hold_mtx[i]); kmem_free(zfsvfs, sizeof (zfsvfs_t)); } static void zfs_set_fuid_feature(zfsvfs_t *zfsvfs) { zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); if (zfsvfs->z_vfs) { if (zfsvfs->z_use_fuids) { vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR); vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE); } else { vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR); vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE); } } zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); } static int zfs_domount(vfs_t *vfsp, char *osname) { dev_t mount_dev; uint64_t recordsize, fsid_guid; int error = 0; zfsvfs_t *zfsvfs; ASSERT(vfsp); ASSERT(osname); error = zfsvfs_create(osname, &zfsvfs); if (error) return (error); zfsvfs->z_vfs = vfsp; /* Initialize the generic filesystem structure. */ vfsp->vfs_bcount = 0; vfsp->vfs_data = NULL; if (zfs_create_unique_device(&mount_dev) == -1) { error = SET_ERROR(ENODEV); goto out; } ASSERT(vfs_devismounted(mount_dev) == 0); if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, NULL)) goto out; vfsp->vfs_dev = mount_dev; vfsp->vfs_fstype = zfsfstype; vfsp->vfs_bsize = recordsize; vfsp->vfs_flag |= VFS_NOTRUNC; vfsp->vfs_data = zfsvfs; /* * The fsid is 64 bits, composed of an 8-bit fs type, which * separates our fsid from any other filesystem types, and a * 56-bit objset unique ID. The objset unique ID is unique to * all objsets open on this system, provided by unique_create(). * The 8-bit fs type must be put in the low bits of fsid[1] * because that's where other Solaris filesystems put it. */ fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os); ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); vfsp->vfs_fsid.val[0] = fsid_guid; vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | zfsfstype & 0xFF; /* * Set features for file system. */ zfs_set_fuid_feature(zfsvfs); if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); } vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED); if (dmu_objset_is_snapshot(zfsvfs->z_os)) { uint64_t pval; atime_changed_cb(zfsvfs, B_FALSE); readonly_changed_cb(zfsvfs, B_TRUE); if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) goto out; xattr_changed_cb(zfsvfs, pval); zfsvfs->z_issnap = B_TRUE; zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED; mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); dmu_objset_set_user(zfsvfs->z_os, zfsvfs); mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); } else { error = zfsvfs_setup(zfsvfs, B_TRUE); } if (!zfsvfs->z_issnap) zfsctl_create(zfsvfs); out: if (error) { dmu_objset_disown(zfsvfs->z_os, zfsvfs); zfsvfs_free(zfsvfs); } else { atomic_inc_32(&zfs_active_fs_count); } return (error); } void zfs_unregister_callbacks(zfsvfs_t *zfsvfs) { objset_t *os = zfsvfs->z_os; struct dsl_dataset *ds; /* * Unregister properties. */ if (!dmu_objset_is_snapshot(os)) { ds = dmu_objset_ds(os); VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs) == 0); VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs) == 0); VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs) == 0); VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs) == 0); VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs) == 0); VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs) == 0); VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs) == 0); VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs) == 0); VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs) == 0); VERIFY(dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, zfsvfs) == 0); VERIFY(dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs) == 0); } } /* * Convert a decimal digit string to a uint64_t integer. */ static int str_to_uint64(char *str, uint64_t *objnum) { uint64_t num = 0; while (*str) { if (*str < '0' || *str > '9') return (SET_ERROR(EINVAL)); num = num*10 + *str++ - '0'; } *objnum = num; return (0); } /* * The boot path passed from the boot loader is in the form of * "rootpool-name/root-filesystem-object-number'. Convert this * string to a dataset name: "rootpool-name/root-filesystem-name". */ static int zfs_parse_bootfs(char *bpath, char *outpath) { char *slashp; uint64_t objnum; int error; if (*bpath == 0 || *bpath == '/') return (SET_ERROR(EINVAL)); (void) strcpy(outpath, bpath); slashp = strchr(bpath, '/'); /* if no '/', just return the pool name */ if (slashp == NULL) { return (0); } /* if not a number, just return the root dataset name */ if (str_to_uint64(slashp+1, &objnum)) { return (0); } *slashp = '\0'; error = dsl_dsobj_to_dsname(bpath, objnum, outpath); *slashp = '/'; return (error); } /* * Check that the hex label string is appropriate for the dataset being * mounted into the global_zone proper. * * Return an error if the hex label string is not default or * admin_low/admin_high. For admin_low labels, the corresponding * dataset must be readonly. */ int zfs_check_global_label(const char *dsname, const char *hexsl) { if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0) return (0); if (strcasecmp(hexsl, ADMIN_HIGH) == 0) return (0); if (strcasecmp(hexsl, ADMIN_LOW) == 0) { /* must be readonly */ uint64_t rdonly; if (dsl_prop_get_integer(dsname, zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL)) return (SET_ERROR(EACCES)); return (rdonly ? 0 : EACCES); } return (SET_ERROR(EACCES)); } /* * Determine whether the mount is allowed according to MAC check. * by comparing (where appropriate) label of the dataset against * the label of the zone being mounted into. If the dataset has * no label, create one. * * Returns 0 if access allowed, error otherwise (e.g. EACCES) */ static int zfs_mount_label_policy(vfs_t *vfsp, char *osname) { int error, retv; zone_t *mntzone = NULL; ts_label_t *mnt_tsl; bslabel_t *mnt_sl; bslabel_t ds_sl; char ds_hexsl[MAXNAMELEN]; retv = EACCES; /* assume the worst */ /* * Start by getting the dataset label if it exists. */ error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1, sizeof (ds_hexsl), &ds_hexsl, NULL); if (error) return (SET_ERROR(EACCES)); /* * If labeling is NOT enabled, then disallow the mount of datasets * which have a non-default label already. No other label checks * are needed. */ if (!is_system_labeled()) { if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) return (0); return (SET_ERROR(EACCES)); } /* * Get the label of the mountpoint. If mounting into the global * zone (i.e. mountpoint is not within an active zone and the * zoned property is off), the label must be default or * admin_low/admin_high only; no other checks are needed. */ mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE); if (mntzone->zone_id == GLOBAL_ZONEID) { uint64_t zoned; zone_rele(mntzone); if (dsl_prop_get_integer(osname, zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) return (SET_ERROR(EACCES)); if (!zoned) return (zfs_check_global_label(osname, ds_hexsl)); else /* * This is the case of a zone dataset being mounted * initially, before the zone has been fully created; * allow this mount into global zone. */ return (0); } mnt_tsl = mntzone->zone_slabel; ASSERT(mnt_tsl != NULL); label_hold(mnt_tsl); mnt_sl = label2bslabel(mnt_tsl); if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) { /* * The dataset doesn't have a real label, so fabricate one. */ char *str = NULL; if (l_to_str_internal(mnt_sl, &str) == 0 && dsl_prop_set_string(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), ZPROP_SRC_LOCAL, str) == 0) retv = 0; if (str != NULL) kmem_free(str, strlen(str) + 1); } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) { /* * Now compare labels to complete the MAC check. If the * labels are equal then allow access. If the mountpoint * label dominates the dataset label, allow readonly access. * Otherwise, access is denied. */ if (blequal(mnt_sl, &ds_sl)) retv = 0; else if (bldominates(mnt_sl, &ds_sl)) { vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); retv = 0; } } label_rele(mnt_tsl); zone_rele(mntzone); return (retv); } static int zfs_mountroot(vfs_t *vfsp, enum whymountroot why) { int error = 0; static int zfsrootdone = 0; zfsvfs_t *zfsvfs = NULL; znode_t *zp = NULL; vnode_t *vp = NULL; char *zfs_bootfs; char *zfs_devid; ASSERT(vfsp); /* * The filesystem that we mount as root is defined in the * boot property "zfs-bootfs" with a format of * "poolname/root-dataset-objnum". */ if (why == ROOT_INIT) { if (zfsrootdone++) return (SET_ERROR(EBUSY)); /* * the process of doing a spa_load will require the * clock to be set before we could (for example) do * something better by looking at the timestamp on * an uberblock, so just set it to -1. */ clkset(-1); if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { cmn_err(CE_NOTE, "spa_get_bootfs: can not get " "bootfs name"); return (SET_ERROR(EINVAL)); } zfs_devid = spa_get_bootprop("diskdevid"); error = spa_import_rootpool(rootfs.bo_name, zfs_devid); if (zfs_devid) spa_free_bootprop(zfs_devid); if (error) { spa_free_bootprop(zfs_bootfs); cmn_err(CE_NOTE, "spa_import_rootpool: error %d", error); return (error); } if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { spa_free_bootprop(zfs_bootfs); cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", error); return (error); } spa_free_bootprop(zfs_bootfs); if (error = vfs_lock(vfsp)) return (error); if (error = zfs_domount(vfsp, rootfs.bo_name)) { cmn_err(CE_NOTE, "zfs_domount: error %d", error); goto out; } zfsvfs = (zfsvfs_t *)vfsp->vfs_data; ASSERT(zfsvfs); if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { cmn_err(CE_NOTE, "zfs_zget: error %d", error); goto out; } vp = ZTOV(zp); mutex_enter(&vp->v_lock); vp->v_flag |= VROOT; mutex_exit(&vp->v_lock); rootvp = vp; /* * Leave rootvp held. The root file system is never unmounted. */ vfs_add((struct vnode *)0, vfsp, (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); out: vfs_unlock(vfsp); return (error); } else if (why == ROOT_REMOUNT) { readonly_changed_cb(vfsp->vfs_data, B_FALSE); vfsp->vfs_flag |= VFS_REMOUNT; /* refresh mount options */ zfs_unregister_callbacks(vfsp->vfs_data); return (zfs_register_callbacks(vfsp)); } else if (why == ROOT_UNMOUNT) { zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); (void) zfs_sync(vfsp, 0, 0); return (0); } /* * if "why" is equal to anything else other than ROOT_INIT, * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. */ return (SET_ERROR(ENOTSUP)); } /*ARGSUSED*/ static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) { char *osname; pathname_t spn; int error = 0; uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? UIO_SYSSPACE : UIO_USERSPACE; int canwrite; if (mvp->v_type != VDIR) return (SET_ERROR(ENOTDIR)); mutex_enter(&mvp->v_lock); if ((uap->flags & MS_REMOUNT) == 0 && (uap->flags & MS_OVERLAY) == 0 && (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { mutex_exit(&mvp->v_lock); return (SET_ERROR(EBUSY)); } mutex_exit(&mvp->v_lock); /* * ZFS does not support passing unparsed data in via MS_DATA. * Users should use the MS_OPTIONSTR interface; this means * that all option parsing is already done and the options struct * can be interrogated. */ if ((uap->flags & MS_DATA) && uap->datalen > 0) return (SET_ERROR(EINVAL)); /* * Get the objset name (the "special" mount argument). */ if (error = pn_get(uap->spec, fromspace, &spn)) return (error); osname = spn.pn_path; /* * Check for mount privilege? * * If we don't have privilege then see if * we have local permission to allow it */ error = secpolicy_fs_mount(cr, mvp, vfsp); if (error) { if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) { vattr_t vattr; /* * Make sure user is the owner of the mount point * or has sufficient privileges. */ vattr.va_mask = AT_UID; if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { goto out; } if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { goto out; } secpolicy_fs_mount_clearopts(cr, vfsp); } else { goto out; } } /* * Refuse to mount a filesystem if we are in a local zone and the * dataset is not visible. */ if (!INGLOBALZONE(curproc) && (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { error = SET_ERROR(EPERM); goto out; } error = zfs_mount_label_policy(vfsp, osname); if (error) goto out; /* * When doing a remount, we simply refresh our temporary properties * according to those options set in the current VFS options. */ if (uap->flags & MS_REMOUNT) { /* refresh mount options */ zfs_unregister_callbacks(vfsp->vfs_data); error = zfs_register_callbacks(vfsp); goto out; } error = zfs_domount(vfsp, osname); /* * Add an extra VFS_HOLD on our parent vfs so that it can't * disappear due to a forced unmount. */ if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap) VFS_HOLD(mvp->v_vfsp); out: rw_enter(&rz_zev_rwlock, RW_READER); if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_zfs_mount) rz_zev_callbacks->rz_zev_zfs_mount(vfsp, mvp, osname, uap->flags & MS_REMOUNT ? B_TRUE : B_FALSE); rw_exit(&rz_zev_rwlock); pn_free(&spn); return (error); } static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) { zfsvfs_t *zfsvfs = vfsp->vfs_data; dev32_t d32; uint64_t refdbytes, availbytes, usedobjs, availobjs; ZFS_ENTER(zfsvfs); dmu_objset_space(zfsvfs->z_os, &refdbytes, &availbytes, &usedobjs, &availobjs); /* * The underlying storage pool actually uses multiple block sizes. * We report the fragsize as the smallest block size we support, * and we report our blocksize as the filesystem's maximum blocksize. */ statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; statp->f_bsize = zfsvfs->z_max_blksz; /* * The following report "total" blocks of various kinds in the * file system, but reported in terms of f_frsize - the * "fragment" size. */ statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; statp->f_bavail = statp->f_bfree; /* no root reservation */ /* * statvfs() should really be called statufs(), because it assumes * static metadata. ZFS doesn't preallocate files, so the best * we can do is report the max that could possibly fit in f_files, * and that minus the number actually used in f_ffree. * For f_ffree, report the smaller of the number of object available * and the number of blocks (each object will take at least a block). */ statp->f_ffree = MIN(availobjs, statp->f_bfree); statp->f_favail = statp->f_ffree; /* no "root reservation" */ statp->f_files = statp->f_ffree + usedobjs; (void) cmpldev(&d32, vfsp->vfs_dev); statp->f_fsid = d32; /* * We're a zfs filesystem. */ (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); statp->f_flag = vf_to_stf(vfsp->vfs_flag); statp->f_namemax = ZFS_MAXNAMELEN; /* * We have all of 32 characters to stuff a string here. * Is there anything useful we could/should provide? */ bzero(statp->f_fstr, sizeof (statp->f_fstr)); ZFS_EXIT(zfsvfs); return (0); } static int zfs_root(vfs_t *vfsp, vnode_t **vpp) { zfsvfs_t *zfsvfs = vfsp->vfs_data; znode_t *rootzp; int error; ZFS_ENTER(zfsvfs); error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); if (error == 0) *vpp = ZTOV(rootzp); ZFS_EXIT(zfsvfs); return (error); } /* * Teardown the zfsvfs::z_os. * * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' * and 'z_teardown_inactive_lock' held. */ static int zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) { znode_t *zp; rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); if (!unmounting) { /* * We purge the parent filesystem's vfsp as the parent * filesystem and all of its snapshots have their vnode's * v_vfsp set to the parent's filesystem's vfsp. Note, * 'z_parent' is self referential for non-snapshots. */ (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); } /* * Close the zil. NB: Can't close the zil while zfs_inactive * threads are blocked as zil_close can call zfs_inactive. */ if (zfsvfs->z_log) { zil_close(zfsvfs->z_log); zfsvfs->z_log = NULL; } rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); /* * If we are not unmounting (ie: online recv) and someone already * unmounted this file system while we were doing the switcheroo, * or a reopen of z_os failed then just bail out now. */ if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { rw_exit(&zfsvfs->z_teardown_inactive_lock); rrm_exit(&zfsvfs->z_teardown_lock, FTAG); return (SET_ERROR(EIO)); } /* * At this point there are no vops active, and any new vops will * fail with EIO since we have z_teardown_lock for writer (only * relavent for forced unmount). * * Release all holds on dbufs. */ mutex_enter(&zfsvfs->z_znodes_lock); for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; zp = list_next(&zfsvfs->z_all_znodes, zp)) if (zp->z_sa_hdl) { ASSERT(ZTOV(zp)->v_count > 0); zfs_znode_dmu_fini(zp); } mutex_exit(&zfsvfs->z_znodes_lock); /* * If we are unmounting, set the unmounted flag and let new vops * unblock. zfs_inactive will have the unmounted behavior, and all * other vops will fail with EIO. */ if (unmounting) { zfsvfs->z_unmounted = B_TRUE; rrm_exit(&zfsvfs->z_teardown_lock, FTAG); rw_exit(&zfsvfs->z_teardown_inactive_lock); } /* * z_os will be NULL if there was an error in attempting to reopen * zfsvfs, so just return as the properties had already been * unregistered and cached data had been evicted before. */ if (zfsvfs->z_os == NULL) return (0); /* * Unregister properties. */ zfs_unregister_callbacks(zfsvfs); /* * Evict cached data */ if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) && !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY)) txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); dmu_objset_evict_dbufs(zfsvfs->z_os); return (0); } /*ARGSUSED*/ static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) { zfsvfs_t *zfsvfs = vfsp->vfs_data; objset_t *os; int ret; ret = secpolicy_fs_unmount(cr, vfsp); if (ret) { if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), ZFS_DELEG_PERM_MOUNT, cr)) return (ret); } /* * We purge the parent filesystem's vfsp as the parent filesystem * and all of its snapshots have their vnode's v_vfsp set to the * parent's filesystem's vfsp. Note, 'z_parent' is self * referential for non-snapshots. */ (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); /* * Unmount any snapshots mounted under .zfs before unmounting the * dataset itself. */ if (zfsvfs->z_ctldir != NULL && (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { return (ret); } if (!(fflag & MS_FORCE)) { /* * Check the number of active vnodes in the file system. * Our count is maintained in the vfs structure, but the * number is off by 1 to indicate a hold on the vfs * structure itself. * * The '.zfs' directory maintains a reference of its * own, and any active references underneath are * reflected in the vnode count. */ if (zfsvfs->z_ctldir == NULL) { if (vfsp->vfs_count > 1) return (SET_ERROR(EBUSY)); } else { if (vfsp->vfs_count > 2 || zfsvfs->z_ctldir->v_count > 1) return (SET_ERROR(EBUSY)); } } vfsp->vfs_flag |= VFS_UNMOUNTED; rw_enter(&rz_zev_rwlock, RW_READER); if (rz_zev_callbacks && rz_zev_callbacks->rz_zev_zfs_umount) rz_zev_callbacks->rz_zev_zfs_umount(vfsp); rw_exit(&rz_zev_rwlock); VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); os = zfsvfs->z_os; /* * z_os will be NULL if there was an error in * attempting to reopen zfsvfs. */ if (os != NULL) { /* * Unset the objset user_ptr. */ mutex_enter(&os->os_user_ptr_lock); dmu_objset_set_user(os, NULL); mutex_exit(&os->os_user_ptr_lock); /* * Finally release the objset */ dmu_objset_disown(os, zfsvfs); } /* * We can now safely destroy the '.zfs' directory node. */ if (zfsvfs->z_ctldir != NULL) zfsctl_destroy(zfsvfs); return (0); } static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) { zfsvfs_t *zfsvfs = vfsp->vfs_data; znode_t *zp; uint64_t object = 0; uint64_t fid_gen = 0; uint64_t gen_mask; uint64_t zp_gen; int i, err; *vpp = NULL; ZFS_ENTER(zfsvfs); if (fidp->fid_len == LONG_FID_LEN) { zfid_long_t *zlfid = (zfid_long_t *)fidp; uint64_t objsetid = 0; uint64_t setgen = 0; for (i = 0; i < sizeof (zlfid->zf_setid); i++) objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); for (i = 0; i < sizeof (zlfid->zf_setgen); i++) setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); ZFS_EXIT(zfsvfs); err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); if (err) return (SET_ERROR(EINVAL)); ZFS_ENTER(zfsvfs); } if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { zfid_short_t *zfid = (zfid_short_t *)fidp; for (i = 0; i < sizeof (zfid->zf_object); i++) object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); for (i = 0; i < sizeof (zfid->zf_gen); i++) fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); } else { ZFS_EXIT(zfsvfs); return (SET_ERROR(EINVAL)); } /* A zero fid_gen means we are in the .zfs control directories */ if (fid_gen == 0 && (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { *vpp = zfsvfs->z_ctldir; ASSERT(*vpp != NULL); if (object == ZFSCTL_INO_SNAPDIR) { VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 0, NULL, NULL, NULL, NULL, NULL) == 0); } else { VN_HOLD(*vpp); } ZFS_EXIT(zfsvfs); return (0); } gen_mask = -1ULL >> (64 - 8 * i); dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); if (err = zfs_zget(zfsvfs, object, &zp)) { ZFS_EXIT(zfsvfs); return (err); } (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, sizeof (uint64_t)); zp_gen = zp_gen & gen_mask; if (zp_gen == 0) zp_gen = 1; if (zp->z_unlinked || zp_gen != fid_gen) { dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); VN_RELE(ZTOV(zp)); ZFS_EXIT(zfsvfs); return (SET_ERROR(EINVAL)); } *vpp = ZTOV(zp); ZFS_EXIT(zfsvfs); return (0); } /* * Block out VOPs and close zfsvfs_t::z_os * * Note, if successful, then we return with the 'z_teardown_lock' and * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying * dataset and objset intact so that they can be atomically handed off during * a subsequent rollback or recv operation and the resume thereafter. */ int zfs_suspend_fs(zfsvfs_t *zfsvfs) { int error; if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) return (error); return (0); } /* * Rebuild SA and release VOPs. Note that ownership of the underlying dataset * is an invariant across any of the operations that can be performed while the * filesystem was suspended. Whether it succeeded or failed, the preconditions * are the same: the relevant objset and associated dataset are owned by * zfsvfs, held, and long held on entry. */ int zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname) { int err; znode_t *zp; uint64_t sa_obj = 0; ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock)); ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); /* * We already own this, so just hold and rele it to update the * objset_t, as the one we had before may have been evicted. */ VERIFY0(dmu_objset_hold(osname, zfsvfs, &zfsvfs->z_os)); VERIFY3P(zfsvfs->z_os->os_dsl_dataset->ds_owner, ==, zfsvfs); VERIFY(dsl_dataset_long_held(zfsvfs->z_os->os_dsl_dataset)); dmu_objset_rele(zfsvfs->z_os, zfsvfs); /* * Make sure version hasn't changed */ err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION, &zfsvfs->z_version); if (err) goto bail; err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj); if (err && zfsvfs->z_version >= ZPL_VERSION_SA) goto bail; if ((err = sa_setup(zfsvfs->z_os, sa_obj, zfs_attr_table, ZPL_END, &zfsvfs->z_attr_table)) != 0) goto bail; if (zfsvfs->z_version >= ZPL_VERSION_SA) sa_register_update_callback(zfsvfs->z_os, zfs_sa_upgrade); VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); zfs_set_fuid_feature(zfsvfs); /* * Attempt to re-establish all the active znodes with * their dbufs. If a zfs_rezget() fails, then we'll let * any potential callers discover that via ZFS_ENTER_VERIFY_VP * when they try to use their znode. */ mutex_enter(&zfsvfs->z_znodes_lock); for (zp = list_head(&zfsvfs->z_all_znodes); zp; zp = list_next(&zfsvfs->z_all_znodes, zp)) { (void) zfs_rezget(zp); } mutex_exit(&zfsvfs->z_znodes_lock); bail: /* release the VOPs */ rw_exit(&zfsvfs->z_teardown_inactive_lock); rrm_exit(&zfsvfs->z_teardown_lock, FTAG); if (err) { /* * Since we couldn't setup the sa framework, try to force * unmount this file system. */ if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); } return (err); } static void zfs_freevfs(vfs_t *vfsp) { zfsvfs_t *zfsvfs = vfsp->vfs_data; /* * If this is a snapshot, we have an extra VFS_HOLD on our parent * from zfs_mount(). Release it here. If we came through * zfs_mountroot() instead, we didn't grab an extra hold, so * skip the VFS_RELE for rootvfs. */ if (zfsvfs->z_issnap && (vfsp != rootvfs)) VFS_RELE(zfsvfs->z_parent->z_vfs); zfsvfs_free(zfsvfs); atomic_dec_32(&zfs_active_fs_count); } /* * VFS_INIT() initialization. Note that there is no VFS_FINI(), * so we can't safely do any non-idempotent initialization here. * Leave that to zfs_init() and zfs_fini(), which are called * from the module's _init() and _fini() entry points. */ /*ARGSUSED*/ static int zfs_vfsinit(int fstype, char *name) { int error; zfsfstype = fstype; /* * Setup vfsops and vnodeops tables. */ error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); if (error != 0) { cmn_err(CE_WARN, "zfs: bad vfs ops template"); } error = zfs_create_op_tables(); if (error) { zfs_remove_op_tables(); cmn_err(CE_WARN, "zfs: bad vnode ops template"); (void) vfs_freevfsops_by_type(zfsfstype); return (error); } mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); /* * Unique major number for all zfs mounts. * If we run out of 32-bit minors, we'll getudev() another major. */ zfs_major = ddi_name_to_major(ZFS_DRIVER); zfs_minor = ZFS_MIN_MINOR; return (0); } void zfs_init(void) { /* * Initialize .zfs directory structures */ zfsctl_init(); /* * Initialize znode cache, vnode ops, etc... */ zfs_znode_init(); dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb); } void zfs_fini(void) { zfsctl_fini(); zfs_znode_fini(); } int zfs_busy(void) { return (zfs_active_fs_count != 0); } int zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) { int error; objset_t *os = zfsvfs->z_os; dmu_tx_t *tx; if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) return (SET_ERROR(EINVAL)); if (newvers < zfsvfs->z_version) return (SET_ERROR(EINVAL)); if (zfs_spa_version_map(newvers) > spa_version(dmu_objset_spa(zfsvfs->z_os))) return (SET_ERROR(ENOTSUP)); tx = dmu_tx_create(os); dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, ZFS_SA_ATTRS); dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); } error = dmu_tx_assign(tx, TXG_WAIT); if (error) { dmu_tx_abort(tx); return (error); } error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, &newvers, tx); if (error) { dmu_tx_commit(tx); return (error); } if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { uint64_t sa_obj; ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=, SPA_VERSION_SA); sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, DMU_OT_NONE, 0, tx); error = zap_add(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); ASSERT0(error); VERIFY(0 == sa_set_sa_object(os, sa_obj)); sa_register_update_callback(os, zfs_sa_upgrade); } spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx, "from %llu to %llu", zfsvfs->z_version, newvers); dmu_tx_commit(tx); zfsvfs->z_version = newvers; zfs_set_fuid_feature(zfsvfs); return (0); } /* * Read a property stored within the master node. */ int zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) { const char *pname; int error = ENOENT; /* * Look up the file system's value for the property. For the * version property, we look up a slightly different string. */ if (prop == ZFS_PROP_VERSION) pname = ZPL_VERSION_STR; else pname = zfs_prop_to_name(prop); if (os != NULL) error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); if (error == ENOENT) { /* No value set, use the default value */ switch (prop) { case ZFS_PROP_VERSION: *value = ZPL_VERSION; break; case ZFS_PROP_NORMALIZE: case ZFS_PROP_UTF8ONLY: *value = 0; break; case ZFS_PROP_CASE: *value = ZFS_CASE_SENSITIVE; break; default: return (error); } error = 0; } return (error); } static vfsdef_t vfw = { VFSDEF_VERSION, MNTTYPE_ZFS, zfs_vfsinit, VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| VSW_XID|VSW_ZMOUNT, &zfs_mntopts }; struct modlfs zfs_modlfs = { &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw };