/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * The 512-byte leaf is broken into 32 16-byte chunks. * chunk number n means l_chunk[n], even though the header precedes it. * the names are stored null-terminated. */ #include #include #include #include #include #include #define CHAIN_END 0xffff /* end of the chunk chain */ /* somewhat arbitrary, could go up to around 100k ... */ #define MAX_ARRAY_BYTES (8<<10) #define NCHUNKS(bytes) (((bytes)+ZAP_LEAF_ARRAY_BYTES-1)/ZAP_LEAF_ARRAY_BYTES) /* * XXX This will >> by a negative number when * lh_prefix_len > 64-ZAP_LEAF_HASH_SHIFT. */ #define LEAF_HASH(l, h) \ ((ZAP_LEAF_HASH_NUMENTRIES-1) & \ ((h) >> (64 - ZAP_LEAF_HASH_SHIFT-(l)->lh_prefix_len))) #define LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)]) /* #define MEMCHECK */ static void zap_memset(void *a, int c, size_t n) { char *cp = a; char *cpend = cp + n; while (cp < cpend) *cp++ = c; } static void stv(int len, void *addr, uint64_t value) { switch (len) { case 1: *(uint8_t *)addr = value; return; case 2: *(uint16_t *)addr = value; return; case 4: *(uint32_t *)addr = value; return; case 8: *(uint64_t *)addr = value; return; } ASSERT(!"bad int len"); } static uint64_t ldv(int len, const void *addr) { switch (len) { case 1: return (*(uint8_t *)addr); case 2: return (*(uint16_t *)addr); case 4: return (*(uint32_t *)addr); case 8: return (*(uint64_t *)addr); } ASSERT(!"bad int len"); return (0xFEEDFACEDEADBEEF); } void zap_leaf_byteswap(zap_leaf_phys_t *buf) { int i; buf->l_hdr.lhr_block_type = BSWAP_64(buf->l_hdr.lhr_block_type); buf->l_hdr.lhr_next = BSWAP_64(buf->l_hdr.lhr_next); buf->l_hdr.lhr_prefix = BSWAP_64(buf->l_hdr.lhr_prefix); buf->l_hdr.lhr_magic = BSWAP_32(buf->l_hdr.lhr_magic); buf->l_hdr.lhr_nfree = BSWAP_16(buf->l_hdr.lhr_nfree); buf->l_hdr.lhr_nentries = BSWAP_16(buf->l_hdr.lhr_nentries); buf->l_hdr.lhr_prefix_len = BSWAP_16(buf->l_hdr.lhr_prefix_len); buf->l_hdr.lh_freelist = BSWAP_16(buf->l_hdr.lh_freelist); for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES; i++) buf->l_hash[i] = BSWAP_16(buf->l_hash[i]); for (i = 0; i < ZAP_LEAF_NUMCHUNKS; i++) { struct zap_leaf_entry *le; switch (buf->l_chunk[i].l_free.lf_type) { case ZAP_LEAF_ENTRY: le = &buf->l_chunk[i].l_entry; le->le_type = BSWAP_8(le->le_type); le->le_int_size = BSWAP_8(le->le_int_size); le->le_next = BSWAP_16(le->le_next); le->le_name_chunk = BSWAP_16(le->le_name_chunk); le->le_name_length = BSWAP_16(le->le_name_length); le->le_value_chunk = BSWAP_16(le->le_value_chunk); le->le_value_length = BSWAP_16(le->le_value_length); le->le_cd = BSWAP_32(le->le_cd); le->le_hash = BSWAP_64(le->le_hash); break; case ZAP_LEAF_FREE: buf->l_chunk[i].l_free.lf_type = BSWAP_8(buf->l_chunk[i].l_free.lf_type); buf->l_chunk[i].l_free.lf_next = BSWAP_16(buf->l_chunk[i].l_free.lf_next); break; case ZAP_LEAF_ARRAY: /* zap_leaf_array */ buf->l_chunk[i].l_array.la_type = BSWAP_8(buf->l_chunk[i].l_array.la_type); buf->l_chunk[i].l_array.la_next = BSWAP_16(buf->l_chunk[i].l_array.la_next); /* la_array doesn't need swapping */ break; default: ASSERT(!"bad leaf type"); } } } void zap_leaf_init(zap_leaf_t *l) { int i; ASSERT3U(sizeof (zap_leaf_phys_t), ==, l->l_dbuf->db_size); zap_memset(&l->l_phys->l_hdr, 0, sizeof (struct zap_leaf_header)); zap_memset(&l->l_phys->l_hash, CHAIN_END, sizeof (l->l_phys->l_hash)); for (i = 0; i < ZAP_LEAF_NUMCHUNKS; i++) { l->l_phys->l_chunk[i].l_free.lf_type = ZAP_LEAF_FREE; l->l_phys->l_chunk[i].l_free.lf_next = i+1; } l->l_phys->l_chunk[ZAP_LEAF_NUMCHUNKS-1].l_free.lf_next = CHAIN_END; l->lh_block_type = ZBT_LEAF; l->lh_magic = ZAP_LEAF_MAGIC; l->lh_nfree = ZAP_LEAF_NUMCHUNKS; } zap_leaf_t * zap_leaf_chainmore(zap_leaf_t *l, zap_leaf_t *nl) { nl->lh_prefix = l->lh_prefix; nl->lh_prefix_len = l->lh_prefix_len; nl->l_next = l->l_next; l->l_next = nl; nl->lh_next = l->lh_next; l->lh_next = nl->l_blkid; return (nl); } /* * Routines which manipulate leaf chunks (l_chunk[]). */ static uint16_t zap_leaf_chunk_alloc(zap_leaf_t *l) { int chunk; ASSERT(l->lh_nfree > 0); chunk = l->l_phys->l_hdr.lh_freelist; ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS); ASSERT3U(l->l_phys->l_chunk[chunk].l_free.lf_type, ==, ZAP_LEAF_FREE); l->l_phys->l_hdr.lh_freelist = l->l_phys->l_chunk[chunk].l_free.lf_next; #ifdef MEMCHECK zap_memset(&l->l_phys->l_chunk[chunk], 0xa1, sizeof (l->l_phys->l_chunk[chunk])); #endif l->lh_nfree--; return (chunk); } static void zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk) { struct zap_leaf_free *zlf = &l->l_phys->l_chunk[chunk].l_free; ASSERT3U(l->lh_nfree, <, ZAP_LEAF_NUMCHUNKS); ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS); ASSERT(zlf->lf_type != ZAP_LEAF_FREE); #ifdef MEMCHECK zap_memset(&l->l_phys->l_chunk[chunk], 0xf4, sizeof (l->l_phys->l_chunk[chunk])); #endif zlf->lf_type = ZAP_LEAF_FREE; zlf->lf_next = l->l_phys->l_hdr.lh_freelist; bzero(zlf->lf_pad, sizeof (zlf->lf_pad)); /* help it to compress */ l->l_phys->l_hdr.lh_freelist = chunk; l->lh_nfree++; } /* * Routines which manipulate leaf arrays (zap_leaf_array type chunks). */ static uint16_t zap_leaf_array_create(const zap_entry_handle_t *zeh, const char *buf, int integer_size, int num_integers) { uint16_t chunk_head; uint16_t *chunkp = &chunk_head; int byten = 0; uint64_t value; int shift = (integer_size-1)*8; int len = num_integers; zap_leaf_t *l = zeh->zeh_found_leaf; ASSERT3U(num_integers * integer_size, <, MAX_ARRAY_BYTES); while (len > 0) { uint16_t chunk = zap_leaf_chunk_alloc(l); struct zap_leaf_array *la = &l->l_phys->l_chunk[chunk].l_array; int i; la->la_type = ZAP_LEAF_ARRAY; for (i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) { if (byten == 0) value = ldv(integer_size, buf); la->la_array[i] = (value & (0xff << shift)) >> shift; value <<= 8; if (++byten == integer_size) { byten = 0; buf += integer_size; if (--len == 0) break; } } *chunkp = chunk; chunkp = &la->la_next; } *chunkp = CHAIN_END; return (chunk_head); } static void zap_leaf_array_free(zap_entry_handle_t *zeh, uint16_t *chunkp) { uint16_t chunk = *chunkp; zap_leaf_t *l = zeh->zeh_found_leaf; *chunkp = CHAIN_END; while (chunk != CHAIN_END) { int nextchunk = l->l_phys->l_chunk[chunk].l_array.la_next; ASSERT3U(l->l_phys->l_chunk[chunk].l_array.la_type, ==, ZAP_LEAF_ARRAY); zap_leaf_chunk_free(l, chunk); chunk = nextchunk; } } /* array_len and buf_len are in integers, not bytes */ static void zap_leaf_array_read(const zap_entry_handle_t *zeh, uint16_t chunk, int array_int_len, int array_len, int buf_int_len, uint64_t buf_len, char *buf) { int len = MIN(array_len, buf_len); int byten = 0; uint64_t value = 0; zap_leaf_t *l = zeh->zeh_found_leaf; ASSERT3U(array_int_len, <=, buf_int_len); while (len > 0) { struct zap_leaf_array *la = &l->l_phys->l_chunk[chunk].l_array; int i; ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS); for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) { value = (value << 8) | la->la_array[i]; byten++; if (byten == array_int_len) { stv(buf_int_len, buf, value); byten = 0; len--; if (len == 0) return; buf += buf_int_len; } } chunk = la->la_next; } } /* * Only to be used on 8-bit arrays. * array_len is actual len in bytes (not encoded le_value_length). * buf is null-terminated. */ static int zap_leaf_array_equal(const zap_entry_handle_t *zeh, int chunk, int array_len, const char *buf) { int bseen = 0; zap_leaf_t *l = zeh->zeh_found_leaf; while (bseen < array_len) { struct zap_leaf_array *la = &l->l_phys->l_chunk[chunk].l_array; int toread = MIN(array_len - bseen, ZAP_LEAF_ARRAY_BYTES); ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS); if (bcmp(la->la_array, buf + bseen, toread)) break; chunk = la->la_next; bseen += toread; } return (bseen == array_len); } /* * Routines which manipulate leaf entries. */ int zap_leaf_lookup(zap_leaf_t *l, const char *name, uint64_t h, zap_entry_handle_t *zeh) { uint16_t *chunkp; struct zap_leaf_entry *le; zeh->zeh_head_leaf = l; again: ASSERT3U(l->lh_magic, ==, ZAP_LEAF_MAGIC); for (chunkp = LEAF_HASH_ENTPTR(l, h); *chunkp != CHAIN_END; chunkp = &le->le_next) { uint16_t chunk = *chunkp; le = &l->l_phys->l_chunk[chunk].l_entry; ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS); ASSERT3U(le->le_type, ==, ZAP_LEAF_ENTRY); if (le->le_hash != h) continue; zeh->zeh_found_leaf = l; if (zap_leaf_array_equal(zeh, le->le_name_chunk, le->le_name_length, name)) { zeh->zeh_num_integers = le->le_value_length; zeh->zeh_integer_size = le->le_int_size; zeh->zeh_cd = le->le_cd; zeh->zeh_hash = le->le_hash; zeh->zeh_chunkp = chunkp; zeh->zeh_found_leaf = l; return (0); } } if (l->l_next) { l = l->l_next; goto again; } return (ENOENT); } /* Return (h1,cd1 >= h2,cd2) */ static int hcd_gteq(uint64_t h1, uint32_t cd1, uint64_t h2, uint32_t cd2) { if (h1 > h2) return (TRUE); if (h1 == h2 && cd1 >= cd2) return (TRUE); return (FALSE); } int zap_leaf_lookup_closest(zap_leaf_t *l, uint64_t h, uint32_t cd, zap_entry_handle_t *zeh) { uint16_t chunk; uint64_t besth = -1ULL; uint32_t bestcd = ZAP_MAXCD; uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES-1; uint16_t lh; struct zap_leaf_entry *le; zeh->zeh_head_leaf = l; again: ASSERT3U(l->lh_magic, ==, ZAP_LEAF_MAGIC); for (lh = LEAF_HASH(l, h); lh <= bestlh; lh++) { for (chunk = l->l_phys->l_hash[lh]; chunk != CHAIN_END; chunk = le->le_next) { le = &l->l_phys->l_chunk[chunk].l_entry; ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS); ASSERT3U(le->le_type, ==, ZAP_LEAF_ENTRY); if (hcd_gteq(le->le_hash, le->le_cd, h, cd) && hcd_gteq(besth, bestcd, le->le_hash, le->le_cd)) { ASSERT3U(bestlh, >=, lh); bestlh = lh; besth = le->le_hash; bestcd = le->le_cd; zeh->zeh_num_integers = le->le_value_length; zeh->zeh_integer_size = le->le_int_size; zeh->zeh_cd = le->le_cd; zeh->zeh_hash = le->le_hash; zeh->zeh_fakechunk = chunk; zeh->zeh_chunkp = &zeh->zeh_fakechunk; zeh->zeh_found_leaf = l; } } } if (l->l_next) { l = l->l_next; goto again; } return (bestcd == ZAP_MAXCD ? ENOENT : 0); } int zap_entry_read(const zap_entry_handle_t *zeh, uint8_t integer_size, uint64_t num_integers, void *buf) { struct zap_leaf_entry *le; le = &zeh->zeh_found_leaf->l_phys->l_chunk[*zeh->zeh_chunkp].l_entry; ASSERT3U(le->le_type, ==, ZAP_LEAF_ENTRY); if (le->le_int_size > integer_size) return (EINVAL); zap_leaf_array_read(zeh, le->le_value_chunk, le->le_int_size, le->le_value_length, integer_size, num_integers, buf); if (zeh->zeh_num_integers > num_integers) return (EOVERFLOW); return (0); } int zap_entry_read_name(const zap_entry_handle_t *zeh, uint16_t buflen, char *buf) { struct zap_leaf_entry *le; le = &zeh->zeh_found_leaf->l_phys->l_chunk[*zeh->zeh_chunkp].l_entry; ASSERT3U(le->le_type, ==, ZAP_LEAF_ENTRY); zap_leaf_array_read(zeh, le->le_name_chunk, 1, le->le_name_length, 1, buflen, buf); if (le->le_name_length > buflen) return (EOVERFLOW); return (0); } int zap_entry_update(zap_entry_handle_t *zeh, uint8_t integer_size, uint64_t num_integers, const void *buf) { int delta_chunks; struct zap_leaf_entry *le; le = &zeh->zeh_found_leaf->l_phys->l_chunk[*zeh->zeh_chunkp].l_entry; delta_chunks = NCHUNKS(num_integers * integer_size) - NCHUNKS(le->le_value_length * le->le_int_size); if (zeh->zeh_found_leaf->lh_nfree < delta_chunks) return (EAGAIN); /* * We should search other chained leaves (via * zap_entry_remove,create?) otherwise returning EAGAIN will * just send us into an infinite loop if we have to chain * another leaf block, rather than being able to split this * block. */ zap_leaf_array_free(zeh, &le->le_value_chunk); le->le_value_chunk = zap_leaf_array_create(zeh, buf, integer_size, num_integers); le->le_value_length = (num_integers*integer_size > MAX_ARRAY_BYTES) ? (MAX_ARRAY_BYTES + 1) : (num_integers); le->le_int_size = integer_size; return (0); } void zap_entry_remove(zap_entry_handle_t *zeh) { uint16_t entry_chunk; struct zap_leaf_entry *le; zap_leaf_t *l = zeh->zeh_found_leaf; ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk); entry_chunk = *zeh->zeh_chunkp; le = &l->l_phys->l_chunk[entry_chunk].l_entry; ASSERT3U(le->le_type, ==, ZAP_LEAF_ENTRY); zap_leaf_array_free(zeh, &le->le_name_chunk); zap_leaf_array_free(zeh, &le->le_value_chunk); *zeh->zeh_chunkp = le->le_next; zap_leaf_chunk_free(l, entry_chunk); l->lh_nentries--; } int zap_entry_create(zap_leaf_t *l, const char *name, uint64_t h, uint32_t cd, uint8_t integer_size, uint64_t num_integers, const void *buf, zap_entry_handle_t *zeh) { uint16_t chunk; uint16_t *chunkp; struct zap_leaf_entry *le; uint64_t namelen, valuelen; int numchunks; valuelen = integer_size * num_integers; namelen = strlen(name) + 1; ASSERT(namelen >= 2); zeh->zeh_head_leaf = l; if (namelen > MAXNAMELEN) return (ENAMETOOLONG); /* find the first leaf in the chain that has sufficient free space */ numchunks = 1 + NCHUNKS(namelen) + NCHUNKS(valuelen); if (numchunks > ZAP_LEAF_NUMCHUNKS) return (E2BIG); if (cd == ZAP_MAXCD) { for (cd = 0; cd < ZAP_MAXCD; cd++) { zap_leaf_t *ll; for (ll = l; ll; ll = ll->l_next) { for (chunk = *LEAF_HASH_ENTPTR(ll, h); chunk != CHAIN_END; chunk = le->le_next) { le = &ll->l_phys->l_chunk [chunk].l_entry; if (le->le_hash == h && le->le_cd == cd) { break; } } /* * if this cd is in use, no need to * check more chained leafs */ if (chunk != CHAIN_END) break; } /* If this cd is not in use, we are good. */ if (chunk == CHAIN_END) break; } /* If we tried all the cd's, we lose. */ if (cd == ZAP_MAXCD) return (ENOSPC); } for (; l; l = l->l_next) if (l->lh_nfree >= numchunks) break; if (l == NULL) return (EAGAIN); zeh->zeh_found_leaf = l; /* make the entry */ chunk = zap_leaf_chunk_alloc(l); le = &l->l_phys->l_chunk[chunk].l_entry; le->le_type = ZAP_LEAF_ENTRY; le->le_name_chunk = zap_leaf_array_create(zeh, name, 1, namelen); le->le_name_length = namelen; le->le_value_chunk = zap_leaf_array_create(zeh, buf, integer_size, num_integers); le->le_value_length = (num_integers*integer_size > MAX_ARRAY_BYTES) ? (MAX_ARRAY_BYTES + 1) : (num_integers); le->le_int_size = integer_size; le->le_hash = h; le->le_cd = cd; /* link it into the hash chain */ chunkp = LEAF_HASH_ENTPTR(l, h); le->le_next = *chunkp; *chunkp = chunk; l->lh_nentries++; zeh->zeh_num_integers = num_integers; zeh->zeh_integer_size = le->le_int_size; zeh->zeh_cd = le->le_cd; zeh->zeh_hash = le->le_hash; zeh->zeh_chunkp = chunkp; return (0); } /* * Routines for transferring entries between leafs. */ static void zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry) { struct zap_leaf_entry *le = &l->l_phys->l_chunk[entry].l_entry; uint16_t *ptr = LEAF_HASH_ENTPTR(l, le->le_hash); le->le_next = *ptr; *ptr = entry; } static void zap_leaf_rehash_entries(zap_leaf_t *l) { int i; if (l->lh_nentries == 0) return; /* break existing hash chains */ zap_memset(l->l_phys->l_hash, CHAIN_END, sizeof (l->l_phys->l_hash)); for (i = 0; i < ZAP_LEAF_NUMCHUNKS; i++) { struct zap_leaf_entry *le = &l->l_phys->l_chunk[i].l_entry; if (le->le_type != ZAP_LEAF_ENTRY) continue; zap_leaf_rehash_entry(l, i); } } static uint16_t zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl) { uint16_t new_chunk; uint16_t *nchunkp = &new_chunk; while (chunk != CHAIN_END) { uint16_t nchunk = zap_leaf_chunk_alloc(nl); struct zap_leaf_array *nla = &nl->l_phys->l_chunk[nchunk].l_array; struct zap_leaf_array *la = &l->l_phys->l_chunk[chunk].l_array; int nextchunk = la->la_next; ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS); ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS); *nla = *la; zap_leaf_chunk_free(l, chunk); chunk = nextchunk; *nchunkp = nchunk; nchunkp = &nla->la_next; } *nchunkp = CHAIN_END; return (new_chunk); } static void zap_leaf_transfer_entry(zap_t *zap, zap_leaf_t *l, int entry, zap_leaf_t *nhl, dmu_tx_t *tx) { zap_leaf_t *nl; struct zap_leaf_entry *le, *nle; uint16_t chunk, nchunks; le = &l->l_phys->l_chunk[entry].l_entry; ASSERT3U(le->le_type, ==, ZAP_LEAF_ENTRY); /* find a leaf in the destination leaf chain with enough free space */ nchunks = 1 + NCHUNKS(le->le_name_length) + NCHUNKS(le->le_value_length * le->le_int_size); for (nl = nhl; nl; nl = nl->l_next) if (nl->lh_nfree >= nchunks) break; if (nl == NULL) { nl = zap_leaf_chainmore(nhl, zap_create_leaf(zap, tx)); dprintf("transfer_entry: chaining leaf %x/%d\n", nl->lh_prefix, nl->lh_prefix_len); } chunk = zap_leaf_chunk_alloc(nl); nle = &nl->l_phys->l_chunk[chunk].l_entry; *nle = *le; zap_leaf_rehash_entry(nl, chunk); nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl); nle->le_value_chunk = zap_leaf_transfer_array(l, le->le_value_chunk, nl); zap_leaf_chunk_free(l, entry); l->lh_nentries--; nl->lh_nentries++; } /* * Transfer entries whose hash bit 'bit' is 1 to nl1, and 0 to nl0. * Ignore leaf chaining in source (l), but chain in destinations. * We'll re-chain all the entries in l as we go along. */ static void zap_leaf_transfer_entries(zap_t *zap, zap_leaf_t *l, zap_leaf_t *nl0, zap_leaf_t *nl1, int bit, dmu_tx_t *tx) { int i; ASSERT(bit < 64 && bit >= 0); /* break existing hash chains */ zap_memset(l->l_phys->l_hash, CHAIN_END, sizeof (l->l_phys->l_hash)); if (nl0 != l) zap_leaf_rehash_entries(nl0); if (nl1 != nl0) zap_leaf_rehash_entries(nl1); for (i = 0; i < ZAP_LEAF_NUMCHUNKS; i++) { struct zap_leaf_entry *le = &l->l_phys->l_chunk[i].l_entry; if (le->le_type != ZAP_LEAF_ENTRY) continue; /* * We could find entries via hashtable instead. That * would be O(hashents+numents) rather than * O(numblks+numents), but this accesses memory more * sequentially, and when we're called, the block is * usually pretty full. */ if (le->le_hash & (1ULL << bit)) { zap_leaf_transfer_entry(zap, l, i, nl1, tx); } else { if (nl0 == l) zap_leaf_rehash_entry(l, i); else zap_leaf_transfer_entry(zap, l, i, nl0, tx); } } } /* * nl will contain the entries whose hash prefix ends in 1 * handles leaf chaining */ zap_leaf_t * zap_leaf_split(zap_t *zap, zap_leaf_t *hl, dmu_tx_t *tx) { zap_leaf_t *l = hl; int bit = 64 - 1 - hl->lh_prefix_len; zap_leaf_t *nl = zap_create_leaf(zap, tx); /* set new prefix and prefix_len */ hl->lh_prefix <<= 1; hl->lh_prefix_len++; nl->lh_prefix = hl->lh_prefix | 1; nl->lh_prefix_len = hl->lh_prefix_len; /* transfer odd entries from first leaf in hl chain to nl */ zap_leaf_transfer_entries(zap, hl, hl, nl, bit, tx); /* take rest of chain off hl */ l = hl->l_next; hl->l_next = NULL; hl->lh_next = 0; /* transfer even entries from hl chain back to hl, odd entries to nl */ while (l) { zap_leaf_t *next = l->l_next; zap_leaf_transfer_entries(zap, l, hl, nl, bit, tx); zap_destroy_leaf(zap, l, tx); l = next; } return (nl); } void zap_stats_leaf(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs) { int n, nchained = 0; n = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift - l->lh_prefix_len; n = MIN(n, ZAP_HISTOGRAM_SIZE-1); zs->zs_leafs_with_2n_pointers[n]++; do { int i; n = l->lh_nentries/5; n = MIN(n, ZAP_HISTOGRAM_SIZE-1); zs->zs_blocks_with_n5_entries[n]++; n = ((1<lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 / (1<zs_blocks_n_tenths_full[n]++; for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES; i++) { int nentries = 0; int chunk = l->l_phys->l_hash[i]; while (chunk != CHAIN_END) { struct zap_leaf_entry *le = &l->l_phys->l_chunk[chunk].l_entry; n = 1 + NCHUNKS(le->le_name_length) + NCHUNKS(le->le_value_length * le->le_int_size); n = MIN(n, ZAP_HISTOGRAM_SIZE-1); zs->zs_entries_using_n_chunks[n]++; chunk = le->le_next; nentries++; } n = nentries; n = MIN(n, ZAP_HISTOGRAM_SIZE-1); zs->zs_buckets_with_n_entries[n]++; } nchained++; l = l->l_next; } while (l); n = nchained-1; n = MIN(n, ZAP_HISTOGRAM_SIZE-1); zs->zs_leafs_with_n_chained[n]++; }