/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * The majority of PC media use a 512 sector size, but * occasionally you will run across a 1k sector size. * For media with a 1k sector size, fd_strategy() requires * the I/O size to be a 1k multiple; so when the sector size * is not yet known, always read 1k. */ #define PC_SAFESECSIZE (PC_SECSIZE * 2) static int pcfs_pseudo_floppy(dev_t); static int pcfsinit(int, char *); static int pcfs_mount(struct vfs *, struct vnode *, struct mounta *, struct cred *); static int pcfs_unmount(struct vfs *, int, struct cred *); static int pcfs_root(struct vfs *, struct vnode **); static int pcfs_statvfs(struct vfs *, struct statvfs64 *); static int pc_syncfsnodes(struct pcfs *); static int pcfs_sync(struct vfs *, short, struct cred *); static int pcfs_vget(struct vfs *vfsp, struct vnode **vpp, struct fid *fidp); static void pcfs_freevfs(vfs_t *vfsp); static int pc_readfat(struct pcfs *fsp, uchar_t *fatp); static int pc_writefat(struct pcfs *fsp, daddr_t start); static int pc_getfattype(struct pcfs *fsp); static void pcfs_parse_mntopts(struct pcfs *fsp); /* * pcfs mount options table */ static char *nohidden_cancel[] = { MNTOPT_PCFS_HIDDEN, NULL }; static char *hidden_cancel[] = { MNTOPT_PCFS_NOHIDDEN, NULL }; static char *nofoldcase_cancel[] = { MNTOPT_PCFS_FOLDCASE, NULL }; static char *foldcase_cancel[] = { MNTOPT_PCFS_NOFOLDCASE, NULL }; static char *clamptime_cancel[] = { MNTOPT_PCFS_NOCLAMPTIME, NULL }; static char *noclamptime_cancel[] = { MNTOPT_PCFS_CLAMPTIME, NULL }; static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; static mntopt_t mntopts[] = { /* * option name cancel option default arg flags opt data */ { MNTOPT_PCFS_NOHIDDEN, nohidden_cancel, NULL, 0, NULL }, { MNTOPT_PCFS_HIDDEN, hidden_cancel, NULL, MO_DEFAULT, NULL }, { MNTOPT_PCFS_NOFOLDCASE, nofoldcase_cancel, NULL, MO_DEFAULT, NULL }, { MNTOPT_PCFS_FOLDCASE, foldcase_cancel, NULL, 0, NULL }, { MNTOPT_PCFS_CLAMPTIME, clamptime_cancel, NULL, MO_DEFAULT, NULL }, { MNTOPT_PCFS_NOCLAMPTIME, noclamptime_cancel, NULL, NULL, NULL }, { MNTOPT_NOATIME, noatime_cancel, NULL, NULL, NULL }, { MNTOPT_ATIME, atime_cancel, NULL, NULL, NULL }, { MNTOPT_PCFS_TIMEZONE, NULL, "+0", MO_DEFAULT | MO_HASVALUE, NULL }, { MNTOPT_PCFS_SECSIZE, NULL, NULL, MO_HASVALUE, NULL } }; static mntopts_t pcfs_mntopts = { sizeof (mntopts) / sizeof (mntopt_t), mntopts }; int pcfsdebuglevel = 0; /* * pcfslock: protects the list of mounted pc filesystems "pc_mounttab. * pcfs_lock: (inside per filesystem structure "pcfs") * per filesystem lock. Most of the vfsops and vnodeops are * protected by this lock. * pcnodes_lock: protects the pcnode hash table "pcdhead", "pcfhead". * * Lock hierarchy: pcfslock > pcfs_lock > pcnodes_lock * * pcfs_mountcount: used to prevent module unloads while there is still * pcfs state from a former mount hanging around. With * forced umount support, the filesystem module must not * be allowed to go away before the last VFS_FREEVFS() * call has been made. * Since this is just an atomic counter, there's no need * for locking. */ kmutex_t pcfslock; krwlock_t pcnodes_lock; uint32_t pcfs_mountcount; static int pcfstype; static vfsdef_t vfw = { VFSDEF_VERSION, "pcfs", pcfsinit, VSW_HASPROTO|VSW_CANREMOUNT|VSW_STATS|VSW_CANLOFI, &pcfs_mntopts }; extern struct mod_ops mod_fsops; static struct modlfs modlfs = { &mod_fsops, "PC filesystem", &vfw }; static struct modlinkage modlinkage = { MODREV_1, &modlfs, NULL }; int _init(void) { int error; #if !defined(lint) /* make sure the on-disk structures are sane */ ASSERT(sizeof (struct pcdir) == 32); ASSERT(sizeof (struct pcdir_lfn) == 32); #endif mutex_init(&pcfslock, NULL, MUTEX_DEFAULT, NULL); rw_init(&pcnodes_lock, NULL, RW_DEFAULT, NULL); error = mod_install(&modlinkage); if (error) { mutex_destroy(&pcfslock); rw_destroy(&pcnodes_lock); } return (error); } int _fini(void) { int error; /* * If a forcedly unmounted instance is still hanging around, * we cannot allow the module to be unloaded because that would * cause panics once the VFS framework decides it's time to call * into VFS_FREEVFS(). */ if (pcfs_mountcount) return (EBUSY); error = mod_remove(&modlinkage); if (error) return (error); mutex_destroy(&pcfslock); rw_destroy(&pcnodes_lock); /* * Tear down the operations vectors */ (void) vfs_freevfsops_by_type(pcfstype); vn_freevnodeops(pcfs_fvnodeops); vn_freevnodeops(pcfs_dvnodeops); return (0); } int _info(struct modinfo *modinfop) { return (mod_info(&modlinkage, modinfop)); } /* ARGSUSED1 */ static int pcfsinit(int fstype, char *name) { static const fs_operation_def_t pcfs_vfsops_template[] = { VFSNAME_MOUNT, { .vfs_mount = pcfs_mount }, VFSNAME_UNMOUNT, { .vfs_unmount = pcfs_unmount }, VFSNAME_ROOT, { .vfs_root = pcfs_root }, VFSNAME_STATVFS, { .vfs_statvfs = pcfs_statvfs }, VFSNAME_SYNC, { .vfs_sync = pcfs_sync }, VFSNAME_VGET, { .vfs_vget = pcfs_vget }, VFSNAME_FREEVFS, { .vfs_freevfs = pcfs_freevfs }, NULL, NULL }; int error; error = vfs_setfsops(fstype, pcfs_vfsops_template, NULL); if (error != 0) { cmn_err(CE_WARN, "pcfsinit: bad vfs ops template"); return (error); } error = vn_make_ops("pcfs", pcfs_fvnodeops_template, &pcfs_fvnodeops); if (error != 0) { (void) vfs_freevfsops_by_type(fstype); cmn_err(CE_WARN, "pcfsinit: bad file vnode ops template"); return (error); } error = vn_make_ops("pcfsd", pcfs_dvnodeops_template, &pcfs_dvnodeops); if (error != 0) { (void) vfs_freevfsops_by_type(fstype); vn_freevnodeops(pcfs_fvnodeops); cmn_err(CE_WARN, "pcfsinit: bad dir vnode ops template"); return (error); } pcfstype = fstype; (void) pc_init(); pcfs_mountcount = 0; return (0); } static struct pcfs *pc_mounttab = NULL; extern struct pcfs_args pc_tz; /* * Define some special logical drives we use internal to this file. */ #define BOOT_PARTITION_DRIVE 99 #define PRIMARY_DOS_DRIVE 1 #define UNPARTITIONED_DRIVE 0 static int pcfs_device_identify( struct vfs *vfsp, struct mounta *uap, struct cred *cr, int *dos_ldrive, dev_t *xdev) { struct pathname special; char *c; struct vnode *svp = NULL; struct vnode *lvp = NULL; int oflag, aflag; int error; /* * Resolve path name of special file being mounted. */ if (error = pn_get(uap->spec, UIO_USERSPACE, &special)) { return (error); } *dos_ldrive = -1; if (error = lookupname(special.pn_path, UIO_SYSSPACE, FOLLOW, NULLVPP, &svp)) { /* * If there's no device node, the name specified most likely * maps to a PCFS-style "partition specifier" to select a * harddisk primary/logical partition. Disable floppy-specific * checks in such cases unless an explicit :A or :B is * requested. */ /* * Split the pathname string at the last ':' separator. * If there's no ':' in the device name, or the ':' is the * last character in the string, the name is invalid and * the error from the previous lookup will be returned. */ c = strrchr(special.pn_path, ':'); if (c == NULL || strlen(c) == 0) goto devlookup_done; *c++ = '\0'; /* * PCFS partition name suffixes can be: * - "boot" to indicate the X86BOOT partition * - a drive letter [c-z] for the "DOS logical drive" * - a drive number 1..24 for the "DOS logical drive" * - a "floppy name letter", 'a' or 'b' (just strip this) */ if (strcasecmp(c, "boot") == 0) { /* * The Solaris boot partition is requested. */ *dos_ldrive = BOOT_PARTITION_DRIVE; } else if (strspn(c, "0123456789") == strlen(c)) { /* * All digits - parse the partition number. */ long drvnum = 0; if ((error = ddi_strtol(c, NULL, 10, &drvnum)) == 0) { /* * A number alright - in the allowed range ? */ if (drvnum > 24 || drvnum == 0) error = ENXIO; } if (error) goto devlookup_done; *dos_ldrive = (int)drvnum; } else if (strlen(c) == 1) { /* * A single trailing character was specified. * - [c-zC-Z] means a harddisk partition, and * we retrieve the partition number. * - [abAB] means a floppy drive, so we swallow * the "drive specifier" and test later * whether the physical device is a floppy or * PCMCIA pseudofloppy (sram card). */ *c = tolower(*c); if (*c == 'a' || *c == 'b') { *dos_ldrive = UNPARTITIONED_DRIVE; } else if (*c < 'c' || *c > 'z') { error = ENXIO; goto devlookup_done; } else { *dos_ldrive = 1 + *c - 'c'; } } else { /* * Can't parse this - pass through previous error. */ goto devlookup_done; } error = lookupname(special.pn_path, UIO_SYSSPACE, FOLLOW, NULLVPP, &svp); } else { *dos_ldrive = UNPARTITIONED_DRIVE; } devlookup_done: pn_free(&special); if (error) return (error); ASSERT(*dos_ldrive >= UNPARTITIONED_DRIVE); /* * Verify caller's permission to open the device special file. */ if ((vfsp->vfs_flag & VFS_RDONLY) != 0 || ((uap->flags & MS_RDONLY) != 0)) { oflag = FREAD; aflag = VREAD; } else { oflag = FREAD | FWRITE; aflag = VREAD | VWRITE; } error = vfs_get_lofi(vfsp, &lvp); if (error > 0) { if (error == ENOENT) error = ENODEV; goto out; } else if (error == 0) { *xdev = lvp->v_rdev; } else { *xdev = svp->v_rdev; if (svp->v_type != VBLK) { error = ENOTBLK; goto out; } if ((error = secpolicy_spec_open(cr, svp, oflag)) != 0) goto out; } if (getmajor(*xdev) >= devcnt) { error = ENXIO; goto out; } if ((error = VOP_ACCESS(svp, aflag, 0, cr, NULL)) != 0) goto out; out: if (svp != NULL) VN_RELE(svp); if (lvp != NULL) VN_RELE(lvp); return (error); } static int pcfs_device_ismounted( struct vfs *vfsp, int dos_ldrive, dev_t xdev, int *remounting, dev_t *pseudodev) { struct pcfs *fsp; int remount = *remounting; /* * Ensure that this logical drive isn't already mounted, unless * this is a REMOUNT request. * Note: The framework will perform this check if the "...:c" * PCFS-style "logical drive" syntax has not been used and an * actually existing physical device is backing this filesystem. * Once all block device drivers support PC-style partitioning, * this codeblock can be dropped. */ *pseudodev = xdev; if (dos_ldrive) { mutex_enter(&pcfslock); for (fsp = pc_mounttab; fsp; fsp = fsp->pcfs_nxt) if (fsp->pcfs_xdev == xdev && fsp->pcfs_ldrive == dos_ldrive) { mutex_exit(&pcfslock); if (remount) { return (0); } else { return (EBUSY); } } /* * Assign a unique device number for the vfs * The old way (getudev() + a constantly incrementing * major number) was wrong because it changes vfs_dev * across mounts and reboots, which breaks nfs file handles. * UFS just uses the real dev_t. We can't do that because * of the way pcfs opens fdisk partitons (the :c and :d * partitions are on the same dev_t). Though that _might_ * actually be ok, since the file handle contains an * absolute block number, it's probably better to make them * different. So I think we should retain the original * dev_t, but come up with a different minor number based * on the logical drive that will _always_ come up the same. * For now, we steal the upper 6 bits. */ #ifdef notdef /* what should we do here? */ if (((getminor(xdev) >> 12) & 0x3F) != 0) printf("whoops - upper bits used!\n"); #endif *pseudodev = makedevice(getmajor(xdev), ((dos_ldrive << 12) | getminor(xdev)) & MAXMIN32); if (vfs_devmounting(*pseudodev, vfsp)) { mutex_exit(&pcfslock); return (EBUSY); } if (vfs_devismounted(*pseudodev)) { mutex_exit(&pcfslock); if (remount) { return (0); } else { return (EBUSY); } } mutex_exit(&pcfslock); } else { *pseudodev = xdev; if (vfs_devmounting(*pseudodev, vfsp)) { return (EBUSY); } if (vfs_devismounted(*pseudodev)) if (remount) { return (0); } else { return (EBUSY); } } /* * This is not a remount. Even if MS_REMOUNT was requested, * the caller needs to proceed as it would on an ordinary * mount. */ *remounting = 0; ASSERT(*pseudodev); return (0); } /* * Get the PCFS-specific mount options from the VFS framework. * For "timezone" and "secsize", we need to parse the number * ourselves and ensure its validity. * Note: "secsize" is deliberately undocumented at this time, * it's a workaround for devices (particularly: lofi image files) * that don't support the DKIOCGMEDIAINFO ioctl for autodetection. */ static void pcfs_parse_mntopts(struct pcfs *fsp) { char *c; char *endptr; long l; struct vfs *vfsp = fsp->pcfs_vfs; ASSERT(fsp->pcfs_secondswest == 0); ASSERT(fsp->pcfs_secsize == 0); if (vfs_optionisset(vfsp, MNTOPT_PCFS_HIDDEN, NULL)) fsp->pcfs_flags |= PCFS_HIDDEN; if (vfs_optionisset(vfsp, MNTOPT_PCFS_FOLDCASE, NULL)) fsp->pcfs_flags |= PCFS_FOLDCASE; if (vfs_optionisset(vfsp, MNTOPT_PCFS_NOCLAMPTIME, NULL)) fsp->pcfs_flags |= PCFS_NOCLAMPTIME; if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) fsp->pcfs_flags |= PCFS_NOATIME; if (vfs_optionisset(vfsp, MNTOPT_PCFS_TIMEZONE, &c)) { if (ddi_strtol(c, &endptr, 10, &l) == 0 && endptr == c + strlen(c)) { /* * A number alright - in the allowed range ? */ if (l <= -12*3600 || l >= 12*3600) { cmn_err(CE_WARN, "!pcfs: invalid use of " "'timezone' mount option - %ld " "is out of range. Assuming 0.", l); l = 0; } } else { cmn_err(CE_WARN, "!pcfs: invalid use of " "'timezone' mount option - argument %s " "is not a valid number. Assuming 0.", c); l = 0; } fsp->pcfs_secondswest = l; } /* * The "secsize=..." mount option is a workaround for the lack of * lofi(7d) support for DKIOCGMEDIAINFO. If PCFS wants to parse the * partition table of a disk image and it has been partitioned with * sector sizes other than 512 bytes, we'd fail on loopback'ed disk * images. * That should really be fixed in lofi ... this is a workaround. */ if (vfs_optionisset(vfsp, MNTOPT_PCFS_SECSIZE, &c)) { if (ddi_strtol(c, &endptr, 10, &l) == 0 && endptr == c + strlen(c)) { /* * A number alright - a valid sector size as well ? */ if (!VALID_SECSIZE(l)) { cmn_err(CE_WARN, "!pcfs: invalid use of " "'secsize' mount option - %ld is " "unsupported. Autodetecting.", l); l = 0; } } else { cmn_err(CE_WARN, "!pcfs: invalid use of " "'secsize' mount option - argument %s " "is not a valid number. Autodetecting.", c); l = 0; } fsp->pcfs_secsize = l; fsp->pcfs_sdshift = ddi_ffs(l / DEV_BSIZE) - 1; } } /* * vfs operations */ /* * pcfs_mount - backend for VFS_MOUNT() on PCFS. */ static int pcfs_mount( struct vfs *vfsp, struct vnode *mvp, struct mounta *uap, struct cred *cr) { struct pcfs *fsp; struct vnode *devvp; dev_t pseudodev; dev_t xdev; int dos_ldrive = 0; int error; int remounting; if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0) return (error); if (mvp->v_type != VDIR) return (ENOTDIR); mutex_enter(&mvp->v_lock); if ((uap->flags & MS_REMOUNT) == 0 && (uap->flags & MS_OVERLAY) == 0 && (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { mutex_exit(&mvp->v_lock); return (EBUSY); } mutex_exit(&mvp->v_lock); /* * PCFS doesn't do mount arguments anymore - everything's a mount * option these days. In order not to break existing callers, we * don't reject it yet, just warn that the data (if any) is ignored. */ if (uap->datalen != 0) cmn_err(CE_WARN, "!pcfs: deprecated use of mount(2) with " "mount argument structures instead of mount options. " "Ignoring mount(2) 'dataptr' argument."); /* * This is needed early, to make sure the access / open calls * are done using the correct mode. Processing this mount option * only when calling pcfs_parse_mntopts() would lead us to attempt * a read/write access to a possibly writeprotected device, and * a readonly mount attempt might fail because of that. */ if (uap->flags & MS_RDONLY) { vfsp->vfs_flag |= VFS_RDONLY; vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); } /* * For most filesystems, this is just a lookupname() on the * mount pathname string. PCFS historically has to do its own * partition table parsing because not all Solaris architectures * support all styles of partitioning that PC media can have, and * hence PCFS understands "device names" that don't map to actual * physical device nodes. Parsing the "PCFS syntax" for device * names is done in pcfs_device_identify() - see there. * * Once all block device drivers that can host FAT filesystems have * been enhanced to create device nodes for all PC-style partitions, * this code can go away. */ if (error = pcfs_device_identify(vfsp, uap, cr, &dos_ldrive, &xdev)) return (error); /* * As with looking up the actual device to mount, PCFS cannot rely * on just the checks done by vfs_ismounted() whether a given device * is mounted already. The additional check against the "PCFS syntax" * is done in pcfs_device_ismounted(). */ remounting = (uap->flags & MS_REMOUNT); if (error = pcfs_device_ismounted(vfsp, dos_ldrive, xdev, &remounting, &pseudodev)) return (error); if (remounting) return (0); /* * Mount the filesystem. * An instance structure is required before the attempt to locate * and parse the FAT BPB. This is because mount options may change * the behaviour of the filesystem type matching code. Precreate * it and fill it in to a degree that allows parsing the mount * options. */ devvp = makespecvp(xdev, VBLK); if (IS_SWAPVP(devvp)) { VN_RELE(devvp); return (EBUSY); } error = VOP_OPEN(&devvp, (vfsp->vfs_flag & VFS_RDONLY) ? FREAD : FREAD | FWRITE, cr, NULL); if (error) { VN_RELE(devvp); return (error); } fsp = kmem_zalloc(sizeof (*fsp), KM_SLEEP); fsp->pcfs_vfs = vfsp; fsp->pcfs_xdev = xdev; fsp->pcfs_devvp = devvp; fsp->pcfs_ldrive = dos_ldrive; mutex_init(&fsp->pcfs_lock, NULL, MUTEX_DEFAULT, NULL); pcfs_parse_mntopts(fsp); /* * This is the actual "mount" - the PCFS superblock check. * * Find the requested logical drive and the FAT BPB therein. * Check device type and flag the instance if media is removeable. * * Initializes most members of the filesystem instance structure. * Returns EINVAL if no valid BPB can be found. Other errors may * occur after I/O failures, or when invalid / unparseable partition * tables are encountered. */ if (error = pc_getfattype(fsp)) goto errout; /* * Now that the BPB has been parsed, this structural information * is available and known to be valid. Initialize the VFS. */ vfsp->vfs_data = fsp; vfsp->vfs_dev = pseudodev; vfsp->vfs_fstype = pcfstype; vfs_make_fsid(&vfsp->vfs_fsid, pseudodev, pcfstype); vfsp->vfs_bcount = 0; vfsp->vfs_bsize = fsp->pcfs_clsize; /* * Validate that we can access the FAT and that it is, to the * degree we can verify here, self-consistent. */ if (error = pc_verify(fsp)) goto errout; /* * Record the time of the mount, to return as an "approximate" * timestamp for the FAT root directory. Since FAT roots don't * have timestamps, this is less confusing to the user than * claiming "zero" / Jan/01/1970. */ gethrestime(&fsp->pcfs_mounttime); /* * Fix up the mount options. Because "noatime" is made default on * removeable media only, a fixed disk will have neither "atime" * nor "noatime" set. We set the options explicitly depending on * the PCFS_NOATIME flag, to inform the user of what applies. * Mount option cancellation will take care that the mutually * exclusive 'other' is cleared. */ vfs_setmntopt(vfsp, fsp->pcfs_flags & PCFS_NOATIME ? MNTOPT_NOATIME : MNTOPT_ATIME, NULL, 0); /* * All clear - insert the FS instance into PCFS' list. */ mutex_enter(&pcfslock); fsp->pcfs_nxt = pc_mounttab; pc_mounttab = fsp; mutex_exit(&pcfslock); atomic_inc_32(&pcfs_mountcount); return (0); errout: (void) VOP_CLOSE(devvp, vfsp->vfs_flag & VFS_RDONLY ? FREAD : FREAD | FWRITE, 1, (offset_t)0, cr, NULL); VN_RELE(devvp); mutex_destroy(&fsp->pcfs_lock); kmem_free(fsp, sizeof (*fsp)); return (error); } static int pcfs_unmount( struct vfs *vfsp, int flag, struct cred *cr) { struct pcfs *fsp, *fsp1; if (secpolicy_fs_unmount(cr, vfsp) != 0) return (EPERM); fsp = VFSTOPCFS(vfsp); /* * We don't have to lock fsp because the VVFSLOCK in vfs layer will * prevent lookuppn from crossing the mount point. * If this is not a forced umount request and there's ongoing I/O, * don't allow the mount to proceed. */ if (flag & MS_FORCE) vfsp->vfs_flag |= VFS_UNMOUNTED; else if (fsp->pcfs_nrefs) return (EBUSY); mutex_enter(&pcfslock); /* * If this is a forced umount request or if the fs instance has * been marked as beyond recovery, allow the umount to proceed * regardless of state. pc_diskchanged() forcibly releases all * inactive vnodes/pcnodes. */ if (flag & MS_FORCE || fsp->pcfs_flags & PCFS_IRRECOV) { rw_enter(&pcnodes_lock, RW_WRITER); pc_diskchanged(fsp); rw_exit(&pcnodes_lock); } /* now there should be no pcp node on pcfhead or pcdhead. */ if (fsp == pc_mounttab) { pc_mounttab = fsp->pcfs_nxt; } else { for (fsp1 = pc_mounttab; fsp1 != NULL; fsp1 = fsp1->pcfs_nxt) if (fsp1->pcfs_nxt == fsp) fsp1->pcfs_nxt = fsp->pcfs_nxt; } mutex_exit(&pcfslock); /* * Since we support VFS_FREEVFS(), there's no need to * free the fsp right now. The framework will tell us * when the right time to do so has arrived by calling * into pcfs_freevfs. */ return (0); } /* * find root of pcfs */ static int pcfs_root( struct vfs *vfsp, struct vnode **vpp) { struct pcfs *fsp; struct pcnode *pcp; int error; fsp = VFSTOPCFS(vfsp); if (error = pc_lockfs(fsp, 0, 0)) return (error); pcp = pc_getnode(fsp, (daddr_t)0, 0, (struct pcdir *)0); pc_unlockfs(fsp); *vpp = PCTOV(pcp); pcp->pc_flags |= PC_EXTERNAL; return (0); } /* * Get file system statistics. */ static int pcfs_statvfs( struct vfs *vfsp, struct statvfs64 *sp) { struct pcfs *fsp; int error; dev32_t d32; fsp = VFSTOPCFS(vfsp); error = pc_getfat(fsp); if (error) return (error); bzero(sp, sizeof (*sp)); sp->f_bsize = sp->f_frsize = fsp->pcfs_clsize; sp->f_blocks = (fsblkcnt64_t)fsp->pcfs_ncluster; sp->f_bavail = sp->f_bfree = (fsblkcnt64_t)pc_freeclusters(fsp); sp->f_files = (fsfilcnt64_t)-1; sp->f_ffree = (fsfilcnt64_t)-1; sp->f_favail = (fsfilcnt64_t)-1; #ifdef notdef (void) cmpldev(&d32, fsp->pcfs_devvp->v_rdev); #endif /* notdef */ (void) cmpldev(&d32, vfsp->vfs_dev); sp->f_fsid = d32; (void) strcpy(sp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); sp->f_flag = vf_to_stf(vfsp->vfs_flag); sp->f_namemax = PCMAXNAMLEN; return (0); } static int pc_syncfsnodes(struct pcfs *fsp) { struct pchead *hp; struct pcnode *pcp; int error; if (error = pc_lockfs(fsp, 0, 0)) return (error); if (!(error = pc_syncfat(fsp))) { hp = pcfhead; while (hp < & pcfhead [ NPCHASH ]) { rw_enter(&pcnodes_lock, RW_READER); pcp = hp->pch_forw; while (pcp != (struct pcnode *)hp) { if (VFSTOPCFS(PCTOV(pcp) -> v_vfsp) == fsp) if (error = pc_nodesync(pcp)) break; pcp = pcp -> pc_forw; } rw_exit(&pcnodes_lock); if (error) break; hp++; } } pc_unlockfs(fsp); return (error); } /* * Flush any pending I/O. */ /*ARGSUSED*/ static int pcfs_sync( struct vfs *vfsp, short flag, struct cred *cr) { struct pcfs *fsp; int error = 0; /* this prevents the filesystem from being umounted. */ mutex_enter(&pcfslock); if (vfsp != NULL) { fsp = VFSTOPCFS(vfsp); if (!(fsp->pcfs_flags & PCFS_IRRECOV)) { error = pc_syncfsnodes(fsp); } else { rw_enter(&pcnodes_lock, RW_WRITER); pc_diskchanged(fsp); rw_exit(&pcnodes_lock); error = EIO; } } else { fsp = pc_mounttab; while (fsp != NULL) { if (fsp->pcfs_flags & PCFS_IRRECOV) { rw_enter(&pcnodes_lock, RW_WRITER); pc_diskchanged(fsp); rw_exit(&pcnodes_lock); error = EIO; break; } error = pc_syncfsnodes(fsp); if (error) break; fsp = fsp->pcfs_nxt; } } mutex_exit(&pcfslock); return (error); } int pc_lockfs(struct pcfs *fsp, int diskchanged, int releasing) { int err; if ((fsp->pcfs_flags & PCFS_IRRECOV) && !releasing) return (EIO); if ((fsp->pcfs_flags & PCFS_LOCKED) && (fsp->pcfs_owner == curthread)) { fsp->pcfs_count++; } else { mutex_enter(&fsp->pcfs_lock); if (fsp->pcfs_flags & PCFS_LOCKED) panic("pc_lockfs"); /* * We check the IRRECOV bit again just in case somebody * snuck past the initial check but then got held up before * they could grab the lock. (And in the meantime someone * had grabbed the lock and set the bit) */ if (!diskchanged && !(fsp->pcfs_flags & PCFS_IRRECOV)) { if ((err = pc_getfat(fsp))) { mutex_exit(&fsp->pcfs_lock); return (err); } } fsp->pcfs_flags |= PCFS_LOCKED; fsp->pcfs_owner = curthread; fsp->pcfs_count++; } return (0); } void pc_unlockfs(struct pcfs *fsp) { if ((fsp->pcfs_flags & PCFS_LOCKED) == 0) panic("pc_unlockfs"); if (--fsp->pcfs_count < 0) panic("pc_unlockfs: count"); if (fsp->pcfs_count == 0) { fsp->pcfs_flags &= ~PCFS_LOCKED; fsp->pcfs_owner = 0; mutex_exit(&fsp->pcfs_lock); } } int pc_syncfat(struct pcfs *fsp) { struct buf *bp; int nfat; int error = 0; struct fat_od_fsi *fsinfo_disk; if ((fsp->pcfs_fatp == (uchar_t *)0) || !(fsp->pcfs_flags & PCFS_FATMOD)) return (0); /* * write out all copies of FATs */ fsp->pcfs_flags &= ~PCFS_FATMOD; fsp->pcfs_fattime = gethrestime_sec() + PCFS_DISKTIMEOUT; for (nfat = 0; nfat < fsp->pcfs_numfat; nfat++) { error = pc_writefat(fsp, pc_dbdaddr(fsp, fsp->pcfs_fatstart + nfat * fsp->pcfs_fatsec)); if (error) { pc_mark_irrecov(fsp); return (EIO); } } pc_clear_fatchanges(fsp); /* * Write out fsinfo sector. */ if (IS_FAT32(fsp)) { bp = bread(fsp->pcfs_xdev, pc_dbdaddr(fsp, fsp->pcfs_fsistart), fsp->pcfs_secsize); if (bp->b_flags & (B_ERROR | B_STALE)) { error = geterror(bp); } fsinfo_disk = (fat_od_fsi_t *)(bp->b_un.b_addr); if (!error && FSISIG_OK(fsinfo_disk)) { fsinfo_disk->fsi_incore.fs_free_clusters = LE_32(fsp->pcfs_fsinfo.fs_free_clusters); fsinfo_disk->fsi_incore.fs_next_free = LE_32(FSINFO_UNKNOWN); bwrite2(bp); error = geterror(bp); } brelse(bp); if (error) { pc_mark_irrecov(fsp); return (EIO); } } return (0); } void pc_invalfat(struct pcfs *fsp) { struct pcfs *xfsp; int mount_cnt = 0; if (fsp->pcfs_fatp == (uchar_t *)0) panic("pc_invalfat"); /* * Release FAT */ kmem_free(fsp->pcfs_fatp, fsp->pcfs_fatsec * fsp->pcfs_secsize); fsp->pcfs_fatp = NULL; kmem_free(fsp->pcfs_fat_changemap, fsp->pcfs_fat_changemapsize); fsp->pcfs_fat_changemap = NULL; /* * Invalidate all the blocks associated with the device. * Not needed if stateless. */ for (xfsp = pc_mounttab; xfsp; xfsp = xfsp->pcfs_nxt) if (xfsp != fsp && xfsp->pcfs_xdev == fsp->pcfs_xdev) mount_cnt++; if (!mount_cnt) binval(fsp->pcfs_xdev); /* * close mounted device */ (void) VOP_CLOSE(fsp->pcfs_devvp, (PCFSTOVFS(fsp)->vfs_flag & VFS_RDONLY) ? FREAD : FREAD|FWRITE, 1, (offset_t)0, CRED(), NULL); } void pc_badfs(struct pcfs *fsp) { cmn_err(CE_WARN, "corrupted PC file system on dev (%x.%x):%d\n", getmajor(fsp->pcfs_devvp->v_rdev), getminor(fsp->pcfs_devvp->v_rdev), fsp->pcfs_ldrive); } /* * The problem with supporting NFS on the PCFS filesystem is that there * is no good place to keep the generation number. The only possible * place is inside a directory entry. There are a few words that we * don't use - they store NT & OS/2 attributes, and the creation/last access * time of the file - but it seems wrong to use them. In addition, directory * entries come and go. If a directory is removed completely, its directory * blocks are freed and the generation numbers are lost. Whereas in ufs, * inode blocks are dedicated for inodes, so the generation numbers are * permanently kept on the disk. */ static int pcfs_vget(struct vfs *vfsp, struct vnode **vpp, struct fid *fidp) { struct pcnode *pcp; struct pc_fid *pcfid; struct pcfs *fsp; struct pcdir *ep; daddr_t eblkno; int eoffset; struct buf *bp; int error; pc_cluster32_t cn; pcfid = (struct pc_fid *)fidp; fsp = VFSTOPCFS(vfsp); error = pc_lockfs(fsp, 0, 0); if (error) { *vpp = NULL; return (error); } if (pcfid->pcfid_block == 0) { pcp = pc_getnode(fsp, (daddr_t)0, 0, (struct pcdir *)0); pcp->pc_flags |= PC_EXTERNAL; *vpp = PCTOV(pcp); pc_unlockfs(fsp); return (0); } eblkno = pcfid->pcfid_block; eoffset = pcfid->pcfid_offset; if ((pc_dbtocl(fsp, eblkno - fsp->pcfs_dosstart) >= fsp->pcfs_ncluster) || (eoffset > fsp->pcfs_clsize)) { pc_unlockfs(fsp); *vpp = NULL; return (EINVAL); } if (eblkno >= fsp->pcfs_datastart || (eblkno - fsp->pcfs_rdirstart) < (fsp->pcfs_rdirsec & ~(fsp->pcfs_spcl - 1))) { bp = bread(fsp->pcfs_xdev, pc_dbdaddr(fsp, eblkno), fsp->pcfs_clsize); } else { /* * This is an access "backwards" into the FAT12/FAT16 * root directory. A better code structure would * significantly improve maintainability here ... */ bp = bread(fsp->pcfs_xdev, pc_dbdaddr(fsp, eblkno), (int)(fsp->pcfs_datastart - eblkno) * fsp->pcfs_secsize); } if (bp->b_flags & (B_ERROR | B_STALE)) { error = geterror(bp); brelse(bp); if (error) pc_mark_irrecov(fsp); *vpp = NULL; pc_unlockfs(fsp); return (error); } ep = (struct pcdir *)(bp->b_un.b_addr + eoffset); /* * Ok, if this is a valid file handle that we gave out, * then simply ensuring that the creation time matches, * the entry has not been deleted, and it has a valid first * character should be enough. * * Unfortunately, verifying that the _still_ * refers to a directory entry is not easy, since we'd have * to search _all_ directories starting from root to find it. * That's a high price to pay just in case somebody is forging * file handles. So instead we verify that as much of the * entry is valid as we can: * * 1. The starting cluster is 0 (unallocated) or valid * 2. It is not an LFN entry * 3. It is not hidden (unless mounted as such) * 4. It is not the label */ cn = pc_getstartcluster(fsp, ep); /* * if the starting cluster is valid, but not valid according * to pc_validcl(), force it to be to simplify the following if. */ if (cn == 0) cn = PCF_FIRSTCLUSTER; if (IS_FAT32(fsp)) { if (cn >= PCF_LASTCLUSTER32) cn = PCF_FIRSTCLUSTER; } else { if (cn >= PCF_LASTCLUSTER) cn = PCF_FIRSTCLUSTER; } if ((!pc_validcl(fsp, cn)) || (PCDL_IS_LFN(ep)) || (PCA_IS_HIDDEN(fsp, ep->pcd_attr)) || ((ep->pcd_attr & PCA_LABEL) == PCA_LABEL)) { bp->b_flags |= B_STALE | B_AGE; brelse(bp); pc_unlockfs(fsp); return (EINVAL); } if ((ep->pcd_crtime.pct_time == pcfid->pcfid_ctime) && (ep->pcd_filename[0] != PCD_ERASED) && (pc_validchar(ep->pcd_filename[0]) || (ep->pcd_filename[0] == '.' && ep->pcd_filename[1] == '.'))) { pcp = pc_getnode(fsp, eblkno, eoffset, ep); pcp->pc_flags |= PC_EXTERNAL; *vpp = PCTOV(pcp); } else { *vpp = NULL; } bp->b_flags |= B_STALE | B_AGE; brelse(bp); pc_unlockfs(fsp); return (0); } /* * Unfortunately, FAT32 fat's can be pretty big (On a 1 gig jaz drive, about * a meg), so we can't bread() it all in at once. This routine reads a * fat a chunk at a time. */ static int pc_readfat(struct pcfs *fsp, uchar_t *fatp) { struct buf *bp; size_t off; size_t readsize; daddr_t diskblk; size_t fatsize = fsp->pcfs_fatsec * fsp->pcfs_secsize; daddr_t start = fsp->pcfs_fatstart; readsize = fsp->pcfs_clsize; for (off = 0; off < fatsize; off += readsize, fatp += readsize) { if (readsize > (fatsize - off)) readsize = fatsize - off; diskblk = pc_dbdaddr(fsp, start + pc_cltodb(fsp, pc_lblkno(fsp, off))); bp = bread(fsp->pcfs_xdev, diskblk, readsize); if (bp->b_flags & (B_ERROR | B_STALE)) { brelse(bp); return (EIO); } bp->b_flags |= B_STALE | B_AGE; bcopy(bp->b_un.b_addr, fatp, readsize); brelse(bp); } return (0); } /* * We write the FAT out a _lot_, in order to make sure that it * is up-to-date. But on a FAT32 system (large drive, small clusters) * the FAT might be a couple of megabytes, and writing it all out just * because we created or deleted a small file is painful (especially * since we do it for each alternate FAT too). So instead, for FAT16 and * FAT32 we only write out the bit that has changed. We don't clear * the 'updated' fields here because the caller might be writing out * several FATs, so the caller must use pc_clear_fatchanges() after * all FATs have been updated. * This function doesn't take "start" from fsp->pcfs_dosstart because * callers can use it to write either the primary or any of the alternate * FAT tables. */ static int pc_writefat(struct pcfs *fsp, daddr_t start) { struct buf *bp; size_t off; size_t writesize; int error; uchar_t *fatp = fsp->pcfs_fatp; size_t fatsize = fsp->pcfs_fatsec * fsp->pcfs_secsize; writesize = fsp->pcfs_clsize; for (off = 0; off < fatsize; off += writesize, fatp += writesize) { if (writesize > (fatsize - off)) writesize = fatsize - off; if (!pc_fat_is_changed(fsp, pc_lblkno(fsp, off))) { continue; } bp = ngeteblk(writesize); bp->b_edev = fsp->pcfs_xdev; bp->b_dev = cmpdev(bp->b_edev); bp->b_blkno = pc_dbdaddr(fsp, start + pc_cltodb(fsp, pc_lblkno(fsp, off))); bcopy(fatp, bp->b_un.b_addr, writesize); bwrite2(bp); error = geterror(bp); brelse(bp); if (error) { return (error); } } return (0); } /* * Mark the FAT cluster that 'cn' is stored in as modified. */ void pc_mark_fat_updated(struct pcfs *fsp, pc_cluster32_t cn) { pc_cluster32_t bn; size_t size; /* which fat block is the cluster number stored in? */ if (IS_FAT32(fsp)) { size = sizeof (pc_cluster32_t); bn = pc_lblkno(fsp, cn * size); fsp->pcfs_fat_changemap[bn] = 1; } else if (IS_FAT16(fsp)) { size = sizeof (pc_cluster16_t); bn = pc_lblkno(fsp, cn * size); fsp->pcfs_fat_changemap[bn] = 1; } else { offset_t off; pc_cluster32_t nbn; ASSERT(IS_FAT12(fsp)); off = cn + (cn >> 1); bn = pc_lblkno(fsp, off); fsp->pcfs_fat_changemap[bn] = 1; /* does this field wrap into the next fat cluster? */ nbn = pc_lblkno(fsp, off + 1); if (nbn != bn) { fsp->pcfs_fat_changemap[nbn] = 1; } } } /* * return whether the FAT cluster 'bn' is updated and needs to * be written out. */ int pc_fat_is_changed(struct pcfs *fsp, pc_cluster32_t bn) { return (fsp->pcfs_fat_changemap[bn] == 1); } /* * Implementation of VFS_FREEVFS() to support forced umounts. * This is called by the vfs framework after umount, to trigger * the release of any resources still associated with the given * vfs_t once the need to keep them has gone away. */ void pcfs_freevfs(vfs_t *vfsp) { struct pcfs *fsp = VFSTOPCFS(vfsp); mutex_enter(&pcfslock); /* * Purging the FAT closes the device - can't do any more * I/O after this. */ if (fsp->pcfs_fatp != (uchar_t *)0) pc_invalfat(fsp); mutex_exit(&pcfslock); VN_RELE(fsp->pcfs_devvp); mutex_destroy(&fsp->pcfs_lock); kmem_free(fsp, sizeof (*fsp)); /* * Allow _fini() to succeed now, if so desired. */ atomic_dec_32(&pcfs_mountcount); } /* * PC-style partition parsing and FAT BPB identification/validation code. * The partition parsers here assume: * - a FAT filesystem will be in a partition that has one of a set of * recognized partition IDs * - the user wants the 'numbering' (C:, D:, ...) that one would get * on MSDOS 6.x. * That means any non-FAT partition type (NTFS, HPFS, or any Linux fs) * will not factor in the enumeration. * These days, such assumptions should be revisited. FAT is no longer the * only game in 'PC town'. */ /* * isDosDrive() * Boolean function. Give it the systid field for an fdisk partition * and it decides if that's a systid that describes a DOS drive. We * use systid values defined in sys/dktp/fdisk.h. */ static int isDosDrive(uchar_t checkMe) { return ((checkMe == DOSOS12) || (checkMe == DOSOS16) || (checkMe == DOSHUGE) || (checkMe == FDISK_WINDOWS) || (checkMe == FDISK_EXT_WIN) || (checkMe == FDISK_FAT95) || (checkMe == DIAGPART)); } /* * isDosExtended() * Boolean function. Give it the systid field for an fdisk partition * and it decides if that's a systid that describes an extended DOS * partition. */ static int isDosExtended(uchar_t checkMe) { return ((checkMe == EXTDOS) || (checkMe == FDISK_EXTLBA)); } /* * isBootPart() * Boolean function. Give it the systid field for an fdisk partition * and it decides if that's a systid that describes a Solaris boot * partition. */ static int isBootPart(uchar_t checkMe) { return (checkMe == X86BOOT); } /* * noLogicalDrive() * Display error message about not being able to find a logical * drive. */ static void noLogicalDrive(int ldrive) { if (ldrive == BOOT_PARTITION_DRIVE) { cmn_err(CE_NOTE, "!pcfs: no boot partition"); } else { cmn_err(CE_NOTE, "!pcfs: %d: no such logical drive", ldrive); } } /* * findTheDrive() * Discover offset of the requested logical drive, and return * that offset (startSector), the systid of that drive (sysid), * and a buffer pointer (bp), with the buffer contents being * the first sector of the logical drive (i.e., the sector that * contains the BPB for that drive). * * Note: this code is not capable of addressing >2TB disks, as it uses * daddr_t not diskaddr_t, some of the calculations would overflow */ #define COPY_PTBL(mbr, ptblp) \ bcopy(&(((struct mboot *)(mbr))->parts), (ptblp), \ FD_NUMPART * sizeof (struct ipart)) static int findTheDrive(struct pcfs *fsp, buf_t **bp) { int ldrive = fsp->pcfs_ldrive; dev_t dev = fsp->pcfs_devvp->v_rdev; struct ipart dosp[FD_NUMPART]; /* incore fdisk partition structure */ daddr_t lastseek = 0; /* Disk block we sought previously */ daddr_t diskblk = 0; /* Disk block to get */ daddr_t xstartsect; /* base of Extended DOS partition */ int logicalDriveCount = 0; /* Count of logical drives seen */ int extendedPart = -1; /* index of extended dos partition */ int primaryPart = -1; /* index of primary dos partition */ int bootPart = -1; /* index of a Solaris boot partition */ uint32_t xnumsect = 0; /* length of extended DOS partition */ int driveIndex; /* computed FDISK table index */ daddr_t startsec; len_t mediasize; int i; /* * Count of drives in the current extended partition's * FDISK table, and indexes of the drives themselves. */ int extndDrives[FD_NUMPART]; int numDrives = 0; /* * Count of drives (beyond primary) in master boot record's * FDISK table, and indexes of the drives themselves. */ int extraDrives[FD_NUMPART]; int numExtraDrives = 0; /* * "ldrive == 0" should never happen, as this is a request to * mount the physical device (and ignore partitioning). The code * in pcfs_mount() should have made sure that a logical drive number * is at least 1, meaning we're looking for drive "C:". It is not * safe (and a bug in the callers of this function) to request logical * drive number 0; we could ASSERT() but a graceful EIO is a more * polite way. */ if (ldrive == 0) { cmn_err(CE_NOTE, "!pcfs: request for logical partition zero"); noLogicalDrive(ldrive); return (EIO); } /* * Copy from disk block into memory aligned structure for fdisk usage. */ COPY_PTBL((*bp)->b_un.b_addr, dosp); /* * This check is ok because a FAT BPB and a master boot record (MBB) * have the same signature, in the same position within the block. */ if (bpb_get_BPBSig((*bp)->b_un.b_addr) != MBB_MAGIC) { cmn_err(CE_NOTE, "!pcfs: MBR partition table signature err, " "device (%x.%x):%d\n", getmajor(dev), getminor(dev), ldrive); return (EINVAL); } /* * Get a summary of what is in the Master FDISK table. * Normally we expect to find one partition marked as a DOS drive. * This partition is the one Windows calls the primary dos partition. * If the machine has any logical drives then we also expect * to find a partition marked as an extended DOS partition. * * Sometimes we'll find multiple partitions marked as DOS drives. * The Solaris fdisk program allows these partitions * to be created, but Windows fdisk no longer does. We still need * to support these, though, since Windows does. We also need to fix * our fdisk to behave like the Windows version. * * It turns out that some off-the-shelf media have *only* an * Extended partition, so we need to deal with that case as well. * * Only a single (the first) Extended or Boot Partition will * be recognized. Any others will be ignored. */ for (i = 0; i < FD_NUMPART; i++) { DTRACE_PROBE4(primarypart, struct pcfs *, fsp, uint_t, (uint_t)dosp[i].systid, uint_t, LE_32(dosp[i].relsect), uint_t, LE_32(dosp[i].numsect)); if (isDosDrive(dosp[i].systid)) { if (primaryPart < 0) { logicalDriveCount++; primaryPart = i; } else { extraDrives[numExtraDrives++] = i; } continue; } if ((extendedPart < 0) && isDosExtended(dosp[i].systid)) { extendedPart = i; continue; } if ((bootPart < 0) && isBootPart(dosp[i].systid)) { bootPart = i; continue; } } if (ldrive == BOOT_PARTITION_DRIVE) { if (bootPart < 0) { noLogicalDrive(ldrive); return (EINVAL); } startsec = LE_32(dosp[bootPart].relsect); mediasize = LE_32(dosp[bootPart].numsect); goto found; } if (ldrive == PRIMARY_DOS_DRIVE && primaryPart >= 0) { startsec = LE_32(dosp[primaryPart].relsect); mediasize = LE_32(dosp[primaryPart].numsect); goto found; } /* * We are not looking for the C: drive (or the primary drive * was not found), so we had better have an extended partition * or extra drives in the Master FDISK table. */ if ((extendedPart < 0) && (numExtraDrives == 0)) { cmn_err(CE_NOTE, "!pcfs: no extended dos partition"); noLogicalDrive(ldrive); return (EINVAL); } if (extendedPart >= 0) { diskblk = xstartsect = LE_32(dosp[extendedPart].relsect); xnumsect = LE_32(dosp[extendedPart].numsect); do { /* * If the seek would not cause us to change * position on the drive, then we're out of * extended partitions to examine. */ if (diskblk == lastseek) break; logicalDriveCount += numDrives; /* * Seek the next extended partition, and find * logical drives within it. */ brelse(*bp); /* * bread() block numbers are multiples of DEV_BSIZE * but the device sector size (the unit of partitioning) * might be larger than that; pcfs_get_device_info() * has calculated the multiplicator for us. */ *bp = bread(dev, pc_dbdaddr(fsp, diskblk), fsp->pcfs_secsize); if ((*bp)->b_flags & B_ERROR) { return (EIO); } lastseek = diskblk; COPY_PTBL((*bp)->b_un.b_addr, dosp); if (bpb_get_BPBSig((*bp)->b_un.b_addr) != MBB_MAGIC) { cmn_err(CE_NOTE, "!pcfs: " "extended partition table signature err, " "device (%x.%x):%d, LBA %u", getmajor(dev), getminor(dev), ldrive, (uint_t)pc_dbdaddr(fsp, diskblk)); return (EINVAL); } /* * Count up drives, and track where the next * extended partition is in case we need it. We * are expecting only one extended partition. If * there is more than one we'll only go to the * first one we see, but warn about ignoring. */ numDrives = 0; for (i = 0; i < FD_NUMPART; i++) { DTRACE_PROBE4(extendedpart, struct pcfs *, fsp, uint_t, (uint_t)dosp[i].systid, uint_t, LE_32(dosp[i].relsect), uint_t, LE_32(dosp[i].numsect)); if (isDosDrive(dosp[i].systid)) { extndDrives[numDrives++] = i; } else if (isDosExtended(dosp[i].systid)) { if (diskblk != lastseek) { /* * Already found an extended * partition in this table. */ cmn_err(CE_NOTE, "!pcfs: ignoring unexpected" " additional extended" " partition"); } else { diskblk = xstartsect + LE_32(dosp[i].relsect); } } } } while (ldrive > logicalDriveCount + numDrives); ASSERT(numDrives <= FD_NUMPART); if (ldrive <= logicalDriveCount + numDrives) { /* * The number of logical drives we've found thus * far is enough to get us to the one we were * searching for. */ driveIndex = logicalDriveCount + numDrives - ldrive; mediasize = LE_32(dosp[extndDrives[driveIndex]].numsect); startsec = LE_32(dosp[extndDrives[driveIndex]].relsect) + lastseek; if (startsec > (xstartsect + xnumsect)) { cmn_err(CE_NOTE, "!pcfs: extended partition " "values bad"); return (EINVAL); } goto found; } else { /* * We ran out of extended dos partition * drives. The only hope now is to go * back to extra drives defined in the master * fdisk table. But we overwrote that table * already, so we must load it in again. */ logicalDriveCount += numDrives; brelse(*bp); ASSERT(fsp->pcfs_dosstart == 0); *bp = bread(dev, pc_dbdaddr(fsp, fsp->pcfs_dosstart), fsp->pcfs_secsize); if ((*bp)->b_flags & B_ERROR) { return (EIO); } COPY_PTBL((*bp)->b_un.b_addr, dosp); } } /* * Still haven't found the drive, is it an extra * drive defined in the main FDISK table? */ if (ldrive <= logicalDriveCount + numExtraDrives) { driveIndex = logicalDriveCount + numExtraDrives - ldrive; ASSERT(driveIndex < MIN(numExtraDrives, FD_NUMPART)); mediasize = LE_32(dosp[extraDrives[driveIndex]].numsect); startsec = LE_32(dosp[extraDrives[driveIndex]].relsect); goto found; } /* * Still haven't found the drive, and there is * nowhere else to look. */ noLogicalDrive(ldrive); return (EINVAL); found: /* * We need this value in units of sectorsize, because PCFS' internal * offset calculations go haywire for > 512Byte sectors unless all * pcfs_.*start values are in units of sectors. * So, assign before the capacity check (that's done in DEV_BSIZE) */ fsp->pcfs_dosstart = startsec; /* * convert from device sectors to proper units: * - starting sector: DEV_BSIZE (as argument to bread()) * - media size: Bytes */ startsec = pc_dbdaddr(fsp, startsec); mediasize *= fsp->pcfs_secsize; /* * some additional validation / warnings in case the partition table * and the actual media capacity are not in accordance ... */ if (fsp->pcfs_mediasize != 0) { diskaddr_t startoff = (diskaddr_t)startsec * (diskaddr_t)DEV_BSIZE; if (startoff >= fsp->pcfs_mediasize || startoff + mediasize > fsp->pcfs_mediasize) { cmn_err(CE_WARN, "!pcfs: partition size (LBA start %u, %lld bytes, " "device (%x.%x):%d) smaller than " "mediasize (%lld bytes).\n" "filesystem may be truncated, access errors " "may result.\n", (uint_t)startsec, (long long)mediasize, getmajor(fsp->pcfs_xdev), getminor(fsp->pcfs_xdev), fsp->pcfs_ldrive, (long long)fsp->pcfs_mediasize); } } else { fsp->pcfs_mediasize = mediasize; } return (0); } static fattype_t secondaryBPBChecks(struct pcfs *fsp, uchar_t *bpb, size_t secsize) { uint32_t ncl = fsp->pcfs_ncluster; if (ncl <= 4096) { if (bpb_get_FatSz16(bpb) == 0) return (FAT_UNKNOWN); if (bpb_get_FatSz16(bpb) * secsize < ncl * 2 && bpb_get_FatSz16(bpb) * secsize >= (3 * ncl / 2)) return (FAT12); if (bcmp(bpb_FilSysType16(bpb), "FAT12", 5) == 0) return (FAT12); if (bcmp(bpb_FilSysType16(bpb), "FAT16", 5) == 0) return (FAT16); switch (bpb_get_Media(bpb)) { case SS8SPT: case DS8SPT: case SS9SPT: case DS9SPT: case DS18SPT: case DS9_15SPT: /* * Is this reliable - all floppies are FAT12 ? */ return (FAT12); case MD_FIXED: /* * Is this reliable - disks are always FAT16 ? */ return (FAT16); default: break; } } else if (ncl <= 65536) { if (bpb_get_FatSz16(bpb) == 0 && bpb_get_FatSz32(bpb) > 0) return (FAT32); if (VALID_BOOTSIG(bpb_get_BootSig32(bpb))) return (FAT32); if (VALID_FSTYPSTR32(bpb_FilSysType32(bpb))) return (FAT32); if (VALID_BOOTSIG(bpb_get_BootSig16(bpb))) return (FAT16); if (bpb_get_FatSz16(bpb) * secsize < ncl * 4) return (FAT16); } /* * We don't know */ return (FAT_UNKNOWN); } /* * Check to see if the BPB we found is correct. * * This looks far more complicated that it needs to be for pure structural * validation. The reason for this is that parseBPB() is also used for * debugging purposes (mdb dcmd) and we therefore want a bitmap of which * BPB fields (do not) have 'known good' values, even if we (do not) reject * the BPB when attempting to mount the filesystem. * * Real-world usage of FAT shows there are a lot of corner-case situations * and, following the specification strictly, invalid filesystems out there. * Known are situations such as: * - FAT12/FAT16 filesystems with garbage in either totsec16/32 * instead of the zero in one of the fields mandated by the spec * - filesystems that claim to be larger than the partition they're in * - filesystems without valid media descriptor * - FAT32 filesystems with RootEntCnt != 0 * - FAT32 filesystems with less than 65526 clusters * - FAT32 filesystems without valid FSI sector * - FAT32 filesystems with FAT size in fatsec16 instead of fatsec32 * * Such filesystems are accessible by PCFS - if it'd know to start with that * the filesystem should be treated as a specific FAT type. Before S10, it * relied on the PC/fdisk partition type for the purpose and almost completely * ignored the BPB; now it ignores the partition type for anything else but * logical drive enumeration, which can result in rejection of (invalid) * FAT32 - if the partition ID says FAT32, but the filesystem, for example * has less than 65526 clusters. * * Without a "force this fs as FAT{12,16,32}" tunable or mount option, it's * not possible to allow all such mostly-compliant filesystems in unless one * accepts false positives (definitely invalid filesystems that cause problems * later). This at least allows to pinpoint why the mount failed. * * Due to the use of FAT on removeable media, all relaxations of the rules * here need to be carefully evaluated wrt. to potential effects on PCFS * resilience. A faulty/"mis-crafted" filesystem must not cause a panic, so * beware. */ static int parseBPB(struct pcfs *fsp, uchar_t *bpb, int *valid) { fattype_t type; uint32_t ncl; /* number of clusters in file area */ uint32_t rec; uint32_t reserved; uint32_t fsisec, bkbootsec; blkcnt_t totsec, totsec16, totsec32, datasec; size_t fatsec, fatsec16, fatsec32, rdirsec; size_t secsize; len_t mediasize; uint64_t validflags = 0; if (VALID_BPBSIG(bpb_get_BPBSig(bpb))) validflags |= BPB_BPBSIG_OK; rec = bpb_get_RootEntCnt(bpb); reserved = bpb_get_RsvdSecCnt(bpb); fsisec = bpb_get_FSInfo32(bpb); bkbootsec = bpb_get_BkBootSec32(bpb); totsec16 = (blkcnt_t)bpb_get_TotSec16(bpb); totsec32 = (blkcnt_t)bpb_get_TotSec32(bpb); fatsec16 = bpb_get_FatSz16(bpb); fatsec32 = bpb_get_FatSz32(bpb); totsec = totsec16 ? totsec16 : totsec32; fatsec = fatsec16 ? fatsec16 : fatsec32; secsize = bpb_get_BytesPerSec(bpb); if (!VALID_SECSIZE(secsize)) secsize = fsp->pcfs_secsize; if (secsize != fsp->pcfs_secsize) { PC_DPRINTF3(3, "!pcfs: parseBPB, device (%x.%x):%d:\n", getmajor(fsp->pcfs_xdev), getminor(fsp->pcfs_xdev), fsp->pcfs_ldrive); PC_DPRINTF2(3, "!BPB secsize %d != " "autodetected media block size %d\n", (int)secsize, (int)fsp->pcfs_secsize); if (fsp->pcfs_ldrive) { /* * We've already attempted to parse the partition * table. If the block size used for that don't match * the PCFS sector size, we're hosed one way or the * other. Just try what happens. */ secsize = fsp->pcfs_secsize; PC_DPRINTF1(3, "!pcfs: Using autodetected secsize %d\n", (int)secsize); } else { /* * This allows mounting lofi images of PCFS partitions * with sectorsize != DEV_BSIZE. We can't parse the * partition table on whole-disk images unless the * (undocumented) "secsize=..." mount option is used, * but at least this allows us to mount if we have * an image of a partition. */ PC_DPRINTF1(3, "!pcfs: Using BPB secsize %d\n", (int)secsize); } } if (fsp->pcfs_mediasize == 0) { mediasize = (len_t)totsec * (len_t)secsize; /* * This is not an error because not all devices support the * dkio(7i) mediasize queries, and/or not all devices are * partitioned. If we have not been able to figure out the * size of the underlaying medium, we have to trust the BPB. */ PC_DPRINTF4(3, "!pcfs: parseBPB: mediasize autodetect failed " "on device (%x.%x):%d, trusting BPB totsec (%lld Bytes)\n", getmajor(fsp->pcfs_xdev), getminor(fsp->pcfs_xdev), fsp->pcfs_ldrive, (long long)fsp->pcfs_mediasize); } else if ((len_t)totsec * (len_t)secsize > fsp->pcfs_mediasize) { cmn_err(CE_WARN, "!pcfs: autodetected mediasize (%lld Bytes) smaller than " "FAT BPB mediasize (%lld Bytes).\n" "truncated filesystem on device (%x.%x):%d, access errors " "possible.\n", (long long)fsp->pcfs_mediasize, (long long)(totsec * (blkcnt_t)secsize), getmajor(fsp->pcfs_xdev), getminor(fsp->pcfs_xdev), fsp->pcfs_ldrive); mediasize = fsp->pcfs_mediasize; } else { /* * This is actually ok. A FAT needs not occupy the maximum * space available in its partition, it can be shorter. */ mediasize = (len_t)totsec * (len_t)secsize; } /* * Since we let just about anything pass through this function, * fence against divide-by-zero here. */ if (secsize) rdirsec = roundup(rec * 32, secsize) / secsize; else rdirsec = 0; /* * This assignment is necessary before pc_dbdaddr() can first be * used. Must initialize the value here. */ fsp->pcfs_secsize = secsize; fsp->pcfs_sdshift = ddi_ffs(secsize / DEV_BSIZE) - 1; fsp->pcfs_mediasize = mediasize; fsp->pcfs_spcl = bpb_get_SecPerClus(bpb); fsp->pcfs_numfat = bpb_get_NumFATs(bpb); fsp->pcfs_mediadesc = bpb_get_Media(bpb); fsp->pcfs_clsize = secsize * fsp->pcfs_spcl; fsp->pcfs_rdirsec = rdirsec; /* * Remember: All PCFS offset calculations in sectors. Before I/O * is done, convert to DEV_BSIZE units via pc_dbdaddr(). This is * necessary so that media with > 512Byte sector sizes work correctly. */ fsp->pcfs_fatstart = fsp->pcfs_dosstart + reserved; fsp->pcfs_rdirstart = fsp->pcfs_fatstart + fsp->pcfs_numfat * fatsec; fsp->pcfs_datastart = fsp->pcfs_rdirstart + rdirsec; datasec = totsec - (blkcnt_t)fatsec * fsp->pcfs_numfat - (blkcnt_t)rdirsec - (blkcnt_t)reserved; DTRACE_PROBE4(fatgeometry, blkcnt_t, totsec, size_t, fatsec, size_t, rdirsec, blkcnt_t, datasec); /* * 'totsec' is taken directly from the BPB and guaranteed to fit * into a 32bit unsigned integer. The calculation of 'datasec', * on the other hand, could underflow for incorrect values in * rdirsec/reserved/fatsec. Check for that. * We also check that the BPB conforms to the FAT specification's * requirement that either of the 16/32bit total sector counts * must be zero. */ if (totsec != 0 && (totsec16 == totsec32 || totsec16 == 0 || totsec32 == 0) && datasec < totsec && datasec <= UINT32_MAX) validflags |= BPB_TOTSEC_OK; if ((len_t)totsec * (len_t)secsize <= mediasize) validflags |= BPB_MEDIASZ_OK; if (VALID_SECSIZE(secsize)) validflags |= BPB_SECSIZE_OK; if (VALID_SPCL(fsp->pcfs_spcl)) validflags |= BPB_SECPERCLUS_OK; if (VALID_CLSIZE(fsp->pcfs_clsize)) validflags |= BPB_CLSIZE_OK; if (VALID_NUMFATS(fsp->pcfs_numfat)) validflags |= BPB_NUMFAT_OK; if (VALID_RSVDSEC(reserved) && reserved < totsec) validflags |= BPB_RSVDSECCNT_OK; if (VALID_MEDIA(fsp->pcfs_mediadesc)) validflags |= BPB_MEDIADESC_OK; if (VALID_BOOTSIG(bpb_get_BootSig16(bpb))) validflags |= BPB_BOOTSIG16_OK; if (VALID_BOOTSIG(bpb_get_BootSig32(bpb))) validflags |= BPB_BOOTSIG32_OK; if (VALID_FSTYPSTR16(bpb_FilSysType16(bpb))) validflags |= BPB_FSTYPSTR16_OK; if (VALID_FSTYPSTR32(bpb_FilSysType32(bpb))) validflags |= BPB_FSTYPSTR32_OK; if (VALID_OEMNAME(bpb_OEMName(bpb))) validflags |= BPB_OEMNAME_OK; if (bkbootsec > 0 && bkbootsec <= reserved && fsisec != bkbootsec) validflags |= BPB_BKBOOTSEC_OK; if (fsisec > 0 && fsisec <= reserved) validflags |= BPB_FSISEC_OK; if (VALID_JMPBOOT(bpb_jmpBoot(bpb))) validflags |= BPB_JMPBOOT_OK; if (VALID_FSVER32(bpb_get_FSVer32(bpb))) validflags |= BPB_FSVER_OK; if (VALID_VOLLAB(bpb_VolLab16(bpb))) validflags |= BPB_VOLLAB16_OK; if (VALID_VOLLAB(bpb_VolLab32(bpb))) validflags |= BPB_VOLLAB32_OK; if (VALID_EXTFLAGS(bpb_get_ExtFlags32(bpb))) validflags |= BPB_EXTFLAGS_OK; /* * Try to determine which FAT format to use. * * Calculate the number of clusters in order to determine * the type of FAT we are looking at. This is the only * recommended way of determining FAT type, though there * are other hints in the data, this is the best way. * * Since we let just about "anything" pass through this function * without early exits, fence against divide-by-zero here. * * datasec was already validated against UINT32_MAX so we know * the result will not overflow the 32bit calculation. */ if (fsp->pcfs_spcl) ncl = (uint32_t)datasec / fsp->pcfs_spcl; else ncl = 0; fsp->pcfs_ncluster = ncl; /* * From the Microsoft FAT specification: * In the following example, when it says <, it does not mean <=. * Note also that the numbers are correct. The first number for * FAT12 is 4085; the second number for FAT16 is 65525. These numbers * and the '<' signs are not wrong. * * We "specialdetect" the corner cases, and use at least one "extra" * criterion to decide whether it's FAT16 or FAT32 if the cluster * count is dangerously close to the boundaries. */ if (ncl <= PCF_FIRSTCLUSTER) { type = FAT_UNKNOWN; } else if (ncl < 4085) { type = FAT12; } else if (ncl <= 4096) { type = FAT_QUESTIONABLE; } else if (ncl < 65525) { type = FAT16; } else if (ncl <= 65536) { type = FAT_QUESTIONABLE; } else if (ncl < PCF_LASTCLUSTER32) { type = FAT32; } else { type = FAT_UNKNOWN; } DTRACE_PROBE4(parseBPB__initial, struct pcfs *, fsp, unsigned char *, bpb, int, validflags, fattype_t, type); recheck: fsp->pcfs_fatsec = fatsec; /* Do some final sanity checks for each specific type of FAT */ switch (type) { case FAT12: if (rec != 0) validflags |= BPB_ROOTENTCNT_OK; if ((blkcnt_t)bpb_get_TotSec16(bpb) == totsec || bpb_get_TotSec16(bpb) == 0) validflags |= BPB_TOTSEC16_OK; if ((blkcnt_t)bpb_get_TotSec32(bpb) == totsec || bpb_get_TotSec32(bpb) == 0) validflags |= BPB_TOTSEC32_OK; if (bpb_get_FatSz16(bpb) == fatsec) validflags |= BPB_FATSZ16_OK; if (fatsec * secsize >= ncl * 3 / 2) validflags |= BPB_FATSZ_OK; if (ncl < 4085) validflags |= BPB_NCLUSTERS_OK; fsp->pcfs_lastclmark = (PCF_LASTCLUSTER & 0xfff); fsp->pcfs_rootblksize = fsp->pcfs_rdirsec * secsize; fsp->pcfs_fsistart = 0; if ((validflags & FAT12_VALIDMSK) != FAT12_VALIDMSK) type = FAT_UNKNOWN; break; case FAT16: if (rec != 0) validflags |= BPB_ROOTENTCNT_OK; if ((blkcnt_t)bpb_get_TotSec16(bpb) == totsec || bpb_get_TotSec16(bpb) == 0) validflags |= BPB_TOTSEC16_OK; if ((blkcnt_t)bpb_get_TotSec32(bpb) == totsec || bpb_get_TotSec32(bpb) == 0) validflags |= BPB_TOTSEC32_OK; if (bpb_get_FatSz16(bpb) == fatsec) validflags |= BPB_FATSZ16_OK; if (fatsec * secsize >= ncl * 2) validflags |= BPB_FATSZ_OK; if (ncl >= 4085 && ncl < 65525) validflags |= BPB_NCLUSTERS_OK; fsp->pcfs_lastclmark = PCF_LASTCLUSTER; fsp->pcfs_rootblksize = fsp->pcfs_rdirsec * secsize; fsp->pcfs_fsistart = 0; if ((validflags & FAT16_VALIDMSK) != FAT16_VALIDMSK) type = FAT_UNKNOWN; break; case FAT32: if (rec == 0) validflags |= BPB_ROOTENTCNT_OK; if (bpb_get_TotSec16(bpb) == 0) validflags |= BPB_TOTSEC16_OK; if ((blkcnt_t)bpb_get_TotSec32(bpb) == totsec) validflags |= BPB_TOTSEC32_OK; if (bpb_get_FatSz16(bpb) == 0) validflags |= BPB_FATSZ16_OK; if (bpb_get_FatSz32(bpb) == fatsec) validflags |= BPB_FATSZ32_OK; if (fatsec * secsize >= ncl * 4) validflags |= BPB_FATSZ_OK; if (ncl >= 65525 && ncl < PCF_LASTCLUSTER32) validflags |= BPB_NCLUSTERS_OK; fsp->pcfs_lastclmark = PCF_LASTCLUSTER32; fsp->pcfs_rootblksize = fsp->pcfs_clsize; fsp->pcfs_fsistart = fsp->pcfs_dosstart + fsisec; if (validflags & BPB_FSISEC_OK) fsp->pcfs_flags |= PCFS_FSINFO_OK; fsp->pcfs_rootclnum = bpb_get_RootClus32(bpb); if (pc_validcl(fsp, fsp->pcfs_rootclnum)) validflags |= BPB_ROOTCLUSTER_OK; /* * Current PCFS code only works if 'pcfs_rdirstart' * contains the root cluster number on FAT32. * That's a mis-use and would better be changed. */ fsp->pcfs_rdirstart = (daddr_t)fsp->pcfs_rootclnum; if ((validflags & FAT32_VALIDMSK) != FAT32_VALIDMSK) type = FAT_UNKNOWN; break; case FAT_QUESTIONABLE: type = secondaryBPBChecks(fsp, bpb, secsize); goto recheck; default: ASSERT(type == FAT_UNKNOWN); break; } ASSERT(type != FAT_QUESTIONABLE); fsp->pcfs_fattype = type; if (valid) *valid = validflags; DTRACE_PROBE4(parseBPB__final, struct pcfs *, fsp, unsigned char *, bpb, int, validflags, fattype_t, type); if (type != FAT_UNKNOWN) { ASSERT((secsize & (DEV_BSIZE - 1)) == 0); ASSERT(ISP2(secsize / DEV_BSIZE)); return (1); } return (0); } /* * Detect the device's native block size (sector size). * * Test whether the device is: * - a floppy device from a known controller type via DKIOCINFO * - a real floppy using the fd(7d) driver and capable of fdio(7I) ioctls * - a PCMCIA sram memory card (pseudofloppy) using pcram(7d) * - a USB floppy drive (identified by drive geometry) * * Detecting a floppy will make PCFS metadata updates on such media synchronous, * to minimize risks due to slow I/O and user hotplugging / device ejection. * * This might be a bit wasteful on kernel stack space; if anyone's * bothered by this, kmem_alloc/kmem_free the ioctl arguments... */ static void pcfs_device_getinfo(struct pcfs *fsp) { dev_t rdev = fsp->pcfs_xdev; int error; union { struct dk_minfo mi; struct dk_cinfo ci; struct dk_geom gi; struct fd_char fc; } arg; /* save stackspace ... */ intptr_t argp = (intptr_t)&arg; ldi_handle_t lh; ldi_ident_t li; int isfloppy, isremoveable, ishotpluggable; cred_t *cr = CRED(); if (ldi_ident_from_dev(rdev, &li)) goto out; error = ldi_open_by_dev(&rdev, OTYP_CHR, FREAD, cr, &lh, li); ldi_ident_release(li); if (error) goto out; /* * Not sure if this could possibly happen. It'd be a bit like * VOP_OPEN() changing the passed-in vnode ptr. We're just not * expecting it, needs some thought if triggered ... */ ASSERT(fsp->pcfs_xdev == rdev); /* * Check for removeable/hotpluggable media. */ if (ldi_ioctl(lh, DKIOCREMOVABLE, (intptr_t)&isremoveable, FKIOCTL, cr, NULL)) { isremoveable = 0; } if (ldi_ioctl(lh, DKIOCHOTPLUGGABLE, (intptr_t)&ishotpluggable, FKIOCTL, cr, NULL)) { ishotpluggable = 0; } /* * Make sure we don't use "half-initialized" values if the ioctls fail. */ if (ldi_ioctl(lh, DKIOCGMEDIAINFO, argp, FKIOCTL, cr, NULL)) { bzero(&arg, sizeof (arg)); fsp->pcfs_mediasize = 0; } else { fsp->pcfs_mediasize = (len_t)arg.mi.dki_lbsize * (len_t)arg.mi.dki_capacity; } if (VALID_SECSIZE(arg.mi.dki_lbsize)) { if (fsp->pcfs_secsize == 0) { fsp->pcfs_secsize = arg.mi.dki_lbsize; fsp->pcfs_sdshift = ddi_ffs(arg.mi.dki_lbsize / DEV_BSIZE) - 1; } else { PC_DPRINTF4(1, "!pcfs: autodetected media block size " "%d, device (%x.%x), different from user-provided " "%d. User override - ignoring autodetect result.\n", arg.mi.dki_lbsize, getmajor(fsp->pcfs_xdev), getminor(fsp->pcfs_xdev), fsp->pcfs_secsize); } } else if (arg.mi.dki_lbsize) { PC_DPRINTF3(1, "!pcfs: autodetected media block size " "%d, device (%x.%x), invalid (not 512, 1024, 2048, 4096). " "Ignoring autodetect result.\n", arg.mi.dki_lbsize, getmajor(fsp->pcfs_xdev), getminor(fsp->pcfs_xdev)); } /* * We treat the following media types as a floppy by default. */ isfloppy = (arg.mi.dki_media_type == DK_FLOPPY || arg.mi.dki_media_type == DK_ZIP || arg.mi.dki_media_type == DK_JAZ); /* * if this device understands fdio(7I) requests it's * obviously a floppy drive. */ if (!isfloppy && !ldi_ioctl(lh, FDIOGCHAR, argp, FKIOCTL, cr, NULL)) isfloppy = 1; /* * some devices (PCMCIA pseudofloppies) we like to treat * as floppies, but they don't understand fdio(7I) requests. */ if (!isfloppy && !ldi_ioctl(lh, DKIOCINFO, argp, FKIOCTL, cr, NULL) && (arg.ci.dki_ctype == DKC_WDC2880 || arg.ci.dki_ctype == DKC_NCRFLOPPY || arg.ci.dki_ctype == DKC_SMSFLOPPY || arg.ci.dki_ctype == DKC_INTEL82077 || (arg.ci.dki_ctype == DKC_PCMCIA_MEM && arg.ci.dki_flags & DKI_PCMCIA_PFD))) isfloppy = 1; /* * This is the "final fallback" test - media with * 2 heads and 80 cylinders are assumed to be floppies. * This is normally true for USB floppy drives ... */ if (!isfloppy && !ldi_ioctl(lh, DKIOCGGEOM, argp, FKIOCTL, cr, NULL) && (arg.gi.dkg_ncyl == 80 && arg.gi.dkg_nhead == 2)) isfloppy = 1; /* * This is similar to the "old" PCFS code that sets this flag * just based on the media descriptor being 0xf8 (MD_FIXED). * Should be re-worked. We really need some specialcasing for * removeable media. */ if (!isfloppy) { fsp->pcfs_flags |= PCFS_NOCHK; } /* * We automatically disable access time updates if the medium is * removeable and/or hotpluggable, and the admin did not explicitly * request access time updates (via the "atime" mount option). * The majority of flash-based media should fit this category. * Minimizing write access extends the lifetime of your memory stick ! */ if (!vfs_optionisset(fsp->pcfs_vfs, MNTOPT_ATIME, NULL) && (isremoveable || ishotpluggable | isfloppy)) { fsp->pcfs_flags |= PCFS_NOATIME; } (void) ldi_close(lh, FREAD, cr); out: if (fsp->pcfs_secsize == 0) { PC_DPRINTF3(1, "!pcfs: media block size autodetection " "device (%x.%x) failed, no user-provided fallback. " "Using %d bytes.\n", getmajor(fsp->pcfs_xdev), getminor(fsp->pcfs_xdev), DEV_BSIZE); fsp->pcfs_secsize = DEV_BSIZE; fsp->pcfs_sdshift = 0; } ASSERT(fsp->pcfs_secsize % DEV_BSIZE == 0); ASSERT(VALID_SECSIZE(fsp->pcfs_secsize)); } /* * Get the FAT type for the DOS medium. * * ------------------------- * According to Microsoft: * The FAT type one of FAT12, FAT16, or FAT32 is determined by the * count of clusters on the volume and nothing else. * ------------------------- * */ static int pc_getfattype(struct pcfs *fsp) { int error = 0; buf_t *bp = NULL; struct vnode *devvp = fsp->pcfs_devvp; dev_t dev = devvp->v_rdev; /* * Detect the native block size of the medium, and attempt to * detect whether the medium is removeable. * We do treat removeable media (floppies, PCMCIA memory cards, * USB and FireWire disks) differently wrt. to the frequency * and synchronicity of FAT updates. * We need to know the media block size in order to be able to * parse the partition table. */ pcfs_device_getinfo(fsp); /* * Unpartitioned media (floppies and some removeable devices) * don't have a partition table, the FAT BPB is at disk block 0. * Start out by reading block 0. */ fsp->pcfs_dosstart = 0; bp = bread(dev, pc_dbdaddr(fsp, fsp->pcfs_dosstart), fsp->pcfs_secsize); if (error = geterror(bp)) goto out; /* * If a logical drive number is requested, parse the partition table * and attempt to locate it. Otherwise, proceed immediately to the * BPB check. findTheDrive(), if successful, returns the disk block * number where the requested partition starts in "startsec". */ if (fsp->pcfs_ldrive != 0) { PC_DPRINTF3(5, "!pcfs: pc_getfattype: using FDISK table on " "device (%x,%x):%d to find BPB\n", getmajor(dev), getminor(dev), fsp->pcfs_ldrive); if (error = findTheDrive(fsp, &bp)) goto out; ASSERT(fsp->pcfs_dosstart != 0); brelse(bp); bp = bread(dev, pc_dbdaddr(fsp, fsp->pcfs_dosstart), fsp->pcfs_secsize); if (error = geterror(bp)) goto out; } /* * Validate the BPB and fill in the instance structure. */ if (!parseBPB(fsp, (uchar_t *)bp->b_un.b_addr, NULL)) { PC_DPRINTF4(1, "!pcfs: pc_getfattype: No FAT BPB on " "device (%x.%x):%d, disk LBA %u\n", getmajor(dev), getminor(dev), fsp->pcfs_ldrive, (uint_t)pc_dbdaddr(fsp, fsp->pcfs_dosstart)); error = EINVAL; goto out; } ASSERT(fsp->pcfs_fattype != FAT_UNKNOWN); out: /* * Release the buffer used */ if (bp != NULL) brelse(bp); return (error); } /* * Get the file allocation table. * If there is an old FAT, invalidate it. */ int pc_getfat(struct pcfs *fsp) { struct buf *bp = NULL; uchar_t *fatp = NULL; uchar_t *fat_changemap = NULL; int error; int fat_changemapsize; int flags = 0; int nfat; int altfat_mustmatch = 0; int fatsize = fsp->pcfs_fatsec * fsp->pcfs_secsize; if (fsp->pcfs_fatp) { /* * There is a FAT in core. * If there are open file pcnodes or we have modified it or * it hasn't timed out yet use the in core FAT. * Otherwise invalidate it and get a new one */ #ifdef notdef if (fsp->pcfs_frefs || (fsp->pcfs_flags & PCFS_FATMOD) || (gethrestime_sec() < fsp->pcfs_fattime)) { return (0); } else { mutex_enter(&pcfslock); pc_invalfat(fsp); mutex_exit(&pcfslock); } #endif /* notdef */ return (0); } /* * Get FAT and check it for validity */ fatp = kmem_alloc(fatsize, KM_SLEEP); error = pc_readfat(fsp, fatp); if (error) { flags = B_ERROR; goto out; } fat_changemapsize = (fatsize / fsp->pcfs_clsize) + 1; fat_changemap = kmem_zalloc(fat_changemapsize, KM_SLEEP); fsp->pcfs_fatp = fatp; fsp->pcfs_fat_changemapsize = fat_changemapsize; fsp->pcfs_fat_changemap = fat_changemap; /* * The only definite signature check is that the * media descriptor byte should match the first byte * of the FAT block. */ if (fatp[0] != fsp->pcfs_mediadesc) { cmn_err(CE_NOTE, "!pcfs: FAT signature mismatch, " "media descriptor %x, FAT[0] lowbyte %x\n", (uint32_t)fsp->pcfs_mediadesc, (uint32_t)fatp[0]); cmn_err(CE_NOTE, "!pcfs: Enforcing alternate FAT validation\n"); altfat_mustmatch = 1; } /* * Get alternate FATs and check for consistency * This is an inlined version of pc_readfat(). * Since we're only comparing FAT and alternate FAT, * there's no reason to let pc_readfat() copy data out * of the buf. Instead, compare in-situ, one cluster * at a time. */ for (nfat = 1; nfat < fsp->pcfs_numfat; nfat++) { size_t startsec; size_t off; startsec = pc_dbdaddr(fsp, fsp->pcfs_fatstart + nfat * fsp->pcfs_fatsec); for (off = 0; off < fatsize; off += fsp->pcfs_clsize) { daddr_t fatblk = startsec + pc_dbdaddr(fsp, pc_cltodb(fsp, pc_lblkno(fsp, off))); bp = bread(fsp->pcfs_xdev, fatblk, MIN(fsp->pcfs_clsize, fatsize - off)); if (bp->b_flags & (B_ERROR | B_STALE)) { cmn_err(CE_NOTE, "!pcfs: alternate FAT #%d (start LBA %p)" " read error at offset %ld on device" " (%x.%x):%d", nfat, (void *)(uintptr_t)startsec, off, getmajor(fsp->pcfs_xdev), getminor(fsp->pcfs_xdev), fsp->pcfs_ldrive); flags = B_ERROR; error = EIO; goto out; } bp->b_flags |= B_STALE | B_AGE; if (bcmp(bp->b_un.b_addr, fatp + off, MIN(fsp->pcfs_clsize, fatsize - off))) { cmn_err(CE_NOTE, "!pcfs: alternate FAT #%d (start LBA %p)" " corrupted at offset %ld on device" " (%x.%x):%d", nfat, (void *)(uintptr_t)startsec, off, getmajor(fsp->pcfs_xdev), getminor(fsp->pcfs_xdev), fsp->pcfs_ldrive); if (altfat_mustmatch) { flags = B_ERROR; error = EIO; goto out; } } brelse(bp); bp = NULL; /* prevent double release */ } } fsp->pcfs_fattime = gethrestime_sec() + PCFS_DISKTIMEOUT; fsp->pcfs_fatjustread = 1; /* * Retrieve FAT32 fsinfo sector. * A failure to read this is not fatal to accessing the volume. * It simply means operations that count or search free blocks * will have to do a full FAT walk, vs. a possibly quicker lookup * of the summary information. * Hence, we log a message but return success overall after this point. */ if (IS_FAT32(fsp) && (fsp->pcfs_flags & PCFS_FSINFO_OK)) { struct fat_od_fsi *fsinfo_disk; bp = bread(fsp->pcfs_xdev, pc_dbdaddr(fsp, fsp->pcfs_fsistart), fsp->pcfs_secsize); fsinfo_disk = (struct fat_od_fsi *)bp->b_un.b_addr; if (bp->b_flags & (B_ERROR | B_STALE) || !FSISIG_OK(fsinfo_disk)) { cmn_err(CE_NOTE, "!pcfs: error reading fat32 fsinfo from " "device (%x.%x):%d, block %lld", getmajor(fsp->pcfs_xdev), getminor(fsp->pcfs_xdev), fsp->pcfs_ldrive, (long long)pc_dbdaddr(fsp, fsp->pcfs_fsistart)); fsp->pcfs_flags &= ~PCFS_FSINFO_OK; fsp->pcfs_fsinfo.fs_free_clusters = FSINFO_UNKNOWN; fsp->pcfs_fsinfo.fs_next_free = FSINFO_UNKNOWN; } else { bp->b_flags |= B_STALE | B_AGE; fsinfo_disk = (fat_od_fsi_t *)(bp->b_un.b_addr); fsp->pcfs_fsinfo.fs_free_clusters = LE_32(fsinfo_disk->fsi_incore.fs_free_clusters); fsp->pcfs_fsinfo.fs_next_free = LE_32(fsinfo_disk->fsi_incore.fs_next_free); } brelse(bp); bp = NULL; } if (pc_validcl(fsp, (pc_cluster32_t)fsp->pcfs_fsinfo.fs_next_free)) fsp->pcfs_nxfrecls = fsp->pcfs_fsinfo.fs_next_free; else fsp->pcfs_nxfrecls = PCF_FIRSTCLUSTER; return (0); out: cmn_err(CE_NOTE, "!pcfs: illegal disk format"); if (bp) brelse(bp); if (fatp) kmem_free(fatp, fatsize); if (fat_changemap) kmem_free(fat_changemap, fat_changemapsize); if (flags) { pc_mark_irrecov(fsp); } return (error); }