/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include /* * The sha1 module is created with two modlinkages: * - a modlmisc that allows consumers to directly call the entry points * SHA1Init, SHA1Update, and SHA1Final. * - a modlcrypto that allows the module to register with the Kernel * Cryptographic Framework (KCF) as a software provider for the SHA1 * mechanisms. */ static struct modlmisc modlmisc = { &mod_miscops, "SHA1 Message-Digest Algorithm" }; static struct modlcrypto modlcrypto = { &mod_cryptoops, "SHA1 Kernel SW Provider 1.1" }; static struct modlinkage modlinkage = { MODREV_1, &modlmisc, &modlcrypto, NULL }; /* * CSPI information (entry points, provider info, etc.) */ typedef enum sha1_mech_type { SHA1_MECH_INFO_TYPE, /* SUN_CKM_SHA1 */ SHA1_HMAC_MECH_INFO_TYPE, /* SUN_CKM_SHA1_HMAC */ SHA1_HMAC_GEN_MECH_INFO_TYPE /* SUN_CKM_SHA1_HMAC_GENERAL */ } sha1_mech_type_t; #define SHA1_DIGEST_LENGTH 20 /* SHA1 digest length in bytes */ #define SHA1_HMAC_BLOCK_SIZE 64 /* SHA1-HMAC block size */ #define SHA1_HMAC_MIN_KEY_LEN 8 /* SHA1-HMAC min key length in bits */ #define SHA1_HMAC_MAX_KEY_LEN INT_MAX /* SHA1-HMAC max key length in bits */ #define SHA1_HMAC_INTS_PER_BLOCK (SHA1_HMAC_BLOCK_SIZE/sizeof (uint32_t)) /* * Context for SHA1 mechanism. */ typedef struct sha1_ctx { sha1_mech_type_t sc_mech_type; /* type of context */ SHA1_CTX sc_sha1_ctx; /* SHA1 context */ } sha1_ctx_t; /* * Context for SHA1-HMAC and SHA1-HMAC-GENERAL mechanisms. */ typedef struct sha1_hmac_ctx { sha1_mech_type_t hc_mech_type; /* type of context */ uint32_t hc_digest_len; /* digest len in bytes */ SHA1_CTX hc_icontext; /* inner SHA1 context */ SHA1_CTX hc_ocontext; /* outer SHA1 context */ } sha1_hmac_ctx_t; /* * Macros to access the SHA1 or SHA1-HMAC contexts from a context passed * by KCF to one of the entry points. */ #define PROV_SHA1_CTX(ctx) ((sha1_ctx_t *)(ctx)->cc_provider_private) #define PROV_SHA1_HMAC_CTX(ctx) ((sha1_hmac_ctx_t *)(ctx)->cc_provider_private) /* to extract the digest length passed as mechanism parameter */ #define PROV_SHA1_GET_DIGEST_LEN(m, len) { \ if (IS_P2ALIGNED((m)->cm_param, sizeof (ulong_t))) \ (len) = (uint32_t)*((ulong_t *)mechanism->cm_param); \ else { \ ulong_t tmp_ulong; \ bcopy((m)->cm_param, &tmp_ulong, sizeof (ulong_t)); \ (len) = (uint32_t)tmp_ulong; \ } \ } #define PROV_SHA1_DIGEST_KEY(ctx, key, len, digest) { \ SHA1Init(ctx); \ SHA1Update(ctx, key, len); \ SHA1Final(digest, ctx); \ } /* * Mechanism info structure passed to KCF during registration. */ static crypto_mech_info_t sha1_mech_info_tab[] = { /* SHA1 */ {SUN_CKM_SHA1, SHA1_MECH_INFO_TYPE, CRYPTO_FG_DIGEST | CRYPTO_FG_DIGEST_ATOMIC, 0, 0, CRYPTO_KEYSIZE_UNIT_IN_BITS}, /* SHA1-HMAC */ {SUN_CKM_SHA1_HMAC, SHA1_HMAC_MECH_INFO_TYPE, CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC, SHA1_HMAC_MIN_KEY_LEN, SHA1_HMAC_MAX_KEY_LEN, CRYPTO_KEYSIZE_UNIT_IN_BITS}, /* SHA1-HMAC GENERAL */ {SUN_CKM_SHA1_HMAC_GENERAL, SHA1_HMAC_GEN_MECH_INFO_TYPE, CRYPTO_FG_MAC | CRYPTO_FG_MAC_ATOMIC, SHA1_HMAC_MIN_KEY_LEN, SHA1_HMAC_MAX_KEY_LEN, CRYPTO_KEYSIZE_UNIT_IN_BITS} }; static void sha1_provider_status(crypto_provider_handle_t, uint_t *); static crypto_control_ops_t sha1_control_ops = { sha1_provider_status }; static int sha1_digest_init(crypto_ctx_t *, crypto_mechanism_t *, crypto_req_handle_t); static int sha1_digest(crypto_ctx_t *, crypto_data_t *, crypto_data_t *, crypto_req_handle_t); static int sha1_digest_update(crypto_ctx_t *, crypto_data_t *, crypto_req_handle_t); static int sha1_digest_final(crypto_ctx_t *, crypto_data_t *, crypto_req_handle_t); static int sha1_digest_atomic(crypto_provider_handle_t, crypto_session_id_t, crypto_mechanism_t *, crypto_data_t *, crypto_data_t *, crypto_req_handle_t); static crypto_digest_ops_t sha1_digest_ops = { sha1_digest_init, sha1_digest, sha1_digest_update, NULL, sha1_digest_final, sha1_digest_atomic }; static int sha1_mac_init(crypto_ctx_t *, crypto_mechanism_t *, crypto_key_t *, crypto_spi_ctx_template_t, crypto_req_handle_t); static int sha1_mac_update(crypto_ctx_t *, crypto_data_t *, crypto_req_handle_t); static int sha1_mac_final(crypto_ctx_t *, crypto_data_t *, crypto_req_handle_t); static int sha1_mac_atomic(crypto_provider_handle_t, crypto_session_id_t, crypto_mechanism_t *, crypto_key_t *, crypto_data_t *, crypto_data_t *, crypto_spi_ctx_template_t, crypto_req_handle_t); static int sha1_mac_verify_atomic(crypto_provider_handle_t, crypto_session_id_t, crypto_mechanism_t *, crypto_key_t *, crypto_data_t *, crypto_data_t *, crypto_spi_ctx_template_t, crypto_req_handle_t); static crypto_mac_ops_t sha1_mac_ops = { sha1_mac_init, NULL, sha1_mac_update, sha1_mac_final, sha1_mac_atomic, sha1_mac_verify_atomic }; static int sha1_create_ctx_template(crypto_provider_handle_t, crypto_mechanism_t *, crypto_key_t *, crypto_spi_ctx_template_t *, size_t *, crypto_req_handle_t); static int sha1_free_context(crypto_ctx_t *); static crypto_ctx_ops_t sha1_ctx_ops = { sha1_create_ctx_template, sha1_free_context }; static crypto_ops_t sha1_crypto_ops = { &sha1_control_ops, &sha1_digest_ops, NULL, &sha1_mac_ops, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, &sha1_ctx_ops }; static crypto_provider_info_t sha1_prov_info = { CRYPTO_SPI_VERSION_1, "SHA1 Software Provider", CRYPTO_SW_PROVIDER, {&modlinkage}, NULL, &sha1_crypto_ops, sizeof (sha1_mech_info_tab)/sizeof (crypto_mech_info_t), sha1_mech_info_tab }; static crypto_kcf_provider_handle_t sha1_prov_handle = NULL; int _init() { int ret; if ((ret = mod_install(&modlinkage)) != 0) return (ret); /* * Register with KCF. If the registration fails, log an * error but do not uninstall the module, since the functionality * provided by misc/sha1 should still be available. */ if ((ret = crypto_register_provider(&sha1_prov_info, &sha1_prov_handle)) != CRYPTO_SUCCESS) cmn_err(CE_WARN, "sha1 _init: " "crypto_register_provider() failed (0x%x)", ret); return (0); } int _info(struct modinfo *modinfop) { return (mod_info(&modlinkage, modinfop)); } /* * KCF software provider control entry points. */ /* ARGSUSED */ static void sha1_provider_status(crypto_provider_handle_t provider, uint_t *status) { *status = CRYPTO_PROVIDER_READY; } /* * KCF software provider digest entry points. */ static int sha1_digest_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism, crypto_req_handle_t req) { if (mechanism->cm_type != SHA1_MECH_INFO_TYPE) return (CRYPTO_MECHANISM_INVALID); /* * Allocate and initialize SHA1 context. */ ctx->cc_provider_private = kmem_alloc(sizeof (sha1_ctx_t), crypto_kmflag(req)); if (ctx->cc_provider_private == NULL) return (CRYPTO_HOST_MEMORY); PROV_SHA1_CTX(ctx)->sc_mech_type = SHA1_MECH_INFO_TYPE; SHA1Init(&PROV_SHA1_CTX(ctx)->sc_sha1_ctx); return (CRYPTO_SUCCESS); } /* * Helper SHA1 digest update function for uio data. */ static int sha1_digest_update_uio(SHA1_CTX *sha1_ctx, crypto_data_t *data) { off_t offset = data->cd_offset; size_t length = data->cd_length; uint_t vec_idx; size_t cur_len; /* we support only kernel buffer */ if (data->cd_uio->uio_segflg != UIO_SYSSPACE) return (CRYPTO_ARGUMENTS_BAD); /* * Jump to the first iovec containing data to be * digested. */ for (vec_idx = 0; vec_idx < data->cd_uio->uio_iovcnt && offset >= data->cd_uio->uio_iov[vec_idx].iov_len; offset -= data->cd_uio->uio_iov[vec_idx++].iov_len); if (vec_idx == data->cd_uio->uio_iovcnt) { /* * The caller specified an offset that is larger than the * total size of the buffers it provided. */ return (CRYPTO_DATA_LEN_RANGE); } /* * Now do the digesting on the iovecs. */ while (vec_idx < data->cd_uio->uio_iovcnt && length > 0) { cur_len = MIN(data->cd_uio->uio_iov[vec_idx].iov_len - offset, length); SHA1Update(sha1_ctx, (uint8_t *)data->cd_uio->uio_iov[vec_idx].iov_base + offset, cur_len); length -= cur_len; vec_idx++; offset = 0; } if (vec_idx == data->cd_uio->uio_iovcnt && length > 0) { /* * The end of the specified iovec's was reached but * the length requested could not be processed, i.e. * The caller requested to digest more data than it provided. */ return (CRYPTO_DATA_LEN_RANGE); } return (CRYPTO_SUCCESS); } /* * Helper SHA1 digest final function for uio data. * digest_len is the length of the desired digest. If digest_len * is smaller than the default SHA1 digest length, the caller * must pass a scratch buffer, digest_scratch, which must * be at least SHA1_DIGEST_LENGTH bytes. */ static int sha1_digest_final_uio(SHA1_CTX *sha1_ctx, crypto_data_t *digest, ulong_t digest_len, uchar_t *digest_scratch) { off_t offset = digest->cd_offset; uint_t vec_idx; /* we support only kernel buffer */ if (digest->cd_uio->uio_segflg != UIO_SYSSPACE) return (CRYPTO_ARGUMENTS_BAD); /* * Jump to the first iovec containing ptr to the digest to * be returned. */ for (vec_idx = 0; offset >= digest->cd_uio->uio_iov[vec_idx].iov_len && vec_idx < digest->cd_uio->uio_iovcnt; offset -= digest->cd_uio->uio_iov[vec_idx++].iov_len); if (vec_idx == digest->cd_uio->uio_iovcnt) { /* * The caller specified an offset that is * larger than the total size of the buffers * it provided. */ return (CRYPTO_DATA_LEN_RANGE); } if (offset + digest_len <= digest->cd_uio->uio_iov[vec_idx].iov_len) { /* * The computed SHA1 digest will fit in the current * iovec. */ if (digest_len != SHA1_DIGEST_LENGTH) { /* * The caller requested a short digest. Digest * into a scratch buffer and return to * the user only what was requested. */ SHA1Final(digest_scratch, sha1_ctx); bcopy(digest_scratch, (uchar_t *)digest-> cd_uio->uio_iov[vec_idx].iov_base + offset, digest_len); } else { SHA1Final((uchar_t *)digest-> cd_uio->uio_iov[vec_idx].iov_base + offset, sha1_ctx); } } else { /* * The computed digest will be crossing one or more iovec's. * This is bad performance-wise but we need to support it. * Allocate a small scratch buffer on the stack and * copy it piece meal to the specified digest iovec's. */ uchar_t digest_tmp[SHA1_DIGEST_LENGTH]; off_t scratch_offset = 0; size_t length = digest_len; size_t cur_len; SHA1Final(digest_tmp, sha1_ctx); while (vec_idx < digest->cd_uio->uio_iovcnt && length > 0) { cur_len = MIN(digest->cd_uio->uio_iov[vec_idx].iov_len - offset, length); bcopy(digest_tmp + scratch_offset, digest->cd_uio->uio_iov[vec_idx].iov_base + offset, cur_len); length -= cur_len; vec_idx++; scratch_offset += cur_len; offset = 0; } if (vec_idx == digest->cd_uio->uio_iovcnt && length > 0) { /* * The end of the specified iovec's was reached but * the length requested could not be processed, i.e. * The caller requested to digest more data than it * provided. */ return (CRYPTO_DATA_LEN_RANGE); } } return (CRYPTO_SUCCESS); } /* * Helper SHA1 digest update for mblk's. */ static int sha1_digest_update_mblk(SHA1_CTX *sha1_ctx, crypto_data_t *data) { off_t offset = data->cd_offset; size_t length = data->cd_length; mblk_t *mp; size_t cur_len; /* * Jump to the first mblk_t containing data to be digested. */ for (mp = data->cd_mp; mp != NULL && offset >= MBLKL(mp); offset -= MBLKL(mp), mp = mp->b_cont); if (mp == NULL) { /* * The caller specified an offset that is larger than the * total size of the buffers it provided. */ return (CRYPTO_DATA_LEN_RANGE); } /* * Now do the digesting on the mblk chain. */ while (mp != NULL && length > 0) { cur_len = MIN(MBLKL(mp) - offset, length); SHA1Update(sha1_ctx, mp->b_rptr + offset, cur_len); length -= cur_len; offset = 0; mp = mp->b_cont; } if (mp == NULL && length > 0) { /* * The end of the mblk was reached but the length requested * could not be processed, i.e. The caller requested * to digest more data than it provided. */ return (CRYPTO_DATA_LEN_RANGE); } return (CRYPTO_SUCCESS); } /* * Helper SHA1 digest final for mblk's. * digest_len is the length of the desired digest. If digest_len * is smaller than the default SHA1 digest length, the caller * must pass a scratch buffer, digest_scratch, which must * be at least SHA1_DIGEST_LENGTH bytes. */ static int sha1_digest_final_mblk(SHA1_CTX *sha1_ctx, crypto_data_t *digest, ulong_t digest_len, uchar_t *digest_scratch) { off_t offset = digest->cd_offset; mblk_t *mp; /* * Jump to the first mblk_t that will be used to store the digest. */ for (mp = digest->cd_mp; mp != NULL && offset >= MBLKL(mp); offset -= MBLKL(mp), mp = mp->b_cont); if (mp == NULL) { /* * The caller specified an offset that is larger than the * total size of the buffers it provided. */ return (CRYPTO_DATA_LEN_RANGE); } if (offset + digest_len <= MBLKL(mp)) { /* * The computed SHA1 digest will fit in the current mblk. * Do the SHA1Final() in-place. */ if (digest_len != SHA1_DIGEST_LENGTH) { /* * The caller requested a short digest. Digest * into a scratch buffer and return to * the user only what was requested. */ SHA1Final(digest_scratch, sha1_ctx); bcopy(digest_scratch, mp->b_rptr + offset, digest_len); } else { SHA1Final(mp->b_rptr + offset, sha1_ctx); } } else { /* * The computed digest will be crossing one or more mblk's. * This is bad performance-wise but we need to support it. * Allocate a small scratch buffer on the stack and * copy it piece meal to the specified digest iovec's. */ uchar_t digest_tmp[SHA1_DIGEST_LENGTH]; off_t scratch_offset = 0; size_t length = digest_len; size_t cur_len; SHA1Final(digest_tmp, sha1_ctx); while (mp != NULL && length > 0) { cur_len = MIN(MBLKL(mp) - offset, length); bcopy(digest_tmp + scratch_offset, mp->b_rptr + offset, cur_len); length -= cur_len; mp = mp->b_cont; scratch_offset += cur_len; offset = 0; } if (mp == NULL && length > 0) { /* * The end of the specified mblk was reached but * the length requested could not be processed, i.e. * The caller requested to digest more data than it * provided. */ return (CRYPTO_DATA_LEN_RANGE); } } return (CRYPTO_SUCCESS); } /* ARGSUSED */ static int sha1_digest(crypto_ctx_t *ctx, crypto_data_t *data, crypto_data_t *digest, crypto_req_handle_t req) { int ret = CRYPTO_SUCCESS; ASSERT(ctx->cc_provider_private != NULL); /* * We need to just return the length needed to store the output. * We should not destroy the context for the following cases. */ if ((digest->cd_length == 0) || (digest->cd_length < SHA1_DIGEST_LENGTH)) { digest->cd_length = SHA1_DIGEST_LENGTH; return (CRYPTO_BUFFER_TOO_SMALL); } /* * Do the SHA1 update on the specified input data. */ switch (data->cd_format) { case CRYPTO_DATA_RAW: SHA1Update(&PROV_SHA1_CTX(ctx)->sc_sha1_ctx, (uint8_t *)data->cd_raw.iov_base + data->cd_offset, data->cd_length); break; case CRYPTO_DATA_UIO: ret = sha1_digest_update_uio(&PROV_SHA1_CTX(ctx)->sc_sha1_ctx, data); break; case CRYPTO_DATA_MBLK: ret = sha1_digest_update_mblk(&PROV_SHA1_CTX(ctx)->sc_sha1_ctx, data); break; default: ret = CRYPTO_ARGUMENTS_BAD; } if (ret != CRYPTO_SUCCESS) { /* the update failed, free context and bail */ kmem_free(ctx->cc_provider_private, sizeof (sha1_ctx_t)); ctx->cc_provider_private = NULL; digest->cd_length = 0; return (ret); } /* * Do a SHA1 final, must be done separately since the digest * type can be different than the input data type. */ switch (digest->cd_format) { case CRYPTO_DATA_RAW: SHA1Final((unsigned char *)digest->cd_raw.iov_base + digest->cd_offset, &PROV_SHA1_CTX(ctx)->sc_sha1_ctx); break; case CRYPTO_DATA_UIO: ret = sha1_digest_final_uio(&PROV_SHA1_CTX(ctx)->sc_sha1_ctx, digest, SHA1_DIGEST_LENGTH, NULL); break; case CRYPTO_DATA_MBLK: ret = sha1_digest_final_mblk(&PROV_SHA1_CTX(ctx)->sc_sha1_ctx, digest, SHA1_DIGEST_LENGTH, NULL); break; default: ret = CRYPTO_ARGUMENTS_BAD; } /* all done, free context and return */ if (ret == CRYPTO_SUCCESS) { digest->cd_length = SHA1_DIGEST_LENGTH; } else { digest->cd_length = 0; } kmem_free(ctx->cc_provider_private, sizeof (sha1_ctx_t)); ctx->cc_provider_private = NULL; return (ret); } /* ARGSUSED */ static int sha1_digest_update(crypto_ctx_t *ctx, crypto_data_t *data, crypto_req_handle_t req) { int ret = CRYPTO_SUCCESS; ASSERT(ctx->cc_provider_private != NULL); /* * Do the SHA1 update on the specified input data. */ switch (data->cd_format) { case CRYPTO_DATA_RAW: SHA1Update(&PROV_SHA1_CTX(ctx)->sc_sha1_ctx, (uint8_t *)data->cd_raw.iov_base + data->cd_offset, data->cd_length); break; case CRYPTO_DATA_UIO: ret = sha1_digest_update_uio(&PROV_SHA1_CTX(ctx)->sc_sha1_ctx, data); break; case CRYPTO_DATA_MBLK: ret = sha1_digest_update_mblk(&PROV_SHA1_CTX(ctx)->sc_sha1_ctx, data); break; default: ret = CRYPTO_ARGUMENTS_BAD; } return (ret); } /* ARGSUSED */ static int sha1_digest_final(crypto_ctx_t *ctx, crypto_data_t *digest, crypto_req_handle_t req) { int ret = CRYPTO_SUCCESS; ASSERT(ctx->cc_provider_private != NULL); /* * We need to just return the length needed to store the output. * We should not destroy the context for the following cases. */ if ((digest->cd_length == 0) || (digest->cd_length < SHA1_DIGEST_LENGTH)) { digest->cd_length = SHA1_DIGEST_LENGTH; return (CRYPTO_BUFFER_TOO_SMALL); } /* * Do a SHA1 final. */ switch (digest->cd_format) { case CRYPTO_DATA_RAW: SHA1Final((unsigned char *)digest->cd_raw.iov_base + digest->cd_offset, &PROV_SHA1_CTX(ctx)->sc_sha1_ctx); break; case CRYPTO_DATA_UIO: ret = sha1_digest_final_uio(&PROV_SHA1_CTX(ctx)->sc_sha1_ctx, digest, SHA1_DIGEST_LENGTH, NULL); break; case CRYPTO_DATA_MBLK: ret = sha1_digest_final_mblk(&PROV_SHA1_CTX(ctx)->sc_sha1_ctx, digest, SHA1_DIGEST_LENGTH, NULL); break; default: ret = CRYPTO_ARGUMENTS_BAD; } /* all done, free context and return */ if (ret == CRYPTO_SUCCESS) { digest->cd_length = SHA1_DIGEST_LENGTH; } else { digest->cd_length = 0; } kmem_free(ctx->cc_provider_private, sizeof (sha1_ctx_t)); ctx->cc_provider_private = NULL; return (ret); } /* ARGSUSED */ static int sha1_digest_atomic(crypto_provider_handle_t provider, crypto_session_id_t session_id, crypto_mechanism_t *mechanism, crypto_data_t *data, crypto_data_t *digest, crypto_req_handle_t req) { int ret = CRYPTO_SUCCESS; SHA1_CTX sha1_ctx; if (mechanism->cm_type != SHA1_MECH_INFO_TYPE) return (CRYPTO_MECHANISM_INVALID); /* * Do the SHA1 init. */ SHA1Init(&sha1_ctx); /* * Do the SHA1 update on the specified input data. */ switch (data->cd_format) { case CRYPTO_DATA_RAW: SHA1Update(&sha1_ctx, (uint8_t *)data->cd_raw.iov_base + data->cd_offset, data->cd_length); break; case CRYPTO_DATA_UIO: ret = sha1_digest_update_uio(&sha1_ctx, data); break; case CRYPTO_DATA_MBLK: ret = sha1_digest_update_mblk(&sha1_ctx, data); break; default: ret = CRYPTO_ARGUMENTS_BAD; } if (ret != CRYPTO_SUCCESS) { /* the update failed, bail */ digest->cd_length = 0; return (ret); } /* * Do a SHA1 final, must be done separately since the digest * type can be different than the input data type. */ switch (digest->cd_format) { case CRYPTO_DATA_RAW: SHA1Final((unsigned char *)digest->cd_raw.iov_base + digest->cd_offset, &sha1_ctx); break; case CRYPTO_DATA_UIO: ret = sha1_digest_final_uio(&sha1_ctx, digest, SHA1_DIGEST_LENGTH, NULL); break; case CRYPTO_DATA_MBLK: ret = sha1_digest_final_mblk(&sha1_ctx, digest, SHA1_DIGEST_LENGTH, NULL); break; default: ret = CRYPTO_ARGUMENTS_BAD; } if (ret == CRYPTO_SUCCESS) { digest->cd_length = SHA1_DIGEST_LENGTH; } else { digest->cd_length = 0; } return (ret); } /* * KCF software provider mac entry points. * * SHA1 HMAC is: SHA1(key XOR opad, SHA1(key XOR ipad, text)) * * Init: * The initialization routine initializes what we denote * as the inner and outer contexts by doing * - for inner context: SHA1(key XOR ipad) * - for outer context: SHA1(key XOR opad) * * Update: * Each subsequent SHA1 HMAC update will result in an * update of the inner context with the specified data. * * Final: * The SHA1 HMAC final will do a SHA1 final operation on the * inner context, and the resulting digest will be used * as the data for an update on the outer context. Last * but not least, a SHA1 final on the outer context will * be performed to obtain the SHA1 HMAC digest to return * to the user. */ /* * Initialize a SHA1-HMAC context. */ static void sha1_mac_init_ctx(sha1_hmac_ctx_t *ctx, void *keyval, uint_t length_in_bytes) { uint32_t ipad[SHA1_HMAC_INTS_PER_BLOCK]; uint32_t opad[SHA1_HMAC_INTS_PER_BLOCK]; uint_t i; bzero(ipad, SHA1_HMAC_BLOCK_SIZE); bzero(opad, SHA1_HMAC_BLOCK_SIZE); bcopy(keyval, ipad, length_in_bytes); bcopy(keyval, opad, length_in_bytes); /* XOR key with ipad (0x36) and opad (0x5c) */ for (i = 0; i < SHA1_HMAC_INTS_PER_BLOCK; i++) { ipad[i] ^= 0x36363636; opad[i] ^= 0x5c5c5c5c; } /* perform SHA1 on ipad */ SHA1Init(&ctx->hc_icontext); SHA1Update(&ctx->hc_icontext, (uint8_t *)ipad, SHA1_HMAC_BLOCK_SIZE); /* perform SHA1 on opad */ SHA1Init(&ctx->hc_ocontext); SHA1Update(&ctx->hc_ocontext, (uint8_t *)opad, SHA1_HMAC_BLOCK_SIZE); } /* */ static int sha1_mac_init(crypto_ctx_t *ctx, crypto_mechanism_t *mechanism, crypto_key_t *key, crypto_spi_ctx_template_t ctx_template, crypto_req_handle_t req) { int ret = CRYPTO_SUCCESS; uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length); if (mechanism->cm_type != SHA1_HMAC_MECH_INFO_TYPE && mechanism->cm_type != SHA1_HMAC_GEN_MECH_INFO_TYPE) return (CRYPTO_MECHANISM_INVALID); /* Add support for key by attributes (RFE 4706552) */ if (key->ck_format != CRYPTO_KEY_RAW) return (CRYPTO_ARGUMENTS_BAD); ctx->cc_provider_private = kmem_alloc(sizeof (sha1_hmac_ctx_t), crypto_kmflag(req)); if (ctx->cc_provider_private == NULL) return (CRYPTO_HOST_MEMORY); if (ctx_template != NULL) { /* reuse context template */ bcopy(ctx_template, PROV_SHA1_HMAC_CTX(ctx), sizeof (sha1_hmac_ctx_t)); } else { /* no context template, compute context */ if (keylen_in_bytes > SHA1_HMAC_BLOCK_SIZE) { uchar_t digested_key[SHA1_DIGEST_LENGTH]; sha1_hmac_ctx_t *hmac_ctx = ctx->cc_provider_private; /* * Hash the passed-in key to get a smaller key. * The inner context is used since it hasn't been * initialized yet. */ PROV_SHA1_DIGEST_KEY(&hmac_ctx->hc_icontext, key->ck_data, keylen_in_bytes, digested_key); sha1_mac_init_ctx(PROV_SHA1_HMAC_CTX(ctx), digested_key, SHA1_DIGEST_LENGTH); } else { sha1_mac_init_ctx(PROV_SHA1_HMAC_CTX(ctx), key->ck_data, keylen_in_bytes); } } /* * Get the mechanism parameters, if applicable. */ PROV_SHA1_HMAC_CTX(ctx)->hc_mech_type = mechanism->cm_type; if (mechanism->cm_type == SHA1_HMAC_GEN_MECH_INFO_TYPE) { if (mechanism->cm_param == NULL || mechanism->cm_param_len != sizeof (ulong_t)) ret = CRYPTO_MECHANISM_PARAM_INVALID; PROV_SHA1_GET_DIGEST_LEN(mechanism, PROV_SHA1_HMAC_CTX(ctx)->hc_digest_len); if (PROV_SHA1_HMAC_CTX(ctx)->hc_digest_len > SHA1_DIGEST_LENGTH) ret = CRYPTO_MECHANISM_PARAM_INVALID; } if (ret != CRYPTO_SUCCESS) { bzero(ctx->cc_provider_private, sizeof (sha1_hmac_ctx_t)); kmem_free(ctx->cc_provider_private, sizeof (sha1_hmac_ctx_t)); ctx->cc_provider_private = NULL; } return (ret); } /* ARGSUSED */ static int sha1_mac_update(crypto_ctx_t *ctx, crypto_data_t *data, crypto_req_handle_t req) { int ret = CRYPTO_SUCCESS; ASSERT(ctx->cc_provider_private != NULL); /* * Do a SHA1 update of the inner context using the specified * data. */ switch (data->cd_format) { case CRYPTO_DATA_RAW: SHA1Update(&PROV_SHA1_HMAC_CTX(ctx)->hc_icontext, (uint8_t *)data->cd_raw.iov_base + data->cd_offset, data->cd_length); break; case CRYPTO_DATA_UIO: ret = sha1_digest_update_uio( &PROV_SHA1_HMAC_CTX(ctx)->hc_icontext, data); break; case CRYPTO_DATA_MBLK: ret = sha1_digest_update_mblk( &PROV_SHA1_HMAC_CTX(ctx)->hc_icontext, data); break; default: ret = CRYPTO_ARGUMENTS_BAD; } return (ret); } /* ARGSUSED */ static int sha1_mac_final(crypto_ctx_t *ctx, crypto_data_t *mac, crypto_req_handle_t req) { int ret = CRYPTO_SUCCESS; uchar_t digest[SHA1_DIGEST_LENGTH]; uint32_t digest_len = SHA1_DIGEST_LENGTH; ASSERT(ctx->cc_provider_private != NULL); if (PROV_SHA1_HMAC_CTX(ctx)->hc_mech_type == SHA1_HMAC_GEN_MECH_INFO_TYPE) digest_len = PROV_SHA1_HMAC_CTX(ctx)->hc_digest_len; /* * We need to just return the length needed to store the output. * We should not destroy the context for the following cases. */ if ((mac->cd_length == 0) || (mac->cd_length < digest_len)) { mac->cd_length = digest_len; return (CRYPTO_BUFFER_TOO_SMALL); } /* * Do a SHA1 final on the inner context. */ SHA1Final(digest, &PROV_SHA1_HMAC_CTX(ctx)->hc_icontext); /* * Do a SHA1 update on the outer context, feeding the inner * digest as data. */ SHA1Update(&PROV_SHA1_HMAC_CTX(ctx)->hc_ocontext, digest, SHA1_DIGEST_LENGTH); /* * Do a SHA1 final on the outer context, storing the computing * digest in the users buffer. */ switch (mac->cd_format) { case CRYPTO_DATA_RAW: if (digest_len != SHA1_DIGEST_LENGTH) { /* * The caller requested a short digest. Digest * into a scratch buffer and return to * the user only what was requested. */ SHA1Final(digest, &PROV_SHA1_HMAC_CTX(ctx)->hc_ocontext); bcopy(digest, (unsigned char *)mac->cd_raw.iov_base + mac->cd_offset, digest_len); } else { SHA1Final((unsigned char *)mac->cd_raw.iov_base + mac->cd_offset, &PROV_SHA1_HMAC_CTX(ctx)->hc_ocontext); } break; case CRYPTO_DATA_UIO: ret = sha1_digest_final_uio( &PROV_SHA1_HMAC_CTX(ctx)->hc_ocontext, mac, digest_len, digest); break; case CRYPTO_DATA_MBLK: ret = sha1_digest_final_mblk( &PROV_SHA1_HMAC_CTX(ctx)->hc_ocontext, mac, digest_len, digest); break; default: ret = CRYPTO_ARGUMENTS_BAD; } if (ret == CRYPTO_SUCCESS) { mac->cd_length = digest_len; } else { mac->cd_length = 0; } bzero(ctx->cc_provider_private, sizeof (sha1_hmac_ctx_t)); kmem_free(ctx->cc_provider_private, sizeof (sha1_hmac_ctx_t)); ctx->cc_provider_private = NULL; return (ret); } #define SHA1_MAC_UPDATE(data, ctx, ret) { \ switch (data->cd_format) { \ case CRYPTO_DATA_RAW: \ SHA1Update(&(ctx).hc_icontext, \ (uint8_t *)data->cd_raw.iov_base + \ data->cd_offset, data->cd_length); \ break; \ case CRYPTO_DATA_UIO: \ ret = sha1_digest_update_uio(&(ctx).hc_icontext, data); \ break; \ case CRYPTO_DATA_MBLK: \ ret = sha1_digest_update_mblk(&(ctx).hc_icontext, \ data); \ break; \ default: \ ret = CRYPTO_ARGUMENTS_BAD; \ } \ } /* ARGSUSED */ static int sha1_mac_atomic(crypto_provider_handle_t provider, crypto_session_id_t session_id, crypto_mechanism_t *mechanism, crypto_key_t *key, crypto_data_t *data, crypto_data_t *mac, crypto_spi_ctx_template_t ctx_template, crypto_req_handle_t req) { int ret = CRYPTO_SUCCESS; uchar_t digest[SHA1_DIGEST_LENGTH]; sha1_hmac_ctx_t sha1_hmac_ctx; uint32_t digest_len = SHA1_DIGEST_LENGTH; uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length); if (mechanism->cm_type != SHA1_HMAC_MECH_INFO_TYPE && mechanism->cm_type != SHA1_HMAC_GEN_MECH_INFO_TYPE) return (CRYPTO_MECHANISM_INVALID); /* Add support for key by attributes (RFE 4706552) */ if (key->ck_format != CRYPTO_KEY_RAW) return (CRYPTO_ARGUMENTS_BAD); if (ctx_template != NULL) { /* reuse context template */ bcopy(ctx_template, &sha1_hmac_ctx, sizeof (sha1_hmac_ctx_t)); } else { /* no context template, initialize context */ if (keylen_in_bytes > SHA1_HMAC_BLOCK_SIZE) { /* * Hash the passed-in key to get a smaller key. * The inner context is used since it hasn't been * initialized yet. */ PROV_SHA1_DIGEST_KEY(&sha1_hmac_ctx.hc_icontext, key->ck_data, keylen_in_bytes, digest); sha1_mac_init_ctx(&sha1_hmac_ctx, digest, SHA1_DIGEST_LENGTH); } else { sha1_mac_init_ctx(&sha1_hmac_ctx, key->ck_data, keylen_in_bytes); } } /* get the mechanism parameters, if applicable */ if (mechanism->cm_type == SHA1_HMAC_GEN_MECH_INFO_TYPE) { if (mechanism->cm_param == NULL || mechanism->cm_param_len != sizeof (ulong_t)) { ret = CRYPTO_MECHANISM_PARAM_INVALID; goto bail; } PROV_SHA1_GET_DIGEST_LEN(mechanism, digest_len); if (digest_len > SHA1_DIGEST_LENGTH) { ret = CRYPTO_MECHANISM_PARAM_INVALID; goto bail; } } /* do a SHA1 update of the inner context using the specified data */ SHA1_MAC_UPDATE(data, sha1_hmac_ctx, ret); if (ret != CRYPTO_SUCCESS) /* the update failed, free context and bail */ goto bail; /* * Do a SHA1 final on the inner context. */ SHA1Final(digest, &sha1_hmac_ctx.hc_icontext); /* * Do an SHA1 update on the outer context, feeding the inner * digest as data. */ SHA1Update(&sha1_hmac_ctx.hc_ocontext, digest, SHA1_DIGEST_LENGTH); /* * Do a SHA1 final on the outer context, storing the computed * digest in the users buffer. */ switch (mac->cd_format) { case CRYPTO_DATA_RAW: if (digest_len != SHA1_DIGEST_LENGTH) { /* * The caller requested a short digest. Digest * into a scratch buffer and return to * the user only what was requested. */ SHA1Final(digest, &sha1_hmac_ctx.hc_ocontext); bcopy(digest, (unsigned char *)mac->cd_raw.iov_base + mac->cd_offset, digest_len); } else { SHA1Final((unsigned char *)mac->cd_raw.iov_base + mac->cd_offset, &sha1_hmac_ctx.hc_ocontext); } break; case CRYPTO_DATA_UIO: ret = sha1_digest_final_uio(&sha1_hmac_ctx.hc_ocontext, mac, digest_len, digest); break; case CRYPTO_DATA_MBLK: ret = sha1_digest_final_mblk(&sha1_hmac_ctx.hc_ocontext, mac, digest_len, digest); break; default: ret = CRYPTO_ARGUMENTS_BAD; } if (ret == CRYPTO_SUCCESS) { mac->cd_length = digest_len; } else { mac->cd_length = 0; } /* Extra paranoia: zeroize the context on the stack */ bzero(&sha1_hmac_ctx, sizeof (sha1_hmac_ctx_t)); return (ret); bail: bzero(&sha1_hmac_ctx, sizeof (sha1_hmac_ctx_t)); mac->cd_length = 0; return (ret); } /* ARGSUSED */ static int sha1_mac_verify_atomic(crypto_provider_handle_t provider, crypto_session_id_t session_id, crypto_mechanism_t *mechanism, crypto_key_t *key, crypto_data_t *data, crypto_data_t *mac, crypto_spi_ctx_template_t ctx_template, crypto_req_handle_t req) { int ret = CRYPTO_SUCCESS; uchar_t digest[SHA1_DIGEST_LENGTH]; sha1_hmac_ctx_t sha1_hmac_ctx; uint32_t digest_len = SHA1_DIGEST_LENGTH; uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length); if (mechanism->cm_type != SHA1_HMAC_MECH_INFO_TYPE && mechanism->cm_type != SHA1_HMAC_GEN_MECH_INFO_TYPE) return (CRYPTO_MECHANISM_INVALID); /* Add support for key by attributes (RFE 4706552) */ if (key->ck_format != CRYPTO_KEY_RAW) return (CRYPTO_ARGUMENTS_BAD); if (ctx_template != NULL) { /* reuse context template */ bcopy(ctx_template, &sha1_hmac_ctx, sizeof (sha1_hmac_ctx_t)); } else { /* no context template, initialize context */ if (keylen_in_bytes > SHA1_HMAC_BLOCK_SIZE) { /* * Hash the passed-in key to get a smaller key. * The inner context is used since it hasn't been * initialized yet. */ PROV_SHA1_DIGEST_KEY(&sha1_hmac_ctx.hc_icontext, key->ck_data, keylen_in_bytes, digest); sha1_mac_init_ctx(&sha1_hmac_ctx, digest, SHA1_DIGEST_LENGTH); } else { sha1_mac_init_ctx(&sha1_hmac_ctx, key->ck_data, keylen_in_bytes); } } /* get the mechanism parameters, if applicable */ if (mechanism->cm_type == SHA1_HMAC_GEN_MECH_INFO_TYPE) { if (mechanism->cm_param == NULL || mechanism->cm_param_len != sizeof (ulong_t)) { ret = CRYPTO_MECHANISM_PARAM_INVALID; goto bail; } PROV_SHA1_GET_DIGEST_LEN(mechanism, digest_len); if (digest_len > SHA1_DIGEST_LENGTH) { ret = CRYPTO_MECHANISM_PARAM_INVALID; goto bail; } } if (mac->cd_length != digest_len) { ret = CRYPTO_INVALID_MAC; goto bail; } /* do a SHA1 update of the inner context using the specified data */ SHA1_MAC_UPDATE(data, sha1_hmac_ctx, ret); if (ret != CRYPTO_SUCCESS) /* the update failed, free context and bail */ goto bail; /* do a SHA1 final on the inner context */ SHA1Final(digest, &sha1_hmac_ctx.hc_icontext); /* * Do an SHA1 update on the outer context, feeding the inner * digest as data. */ SHA1Update(&sha1_hmac_ctx.hc_ocontext, digest, SHA1_DIGEST_LENGTH); /* * Do a SHA1 final on the outer context, storing the computed * digest in the users buffer. */ SHA1Final(digest, &sha1_hmac_ctx.hc_ocontext); /* * Compare the computed digest against the expected digest passed * as argument. */ switch (mac->cd_format) { case CRYPTO_DATA_RAW: if (bcmp(digest, (unsigned char *)mac->cd_raw.iov_base + mac->cd_offset, digest_len) != 0) ret = CRYPTO_INVALID_MAC; break; case CRYPTO_DATA_UIO: { off_t offset = mac->cd_offset; uint_t vec_idx; off_t scratch_offset = 0; size_t length = digest_len; size_t cur_len; /* we support only kernel buffer */ if (mac->cd_uio->uio_segflg != UIO_SYSSPACE) return (CRYPTO_ARGUMENTS_BAD); /* jump to the first iovec containing the expected digest */ for (vec_idx = 0; offset >= mac->cd_uio->uio_iov[vec_idx].iov_len && vec_idx < mac->cd_uio->uio_iovcnt; offset -= mac->cd_uio->uio_iov[vec_idx++].iov_len); if (vec_idx == mac->cd_uio->uio_iovcnt) { /* * The caller specified an offset that is * larger than the total size of the buffers * it provided. */ ret = CRYPTO_DATA_LEN_RANGE; break; } /* do the comparison of computed digest vs specified one */ while (vec_idx < mac->cd_uio->uio_iovcnt && length > 0) { cur_len = MIN(mac->cd_uio->uio_iov[vec_idx].iov_len - offset, length); if (bcmp(digest + scratch_offset, mac->cd_uio->uio_iov[vec_idx].iov_base + offset, cur_len) != 0) { ret = CRYPTO_INVALID_MAC; break; } length -= cur_len; vec_idx++; scratch_offset += cur_len; offset = 0; } break; } case CRYPTO_DATA_MBLK: { off_t offset = mac->cd_offset; mblk_t *mp; off_t scratch_offset = 0; size_t length = digest_len; size_t cur_len; /* jump to the first mblk_t containing the expected digest */ for (mp = mac->cd_mp; mp != NULL && offset >= MBLKL(mp); offset -= MBLKL(mp), mp = mp->b_cont); if (mp == NULL) { /* * The caller specified an offset that is larger than * the total size of the buffers it provided. */ ret = CRYPTO_DATA_LEN_RANGE; break; } while (mp != NULL && length > 0) { cur_len = MIN(MBLKL(mp) - offset, length); if (bcmp(digest + scratch_offset, mp->b_rptr + offset, cur_len) != 0) { ret = CRYPTO_INVALID_MAC; break; } length -= cur_len; mp = mp->b_cont; scratch_offset += cur_len; offset = 0; } break; } default: ret = CRYPTO_ARGUMENTS_BAD; } bzero(&sha1_hmac_ctx, sizeof (sha1_hmac_ctx_t)); return (ret); bail: bzero(&sha1_hmac_ctx, sizeof (sha1_hmac_ctx_t)); mac->cd_length = 0; return (ret); } /* * KCF software provider context management entry points. */ /* ARGSUSED */ static int sha1_create_ctx_template(crypto_provider_handle_t provider, crypto_mechanism_t *mechanism, crypto_key_t *key, crypto_spi_ctx_template_t *ctx_template, size_t *ctx_template_size, crypto_req_handle_t req) { sha1_hmac_ctx_t *sha1_hmac_ctx_tmpl; uint_t keylen_in_bytes = CRYPTO_BITS2BYTES(key->ck_length); if ((mechanism->cm_type != SHA1_HMAC_MECH_INFO_TYPE) && (mechanism->cm_type != SHA1_HMAC_GEN_MECH_INFO_TYPE)) { return (CRYPTO_MECHANISM_INVALID); } /* Add support for key by attributes (RFE 4706552) */ if (key->ck_format != CRYPTO_KEY_RAW) return (CRYPTO_ARGUMENTS_BAD); /* * Allocate and initialize SHA1 context. */ sha1_hmac_ctx_tmpl = kmem_alloc(sizeof (sha1_hmac_ctx_t), crypto_kmflag(req)); if (sha1_hmac_ctx_tmpl == NULL) return (CRYPTO_HOST_MEMORY); if (keylen_in_bytes > SHA1_HMAC_BLOCK_SIZE) { uchar_t digested_key[SHA1_DIGEST_LENGTH]; /* * Hash the passed-in key to get a smaller key. * The inner context is used since it hasn't been * initialized yet. */ PROV_SHA1_DIGEST_KEY(&sha1_hmac_ctx_tmpl->hc_icontext, key->ck_data, keylen_in_bytes, digested_key); sha1_mac_init_ctx(sha1_hmac_ctx_tmpl, digested_key, SHA1_DIGEST_LENGTH); } else { sha1_mac_init_ctx(sha1_hmac_ctx_tmpl, key->ck_data, keylen_in_bytes); } sha1_hmac_ctx_tmpl->hc_mech_type = mechanism->cm_type; *ctx_template = (crypto_spi_ctx_template_t)sha1_hmac_ctx_tmpl; *ctx_template_size = sizeof (sha1_hmac_ctx_t); return (CRYPTO_SUCCESS); } static int sha1_free_context(crypto_ctx_t *ctx) { uint_t ctx_len; sha1_mech_type_t mech_type; if (ctx->cc_provider_private == NULL) return (CRYPTO_SUCCESS); /* * We have to free either SHA1 or SHA1-HMAC contexts, which * have different lengths. */ mech_type = PROV_SHA1_CTX(ctx)->sc_mech_type; if (mech_type == SHA1_MECH_INFO_TYPE) ctx_len = sizeof (sha1_ctx_t); else { ASSERT(mech_type == SHA1_HMAC_MECH_INFO_TYPE || mech_type == SHA1_HMAC_GEN_MECH_INFO_TYPE); ctx_len = sizeof (sha1_hmac_ctx_t); } bzero(ctx->cc_provider_private, ctx_len); kmem_free(ctx->cc_provider_private, ctx_len); ctx->cc_provider_private = NULL; return (CRYPTO_SUCCESS); }