/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2004 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" /* * This module contains the guts of checkpoint-resume mechanism. * All code in this module is platform independent. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern struct cpr_terminator cpr_term; extern int cpr_alloc_statefile(int); extern void cpr_start_kernel_threads(void); extern void cpr_abbreviate_devpath(char *, char *); extern void cpr_convert_promtime(cpr_time_t *); extern void cpr_send_notice(void); extern void cpr_set_bitmap_size(void); extern void cpr_stat_init(); extern void cpr_statef_close(void); extern void flush_windows(void); extern int pm_powering_down; static int cpr_suspend(void); static int cpr_resume(void); static void cpr_suspend_init(void); cpr_time_t wholecycle_tv; int cpr_suspend_succeeded; pfn_t curthreadpfn; int curthreadremapped; /* * save or restore abort_enable; this prevents a drop * to kadb or prom during cpr_resume_devices() when * there is no kbd present; see abort_sequence_enter() */ static void cpr_sae(int stash) { static int saved_ae = -1; if (stash) { saved_ae = abort_enable; abort_enable = 0; } else if (saved_ae != -1) { abort_enable = saved_ae; saved_ae = -1; } } /* * The main switching point for cpr, this routine starts the ckpt * and state file saving routines; on resume the control is * returned back to here and it then calls the resume routine. */ int cpr_main(void) { label_t saveq = ttolwp(curthread)->lwp_qsav; int rc; if (rc = cpr_default_setup(1)) return (rc); /* * Remember where we are for resume */ if (!setjmp(&ttolwp(curthread)->lwp_qsav)) { /* * try to checkpoint the system, if failed return back * to userland, otherwise power off. */ rc = cpr_suspend(); if (rc || cpr_reusable_mode) { /* * We don't really want to go down, or * something went wrong in suspend, do what we can * to put the system back to an operable state then * return back to userland. */ (void) cpr_resume(); } } else { /* * This is the resumed side of longjmp, restore the previous * longjmp pointer if there is one so this will be transparent * to the world. */ ttolwp(curthread)->lwp_qsav = saveq; CPR->c_flags &= ~C_SUSPENDING; CPR->c_flags |= C_RESUMING; /* * resume the system back to the original state */ rc = cpr_resume(); } (void) cpr_default_setup(0); return (rc); } /* * check/disable or re-enable UFS logging */ static void cpr_log_status(int enable, int *svstat, vnode_t *vp) { int cmd, status, error; char *str, *able; fiolog_t fl; refstr_t *mntpt; str = "cpr_log_status"; bzero(&fl, sizeof (fl)); fl.error = FIOLOG_ENONE; /* * when disabling, first get and save logging status (0 or 1) */ if (enable == 0) { if (error = VOP_IOCTL(vp, _FIOISLOG, (uintptr_t)&status, FKIOCTL, CRED(), NULL)) { mntpt = vfs_getmntpoint(vp->v_vfsp); errp("%s: \"%s\", cant get logging status, error %d\n", str, refstr_value(mntpt), error); refstr_rele(mntpt); return; } *svstat = status; DEBUG5( { mntpt = vfs_getmntpoint(vp->v_vfsp); errp("%s: \"%s\", logging status = %d\n", str, refstr_value(mntpt), status); refstr_rele(mntpt); }); able = "disable"; cmd = _FIOLOGDISABLE; } else { able = "enable"; cmd = _FIOLOGENABLE; } /* * disable or re-enable logging when the saved status is 1 */ if (*svstat == 1) { error = VOP_IOCTL(vp, cmd, (uintptr_t)&fl, FKIOCTL, CRED(), NULL); if (error) { mntpt = vfs_getmntpoint(vp->v_vfsp); errp("%s: \"%s\", cant %s logging, error %d\n", str, refstr_value(mntpt), able, error); refstr_rele(mntpt); } else { DEBUG5( { mntpt = vfs_getmntpoint(vp->v_vfsp); errp("%s: \"%s\", logging is now %sd\n", str, refstr_value(mntpt), able); refstr_rele(mntpt); }); } } /* * when enabling logging, reset the saved status * to unknown for next time */ if (enable) *svstat = -1; } /* * enable/disable UFS logging on filesystems containing cpr_default_path * and cpr statefile. since the statefile can be on any fs, that fs * needs to be handled separately. this routine and cprboot expect that * CPR_CONFIG and CPR_DEFAULT both reside on the same fs, rootfs. cprboot * is loaded from the device with rootfs and uses the same device to open * both CPR_CONFIG and CPR_DEFAULT (see common/support.c). moving either * file outside of rootfs would cause errors during cprboot, plus cpr and * fsck problems with the new fs if logging were enabled. */ static int cpr_ufs_logging(int enable) { static int def_status = -1, sf_status = -1; struct vfs *vfsp; char *fname; vnode_t *vp; int error; if (cpr_reusable_mode) return (0); if (error = cpr_open_deffile(FREAD, &vp)) return (error); cpr_log_status(enable, &def_status, vp); vfsp = vp->v_vfsp; (void) VOP_CLOSE(vp, FREAD, 1, (offset_t)0, CRED()); VN_RELE(vp); fname = cpr_build_statefile_path(); if (fname == NULL) return (ENOENT); if (error = vn_open(fname, UIO_SYSSPACE, FCREAT|FWRITE, 0600, &vp, CRCREAT, 0)) { errp("cpr_ufs_logging: cant open/create \"%s\", error %d\n", fname, error); return (error); } /* * check logging status for the statefile if it resides * on a different fs and the type is a regular file */ if (vp->v_vfsp != vfsp && vp->v_type == VREG) cpr_log_status(enable, &sf_status, vp); (void) VOP_CLOSE(vp, FWRITE, 1, (offset_t)0, CRED()); VN_RELE(vp); return (0); } /* * Check if klmmod is loaded and call a lock manager service; if klmmod * is not loaded, the services aren't needed and a call would trigger a * modload, which would block since another thread would never run. */ static void cpr_lock_mgr(void (*service)(void)) { if (mod_find_by_filename(NULL, "misc/klmmod") != NULL) (*service)(); } /* * Take the system down to a checkpointable state and write * the state file, the following are sequentially executed: * * - Request all user threads to stop themselves * - push out and invalidate user pages * - bring statefile inode incore to prevent a miss later * - request all daemons to stop * - check and make sure all threads are stopped * - sync the file system * - suspend all devices * - block intrpts * - dump system state and memory to state file */ static int cpr_suspend(void) { int sf_realloc, rc, skt_rc, nverr; cpr_set_substate(C_ST_SUSPEND_BEGIN); cpr_suspend_init(); cpr_save_time(); cpr_tod_get(&wholecycle_tv); CPR_STAT_EVENT_START("Suspend Total"); if (!cpr_reusable_mode) { /* * We need to validate default file before fs functionality * is disabled. */ if (rc = cpr_validate_definfo(0)) return (rc); } i_cpr_save_machdep_info(); /* Stop PM scans ASAP */ (void) callb_execute_class(CB_CL_CPR_PM, CB_CODE_CPR_CHKPT); pm_dispatch_to_dep_thread(PM_DEP_WK_CPR_SUSPEND, NULL, NULL, PM_DEP_WAIT, NULL, 0); cpr_set_substate(C_ST_MP_OFFLINE); if (rc = cpr_mp_offline()) return (rc); /* * Ask the user threads to stop by themselves, but * if they don't or can't after 3 retries, we give up on CPR. * The 3 retry is not a random number because 2 is possible if * a thread has been forked before the parent thread is stopped. */ DEBUG1(errp("\nstopping user threads...")); CPR_STAT_EVENT_START(" stop users"); cpr_set_substate(C_ST_STOP_USER_THREADS); if (rc = cpr_stop_user_threads()) return (rc); CPR_STAT_EVENT_END(" stop users"); DEBUG1(errp("done\n")); pm_save_direct_levels(); /* * User threads are stopped. We will start communicating with the * user via prom_printf (some debug output may have already happened) * so let anybody who cares know about this (bug 4096122) */ (void) callb_execute_class(CB_CL_CPR_PROMPRINTF, CB_CODE_CPR_CHKPT); cpr_send_notice(); if (cpr_debug) errp("\n"); (void) callb_execute_class(CB_CL_CPR_POST_USER, CB_CODE_CPR_CHKPT); /* * Reattach any drivers which originally exported the * no-involuntary-power-cycles property. We need to do this before * stopping kernel threads because modload is implemented using * a kernel thread. */ cpr_set_substate(C_ST_PM_REATTACH_NOINVOL); if (!pm_reattach_noinvol()) return (ENXIO); /* * if ufs logging is enabled, we need to disable before * stopping kernel threads so that ufs delete and roll * threads can do the work. */ cpr_set_substate(C_ST_DISABLE_UFS_LOGGING); if (rc = cpr_ufs_logging(0)) return (rc); /* * Use sync_all to swap out all user pages and find out how much * extra space needed for user pages that don't have back store * space left. */ CPR_STAT_EVENT_START(" swapout upages"); vfs_sync(SYNC_ALL); CPR_STAT_EVENT_END(" swapout upages"); cpr_set_bitmap_size(); alloc_statefile: /* * If our last state was C_ST_DUMP_NOSPC, we're trying to realloc * the statefile, otherwise this is the first attempt. */ sf_realloc = (CPR->c_substate == C_ST_DUMP_NOSPC) ? 1 : 0; CPR_STAT_EVENT_START(" alloc statefile"); cpr_set_substate(C_ST_STATEF_ALLOC); if (rc = cpr_alloc_statefile(sf_realloc)) { if (sf_realloc) errp("realloc failed\n"); return (rc); } CPR_STAT_EVENT_END(" alloc statefile"); /* * Sync the filesystem to preserve its integrity. * * This sync is also used to flush out all B_DELWRI buffers (fs cache) * which are mapped and neither dirty nor referenced before * cpr_invalidate_pages destroys them. fsflush does similar thing. */ sync(); /* * destroy all clean file mapped kernel pages */ CPR_STAT_EVENT_START(" clean pages"); DEBUG1(errp("cleaning up mapped pages...")); (void) callb_execute_class(CB_CL_CPR_VM, CB_CODE_CPR_CHKPT); DEBUG1(errp("done\n")); CPR_STAT_EVENT_END(" clean pages"); /* * Hooks needed by lock manager prior to suspending. * Refer to code for more comments. */ cpr_lock_mgr(lm_cprsuspend); /* * Now suspend all the devices */ CPR_STAT_EVENT_START(" stop drivers"); DEBUG1(errp("suspending drivers...")); cpr_set_substate(C_ST_SUSPEND_DEVICES); pm_powering_down = 1; rc = cpr_suspend_devices(ddi_root_node()); pm_powering_down = 0; if (rc) return (rc); DEBUG1(errp("done\n")); CPR_STAT_EVENT_END(" stop drivers"); /* * Stop all daemon activities */ cpr_set_substate(C_ST_STOP_KERNEL_THREADS); if (skt_rc = cpr_stop_kernel_threads()) return (skt_rc); (void) callb_execute_class(CB_CL_CPR_POST_KERNEL, CB_CODE_CPR_CHKPT); pm_reattach_noinvol_fini(); cpr_sae(1); (void) callb_execute_class(CB_CL_CPR_CALLOUT, CB_CODE_CPR_CHKPT); /* * It's safer to do tod_get before we disable all intr. */ CPR_STAT_EVENT_START(" write statefile"); /* * it's time to ignore the outside world, stop the real time * clock and disable any further intrpt activity. */ i_cpr_handle_xc(1); /* turn it on to disable xc assertion */ mutex_enter(&cpu_lock); cyclic_suspend(); mutex_exit(&cpu_lock); mon_clock_stop(); mon_clock_unshare(); mon_clock_start(); i_cpr_stop_intr(); DEBUG1(errp("interrupt is stopped\n")); /* * Since we will now disable the mechanism that causes prom_printfs * to power up (if needed) the console fb/monitor, we assert that * it must be up now. */ ASSERT(pm_cfb_is_up()); prom_suspend_prepost(); /* * getting ready to write ourself out, flush the register * windows to make sure that our stack is good when we * come back on the resume side. */ flush_windows(); /* * FATAL: NO MORE MEMORY ALLOCATION ALLOWED AFTER THIS POINT!!! * * The system is quiesced at this point, we are ready to either dump * to the state file for a extended sleep or a simple shutdown for * systems with non-volatile memory. */ /* * special handling for reusable: */ if (cpr_reusable_mode) { cpr_set_substate(C_ST_SETPROPS_1); if (nverr = cpr_set_properties(1)) return (nverr); } cpr_set_substate(C_ST_DUMP); rc = cpr_dump(C_VP); /* * if any error occured during dump, more * special handling for reusable: */ if (rc && cpr_reusable_mode) { cpr_set_substate(C_ST_SETPROPS_0); if (nverr = cpr_set_properties(0)) return (nverr); } if (rc == ENOSPC) { cpr_set_substate(C_ST_DUMP_NOSPC); (void) cpr_resume(); goto alloc_statefile; } else if (rc == 0) { if (cpr_reusable_mode) { cpr_set_substate(C_ST_REUSABLE); longjmp(&ttolwp(curthread)->lwp_qsav); } else rc = cpr_set_properties(1); } return (rc); } /* * Bring the system back up from a checkpoint, at this point * the VM has been minimally restored by boot, the following * are executed sequentially: * * - machdep setup and enable interrupts (mp startup if it's mp) * - resume all devices * - restart daemons * - put all threads back on run queue */ static int cpr_resume(void) { cpr_time_t pwron_tv, *ctp; char *str; int rc = 0; /* * The following switch is used to resume the system * that was suspended to a different level. */ DEBUG1(errp("\nEntering cpr_resume...\n")); /* * Note: * * The rollback labels rb_xyz do not represent the cpr resume * state when event 'xyz' has happened. Instead they represent * the state during cpr suspend when event 'xyz' was being * entered (and where cpr suspend failed). The actual call that * failed may also need to be partially rolled back, since they * aren't atomic in most cases. In other words, rb_xyz means * "roll back all cpr suspend events that happened before 'xyz', * and the one that caused the failure, if necessary." */ switch (CPR->c_substate) { case C_ST_DUMP: /* * This is most likely a full-fledged cpr_resume after * a complete and successful cpr suspend. Just roll back * everything. */ break; case C_ST_REUSABLE: case C_ST_DUMP_NOSPC: case C_ST_SETPROPS_0: case C_ST_SETPROPS_1: /* * C_ST_REUSABLE and C_ST_DUMP_NOSPC are the only two * special switch cases here. The other two do not have * any state change during cpr_suspend() that needs to * be rolled back. But these are exit points from * cpr_suspend, so theoretically (or in the future), it * is possible that a need for roll back of a state * change arises between these exit points. */ goto rb_dump; case C_ST_STOP_KERNEL_THREADS: goto rb_stop_kernel_threads; case C_ST_SUSPEND_DEVICES: goto rb_suspend_devices; case C_ST_STATEF_ALLOC: goto rb_statef_alloc; case C_ST_DISABLE_UFS_LOGGING: goto rb_disable_ufs_logging; case C_ST_PM_REATTACH_NOINVOL: goto rb_pm_reattach_noinvol; case C_ST_STOP_USER_THREADS: goto rb_stop_user_threads; case C_ST_MP_OFFLINE: goto rb_mp_offline; default: goto rb_others; } rb_all: /* * setup debugger trapping. */ if (cpr_suspend_succeeded) i_cpr_set_tbr(); /* * tell prom to monitor keys before the kernel comes alive */ mon_clock_start(); /* * perform platform-dependent initialization */ if (cpr_suspend_succeeded) i_cpr_machdep_setup(); /* * system did not really go down if we jump here */ rb_dump: /* * IMPORTANT: SENSITIVE RESUME SEQUENCE * * DO NOT ADD ANY INITIALIZATION STEP BEFORE THIS POINT!! */ (void) callb_execute_class(CB_CL_CPR_DMA, CB_CODE_CPR_RESUME); if (cpr_suspend_succeeded) (void) callb_execute_class(CB_CL_CPR_RPC, CB_CODE_CPR_RESUME); prom_resume_prepost(); if (cpr_suspend_succeeded && (boothowto & RB_DEBUG)) kdi_dvec_cpr_restart(); /* * let the tmp callout catch up. */ (void) callb_execute_class(CB_CL_CPR_CALLOUT, CB_CODE_CPR_RESUME); i_cpr_enable_intr(); mon_clock_stop(); mon_clock_share(); mutex_enter(&cpu_lock); cyclic_resume(); mutex_exit(&cpu_lock); mon_clock_start(); i_cpr_handle_xc(0); /* turn it off to allow xc assertion */ (void) callb_execute_class(CB_CL_CPR_POST_KERNEL, CB_CODE_CPR_RESUME); /* * statistics gathering */ if (cpr_suspend_succeeded) { /* * Prevent false alarm in tod_validate() due to tod * value change between suspend and resume */ cpr_tod_fault_reset(); cpr_convert_promtime(&pwron_tv); ctp = &cpr_term.tm_shutdown; CPR_STAT_EVENT_END_TMZ(" write statefile", ctp); CPR_STAT_EVENT_END_TMZ("Suspend Total", ctp); CPR_STAT_EVENT_START_TMZ("Resume Total", &pwron_tv); str = " prom time"; CPR_STAT_EVENT_START_TMZ(str, &pwron_tv); ctp = &cpr_term.tm_cprboot_start; CPR_STAT_EVENT_END_TMZ(str, ctp); str = " read statefile"; CPR_STAT_EVENT_START_TMZ(str, ctp); ctp = &cpr_term.tm_cprboot_end; CPR_STAT_EVENT_END_TMZ(str, ctp); } rb_stop_kernel_threads: /* * Put all threads back to where they belong; get the kernel * daemons straightened up too. Note that the callback table * locked during cpr_stop_kernel_threads() is released only * in cpr_start_kernel_threads(). Ensure modunloading is * disabled before starting kernel threads, we don't want * modunload thread to start changing device tree underneath. */ modunload_disable(); cpr_start_kernel_threads(); rb_suspend_devices: DEBUG1(errp("resuming devices...")); CPR_STAT_EVENT_START(" start drivers"); /* * The policy here is to continue resume everything we can if we did * not successfully finish suspend; and panic if we are coming back * from a fully suspended system. */ rc = cpr_resume_devices(ddi_root_node(), 0); cpr_sae(0); str = "Failed to resume one or more devices."; if (rc && CPR->c_substate == C_ST_DUMP) cpr_err(CE_PANIC, str); else if (rc) cpr_err(CE_WARN, str); CPR_STAT_EVENT_END(" start drivers"); DEBUG1(errp("done\n")); /* * If we had disabled modunloading in this cpr resume cycle (i.e. we * resumed from a state earlier than C_ST_SUSPEND_DEVICES), re-enable * modunloading now. */ if (CPR->c_substate != C_ST_SUSPEND_DEVICES) modunload_enable(); /* * Hooks needed by lock manager prior to resuming. * Refer to code for more comments. */ cpr_lock_mgr(lm_cprresume); /* * This is a partial (half) resume during cpr suspend, we * haven't yet given up on the suspend. On return from here, * cpr_suspend() will try to reallocate and retry the suspend. */ if (CPR->c_substate == C_ST_DUMP_NOSPC) { mon_clock_stop(); return (0); } rb_statef_alloc: cpr_statef_close(); rb_disable_ufs_logging: /* * if ufs logging was disabled, re-enable */ (void) cpr_ufs_logging(1); rb_pm_reattach_noinvol: /* * When pm_reattach_noinvol() succeeds, modunload_thread will * remain disabled until after cpr suspend passes the * C_ST_STOP_KERNEL_THREADS state. If any failure happens before * cpr suspend reaches this state, we'll need to enable modunload * thread during rollback. */ if (CPR->c_substate == C_ST_DISABLE_UFS_LOGGING || CPR->c_substate == C_ST_STATEF_ALLOC || CPR->c_substate == C_ST_SUSPEND_DEVICES || CPR->c_substate == C_ST_STOP_KERNEL_THREADS) { pm_reattach_noinvol_fini(); } (void) callb_execute_class(CB_CL_CPR_POST_USER, CB_CODE_CPR_RESUME); (void) callb_execute_class(CB_CL_CPR_PROMPRINTF, CB_CODE_CPR_RESUME); pm_restore_direct_levels(); rb_stop_user_threads: DEBUG1(errp("starting user threads...")); cpr_start_user_threads(); DEBUG1(errp("done\n")); rb_mp_offline: if (cpr_mp_online()) cpr_err(CE_WARN, "Failed to online all the processors."); rb_others: pm_dispatch_to_dep_thread(PM_DEP_WK_CPR_RESUME, NULL, NULL, PM_DEP_WAIT, NULL, 0); (void) callb_execute_class(CB_CL_CPR_PM, CB_CODE_CPR_RESUME); /* * now that all the drivers are going, kernel kbd driver can * take over, turn off prom monitor clock */ mon_clock_stop(); if (cpr_suspend_succeeded) { cpr_restore_time(); cpr_stat_record_events(); } if (!cpr_reusable_mode) cpr_clear_definfo(); DEBUG1(errp("Sending SIGTHAW...")); cpr_signal_user(SIGTHAW); DEBUG1(errp("done\n")); CPR_STAT_EVENT_END("Resume Total"); CPR_STAT_EVENT_START_TMZ("WHOLE CYCLE", &wholecycle_tv); CPR_STAT_EVENT_END("WHOLE CYCLE"); DEBUG1(cmn_err(CE_CONT, "\nThe system is back where you left!\n")); CPR_STAT_EVENT_START("POST CPR DELAY"); #ifdef CPR_STAT ctp = &cpr_term.tm_shutdown; CPR_STAT_EVENT_START_TMZ("PWROFF TIME", ctp); CPR_STAT_EVENT_END_TMZ("PWROFF TIME", &pwron_tv); CPR_STAT_EVENT_PRINT(); #endif /* CPR_STAT */ return (rc); } static void cpr_suspend_init(void) { cpr_time_t *ctp; cpr_stat_init(); /* * If cpr_suspend() failed before cpr_dump() gets a chance * to reinitialize the terminator of the statefile, * the values of the old terminator will still linger around. * Since the terminator contains information that we need to * decide whether suspend succeeded or not, we need to * reinitialize it as early as possible. */ cpr_term.real_statef_size = 0; ctp = &cpr_term.tm_shutdown; bzero(ctp, sizeof (*ctp)); ctp = &cpr_term.tm_cprboot_start; bzero(ctp, sizeof (*ctp)); ctp = &cpr_term.tm_cprboot_end; bzero(ctp, sizeof (*ctp)); /* * Lookup the physical address of our thread structure. This should * never be invalid and the entire thread structure is expected * to reside within the same pfn. */ curthreadpfn = hat_getpfnum(kas.a_hat, (caddr_t)curthread); ASSERT(curthreadpfn != PFN_INVALID); ASSERT(curthreadpfn == hat_getpfnum(kas.a_hat, (caddr_t)curthread + sizeof (kthread_t) - 1)); cpr_suspend_succeeded = 0; }