/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2011 Nexenta Systems, Inc. All rights reserved. */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma weak asin = __asin /* INDENT OFF */ /* * asin(x) * Method : * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... * we approximate asin(x) on [0,0.5] by * asin(x) = x + x*x^2*R(x^2) * where * R(x^2) is a rational approximation of (asin(x)-x)/x^3 * and its remez error is bounded by * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75) * * For x in [0.5,1] * asin(x) = pi/2-2*asin(sqrt((1-x)/2)) * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; * then for x>0.98 * asin(x) = pi/2 - 2*(s+s*z*R(z)) * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) * For x<=0.98, let pio4_hi = pio2_hi/2, then * f = hi part of s; * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) * and * asin(x) = pi/2 - 2*(s+s*z*R(z)) * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) * * Special cases: * if x is NaN, return x itself; * if |x|>1, return NaN with invalid signal. * */ /* INDENT ON */ #include "libm_synonyms.h" /* __asin, __sqrt, __isnan */ #include "libm_protos.h" /* _SVID_libm_error */ #include "libm_macros.h" #include /* INDENT OFF */ static const double xxx[] = { /* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */ /* huge */ 1.000e+300, /* pio2_hi */ 1.57079632679489655800e+00, /* 3FF921FB, 54442D18 */ /* pio2_lo */ 6.12323399573676603587e-17, /* 3C91A626, 33145C07 */ /* pio4_hi */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */ /* coefficient for R(x^2) */ /* pS0 */ 1.66666666666666657415e-01, /* 3FC55555, 55555555 */ /* pS1 */ -3.25565818622400915405e-01, /* BFD4D612, 03EB6F7D */ /* pS2 */ 2.01212532134862925881e-01, /* 3FC9C155, 0E884455 */ /* pS3 */ -4.00555345006794114027e-02, /* BFA48228, B5688F3B */ /* pS4 */ 7.91534994289814532176e-04, /* 3F49EFE0, 7501B288 */ /* pS5 */ 3.47933107596021167570e-05, /* 3F023DE1, 0DFDF709 */ /* qS1 */ -2.40339491173441421878e+00, /* C0033A27, 1C8A2D4B */ /* qS2 */ 2.02094576023350569471e+00, /* 40002AE5, 9C598AC8 */ /* qS3 */ -6.88283971605453293030e-01, /* BFE6066C, 1B8D0159 */ /* qS4 */ 7.70381505559019352791e-02 /* 3FB3B8C5, B12E9282 */ }; #define one xxx[0] #define huge xxx[1] #define pio2_hi xxx[2] #define pio2_lo xxx[3] #define pio4_hi xxx[4] #define pS0 xxx[5] #define pS1 xxx[6] #define pS2 xxx[7] #define pS3 xxx[8] #define pS4 xxx[9] #define pS5 xxx[10] #define qS1 xxx[11] #define qS2 xxx[12] #define qS3 xxx[13] #define qS4 xxx[14] /* INDENT ON */ double asin(double x) { double t, w, p, q, c, r, s; int hx, ix, i; hx = ((int *) &x)[HIWORD]; ix = hx & 0x7fffffff; if (ix >= 0x3ff00000) { /* |x| >= 1 */ if (((ix - 0x3ff00000) | ((int *) &x)[LOWORD]) == 0) /* asin(1)=+-pi/2 with inexact */ return (x * pio2_hi + x * pio2_lo); else if (isnan(x)) #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN) return (ix >= 0x7ff80000 ? x : (x - x) / (x - x)); /* assumes sparc-like QNaN */ #else return (x - x) / (x - x); /* asin(|x|>1) is NaN */ #endif else return (_SVID_libm_err(x, x, 2)); } else if (ix < 0x3fe00000) { /* |x| < 0.5 */ if (ix < 0x3e400000) { /* if |x| < 2**-27 */ if ((i = (int) x) == 0) /* return x with inexact if x != 0 */ return (x); } t = x * x; p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5))))); q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4))); w = p / q; return (x + x * w); } /* 1 > |x| >= 0.5 */ w = one - fabs(x); t = w * 0.5; p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5))))); q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4))); s = sqrt(t); if (ix >= 0x3FEF3333) { /* if |x| > 0.975 */ w = p / q; t = pio2_hi - (2.0 * (s + s * w) - pio2_lo); } else { w = s; ((int *) &w)[LOWORD] = 0; c = (t - w * w) / (s + w); r = p / q; p = 2.0 * s * r - (pio2_lo - 2.0 * c); q = pio4_hi - 2.0 * w; t = pio4_hi - (p - q); } return (hx > 0 ? t : -t); }