/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- * * The contents of this file are subject to the Netscape Public License * Version 1.0 (the "NPL"); you may not use this file except in * compliance with the NPL. You may obtain a copy of the NPL at * http://www.mozilla.org/NPL/ * * Software distributed under the NPL is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the NPL * for the specific language governing rights and limitations under the * NPL. * * The Initial Developer of this code under the NPL is Netscape * Communications Corporation. Portions created by Netscape are * Copyright (C) 1998 Netscape Communications Corporation. All Rights * Reserved. */ /* * Copyright (c) 1990 Regents of the University of Michigan. * All rights reserved. * * Redistribution and use in source and binary forms are permitted * provided that this notice is preserved and that due credit is given * to the University of Michigan at Ann Arbor. The name of the University * may not be used to endorse or promote products derived from this * software without specific prior written permission. This software * is provided ``as is'' without express or implied warranty. */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include "kmfber_int.h" /* the following constants are used in kmfber_calc_lenlen */ #define LENMASK1 0xFF #define LENMASK2 0xFFFF #define LENMASK3 0xFFFFFF #define LENMASK4 0xFFFFFFFF #define _MASK 0x80 int kmfber_calc_taglen(ber_tag_t tag) { int i; ber_int_t mask; /* find the first non-all-zero byte in the tag */ for (i = sizeof (ber_int_t) - 1; i > 0; i--) { mask = (LENMASK3 << (i * 8)); /* not all zero */ if (tag & mask) break; } return (i + 1); } static int ber_put_tag(BerElement *ber, ber_tag_t tag, int nosos) { ber_int_t taglen; ber_tag_t ntag; taglen = kmfber_calc_taglen(tag); ntag = htonl(tag); return (kmfber_write(ber, ((char *) &ntag) + sizeof (ber_int_t) - taglen, taglen, nosos)); } int kmfber_calc_lenlen(ber_int_t len) { /* * short len if it's less than 128 - one byte giving the len, * with bit 8 0. */ if (len <= 0x7F) return (1); /* * long len otherwise - one byte with bit 8 set, giving the * length of the length, followed by the length itself. */ if (len <= LENMASK1) return (2); if (len <= LENMASK2) return (3); if (len <= LENMASK3) return (4); return (5); } int kmfber_put_len(BerElement *ber, ber_int_t len, int nosos) { int i; char lenlen; ber_int_t mask, netlen; /* * short len if it's less than 128 - one byte giving the len, * with bit 8 0. */ if (len <= 127) { netlen = htonl(len); return (kmfber_write(ber, (char *)&netlen + sizeof (ber_int_t) - 1, 1, nosos)); } /* * long len otherwise - one byte with bit 8 set, giving the * length of the length, followed by the length itself. */ /* find the first non-all-zero byte */ for (i = sizeof (ber_int_t) - 1; i > 0; i--) { mask = (LENMASK1 << (i * 8)); /* not all zero */ if (len & mask) break; } lenlen = ++i; if (lenlen > 4) return (-1); lenlen |= 0x80; /* write the length of the length */ if (kmfber_write(ber, &lenlen, 1, nosos) != 1) return (-1); /* write the length itself */ netlen = htonl(len); if (kmfber_write(ber, (char *) &netlen + (sizeof (ber_int_t) - i), i, nosos) != i) return (-1); return (i + 1); } static int ber_put_int_or_enum(BerElement *ber, ber_int_t num, ber_tag_t tag) { int i, sign; ber_int_t len, lenlen, taglen, netnum, mask; sign = (num < 0); /* * high bit is set - look for first non-all-one byte * high bit is clear - look for first non-all-zero byte */ for (i = sizeof (ber_int_t) - 1; i > 0; i--) { mask = (LENMASK1 << (i * 8)); if (sign) { /* not all ones */ if ((num & mask) != mask) break; } else { /* not all zero */ if (num & mask) break; } } /* * we now have the "leading byte". if the high bit on this * byte matches the sign bit, we need to "back up" a byte. */ mask = (num & (_MASK << (i * 8))); if ((mask && !sign) || (sign && !mask)) i++; len = i + 1; if ((taglen = ber_put_tag(ber, tag, 0)) == -1) return (-1); if ((lenlen = kmfber_put_len(ber, len, 0)) == -1) return (-1); i++; netnum = htonl(num); if (kmfber_write(ber, (char *) &netnum + (sizeof (ber_int_t) - i), i, 0) == i) /* length of tag + length + contents */ return (taglen + lenlen + i); return (-1); } static int kmfber_put_enum(BerElement *ber, ber_int_t num, ber_tag_t tag) { if (tag == KMFBER_DEFAULT) tag = BER_ENUMERATED; return (ber_put_int_or_enum(ber, num, tag)); } int ber_put_int(BerElement *ber, ber_int_t num, ber_tag_t tag) { if (tag == KMFBER_DEFAULT) tag = BER_INTEGER; return (ber_put_int_or_enum(ber, num, tag)); } int ber_put_oid(BerElement *ber, struct berval *oid, ber_tag_t tag) { ber_int_t taglen, lenlen, rc, len; if (tag == KMFBER_DEFAULT) tag = 0x06; /* TODO: Add new OID constant to header */ if ((taglen = ber_put_tag(ber, tag, 0)) == -1) return (-1); len = (ber_int_t)oid->bv_len; if ((lenlen = kmfber_put_len(ber, len, 0)) == -1 || kmfber_write(ber, oid->bv_val, oid->bv_len, 0) != (ber_int_t)oid->bv_len) { rc = -1; } else { /* return length of tag + length + contents */ rc = taglen + lenlen + oid->bv_len; } return (rc); } int ber_put_big_int(BerElement *ber, ber_tag_t tag, char *data, ber_len_t len) { ber_int_t taglen, lenlen, ilen, rc; if (tag == KMFBER_DEFAULT) tag = BER_INTEGER; if ((taglen = ber_put_tag(ber, tag, 0)) == -1) return (-1); ilen = (ber_int_t)len; if ((lenlen = kmfber_put_len(ber, ilen, 0)) == -1 || kmfber_write(ber, data, len, 0) != (ber_int_t)len) { rc = -1; } else { /* return length of tag + length + contents */ rc = taglen + lenlen + len; } return (rc); } static int kmfber_put_ostring(BerElement *ber, char *str, ber_len_t len, ber_tag_t tag) { ber_int_t taglen, lenlen, ilen, rc; #ifdef STR_TRANSLATION int free_str; #endif /* STR_TRANSLATION */ if (tag == KMFBER_DEFAULT) tag = BER_OCTET_STRING; if ((taglen = ber_put_tag(ber, tag, 0)) == -1) return (-1); #ifdef STR_TRANSLATION if (len > 0 && (ber->ber_options & KMFBER_OPT_TRANSLATE_STRINGS) != 0 && ber->ber_encode_translate_proc != NULL) { if ((*(ber->ber_encode_translate_proc))(&str, &len, 0) != 0) { return (-1); } free_str = 1; } else { free_str = 0; } #endif /* STR_TRANSLATION */ /* * Note: below is a spot where we limit ber_write * to signed long (instead of unsigned long) */ ilen = (ber_int_t)len; if ((lenlen = kmfber_put_len(ber, ilen, 0)) == -1 || kmfber_write(ber, str, len, 0) != (ber_int_t)len) { rc = -1; } else { /* return length of tag + length + contents */ rc = taglen + lenlen + len; } #ifdef STR_TRANSLATION if (free_str) { free(str); } #endif /* STR_TRANSLATION */ return (rc); } static int kmfber_put_string(BerElement *ber, char *str, ber_tag_t tag) { return (kmfber_put_ostring(ber, str, (ber_len_t)strlen(str), tag)); } static int kmfber_put_bitstring(BerElement *ber, char *str, ber_len_t blen /* in bits */, ber_tag_t tag) { ber_int_t taglen, lenlen, len; unsigned char unusedbits; if (tag == KMFBER_DEFAULT) tag = BER_BIT_STRING; if ((taglen = ber_put_tag(ber, tag, 0)) == -1) return (-1); len = (blen + 7) / 8; unusedbits = (unsigned char) (len * 8 - blen); if ((lenlen = kmfber_put_len(ber, len + 1, 0)) == -1) return (-1); if (kmfber_write(ber, (char *)&unusedbits, 1, 0) != 1) return (-1); if (kmfber_write(ber, str, len, 0) != len) return (-1); /* return length of tag + length + unused bit count + contents */ return (taglen + 1 + lenlen + len); } static int kmfber_put_null(BerElement *ber, ber_tag_t tag) { int taglen; if (tag == KMFBER_DEFAULT) tag = BER_NULL; if ((taglen = ber_put_tag(ber, tag, 0)) == -1) return (-1); if (kmfber_put_len(ber, 0, 0) != 1) return (-1); return (taglen + 1); } static int kmfber_put_boolean(BerElement *ber, int boolval, ber_tag_t tag) { int taglen; unsigned char trueval = 0xff; unsigned char falseval = 0x00; if (tag == KMFBER_DEFAULT) tag = BER_BOOLEAN; if ((taglen = ber_put_tag(ber, tag, 0)) == -1) return (-1); if (kmfber_put_len(ber, 1, 0) != 1) return (-1); if (kmfber_write(ber, (char *)(boolval ? &trueval : &falseval), 1, 0) != 1) return (-1); return (taglen + 2); } #define FOUR_BYTE_LEN 5 /* * The idea here is roughly this: we maintain a stack of these Seqorset * structures. This is pushed when we see the beginning of a new set or * sequence. It is popped when we see the end of a set or sequence. * Since we don't want to malloc and free these structures all the time, * we pre-allocate a small set of them within the ber element structure. * thus we need to spot when we've overflowed this stack and fall back to * malloc'ing instead. */ static int ber_start_seqorset(BerElement *ber, ber_tag_t tag) { Seqorset *new_sos; /* can we fit into the local stack ? */ if (ber->ber_sos_stack_posn < SOS_STACK_SIZE) { /* yes */ new_sos = &ber->ber_sos_stack[ber->ber_sos_stack_posn]; } else { /* no */ if ((new_sos = (Seqorset *)malloc(sizeof (Seqorset))) == NULLSEQORSET) { return (-1); } } ber->ber_sos_stack_posn++; if (ber->ber_sos == NULLSEQORSET) new_sos->sos_first = ber->ber_ptr; else new_sos->sos_first = ber->ber_sos->sos_ptr; /* Set aside room for a 4 byte length field */ new_sos->sos_ptr = new_sos->sos_first + kmfber_calc_taglen(tag) + FOUR_BYTE_LEN; new_sos->sos_tag = tag; new_sos->sos_next = ber->ber_sos; new_sos->sos_clen = 0; ber->ber_sos = new_sos; if (ber->ber_sos->sos_ptr > ber->ber_end) { (void) realloc(ber, ber->ber_sos->sos_ptr - ber->ber_end); } return (0); } static int kmfber_start_seq(BerElement *ber, ber_tag_t tag) { if (tag == KMFBER_DEFAULT) tag = BER_CONSTRUCTED_SEQUENCE; return (ber_start_seqorset(ber, tag)); } static int kmfber_start_set(BerElement *ber, ber_tag_t tag) { if (tag == KMFBER_DEFAULT) tag = BER_CONSTRUCTED_SET; return (ber_start_seqorset(ber, tag)); } static int ber_put_seqorset(BerElement *ber) { ber_int_t netlen, len, taglen, lenlen; unsigned char ltag = 0x80 + FOUR_BYTE_LEN - 1; Seqorset *next; Seqorset **sos = &ber->ber_sos; /* * If this is the toplevel sequence or set, we need to actually * write the stuff out. Otherwise, it's already been put in * the appropriate buffer and will be written when the toplevel * one is written. In this case all we need to do is update the * length and tag. */ len = (*sos)->sos_clen; netlen = (ber_len_t)htonl(len); if (ber->ber_options & KMFBER_OPT_USE_DER) { lenlen = kmfber_calc_lenlen(len); } else { lenlen = FOUR_BYTE_LEN; } if ((next = (*sos)->sos_next) == NULLSEQORSET) { /* write the tag */ if ((taglen = ber_put_tag(ber, (*sos)->sos_tag, 1)) == -1) return (-1); if (ber->ber_options & KMFBER_OPT_USE_DER) { /* Write the length in the minimum # of octets */ if (kmfber_put_len(ber, len, 1) == -1) return (-1); if (lenlen != FOUR_BYTE_LEN) { /* * We set aside FOUR_BYTE_LEN bytes for * the length field. Move the data if * we don't actually need that much */ (void) memmove((*sos)->sos_first + taglen + lenlen, (*sos)->sos_first + taglen + FOUR_BYTE_LEN, len); } } else { /* Fill FOUR_BYTE_LEN bytes for length field */ /* one byte of length length */ if (kmfber_write(ber, (char *)<ag, 1, 1) != 1) return (-1); /* the length itself */ if (kmfber_write(ber, (char *)&netlen + sizeof (ber_int_t) - (FOUR_BYTE_LEN - 1), FOUR_BYTE_LEN - 1, 1) != FOUR_BYTE_LEN - 1) return (-1); } /* The ber_ptr is at the set/seq start - move it to the end */ ber->ber_ptr += len; } else { ber_tag_t ntag; /* the tag */ taglen = kmfber_calc_taglen((*sos)->sos_tag); ntag = htonl((*sos)->sos_tag); (void) memmove((*sos)->sos_first, (char *)&ntag + sizeof (ber_int_t) - taglen, taglen); if (ber->ber_options & KMFBER_OPT_USE_DER) { ltag = (lenlen == 1) ? (unsigned char)len : (unsigned char) (0x80 + (lenlen - 1)); } /* one byte of length length */ (void) memmove((*sos)->sos_first + 1, <ag, 1); if (ber->ber_options & KMFBER_OPT_USE_DER) { if (lenlen > 1) { /* Write the length itself */ (void) memmove((*sos)->sos_first + 2, (char *)&netlen + sizeof (ber_uint_t) - (lenlen - 1), lenlen - 1); } if (lenlen != FOUR_BYTE_LEN) { /* * We set aside FOUR_BYTE_LEN bytes for * the length field. Move the data if * we don't actually need that much */ (void) memmove((*sos)->sos_first + taglen + lenlen, (*sos)->sos_first + taglen + FOUR_BYTE_LEN, len); } } else { /* the length itself */ (void) memmove((*sos)->sos_first + taglen + 1, (char *) &netlen + sizeof (ber_int_t) - (FOUR_BYTE_LEN - 1), FOUR_BYTE_LEN - 1); } next->sos_clen += (taglen + lenlen + len); next->sos_ptr += (taglen + lenlen + len); } /* we're done with this seqorset, so free it up */ /* was this one from the local stack ? */ if (ber->ber_sos_stack_posn > SOS_STACK_SIZE) { free((char *)(*sos)); } ber->ber_sos_stack_posn--; *sos = next; return (taglen + lenlen + len); } /* VARARGS */ int kmfber_printf(BerElement *ber, const char *fmt, ...) { va_list ap; char *s, **ss; struct berval **bv, *oid; int rc, i, t; ber_int_t len; va_start(ap, fmt); #ifdef KMFBER_DEBUG if (lber_debug & 64) { char msg[80]; sprintf(msg, "kmfber_printf fmt (%s)\n", fmt); ber_err_print(msg); } #endif for (rc = 0; *fmt && rc != -1; fmt++) { switch (*fmt) { case 'b': /* boolean */ i = va_arg(ap, int); rc = kmfber_put_boolean(ber, i, ber->ber_tag); break; case 'i': /* int */ i = va_arg(ap, int); rc = ber_put_int(ber, (ber_int_t)i, ber->ber_tag); break; case 'D': /* Object ID */ if ((oid = va_arg(ap, struct berval *)) == NULL) break; rc = ber_put_oid(ber, oid, ber->ber_tag); break; case 'I': /* int */ s = va_arg(ap, char *); len = va_arg(ap, ber_int_t); rc = ber_put_big_int(ber, ber->ber_tag, s, len); break; case 'e': /* enumeration */ i = va_arg(ap, int); rc = kmfber_put_enum(ber, (ber_int_t)i, ber->ber_tag); break; case 'l': t = va_arg(ap, int); rc = kmfber_put_len(ber, t, 0); break; case 'n': /* null */ rc = kmfber_put_null(ber, ber->ber_tag); break; case 'o': /* octet string (non-null terminated) */ s = va_arg(ap, char *); len = va_arg(ap, int); rc = kmfber_put_ostring(ber, s, len, ber->ber_tag); break; case 's': /* string */ s = va_arg(ap, char *); rc = kmfber_put_string(ber, s, ber->ber_tag); break; case 'B': /* bit string */ s = va_arg(ap, char *); len = va_arg(ap, int); /* in bits */ rc = kmfber_put_bitstring(ber, s, len, ber->ber_tag); break; case 't': /* tag for the next element */ ber->ber_tag = va_arg(ap, ber_tag_t); ber->ber_usertag = 1; break; case 'T': /* Write an explicit tag, but don't change current */ t = va_arg(ap, int); rc = ber_put_tag(ber, t, 0); break; case 'v': /* vector of strings */ if ((ss = va_arg(ap, char **)) == NULL) break; for (i = 0; ss[i] != NULL; i++) { if ((rc = kmfber_put_string(ber, ss[i], ber->ber_tag)) == -1) break; } break; case 'V': /* sequences of strings + lengths */ if ((bv = va_arg(ap, struct berval **)) == NULL) break; for (i = 0; bv[i] != NULL; i++) { if ((rc = kmfber_put_ostring(ber, bv[i]->bv_val, bv[i]->bv_len, ber->ber_tag)) == -1) break; } break; case '{': /* begin sequence */ rc = kmfber_start_seq(ber, ber->ber_tag); break; case '}': /* end sequence */ rc = ber_put_seqorset(ber); break; case '[': /* begin set */ rc = kmfber_start_set(ber, ber->ber_tag); break; case ']': /* end set */ rc = ber_put_seqorset(ber); break; default: { #ifdef KMFBER_DEBUG char msg[80]; sprintf(msg, "unknown fmt %c\n", *fmt); ber_err_print(msg); #endif rc = -1; break; } } if (ber->ber_usertag == 0) ber->ber_tag = KMFBER_DEFAULT; else ber->ber_usertag = 0; } va_end(ap); return (rc); }