/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include #define DT_MASK_LO 0x00000000FFFFFFFFULL /* * We declare this here because (1) we need it and (2) we want to avoid a * dependency on libm in libdtrace. */ static long double dt_fabsl(long double x) { if (x < 0) return (-x); return (x); } /* * 128-bit arithmetic functions needed to support the stddev() aggregating * action. */ static int dt_gt_128(uint64_t *a, uint64_t *b) { return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0])); } static int dt_ge_128(uint64_t *a, uint64_t *b) { return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0])); } static int dt_le_128(uint64_t *a, uint64_t *b) { return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0])); } /* * Shift the 128-bit value in a by b. If b is positive, shift left. * If b is negative, shift right. */ static void dt_shift_128(uint64_t *a, int b) { uint64_t mask; if (b == 0) return; if (b < 0) { b = -b; if (b >= 64) { a[0] = a[1] >> (b - 64); a[1] = 0; } else { a[0] >>= b; mask = 1LL << (64 - b); mask -= 1; a[0] |= ((a[1] & mask) << (64 - b)); a[1] >>= b; } } else { if (b >= 64) { a[1] = a[0] << (b - 64); a[0] = 0; } else { a[1] <<= b; mask = a[0] >> (64 - b); a[1] |= mask; a[0] <<= b; } } } static int dt_nbits_128(uint64_t *a) { int nbits = 0; uint64_t tmp[2]; uint64_t zero[2] = { 0, 0 }; tmp[0] = a[0]; tmp[1] = a[1]; dt_shift_128(tmp, -1); while (dt_gt_128(tmp, zero)) { dt_shift_128(tmp, -1); nbits++; } return (nbits); } static void dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference) { uint64_t result[2]; result[0] = minuend[0] - subtrahend[0]; result[1] = minuend[1] - subtrahend[1] - (minuend[0] < subtrahend[0] ? 1 : 0); difference[0] = result[0]; difference[1] = result[1]; } static void dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum) { uint64_t result[2]; result[0] = addend1[0] + addend2[0]; result[1] = addend1[1] + addend2[1] + (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0); sum[0] = result[0]; sum[1] = result[1]; } /* * The basic idea is to break the 2 64-bit values into 4 32-bit values, * use native multiplication on those, and then re-combine into the * resulting 128-bit value. * * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) = * hi1 * hi2 << 64 + * hi1 * lo2 << 32 + * hi2 * lo1 << 32 + * lo1 * lo2 */ static void dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product) { uint64_t hi1, hi2, lo1, lo2; uint64_t tmp[2]; hi1 = factor1 >> 32; hi2 = factor2 >> 32; lo1 = factor1 & DT_MASK_LO; lo2 = factor2 & DT_MASK_LO; product[0] = lo1 * lo2; product[1] = hi1 * hi2; tmp[0] = hi1 * lo2; tmp[1] = 0; dt_shift_128(tmp, 32); dt_add_128(product, tmp, product); tmp[0] = hi2 * lo1; tmp[1] = 0; dt_shift_128(tmp, 32); dt_add_128(product, tmp, product); } /* * This is long-hand division. * * We initialize subtrahend by shifting divisor left as far as possible. We * loop, comparing subtrahend to dividend: if subtrahend is smaller, we * subtract and set the appropriate bit in the result. We then shift * subtrahend right by one bit for the next comparison. */ static void dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient) { uint64_t result[2] = { 0, 0 }; uint64_t remainder[2]; uint64_t subtrahend[2]; uint64_t divisor_128[2]; uint64_t mask[2] = { 1, 0 }; int log = 0; assert(divisor != 0); divisor_128[0] = divisor; divisor_128[1] = 0; remainder[0] = dividend[0]; remainder[1] = dividend[1]; subtrahend[0] = divisor; subtrahend[1] = 0; while (divisor > 0) { log++; divisor >>= 1; } dt_shift_128(subtrahend, 128 - log); dt_shift_128(mask, 128 - log); while (dt_ge_128(remainder, divisor_128)) { if (dt_ge_128(remainder, subtrahend)) { dt_subtract_128(remainder, subtrahend, remainder); result[0] |= mask[0]; result[1] |= mask[1]; } dt_shift_128(subtrahend, -1); dt_shift_128(mask, -1); } quotient[0] = result[0]; quotient[1] = result[1]; } /* * This is the long-hand method of calculating a square root. * The algorithm is as follows: * * 1. Group the digits by 2 from the right. * 2. Over the leftmost group, find the largest single-digit number * whose square is less than that group. * 3. Subtract the result of the previous step (2 or 4, depending) and * bring down the next two-digit group. * 4. For the result R we have so far, find the largest single-digit number * x such that 2 * R * 10 * x + x^2 is less than the result from step 3. * (Note that this is doubling R and performing a decimal left-shift by 1 * and searching for the appropriate decimal to fill the one's place.) * The value x is the next digit in the square root. * Repeat steps 3 and 4 until the desired precision is reached. (We're * dealing with integers, so the above is sufficient.) * * In decimal, the square root of 582,734 would be calculated as so: * * __7__6__3 * | 58 27 34 * -49 (7^2 == 49 => 7 is the first digit in the square root) * -- * 9 27 (Subtract and bring down the next group.) * 146 8 76 (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in * ----- the square root) * 51 34 (Subtract and bring down the next group.) * 1523 45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in * ----- the square root) * 5 65 (remainder) * * The above algorithm applies similarly in binary, but note that the * only possible non-zero value for x in step 4 is 1, so step 4 becomes a * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the * preceding difference? * * In binary, the square root of 11011011 would be calculated as so: * * __1__1__1__0 * | 11 01 10 11 * 01 (0 << 2 + 1 == 1 < 11 => this bit is 1) * -- * 10 01 10 11 * 101 1 01 (1 << 2 + 1 == 101 < 1001 => next bit is 1) * ----- * 1 00 10 11 * 1101 11 01 (11 << 2 + 1 == 1101 < 10010 => next bit is 1) * ------- * 1 01 11 * 11101 1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0) * */ static uint64_t dt_sqrt_128(uint64_t *square) { uint64_t result[2] = { 0, 0 }; uint64_t diff[2] = { 0, 0 }; uint64_t one[2] = { 1, 0 }; uint64_t next_pair[2]; uint64_t next_try[2]; uint64_t bit_pairs, pair_shift; int i; bit_pairs = dt_nbits_128(square) / 2; pair_shift = bit_pairs * 2; for (i = 0; i <= bit_pairs; i++) { /* * Bring down the next pair of bits. */ next_pair[0] = square[0]; next_pair[1] = square[1]; dt_shift_128(next_pair, -pair_shift); next_pair[0] &= 0x3; next_pair[1] = 0; dt_shift_128(diff, 2); dt_add_128(diff, next_pair, diff); /* * next_try = R << 2 + 1 */ next_try[0] = result[0]; next_try[1] = result[1]; dt_shift_128(next_try, 2); dt_add_128(next_try, one, next_try); if (dt_le_128(next_try, diff)) { dt_subtract_128(diff, next_try, diff); dt_shift_128(result, 1); dt_add_128(result, one, result); } else { dt_shift_128(result, 1); } pair_shift -= 2; } assert(result[1] == 0); return (result[0]); } uint64_t dt_stddev(uint64_t *data, uint64_t normal) { uint64_t avg_of_squares[2]; uint64_t square_of_avg[2]; int64_t norm_avg; uint64_t diff[2]; /* * The standard approximation for standard deviation is * sqrt(average(x**2) - average(x)**2), i.e. the square root * of the average of the squares minus the square of the average. */ dt_divide_128(data + 2, normal, avg_of_squares); dt_divide_128(avg_of_squares, data[0], avg_of_squares); norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0]; if (norm_avg < 0) norm_avg = -norm_avg; dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg); dt_subtract_128(avg_of_squares, square_of_avg, diff); return (dt_sqrt_128(diff)); } static int dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last, dtrace_bufdesc_t *buf, size_t offs) { dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd; dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd; char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub; dtrace_flowkind_t flow = DTRACEFLOW_NONE; const char *str = NULL; static const char *e_str[2] = { " -> ", " => " }; static const char *r_str[2] = { " <- ", " <= " }; static const char *ent = "entry", *ret = "return"; static int entlen = 0, retlen = 0; dtrace_epid_t next, id = epd->dtepd_epid; int rval; if (entlen == 0) { assert(retlen == 0); entlen = strlen(ent); retlen = strlen(ret); } /* * If the name of the probe is "entry" or ends with "-entry", we * treat it as an entry; if it is "return" or ends with "-return", * we treat it as a return. (This allows application-provided probes * like "method-entry" or "function-entry" to participate in flow * indentation -- without accidentally misinterpreting popular probe * names like "carpentry", "gentry" or "Coventry".) */ if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' && (sub == n || sub[-1] == '-')) { flow = DTRACEFLOW_ENTRY; str = e_str[strcmp(p, "syscall") == 0]; } else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' && (sub == n || sub[-1] == '-')) { flow = DTRACEFLOW_RETURN; str = r_str[strcmp(p, "syscall") == 0]; } /* * If we're going to indent this, we need to check the ID of our last * call. If we're looking at the same probe ID but a different EPID, * we _don't_ want to indent. (Yes, there are some minor holes in * this scheme -- it's a heuristic.) */ if (flow == DTRACEFLOW_ENTRY) { if ((last != DTRACE_EPIDNONE && id != last && pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id)) flow = DTRACEFLOW_NONE; } /* * If we're going to unindent this, it's more difficult to see if * we don't actually want to unindent it -- we need to look at the * _next_ EPID. */ if (flow == DTRACEFLOW_RETURN) { offs += epd->dtepd_size; do { if (offs >= buf->dtbd_size) { /* * We're at the end -- maybe. If the oldest * record is non-zero, we need to wrap. */ if (buf->dtbd_oldest != 0) { offs = 0; } else { goto out; } } next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs); if (next == DTRACE_EPIDNONE) offs += sizeof (id); } while (next == DTRACE_EPIDNONE); if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0) return (rval); if (next != id && npd->dtpd_id == pd->dtpd_id) flow = DTRACEFLOW_NONE; } out: if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) { data->dtpda_prefix = str; } else { data->dtpda_prefix = "| "; } if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0) data->dtpda_indent -= 2; data->dtpda_flow = flow; return (0); } static int dt_nullprobe() { return (DTRACE_CONSUME_THIS); } static int dt_nullrec() { return (DTRACE_CONSUME_NEXT); } int dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val, uint64_t normal, long double total, char positives, char negatives) { long double f; uint_t depth, len = 40; const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@"; const char *spaces = " "; assert(strlen(ats) == len && strlen(spaces) == len); assert(!(total == 0 && (positives || negatives))); assert(!(val < 0 && !negatives)); assert(!(val > 0 && !positives)); assert(!(val != 0 && total == 0)); if (!negatives) { if (positives) { f = (dt_fabsl((long double)val) * len) / total; depth = (uint_t)(f + 0.5); } else { depth = 0; } return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth, spaces + depth, (long long)val / normal)); } if (!positives) { f = (dt_fabsl((long double)val) * len) / total; depth = (uint_t)(f + 0.5); return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth, ats + len - depth, (long long)val / normal)); } /* * If we're here, we have both positive and negative bucket values. * To express this graphically, we're going to generate both positive * and negative bars separated by a centerline. These bars are half * the size of normal quantize()/lquantize() bars, so we divide the * length in half before calculating the bar length. */ len /= 2; ats = &ats[len]; spaces = &spaces[len]; f = (dt_fabsl((long double)val) * len) / total; depth = (uint_t)(f + 0.5); if (val <= 0) { return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth, ats + len - depth, len, "", (long long)val / normal)); } else { return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "", ats + len - depth, spaces + depth, (long long)val / normal)); } } int dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr, size_t size, uint64_t normal) { const int64_t *data = addr; int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1; long double total = 0; char positives = 0, negatives = 0; if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t)) return (dt_set_errno(dtp, EDT_DMISMATCH)); while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0) first_bin++; if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) { /* * There isn't any data. This is possible if (and only if) * negative increment values have been used. In this case, * we'll print the buckets around 0. */ first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1; last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1; } else { if (first_bin > 0) first_bin--; while (last_bin > 0 && data[last_bin] == 0) last_bin--; if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1) last_bin++; } for (i = first_bin; i <= last_bin; i++) { positives |= (data[i] > 0); negatives |= (data[i] < 0); total += dt_fabsl((long double)data[i]); } if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value", "------------- Distribution -------------", "count") < 0) return (-1); for (i = first_bin; i <= last_bin; i++) { if (dt_printf(dtp, fp, "%16lld ", (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0) return (-1); if (dt_print_quantline(dtp, fp, data[i], normal, total, positives, negatives) < 0) return (-1); } return (0); } int dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr, size_t size, uint64_t normal) { const int64_t *data = addr; int i, first_bin, last_bin, base; uint64_t arg; long double total = 0; uint16_t step, levels; char positives = 0, negatives = 0; if (size < sizeof (uint64_t)) return (dt_set_errno(dtp, EDT_DMISMATCH)); arg = *data++; size -= sizeof (uint64_t); base = DTRACE_LQUANTIZE_BASE(arg); step = DTRACE_LQUANTIZE_STEP(arg); levels = DTRACE_LQUANTIZE_LEVELS(arg); first_bin = 0; last_bin = levels + 1; if (size != sizeof (uint64_t) * (levels + 2)) return (dt_set_errno(dtp, EDT_DMISMATCH)); while (first_bin <= levels + 1 && data[first_bin] == 0) first_bin++; if (first_bin > levels + 1) { first_bin = 0; last_bin = 2; } else { if (first_bin > 0) first_bin--; while (last_bin > 0 && data[last_bin] == 0) last_bin--; if (last_bin < levels + 1) last_bin++; } for (i = first_bin; i <= last_bin; i++) { positives |= (data[i] > 0); negatives |= (data[i] < 0); total += dt_fabsl((long double)data[i]); } if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value", "------------- Distribution -------------", "count") < 0) return (-1); for (i = first_bin; i <= last_bin; i++) { char c[32]; int err; if (i == 0) { (void) snprintf(c, sizeof (c), "< %d", base / (uint32_t)normal); err = dt_printf(dtp, fp, "%16s ", c); } else if (i == levels + 1) { (void) snprintf(c, sizeof (c), ">= %d", base + (levels * step)); err = dt_printf(dtp, fp, "%16s ", c); } else { err = dt_printf(dtp, fp, "%16d ", base + (i - 1) * step); } if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal, total, positives, negatives) < 0) return (-1); } return (0); } /*ARGSUSED*/ static int dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, size_t size, uint64_t normal) { /* LINTED - alignment */ int64_t *data = (int64_t *)addr; return (dt_printf(dtp, fp, " %16lld", data[0] ? (long long)(data[1] / (int64_t)normal / data[0]) : 0)); } /*ARGSUSED*/ static int dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, size_t size, uint64_t normal) { /* LINTED - alignment */ uint64_t *data = (uint64_t *)addr; return (dt_printf(dtp, fp, " %16llu", data[0] ? (unsigned long long) dt_stddev(data, normal) : 0)); } /*ARGSUSED*/ int dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, size_t nbytes, int width, int quiet) { /* * If the byte stream is a series of printable characters, followed by * a terminating byte, we print it out as a string. Otherwise, we * assume that it's something else and just print the bytes. */ int i, j, margin = 5; char *c = (char *)addr; if (nbytes == 0) return (0); if (dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET) goto raw; for (i = 0; i < nbytes; i++) { /* * We define a "printable character" to be one for which * isprint(3C) returns non-zero, isspace(3C) returns non-zero, * or a character which is either backspace or the bell. * Backspace and the bell are regrettably special because * they fail the first two tests -- and yet they are entirely * printable. These are the only two control characters that * have meaning for the terminal and for which isprint(3C) and * isspace(3C) return 0. */ if (isprint(c[i]) || isspace(c[i]) || c[i] == '\b' || c[i] == '\a') continue; if (c[i] == '\0' && i > 0) { /* * This looks like it might be a string. Before we * assume that it is indeed a string, check the * remainder of the byte range; if it contains * additional non-nul characters, we'll assume that * it's a binary stream that just happens to look like * a string, and we'll print out the individual bytes. */ for (j = i + 1; j < nbytes; j++) { if (c[j] != '\0') break; } if (j != nbytes) break; if (quiet) return (dt_printf(dtp, fp, "%s", c)); else return (dt_printf(dtp, fp, " %-*s", width, c)); } break; } if (i == nbytes) { /* * The byte range is all printable characters, but there is * no trailing nul byte. We'll assume that it's a string and * print it as such. */ char *s = alloca(nbytes + 1); bcopy(c, s, nbytes); s[nbytes] = '\0'; return (dt_printf(dtp, fp, " %-*s", width, s)); } raw: if (dt_printf(dtp, fp, "\n%*s ", margin, "") < 0) return (-1); for (i = 0; i < 16; i++) if (dt_printf(dtp, fp, " %c", "0123456789abcdef"[i]) < 0) return (-1); if (dt_printf(dtp, fp, " 0123456789abcdef\n") < 0) return (-1); for (i = 0; i < nbytes; i += 16) { if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0) return (-1); for (j = i; j < i + 16 && j < nbytes; j++) { if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0) return (-1); } while (j++ % 16) { if (dt_printf(dtp, fp, " ") < 0) return (-1); } if (dt_printf(dtp, fp, " ") < 0) return (-1); for (j = i; j < i + 16 && j < nbytes; j++) { if (dt_printf(dtp, fp, "%c", c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0) return (-1); } if (dt_printf(dtp, fp, "\n") < 0) return (-1); } return (0); } int dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr, int depth, int size) { dtrace_syminfo_t dts; GElf_Sym sym; int i, indent; char c[PATH_MAX * 2]; uint64_t pc; if (dt_printf(dtp, fp, "\n") < 0) return (-1); if (format == NULL) format = "%s"; if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET) indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT]; else indent = _dtrace_stkindent; for (i = 0; i < depth; i++) { switch (size) { case sizeof (uint32_t): /* LINTED - alignment */ pc = *((uint32_t *)addr); break; case sizeof (uint64_t): /* LINTED - alignment */ pc = *((uint64_t *)addr); break; default: return (dt_set_errno(dtp, EDT_BADSTACKPC)); } if (pc == NULL) break; addr += size; if (dt_printf(dtp, fp, "%*s", indent, "") < 0) return (-1); if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) { if (pc > sym.st_value) { (void) snprintf(c, sizeof (c), "%s`%s+0x%llx", dts.dts_object, dts.dts_name, pc - sym.st_value); } else { (void) snprintf(c, sizeof (c), "%s`%s", dts.dts_object, dts.dts_name); } } else { /* * We'll repeat the lookup, but this time we'll specify * a NULL GElf_Sym -- indicating that we're only * interested in the containing module. */ if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) { (void) snprintf(c, sizeof (c), "%s`0x%llx", dts.dts_object, pc); } else { (void) snprintf(c, sizeof (c), "0x%llx", pc); } } if (dt_printf(dtp, fp, format, c) < 0) return (-1); if (dt_printf(dtp, fp, "\n") < 0) return (-1); } return (0); } int dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr, uint64_t arg) { /* LINTED - alignment */ uint64_t *pc = (uint64_t *)addr; uint32_t depth = DTRACE_USTACK_NFRAMES(arg); uint32_t strsize = DTRACE_USTACK_STRSIZE(arg); const char *strbase = addr + (depth + 1) * sizeof (uint64_t); const char *str = strsize ? strbase : NULL; int err = 0; char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2]; struct ps_prochandle *P; GElf_Sym sym; int i, indent; pid_t pid; if (depth == 0) return (0); pid = (pid_t)*pc++; if (dt_printf(dtp, fp, "\n") < 0) return (-1); if (format == NULL) format = "%s"; if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET) indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT]; else indent = _dtrace_stkindent; /* * Ultimately, we need to add an entry point in the library vector for * determining from . For now, if * this is a vector open, we just print the raw address or string. */ if (dtp->dt_vector == NULL) P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0); else P = NULL; if (P != NULL) dt_proc_lock(dtp, P); /* lock handle while we perform lookups */ for (i = 0; i < depth && pc[i] != NULL; i++) { const prmap_t *map; if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0) break; if (P != NULL && Plookup_by_addr(P, pc[i], name, sizeof (name), &sym) == 0) { (void) Pobjname(P, pc[i], objname, sizeof (objname)); if (pc[i] > sym.st_value) { (void) snprintf(c, sizeof (c), "%s`%s+0x%llx", dt_basename(objname), name, (u_longlong_t)(pc[i] - sym.st_value)); } else { (void) snprintf(c, sizeof (c), "%s`%s", dt_basename(objname), name); } } else if (str != NULL && str[0] != '\0' && str[0] != '@' && (P != NULL && ((map = Paddr_to_map(P, pc[i])) == NULL || (map->pr_mflags & MA_WRITE)))) { /* * If the current string pointer in the string table * does not point to an empty string _and_ the program * counter falls in a writable region, we'll use the * string from the string table instead of the raw * address. This last condition is necessary because * some (broken) ustack helpers will return a string * even for a program counter that they can't * identify. If we have a string for a program * counter that falls in a segment that isn't * writable, we assume that we have fallen into this * case and we refuse to use the string. */ (void) snprintf(c, sizeof (c), "%s", str); } else { if (P != NULL && Pobjname(P, pc[i], objname, sizeof (objname)) != NULL) { (void) snprintf(c, sizeof (c), "%s`0x%llx", dt_basename(objname), (u_longlong_t)pc[i]); } else { (void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc[i]); } } if ((err = dt_printf(dtp, fp, format, c)) < 0) break; if ((err = dt_printf(dtp, fp, "\n")) < 0) break; if (str != NULL && str[0] == '@') { /* * If the first character of the string is an "at" sign, * then the string is inferred to be an annotation -- * and it is printed out beneath the frame and offset * with brackets. */ if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0) break; (void) snprintf(c, sizeof (c), " [ %s ]", &str[1]); if ((err = dt_printf(dtp, fp, format, c)) < 0) break; if ((err = dt_printf(dtp, fp, "\n")) < 0) break; } if (str != NULL) { str += strlen(str) + 1; if (str - strbase >= strsize) str = NULL; } } if (P != NULL) { dt_proc_unlock(dtp, P); dt_proc_release(dtp, P); } return (err); } static int dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act) { /* LINTED - alignment */ uint64_t pid = ((uint64_t *)addr)[0]; /* LINTED - alignment */ uint64_t pc = ((uint64_t *)addr)[1]; const char *format = " %-50s"; char *s; int n, len = 256; if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) { struct ps_prochandle *P; if ((P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) { GElf_Sym sym; dt_proc_lock(dtp, P); if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0) pc = sym.st_value; dt_proc_unlock(dtp, P); dt_proc_release(dtp, P); } } do { n = len; s = alloca(n); } while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) > n); return (dt_printf(dtp, fp, format, s)); } int dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr) { /* LINTED - alignment */ uint64_t pid = ((uint64_t *)addr)[0]; /* LINTED - alignment */ uint64_t pc = ((uint64_t *)addr)[1]; int err = 0; char objname[PATH_MAX], c[PATH_MAX * 2]; struct ps_prochandle *P; if (format == NULL) format = " %-50s"; /* * See the comment in dt_print_ustack() for the rationale for * printing raw addresses in the vectored case. */ if (dtp->dt_vector == NULL) P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0); else P = NULL; if (P != NULL) dt_proc_lock(dtp, P); /* lock handle while we perform lookups */ if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != NULL) { (void) snprintf(c, sizeof (c), "%s", dt_basename(objname)); } else { (void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc); } err = dt_printf(dtp, fp, format, c); if (P != NULL) { dt_proc_unlock(dtp, P); dt_proc_release(dtp, P); } return (err); } static int dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr) { /* LINTED - alignment */ uint64_t pc = *((uint64_t *)addr); dtrace_syminfo_t dts; GElf_Sym sym; char c[PATH_MAX * 2]; if (format == NULL) format = " %-50s"; if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) { (void) snprintf(c, sizeof (c), "%s`%s", dts.dts_object, dts.dts_name); } else { /* * We'll repeat the lookup, but this time we'll specify a * NULL GElf_Sym -- indicating that we're only interested in * the containing module. */ if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) { (void) snprintf(c, sizeof (c), "%s`0x%llx", dts.dts_object, (u_longlong_t)pc); } else { (void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc); } } if (dt_printf(dtp, fp, format, c) < 0) return (-1); return (0); } int dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr) { /* LINTED - alignment */ uint64_t pc = *((uint64_t *)addr); dtrace_syminfo_t dts; char c[PATH_MAX * 2]; if (format == NULL) format = " %-50s"; if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) { (void) snprintf(c, sizeof (c), "%s", dts.dts_object); } else { (void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc); } if (dt_printf(dtp, fp, format, c) < 0) return (-1); return (0); } typedef struct dt_normal { dtrace_aggvarid_t dtnd_id; uint64_t dtnd_normal; } dt_normal_t; static int dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg) { dt_normal_t *normal = arg; dtrace_aggdesc_t *agg = aggdata->dtada_desc; dtrace_aggvarid_t id = normal->dtnd_id; if (agg->dtagd_nrecs == 0) return (DTRACE_AGGWALK_NEXT); if (agg->dtagd_varid != id) return (DTRACE_AGGWALK_NEXT); ((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal; return (DTRACE_AGGWALK_NORMALIZE); } static int dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec) { dt_normal_t normal; caddr_t addr; /* * We (should) have two records: the aggregation ID followed by the * normalization value. */ addr = base + rec->dtrd_offset; if (rec->dtrd_size != sizeof (dtrace_aggvarid_t)) return (dt_set_errno(dtp, EDT_BADNORMAL)); /* LINTED - alignment */ normal.dtnd_id = *((dtrace_aggvarid_t *)addr); rec++; if (rec->dtrd_action != DTRACEACT_LIBACT) return (dt_set_errno(dtp, EDT_BADNORMAL)); if (rec->dtrd_arg != DT_ACT_NORMALIZE) return (dt_set_errno(dtp, EDT_BADNORMAL)); addr = base + rec->dtrd_offset; switch (rec->dtrd_size) { case sizeof (uint64_t): /* LINTED - alignment */ normal.dtnd_normal = *((uint64_t *)addr); break; case sizeof (uint32_t): /* LINTED - alignment */ normal.dtnd_normal = *((uint32_t *)addr); break; case sizeof (uint16_t): /* LINTED - alignment */ normal.dtnd_normal = *((uint16_t *)addr); break; case sizeof (uint8_t): normal.dtnd_normal = *((uint8_t *)addr); break; default: return (dt_set_errno(dtp, EDT_BADNORMAL)); } (void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal); return (0); } static int dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg) { dtrace_aggdesc_t *agg = aggdata->dtada_desc; dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg); if (agg->dtagd_nrecs == 0) return (DTRACE_AGGWALK_NEXT); if (agg->dtagd_varid != id) return (DTRACE_AGGWALK_NEXT); return (DTRACE_AGGWALK_DENORMALIZE); } static int dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg) { dtrace_aggdesc_t *agg = aggdata->dtada_desc; dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg); if (agg->dtagd_nrecs == 0) return (DTRACE_AGGWALK_NEXT); if (agg->dtagd_varid != id) return (DTRACE_AGGWALK_NEXT); return (DTRACE_AGGWALK_CLEAR); } typedef struct dt_trunc { dtrace_aggvarid_t dttd_id; uint64_t dttd_remaining; } dt_trunc_t; static int dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg) { dt_trunc_t *trunc = arg; dtrace_aggdesc_t *agg = aggdata->dtada_desc; dtrace_aggvarid_t id = trunc->dttd_id; if (agg->dtagd_nrecs == 0) return (DTRACE_AGGWALK_NEXT); if (agg->dtagd_varid != id) return (DTRACE_AGGWALK_NEXT); if (trunc->dttd_remaining == 0) return (DTRACE_AGGWALK_REMOVE); trunc->dttd_remaining--; return (DTRACE_AGGWALK_NEXT); } static int dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec) { dt_trunc_t trunc; caddr_t addr; int64_t remaining; int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *); /* * We (should) have two records: the aggregation ID followed by the * number of aggregation entries after which the aggregation is to be * truncated. */ addr = base + rec->dtrd_offset; if (rec->dtrd_size != sizeof (dtrace_aggvarid_t)) return (dt_set_errno(dtp, EDT_BADTRUNC)); /* LINTED - alignment */ trunc.dttd_id = *((dtrace_aggvarid_t *)addr); rec++; if (rec->dtrd_action != DTRACEACT_LIBACT) return (dt_set_errno(dtp, EDT_BADTRUNC)); if (rec->dtrd_arg != DT_ACT_TRUNC) return (dt_set_errno(dtp, EDT_BADTRUNC)); addr = base + rec->dtrd_offset; switch (rec->dtrd_size) { case sizeof (uint64_t): /* LINTED - alignment */ remaining = *((int64_t *)addr); break; case sizeof (uint32_t): /* LINTED - alignment */ remaining = *((int32_t *)addr); break; case sizeof (uint16_t): /* LINTED - alignment */ remaining = *((int16_t *)addr); break; case sizeof (uint8_t): remaining = *((int8_t *)addr); break; default: return (dt_set_errno(dtp, EDT_BADNORMAL)); } if (remaining < 0) { func = dtrace_aggregate_walk_valsorted; remaining = -remaining; } else { func = dtrace_aggregate_walk_valrevsorted; } assert(remaining >= 0); trunc.dttd_remaining = remaining; (void) func(dtp, dt_trunc_agg, &trunc); return (0); } static int dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec, caddr_t addr, size_t size, uint64_t normal) { int err; dtrace_actkind_t act = rec->dtrd_action; switch (act) { case DTRACEACT_STACK: return (dt_print_stack(dtp, fp, NULL, addr, rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg)); case DTRACEACT_USTACK: case DTRACEACT_JSTACK: return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg)); case DTRACEACT_USYM: case DTRACEACT_UADDR: return (dt_print_usym(dtp, fp, addr, act)); case DTRACEACT_UMOD: return (dt_print_umod(dtp, fp, NULL, addr)); case DTRACEACT_SYM: return (dt_print_sym(dtp, fp, NULL, addr)); case DTRACEACT_MOD: return (dt_print_mod(dtp, fp, NULL, addr)); case DTRACEAGG_QUANTIZE: return (dt_print_quantize(dtp, fp, addr, size, normal)); case DTRACEAGG_LQUANTIZE: return (dt_print_lquantize(dtp, fp, addr, size, normal)); case DTRACEAGG_AVG: return (dt_print_average(dtp, fp, addr, size, normal)); case DTRACEAGG_STDDEV: return (dt_print_stddev(dtp, fp, addr, size, normal)); default: break; } switch (size) { case sizeof (uint64_t): err = dt_printf(dtp, fp, " %16lld", /* LINTED - alignment */ (long long)*((uint64_t *)addr) / normal); break; case sizeof (uint32_t): /* LINTED - alignment */ err = dt_printf(dtp, fp, " %8d", *((uint32_t *)addr) / (uint32_t)normal); break; case sizeof (uint16_t): /* LINTED - alignment */ err = dt_printf(dtp, fp, " %5d", *((uint16_t *)addr) / (uint32_t)normal); break; case sizeof (uint8_t): err = dt_printf(dtp, fp, " %3d", *((uint8_t *)addr) / (uint32_t)normal); break; default: err = dt_print_bytes(dtp, fp, addr, size, 50, 0); break; } return (err); } int dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg) { int i, aggact = 0; dt_print_aggdata_t *pd = arg; const dtrace_aggdata_t *aggdata = aggsdata[0]; dtrace_aggdesc_t *agg = aggdata->dtada_desc; FILE *fp = pd->dtpa_fp; dtrace_hdl_t *dtp = pd->dtpa_dtp; dtrace_recdesc_t *rec; dtrace_actkind_t act; caddr_t addr; size_t size; /* * Iterate over each record description in the key, printing the traced * data, skipping the first datum (the tuple member created by the * compiler). */ for (i = 1; i < agg->dtagd_nrecs; i++) { rec = &agg->dtagd_rec[i]; act = rec->dtrd_action; addr = aggdata->dtada_data + rec->dtrd_offset; size = rec->dtrd_size; if (DTRACEACT_ISAGG(act)) { aggact = i; break; } if (dt_print_datum(dtp, fp, rec, addr, size, 1) < 0) return (-1); if (dt_buffered_flush(dtp, NULL, rec, aggdata, DTRACE_BUFDATA_AGGKEY) < 0) return (-1); } assert(aggact != 0); for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) { uint64_t normal; aggdata = aggsdata[i]; agg = aggdata->dtada_desc; rec = &agg->dtagd_rec[aggact]; act = rec->dtrd_action; addr = aggdata->dtada_data + rec->dtrd_offset; size = rec->dtrd_size; assert(DTRACEACT_ISAGG(act)); normal = aggdata->dtada_normal; if (dt_print_datum(dtp, fp, rec, addr, size, normal) < 0) return (-1); if (dt_buffered_flush(dtp, NULL, rec, aggdata, DTRACE_BUFDATA_AGGVAL) < 0) return (-1); if (!pd->dtpa_allunprint) agg->dtagd_flags |= DTRACE_AGD_PRINTED; } if (dt_printf(dtp, fp, "\n") < 0) return (-1); if (dt_buffered_flush(dtp, NULL, NULL, aggdata, DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0) return (-1); return (0); } int dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg) { dt_print_aggdata_t *pd = arg; dtrace_aggdesc_t *agg = aggdata->dtada_desc; dtrace_aggvarid_t aggvarid = pd->dtpa_id; if (pd->dtpa_allunprint) { if (agg->dtagd_flags & DTRACE_AGD_PRINTED) return (0); } else { /* * If we're not printing all unprinted aggregations, then the * aggregation variable ID denotes a specific aggregation * variable that we should print -- skip any other aggregations * that we encounter. */ if (agg->dtagd_nrecs == 0) return (0); if (aggvarid != agg->dtagd_varid) return (0); } return (dt_print_aggs(&aggdata, 1, arg)); } int dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data, const char *option, const char *value) { int len, rval; char *msg; const char *errstr; dtrace_setoptdata_t optdata; bzero(&optdata, sizeof (optdata)); (void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval); if (dtrace_setopt(dtp, option, value) == 0) { (void) dtrace_getopt(dtp, option, &optdata.dtsda_newval); optdata.dtsda_probe = data; optdata.dtsda_option = option; optdata.dtsda_handle = dtp; if ((rval = dt_handle_setopt(dtp, &optdata)) != 0) return (rval); return (0); } errstr = dtrace_errmsg(dtp, dtrace_errno(dtp)); len = strlen(option) + strlen(value) + strlen(errstr) + 80; msg = alloca(len); (void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n", option, value, errstr); if ((rval = dt_handle_liberr(dtp, data, msg)) == 0) return (0); return (rval); } static int dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu, dtrace_bufdesc_t *buf, dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg) { dtrace_epid_t id; size_t offs, start = buf->dtbd_oldest, end = buf->dtbd_size; int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET); int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET); int rval, i, n; dtrace_epid_t last = DTRACE_EPIDNONE; dtrace_probedata_t data; uint64_t drops; caddr_t addr; bzero(&data, sizeof (data)); data.dtpda_handle = dtp; data.dtpda_cpu = cpu; again: for (offs = start; offs < end; ) { dtrace_eprobedesc_t *epd; /* * We're guaranteed to have an ID. */ id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs); if (id == DTRACE_EPIDNONE) { /* * This is filler to assure proper alignment of the * next record; we simply ignore it. */ offs += sizeof (id); continue; } if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc, &data.dtpda_pdesc)) != 0) return (rval); epd = data.dtpda_edesc; data.dtpda_data = buf->dtbd_data + offs; if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) { rval = dt_handle(dtp, &data); if (rval == DTRACE_CONSUME_NEXT) goto nextepid; if (rval == DTRACE_CONSUME_ERROR) return (-1); } if (flow) (void) dt_flowindent(dtp, &data, last, buf, offs); rval = (*efunc)(&data, arg); if (flow) { if (data.dtpda_flow == DTRACEFLOW_ENTRY) data.dtpda_indent += 2; } if (rval == DTRACE_CONSUME_NEXT) goto nextepid; if (rval == DTRACE_CONSUME_ABORT) return (dt_set_errno(dtp, EDT_DIRABORT)); if (rval != DTRACE_CONSUME_THIS) return (dt_set_errno(dtp, EDT_BADRVAL)); for (i = 0; i < epd->dtepd_nrecs; i++) { dtrace_recdesc_t *rec = &epd->dtepd_rec[i]; dtrace_actkind_t act = rec->dtrd_action; data.dtpda_data = buf->dtbd_data + offs + rec->dtrd_offset; addr = data.dtpda_data; if (act == DTRACEACT_LIBACT) { uint64_t arg = rec->dtrd_arg; dtrace_aggvarid_t id; switch (arg) { case DT_ACT_CLEAR: /* LINTED - alignment */ id = *((dtrace_aggvarid_t *)addr); (void) dtrace_aggregate_walk(dtp, dt_clear_agg, &id); continue; case DT_ACT_DENORMALIZE: /* LINTED - alignment */ id = *((dtrace_aggvarid_t *)addr); (void) dtrace_aggregate_walk(dtp, dt_denormalize_agg, &id); continue; case DT_ACT_FTRUNCATE: if (fp == NULL) continue; (void) fflush(fp); (void) ftruncate(fileno(fp), 0); (void) fseeko(fp, 0, SEEK_SET); continue; case DT_ACT_NORMALIZE: if (i == epd->dtepd_nrecs - 1) return (dt_set_errno(dtp, EDT_BADNORMAL)); if (dt_normalize(dtp, buf->dtbd_data + offs, rec) != 0) return (-1); i++; continue; case DT_ACT_SETOPT: { uint64_t *opts = dtp->dt_options; dtrace_recdesc_t *valrec; uint32_t valsize; caddr_t val; int rv; if (i == epd->dtepd_nrecs - 1) { return (dt_set_errno(dtp, EDT_BADSETOPT)); } valrec = &epd->dtepd_rec[++i]; valsize = valrec->dtrd_size; if (valrec->dtrd_action != act || valrec->dtrd_arg != arg) { return (dt_set_errno(dtp, EDT_BADSETOPT)); } if (valsize > sizeof (uint64_t)) { val = buf->dtbd_data + offs + valrec->dtrd_offset; } else { val = "1"; } rv = dt_setopt(dtp, &data, addr, val); if (rv != 0) return (-1); flow = (opts[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET); quiet = (opts[DTRACEOPT_QUIET] != DTRACEOPT_UNSET); continue; } case DT_ACT_TRUNC: if (i == epd->dtepd_nrecs - 1) return (dt_set_errno(dtp, EDT_BADTRUNC)); if (dt_trunc(dtp, buf->dtbd_data + offs, rec) != 0) return (-1); i++; continue; default: continue; } } rval = (*rfunc)(&data, rec, arg); if (rval == DTRACE_CONSUME_NEXT) continue; if (rval == DTRACE_CONSUME_ABORT) return (dt_set_errno(dtp, EDT_DIRABORT)); if (rval != DTRACE_CONSUME_THIS) return (dt_set_errno(dtp, EDT_BADRVAL)); if (act == DTRACEACT_STACK) { int depth = rec->dtrd_arg; if (dt_print_stack(dtp, fp, NULL, addr, depth, rec->dtrd_size / depth) < 0) return (-1); goto nextrec; } if (act == DTRACEACT_USTACK || act == DTRACEACT_JSTACK) { if (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg) < 0) return (-1); goto nextrec; } if (act == DTRACEACT_SYM) { if (dt_print_sym(dtp, fp, NULL, addr) < 0) return (-1); goto nextrec; } if (act == DTRACEACT_MOD) { if (dt_print_mod(dtp, fp, NULL, addr) < 0) return (-1); goto nextrec; } if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) { if (dt_print_usym(dtp, fp, addr, act) < 0) return (-1); goto nextrec; } if (act == DTRACEACT_UMOD) { if (dt_print_umod(dtp, fp, NULL, addr) < 0) return (-1); goto nextrec; } if (DTRACEACT_ISPRINTFLIKE(act)) { void *fmtdata; int (*func)(dtrace_hdl_t *, FILE *, void *, const dtrace_probedata_t *, const dtrace_recdesc_t *, uint_t, const void *buf, size_t); if ((fmtdata = dt_format_lookup(dtp, rec->dtrd_format)) == NULL) goto nofmt; switch (act) { case DTRACEACT_PRINTF: func = dtrace_fprintf; break; case DTRACEACT_PRINTA: func = dtrace_fprinta; break; case DTRACEACT_SYSTEM: func = dtrace_system; break; case DTRACEACT_FREOPEN: func = dtrace_freopen; break; } n = (*func)(dtp, fp, fmtdata, &data, rec, epd->dtepd_nrecs - i, (uchar_t *)buf->dtbd_data + offs, buf->dtbd_size - offs); if (n < 0) return (-1); /* errno is set for us */ if (n > 0) i += n - 1; goto nextrec; } nofmt: if (act == DTRACEACT_PRINTA) { dt_print_aggdata_t pd; dtrace_aggvarid_t *aggvars; int j, naggvars = 0; size_t size = ((epd->dtepd_nrecs - i) * sizeof (dtrace_aggvarid_t)); if ((aggvars = dt_alloc(dtp, size)) == NULL) return (-1); /* * This might be a printa() with multiple * aggregation variables. We need to scan * forward through the records until we find * a record from a different statement. */ for (j = i; j < epd->dtepd_nrecs; j++) { dtrace_recdesc_t *nrec; caddr_t naddr; nrec = &epd->dtepd_rec[j]; if (nrec->dtrd_uarg != rec->dtrd_uarg) break; if (nrec->dtrd_action != act) { return (dt_set_errno(dtp, EDT_BADAGG)); } naddr = buf->dtbd_data + offs + nrec->dtrd_offset; aggvars[naggvars++] = /* LINTED - alignment */ *((dtrace_aggvarid_t *)naddr); } i = j - 1; bzero(&pd, sizeof (pd)); pd.dtpa_dtp = dtp; pd.dtpa_fp = fp; assert(naggvars >= 1); if (naggvars == 1) { pd.dtpa_id = aggvars[0]; dt_free(dtp, aggvars); if (dt_printf(dtp, fp, "\n") < 0 || dtrace_aggregate_walk_sorted(dtp, dt_print_agg, &pd) < 0) return (-1); goto nextrec; } if (dt_printf(dtp, fp, "\n") < 0 || dtrace_aggregate_walk_joined(dtp, aggvars, naggvars, dt_print_aggs, &pd) < 0) { dt_free(dtp, aggvars); return (-1); } dt_free(dtp, aggvars); goto nextrec; } switch (rec->dtrd_size) { case sizeof (uint64_t): n = dt_printf(dtp, fp, quiet ? "%lld" : " %16lld", /* LINTED - alignment */ *((unsigned long long *)addr)); break; case sizeof (uint32_t): n = dt_printf(dtp, fp, quiet ? "%d" : " %8d", /* LINTED - alignment */ *((uint32_t *)addr)); break; case sizeof (uint16_t): n = dt_printf(dtp, fp, quiet ? "%d" : " %5d", /* LINTED - alignment */ *((uint16_t *)addr)); break; case sizeof (uint8_t): n = dt_printf(dtp, fp, quiet ? "%d" : " %3d", *((uint8_t *)addr)); break; default: n = dt_print_bytes(dtp, fp, addr, rec->dtrd_size, 33, quiet); break; } if (n < 0) return (-1); /* errno is set for us */ nextrec: if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0) return (-1); /* errno is set for us */ } /* * Call the record callback with a NULL record to indicate * that we're done processing this EPID. */ rval = (*rfunc)(&data, NULL, arg); nextepid: offs += epd->dtepd_size; last = id; } if (buf->dtbd_oldest != 0 && start == buf->dtbd_oldest) { end = buf->dtbd_oldest; start = 0; goto again; } if ((drops = buf->dtbd_drops) == 0) return (0); /* * Explicitly zero the drops to prevent us from processing them again. */ buf->dtbd_drops = 0; return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops)); } typedef struct dt_begin { dtrace_consume_probe_f *dtbgn_probefunc; dtrace_consume_rec_f *dtbgn_recfunc; void *dtbgn_arg; dtrace_handle_err_f *dtbgn_errhdlr; void *dtbgn_errarg; int dtbgn_beginonly; } dt_begin_t; static int dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg) { dt_begin_t *begin = (dt_begin_t *)arg; dtrace_probedesc_t *pd = data->dtpda_pdesc; int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0); int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0); if (begin->dtbgn_beginonly) { if (!(r1 && r2)) return (DTRACE_CONSUME_NEXT); } else { if (r1 && r2) return (DTRACE_CONSUME_NEXT); } /* * We have a record that we're interested in. Now call the underlying * probe function... */ return (begin->dtbgn_probefunc(data, begin->dtbgn_arg)); } static int dt_consume_begin_record(const dtrace_probedata_t *data, const dtrace_recdesc_t *rec, void *arg) { dt_begin_t *begin = (dt_begin_t *)arg; return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg)); } static int dt_consume_begin_error(const dtrace_errdata_t *data, void *arg) { dt_begin_t *begin = (dt_begin_t *)arg; dtrace_probedesc_t *pd = data->dteda_pdesc; int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0); int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0); if (begin->dtbgn_beginonly) { if (!(r1 && r2)) return (DTRACE_HANDLE_OK); } else { if (r1 && r2) return (DTRACE_HANDLE_OK); } return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg)); } static int dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp, dtrace_bufdesc_t *buf, dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg) { /* * There's this idea that the BEGIN probe should be processed before * everything else, and that the END probe should be processed after * anything else. In the common case, this is pretty easy to deal * with. However, a situation may arise where the BEGIN enabling and * END enabling are on the same CPU, and some enabling in the middle * occurred on a different CPU. To deal with this (blech!) we need to * consume the BEGIN buffer up until the end of the BEGIN probe, and * then set it aside. We will then process every other CPU, and then * we'll return to the BEGIN CPU and process the rest of the data * (which will inevitably include the END probe, if any). Making this * even more complicated (!) is the library's ERROR enabling. Because * this enabling is processed before we even get into the consume call * back, any ERROR firing would result in the library's ERROR enabling * being processed twice -- once in our first pass (for BEGIN probes), * and again in our second pass (for everything but BEGIN probes). To * deal with this, we interpose on the ERROR handler to assure that we * only process ERROR enablings induced by BEGIN enablings in the * first pass, and that we only process ERROR enablings _not_ induced * by BEGIN enablings in the second pass. */ dt_begin_t begin; processorid_t cpu = dtp->dt_beganon; dtrace_bufdesc_t nbuf; int rval, i; static int max_ncpus; dtrace_optval_t size; dtp->dt_beganon = -1; if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) { /* * We really don't expect this to fail, but it is at least * technically possible for this to fail with ENOENT. In this * case, we just drive on... */ if (errno == ENOENT) return (0); return (dt_set_errno(dtp, errno)); } if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) { /* * This is the simple case. We're either not stopped, or if * we are, we actually processed any END probes on another * CPU. We can simply consume this buffer and return. */ return (dt_consume_cpu(dtp, fp, cpu, buf, pf, rf, arg)); } begin.dtbgn_probefunc = pf; begin.dtbgn_recfunc = rf; begin.dtbgn_arg = arg; begin.dtbgn_beginonly = 1; /* * We need to interpose on the ERROR handler to be sure that we * only process ERRORs induced by BEGIN. */ begin.dtbgn_errhdlr = dtp->dt_errhdlr; begin.dtbgn_errarg = dtp->dt_errarg; dtp->dt_errhdlr = dt_consume_begin_error; dtp->dt_errarg = &begin; rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe, dt_consume_begin_record, &begin); dtp->dt_errhdlr = begin.dtbgn_errhdlr; dtp->dt_errarg = begin.dtbgn_errarg; if (rval != 0) return (rval); /* * Now allocate a new buffer. We'll use this to deal with every other * CPU. */ bzero(&nbuf, sizeof (dtrace_bufdesc_t)); (void) dtrace_getopt(dtp, "bufsize", &size); if ((nbuf.dtbd_data = malloc(size)) == NULL) return (dt_set_errno(dtp, EDT_NOMEM)); if (max_ncpus == 0) max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1; for (i = 0; i < max_ncpus; i++) { nbuf.dtbd_cpu = i; if (i == cpu) continue; if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &nbuf) == -1) { /* * If we failed with ENOENT, it may be because the * CPU was unconfigured -- this is okay. Any other * error, however, is unexpected. */ if (errno == ENOENT) continue; free(nbuf.dtbd_data); return (dt_set_errno(dtp, errno)); } if ((rval = dt_consume_cpu(dtp, fp, i, &nbuf, pf, rf, arg)) != 0) { free(nbuf.dtbd_data); return (rval); } } free(nbuf.dtbd_data); /* * Okay -- we're done with the other buffers. Now we want to * reconsume the first buffer -- but this time we're looking for * everything _but_ BEGIN. And of course, in order to only consume * those ERRORs _not_ associated with BEGIN, we need to reinstall our * ERROR interposition function... */ begin.dtbgn_beginonly = 0; assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr); assert(begin.dtbgn_errarg == dtp->dt_errarg); dtp->dt_errhdlr = dt_consume_begin_error; dtp->dt_errarg = &begin; rval = dt_consume_cpu(dtp, fp, cpu, buf, dt_consume_begin_probe, dt_consume_begin_record, &begin); dtp->dt_errhdlr = begin.dtbgn_errhdlr; dtp->dt_errarg = begin.dtbgn_errarg; return (rval); } int dtrace_consume(dtrace_hdl_t *dtp, FILE *fp, dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg) { dtrace_bufdesc_t *buf = &dtp->dt_buf; dtrace_optval_t size; static int max_ncpus; int i, rval; dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE]; hrtime_t now = gethrtime(); if (dtp->dt_lastswitch != 0) { if (now - dtp->dt_lastswitch < interval) return (0); dtp->dt_lastswitch += interval; } else { dtp->dt_lastswitch = now; } if (!dtp->dt_active) return (dt_set_errno(dtp, EINVAL)); if (max_ncpus == 0) max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1; if (pf == NULL) pf = (dtrace_consume_probe_f *)dt_nullprobe; if (rf == NULL) rf = (dtrace_consume_rec_f *)dt_nullrec; if (buf->dtbd_data == NULL) { (void) dtrace_getopt(dtp, "bufsize", &size); if ((buf->dtbd_data = malloc(size)) == NULL) return (dt_set_errno(dtp, EDT_NOMEM)); buf->dtbd_size = size; } /* * If we have just begun, we want to first process the CPU that * executed the BEGIN probe (if any). */ if (dtp->dt_active && dtp->dt_beganon != -1) { buf->dtbd_cpu = dtp->dt_beganon; if ((rval = dt_consume_begin(dtp, fp, buf, pf, rf, arg)) != 0) return (rval); } for (i = 0; i < max_ncpus; i++) { buf->dtbd_cpu = i; /* * If we have stopped, we want to process the CPU on which the * END probe was processed only _after_ we have processed * everything else. */ if (dtp->dt_stopped && (i == dtp->dt_endedon)) continue; if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) { /* * If we failed with ENOENT, it may be because the * CPU was unconfigured -- this is okay. Any other * error, however, is unexpected. */ if (errno == ENOENT) continue; return (dt_set_errno(dtp, errno)); } if ((rval = dt_consume_cpu(dtp, fp, i, buf, pf, rf, arg)) != 0) return (rval); } if (!dtp->dt_stopped) return (0); buf->dtbd_cpu = dtp->dt_endedon; if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) { /* * This _really_ shouldn't fail, but it is strictly speaking * possible for this to return ENOENT if the CPU that called * the END enabling somehow managed to become unconfigured. * It's unclear how the user can possibly expect anything * rational to happen in this case -- the state has been thrown * out along with the unconfigured CPU -- so we'll just drive * on... */ if (errno == ENOENT) return (0); return (dt_set_errno(dtp, errno)); } return (dt_consume_cpu(dtp, fp, dtp->dt_endedon, buf, pf, rf, arg)); }