/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include static void dt_cg_node(dt_node_t *, dt_irlist_t *, dt_regset_t *); static dt_irnode_t * dt_cg_node_alloc(uint_t label, dif_instr_t instr) { dt_irnode_t *dip = malloc(sizeof (dt_irnode_t)); if (dip == NULL) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); dip->di_label = label; dip->di_instr = instr; dip->di_extern = NULL; dip->di_next = NULL; return (dip); } /* * Code generator wrapper function for ctf_member_info. If we are given a * reference to a forward declaration tag, search the entire type space for * the actual definition and then call ctf_member_info on the result. */ static ctf_file_t * dt_cg_membinfo(ctf_file_t *fp, ctf_id_t type, const char *s, ctf_membinfo_t *mp) { while (ctf_type_kind(fp, type) == CTF_K_FORWARD) { char n[DT_TYPE_NAMELEN]; dtrace_typeinfo_t dtt; if (ctf_type_name(fp, type, n, sizeof (n)) == NULL || dt_type_lookup(n, &dtt) == -1 || ( dtt.dtt_ctfp == fp && dtt.dtt_type == type)) break; /* unable to improve our position */ fp = dtt.dtt_ctfp; type = ctf_type_resolve(fp, dtt.dtt_type); } if (ctf_member_info(fp, type, s, mp) == CTF_ERR) return (NULL); /* ctf_errno is set for us */ return (fp); } static void dt_cg_xsetx(dt_irlist_t *dlp, dt_ident_t *idp, uint_t lbl, int reg, uint64_t x) { int flag = idp != NULL ? DT_INT_PRIVATE : DT_INT_SHARED; int intoff = dt_inttab_insert(yypcb->pcb_inttab, x, flag); dif_instr_t instr = DIF_INSTR_SETX((uint_t)intoff, reg); if (intoff == -1) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); if (intoff > DIF_INTOFF_MAX) longjmp(yypcb->pcb_jmpbuf, EDT_INT2BIG); dt_irlist_append(dlp, dt_cg_node_alloc(lbl, instr)); if (idp != NULL) dlp->dl_last->di_extern = idp; } static void dt_cg_setx(dt_irlist_t *dlp, int reg, uint64_t x) { dt_cg_xsetx(dlp, NULL, DT_LBL_NONE, reg, x); } /* * When loading bit-fields, we want to convert a byte count in the range * 1-8 to the closest power of 2 (e.g. 3->4, 5->8, etc). The clp2() function * is a clever implementation from "Hacker's Delight" by Henry Warren, Jr. */ static size_t clp2(size_t x) { x--; x |= (x >> 1); x |= (x >> 2); x |= (x >> 4); x |= (x >> 8); x |= (x >> 16); return (x + 1); } /* * Lookup the correct load opcode to use for the specified node and CTF type. * We determine the size and convert it to a 3-bit index. Our lookup table * is constructed to use a 5-bit index, consisting of the 3-bit size 0-7, a * bit for the sign, and a bit for userland address. For example, a 4-byte * signed load from userland would be at the following table index: * user=1 sign=1 size=4 => binary index 11011 = decimal index 27 */ static uint_t dt_cg_load(dt_node_t *dnp, ctf_file_t *ctfp, ctf_id_t type) { static const uint_t ops[] = { DIF_OP_LDUB, DIF_OP_LDUH, 0, DIF_OP_LDUW, 0, 0, 0, DIF_OP_LDX, DIF_OP_LDSB, DIF_OP_LDSH, 0, DIF_OP_LDSW, 0, 0, 0, DIF_OP_LDX, DIF_OP_ULDUB, DIF_OP_ULDUH, 0, DIF_OP_ULDUW, 0, 0, 0, DIF_OP_ULDX, DIF_OP_ULDSB, DIF_OP_ULDSH, 0, DIF_OP_ULDSW, 0, 0, 0, DIF_OP_ULDX, }; ctf_encoding_t e; ssize_t size; /* * If we're loading a bit-field, the size of our load is found by * rounding cte_bits up to a byte boundary and then finding the * nearest power of two to this value (see clp2(), above). */ if ((dnp->dn_flags & DT_NF_BITFIELD) && ctf_type_encoding(ctfp, type, &e) != CTF_ERR) size = clp2(P2ROUNDUP(e.cte_bits, NBBY) / NBBY); else size = ctf_type_size(ctfp, type); if (size < 1 || size > 8 || (size & (size - 1)) != 0) { xyerror(D_UNKNOWN, "internal error -- cg cannot load " "size %ld when passed by value\n", (long)size); } size--; /* convert size to 3-bit index */ if (dnp->dn_flags & DT_NF_SIGNED) size |= 0x08; if (dnp->dn_flags & DT_NF_USERLAND) size |= 0x10; return (ops[size]); } static void dt_cg_ptrsize(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp, uint_t op, int dreg) { ctf_file_t *ctfp = dnp->dn_ctfp; ctf_arinfo_t r; dif_instr_t instr; ctf_id_t type; uint_t kind; ssize_t size; int sreg; if ((sreg = dt_regset_alloc(drp)) == -1) longjmp(yypcb->pcb_jmpbuf, EDT_NOREG); type = ctf_type_resolve(ctfp, dnp->dn_type); kind = ctf_type_kind(ctfp, type); assert(kind == CTF_K_POINTER || kind == CTF_K_ARRAY); if (kind == CTF_K_ARRAY) { if (ctf_array_info(ctfp, type, &r) != 0) { yypcb->pcb_hdl->dt_ctferr = ctf_errno(ctfp); longjmp(yypcb->pcb_jmpbuf, EDT_CTF); } type = r.ctr_contents; } else type = ctf_type_reference(ctfp, type); if ((size = ctf_type_size(ctfp, type)) == 1) return; /* multiply or divide by one can be omitted */ dt_cg_setx(dlp, sreg, size); instr = DIF_INSTR_FMT(op, dreg, sreg, dreg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dt_regset_free(drp, sreg); } /* * If the result of a "." or "->" operation is a bit-field, we use this routine * to generate an epilogue to the load instruction that extracts the value. In * the diagrams below the "ld??" is the load instruction that is generated to * load the containing word that is generating prior to calling this function. * * Epilogue for unsigned fields: Epilogue for signed fields: * * ldu? [r1], r1 lds? [r1], r1 * setx USHIFT, r2 setx 64 - SSHIFT, r2 * srl r1, r2, r1 sll r1, r2, r1 * setx (1 << bits) - 1, r2 setx 64 - bits, r2 * and r1, r2, r1 sra r1, r2, r1 * * The *SHIFT constants above changes value depending on the endian-ness of our * target architecture. Refer to the comments below for more details. */ static void dt_cg_field_get(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp, ctf_file_t *fp, const ctf_membinfo_t *mp) { ctf_encoding_t e; dif_instr_t instr; uint64_t shift; int r1, r2; if (ctf_type_encoding(fp, mp->ctm_type, &e) != 0 || e.cte_bits > 64) { xyerror(D_UNKNOWN, "cg: bad field: off %lu type <%ld> " "bits %u\n", mp->ctm_offset, mp->ctm_type, e.cte_bits); } assert(dnp->dn_op == DT_TOK_PTR || dnp->dn_op == DT_TOK_DOT); r1 = dnp->dn_left->dn_reg; if ((r2 = dt_regset_alloc(drp)) == -1) longjmp(yypcb->pcb_jmpbuf, EDT_NOREG); /* * On little-endian architectures, ctm_offset counts from the right so * ctm_offset % NBBY itself is the amount we want to shift right to * move the value bits to the little end of the register to mask them. * On big-endian architectures, ctm_offset counts from the left so we * must subtract (ctm_offset % NBBY + cte_bits) from the size in bits * we used for the load. The size of our load in turn is found by * rounding cte_bits up to a byte boundary and then finding the * nearest power of two to this value (see clp2(), above). These * properties are used to compute shift as USHIFT or SSHIFT, below. */ if (dnp->dn_flags & DT_NF_SIGNED) { #ifdef _BIG_ENDIAN shift = clp2(P2ROUNDUP(e.cte_bits, NBBY) / NBBY) * NBBY - mp->ctm_offset % NBBY; #else shift = mp->ctm_offset % NBBY + e.cte_bits; #endif dt_cg_setx(dlp, r2, 64 - shift); instr = DIF_INSTR_FMT(DIF_OP_SLL, r1, r2, r1); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dt_cg_setx(dlp, r2, 64 - e.cte_bits); instr = DIF_INSTR_FMT(DIF_OP_SRA, r1, r2, r1); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); } else { #ifdef _BIG_ENDIAN shift = clp2(P2ROUNDUP(e.cte_bits, NBBY) / NBBY) * NBBY - (mp->ctm_offset % NBBY + e.cte_bits); #else shift = mp->ctm_offset % NBBY; #endif dt_cg_setx(dlp, r2, shift); instr = DIF_INSTR_FMT(DIF_OP_SRL, r1, r2, r1); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dt_cg_setx(dlp, r2, (1ULL << e.cte_bits) - 1); instr = DIF_INSTR_FMT(DIF_OP_AND, r1, r2, r1); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); } dt_regset_free(drp, r2); } /* * If the destination of a store operation is a bit-field, we use this routine * to generate a prologue to the store instruction that loads the surrounding * bits, clears the destination field, and ORs in the new value of the field. * In the diagram below the "st?" is the store instruction that is generated to * store the containing word that is generating after calling this function. * * ld [dst->dn_reg], r1 * setx ~(((1 << cte_bits) - 1) << (ctm_offset % NBBY)), r2 * and r1, r2, r1 * * setx (1 << cte_bits) - 1, r2 * and src->dn_reg, r2, r2 * setx ctm_offset % NBBY, r3 * sll r2, r3, r2 * * or r1, r2, r1 * st? r1, [dst->dn_reg] * * This routine allocates a new register to hold the value to be stored and * returns it. The caller is responsible for freeing this register later. */ static int dt_cg_field_set(dt_node_t *src, dt_irlist_t *dlp, dt_regset_t *drp, dt_node_t *dst) { uint64_t cmask, fmask, shift; dif_instr_t instr; int r1, r2, r3; ctf_membinfo_t m; ctf_encoding_t e; ctf_file_t *fp, *ofp; ctf_id_t type; assert(dst->dn_op == DT_TOK_PTR || dst->dn_op == DT_TOK_DOT); assert(dst->dn_right->dn_kind == DT_NODE_IDENT); fp = dst->dn_left->dn_ctfp; type = ctf_type_resolve(fp, dst->dn_left->dn_type); if (dst->dn_op == DT_TOK_PTR) { type = ctf_type_reference(fp, type); type = ctf_type_resolve(fp, type); } if ((fp = dt_cg_membinfo(ofp = fp, type, dst->dn_right->dn_string, &m)) == NULL) { yypcb->pcb_hdl->dt_ctferr = ctf_errno(ofp); longjmp(yypcb->pcb_jmpbuf, EDT_CTF); } if (ctf_type_encoding(fp, m.ctm_type, &e) != 0 || e.cte_bits > 64) { xyerror(D_UNKNOWN, "cg: bad field: off %lu type <%ld> " "bits %u\n", m.ctm_offset, m.ctm_type, e.cte_bits); } if ((r1 = dt_regset_alloc(drp)) == -1 || (r2 = dt_regset_alloc(drp)) == -1 || (r3 = dt_regset_alloc(drp)) == -1) longjmp(yypcb->pcb_jmpbuf, EDT_NOREG); /* * Compute shifts and masks. We need to compute "shift" as the amount * we need to shift left to position our field in the containing word. * Refer to the comments in dt_cg_field_get(), above, for more info. * We then compute fmask as the mask that truncates the value in the * input register to width cte_bits, and cmask as the mask used to * pass through the containing bits and zero the field bits. */ #ifdef _BIG_ENDIAN shift = clp2(P2ROUNDUP(e.cte_bits, NBBY) / NBBY) * NBBY - (m.ctm_offset % NBBY + e.cte_bits); #else shift = m.ctm_offset % NBBY; #endif fmask = (1ULL << e.cte_bits) - 1; cmask = ~(fmask << shift); instr = DIF_INSTR_LOAD( dt_cg_load(dst, fp, m.ctm_type), dst->dn_reg, r1); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dt_cg_setx(dlp, r2, cmask); instr = DIF_INSTR_FMT(DIF_OP_AND, r1, r2, r1); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dt_cg_setx(dlp, r2, fmask); instr = DIF_INSTR_FMT(DIF_OP_AND, src->dn_reg, r2, r2); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dt_cg_setx(dlp, r3, shift); instr = DIF_INSTR_FMT(DIF_OP_SLL, r2, r3, r2); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); instr = DIF_INSTR_FMT(DIF_OP_OR, r1, r2, r1); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dt_regset_free(drp, r3); dt_regset_free(drp, r2); return (r1); } static void dt_cg_store(dt_node_t *src, dt_irlist_t *dlp, dt_regset_t *drp, dt_node_t *dst) { ctf_encoding_t e; dif_instr_t instr; size_t size; int reg; /* * If we're loading a bit-field, the size of our store is found by * rounding dst's cte_bits up to a byte boundary and then finding the * nearest power of two to this value (see clp2(), above). */ if ((dst->dn_flags & DT_NF_BITFIELD) && ctf_type_encoding(dst->dn_ctfp, dst->dn_type, &e) != CTF_ERR) size = clp2(P2ROUNDUP(e.cte_bits, NBBY) / NBBY); else size = dt_node_type_size(src); if (src->dn_flags & DT_NF_REF) { if ((reg = dt_regset_alloc(drp)) == -1) longjmp(yypcb->pcb_jmpbuf, EDT_NOREG); dt_cg_setx(dlp, reg, size); instr = DIF_INSTR_COPYS(src->dn_reg, reg, dst->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dt_regset_free(drp, reg); } else { if (dst->dn_flags & DT_NF_BITFIELD) reg = dt_cg_field_set(src, dlp, drp, dst); else reg = src->dn_reg; switch (size) { case 1: instr = DIF_INSTR_STORE(DIF_OP_STB, reg, dst->dn_reg); break; case 2: instr = DIF_INSTR_STORE(DIF_OP_STH, reg, dst->dn_reg); break; case 4: instr = DIF_INSTR_STORE(DIF_OP_STW, reg, dst->dn_reg); break; case 8: instr = DIF_INSTR_STORE(DIF_OP_STX, reg, dst->dn_reg); break; default: xyerror(D_UNKNOWN, "internal error -- cg cannot store " "size %lu when passed by value\n", (ulong_t)size); } dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); if (dst->dn_flags & DT_NF_BITFIELD) dt_regset_free(drp, reg); } } /* * Generate code for a typecast or for argument promotion from the type of the * actual to the type of the formal. We need to generate code for casts when * a scalar type is being narrowed or changing signed-ness. We first shift the * desired bits high (losing excess bits if narrowing) and then shift them down * using logical shift (unsigned result) or arithmetic shift (signed result). */ static void dt_cg_typecast(const dt_node_t *src, const dt_node_t *dst, dt_irlist_t *dlp, dt_regset_t *drp) { size_t srcsize = dt_node_type_size(src); size_t dstsize = dt_node_type_size(dst); dif_instr_t instr; int reg, n; if (dt_node_is_scalar(dst) && (dstsize < srcsize || (src->dn_flags & DT_NF_SIGNED) ^ (dst->dn_flags & DT_NF_SIGNED))) { if ((reg = dt_regset_alloc(drp)) == -1) longjmp(yypcb->pcb_jmpbuf, EDT_NOREG); if (dstsize < srcsize) n = sizeof (uint64_t) * NBBY - dstsize * NBBY; else n = sizeof (uint64_t) * NBBY - srcsize * NBBY; dt_cg_setx(dlp, reg, n); instr = DIF_INSTR_FMT(DIF_OP_SLL, src->dn_reg, reg, dst->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); instr = DIF_INSTR_FMT((dst->dn_flags & DT_NF_SIGNED) ? DIF_OP_SRA : DIF_OP_SRL, dst->dn_reg, reg, dst->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dt_regset_free(drp, reg); } } /* * Generate code to push the specified argument list on to the tuple stack. * We use this routine for handling subroutine calls and associative arrays. * We must first generate code for all subexpressions before loading the stack * because any subexpression could itself require the use of the tuple stack. * This holds a number of registers equal to the number of arguments, but this * is not a huge problem because the number of arguments can't exceed the * number of tuple register stack elements anyway. At most one extra register * is required (either by dt_cg_typecast() or for dtdt_size, below). This * implies that a DIF implementation should offer a number of general purpose * registers at least one greater than the number of tuple registers. */ static void dt_cg_arglist(dt_ident_t *idp, dt_node_t *args, dt_irlist_t *dlp, dt_regset_t *drp) { const dt_idsig_t *isp = idp->di_data; dt_node_t *dnp; int i = 0; for (dnp = args; dnp != NULL; dnp = dnp->dn_list) dt_cg_node(dnp, dlp, drp); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, DIF_INSTR_FLUSHTS)); for (dnp = args; dnp != NULL; dnp = dnp->dn_list, i++) { dtrace_diftype_t t; dif_instr_t instr; uint_t op; int reg; dt_node_diftype(yypcb->pcb_hdl, dnp, &t); isp->dis_args[i].dn_reg = dnp->dn_reg; /* re-use register */ dt_cg_typecast(dnp, &isp->dis_args[i], dlp, drp); isp->dis_args[i].dn_reg = -1; if (t.dtdt_flags & DIF_TF_BYREF) op = DIF_OP_PUSHTR; else op = DIF_OP_PUSHTV; if (t.dtdt_size != 0) { if ((reg = dt_regset_alloc(drp)) == -1) longjmp(yypcb->pcb_jmpbuf, EDT_NOREG); dt_cg_setx(dlp, reg, t.dtdt_size); } else reg = DIF_REG_R0; instr = DIF_INSTR_PUSHTS(op, t.dtdt_kind, reg, dnp->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dt_regset_free(drp, dnp->dn_reg); if (reg != DIF_REG_R0) dt_regset_free(drp, reg); } if (i > yypcb->pcb_hdl->dt_conf.dtc_diftupregs) longjmp(yypcb->pcb_jmpbuf, EDT_NOTUPREG); } static void dt_cg_arithmetic_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp, uint_t op) { int is_ptr_op = (dnp->dn_op == DT_TOK_ADD || dnp->dn_op == DT_TOK_SUB || dnp->dn_op == DT_TOK_ADD_EQ || dnp->dn_op == DT_TOK_SUB_EQ); int lp_is_ptr = dt_node_is_pointer(dnp->dn_left); int rp_is_ptr = dt_node_is_pointer(dnp->dn_right); dif_instr_t instr; if (lp_is_ptr && rp_is_ptr) { assert(dnp->dn_op == DT_TOK_SUB); is_ptr_op = 0; } dt_cg_node(dnp->dn_left, dlp, drp); if (is_ptr_op && rp_is_ptr) dt_cg_ptrsize(dnp, dlp, drp, DIF_OP_MUL, dnp->dn_left->dn_reg); dt_cg_node(dnp->dn_right, dlp, drp); if (is_ptr_op && lp_is_ptr) dt_cg_ptrsize(dnp, dlp, drp, DIF_OP_MUL, dnp->dn_right->dn_reg); instr = DIF_INSTR_FMT(op, dnp->dn_left->dn_reg, dnp->dn_right->dn_reg, dnp->dn_left->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dt_regset_free(drp, dnp->dn_right->dn_reg); dnp->dn_reg = dnp->dn_left->dn_reg; if (lp_is_ptr && rp_is_ptr) dt_cg_ptrsize(dnp->dn_right, dlp, drp, DIF_OP_UDIV, dnp->dn_reg); } static uint_t dt_cg_stvar(const dt_ident_t *idp) { static const uint_t aops[] = { DIF_OP_STGAA, DIF_OP_STTAA, DIF_OP_NOP }; static const uint_t sops[] = { DIF_OP_STGS, DIF_OP_STTS, DIF_OP_STLS }; uint_t i = (((idp->di_flags & DT_IDFLG_LOCAL) != 0) << 1) | ((idp->di_flags & DT_IDFLG_TLS) != 0); return (idp->di_kind == DT_IDENT_ARRAY ? aops[i] : sops[i]); } static void dt_cg_prearith_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp, uint_t op) { ctf_file_t *ctfp = dnp->dn_ctfp; dif_instr_t instr; ctf_id_t type; ssize_t size = 1; int reg; if (dt_node_is_pointer(dnp)) { type = ctf_type_resolve(ctfp, dnp->dn_type); assert(ctf_type_kind(ctfp, type) == CTF_K_POINTER); size = ctf_type_size(ctfp, ctf_type_reference(ctfp, type)); } dt_cg_node(dnp->dn_child, dlp, drp); dnp->dn_reg = dnp->dn_child->dn_reg; if ((reg = dt_regset_alloc(drp)) == -1) longjmp(yypcb->pcb_jmpbuf, EDT_NOREG); dt_cg_setx(dlp, reg, size); instr = DIF_INSTR_FMT(op, dnp->dn_reg, reg, dnp->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dt_regset_free(drp, reg); /* * If we are modifying a variable, generate an stv instruction from * the variable specified by the identifier. If we are storing to a * memory address, generate code again for the left-hand side using * DT_NF_REF to get the address, and then generate a store to it. * In both paths, we store the value in dnp->dn_reg (the new value). */ if (dnp->dn_child->dn_kind == DT_NODE_VAR) { dt_ident_t *idp = dt_ident_resolve(dnp->dn_child->dn_ident); idp->di_flags |= DT_IDFLG_DIFW; instr = DIF_INSTR_STV(dt_cg_stvar(idp), idp->di_id, dnp->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); } else { uint_t rbit = dnp->dn_child->dn_flags & DT_NF_REF; assert(dnp->dn_child->dn_flags & DT_NF_WRITABLE); assert(dnp->dn_child->dn_flags & DT_NF_LVALUE); dnp->dn_child->dn_flags |= DT_NF_REF; /* force pass-by-ref */ dt_cg_node(dnp->dn_child, dlp, drp); dt_cg_store(dnp, dlp, drp, dnp->dn_child); dt_regset_free(drp, dnp->dn_child->dn_reg); dnp->dn_left->dn_flags &= ~DT_NF_REF; dnp->dn_left->dn_flags |= rbit; } } static void dt_cg_postarith_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp, uint_t op) { ctf_file_t *ctfp = dnp->dn_ctfp; dif_instr_t instr; ctf_id_t type; ssize_t size = 1; int nreg; if (dt_node_is_pointer(dnp)) { type = ctf_type_resolve(ctfp, dnp->dn_type); assert(ctf_type_kind(ctfp, type) == CTF_K_POINTER); size = ctf_type_size(ctfp, ctf_type_reference(ctfp, type)); } dt_cg_node(dnp->dn_child, dlp, drp); dnp->dn_reg = dnp->dn_child->dn_reg; if ((nreg = dt_regset_alloc(drp)) == -1) longjmp(yypcb->pcb_jmpbuf, EDT_NOREG); dt_cg_setx(dlp, nreg, size); instr = DIF_INSTR_FMT(op, dnp->dn_reg, nreg, nreg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); /* * If we are modifying a variable, generate an stv instruction from * the variable specified by the identifier. If we are storing to a * memory address, generate code again for the left-hand side using * DT_NF_REF to get the address, and then generate a store to it. * In both paths, we store the value from 'nreg' (the new value). */ if (dnp->dn_child->dn_kind == DT_NODE_VAR) { dt_ident_t *idp = dt_ident_resolve(dnp->dn_child->dn_ident); idp->di_flags |= DT_IDFLG_DIFW; instr = DIF_INSTR_STV(dt_cg_stvar(idp), idp->di_id, nreg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); } else { uint_t rbit = dnp->dn_child->dn_flags & DT_NF_REF; int oreg = dnp->dn_reg; assert(dnp->dn_child->dn_flags & DT_NF_WRITABLE); assert(dnp->dn_child->dn_flags & DT_NF_LVALUE); dnp->dn_child->dn_flags |= DT_NF_REF; /* force pass-by-ref */ dt_cg_node(dnp->dn_child, dlp, drp); dnp->dn_reg = nreg; dt_cg_store(dnp, dlp, drp, dnp->dn_child); dnp->dn_reg = oreg; dt_regset_free(drp, dnp->dn_child->dn_reg); dnp->dn_left->dn_flags &= ~DT_NF_REF; dnp->dn_left->dn_flags |= rbit; } dt_regset_free(drp, nreg); } /* * Determine if we should perform signed or unsigned comparison for an OP2. * If both operands are of arithmetic type, perform the usual arithmetic * conversions to determine the common real type for comparison [ISOC 6.5.8.3]. */ static int dt_cg_compare_signed(dt_node_t *dnp) { dt_node_t dn; if (dt_node_is_string(dnp->dn_left) || dt_node_is_string(dnp->dn_right)) return (1); /* strings always compare signed */ else if (!dt_node_is_arith(dnp->dn_left) || !dt_node_is_arith(dnp->dn_right)) return (0); /* non-arithmetic types always compare unsigned */ bzero(&dn, sizeof (dn)); dt_node_promote(dnp->dn_left, dnp->dn_right, &dn); return (dn.dn_flags & DT_NF_SIGNED); } static void dt_cg_compare_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp, uint_t op) { uint_t lbl_true = dt_irlist_label(dlp); uint_t lbl_post = dt_irlist_label(dlp); dif_instr_t instr; uint_t opc; dt_cg_node(dnp->dn_left, dlp, drp); dt_cg_node(dnp->dn_right, dlp, drp); if (dt_node_is_string(dnp->dn_left) || dt_node_is_string(dnp->dn_right)) opc = DIF_OP_SCMP; else opc = DIF_OP_CMP; instr = DIF_INSTR_CMP(opc, dnp->dn_left->dn_reg, dnp->dn_right->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dt_regset_free(drp, dnp->dn_right->dn_reg); dnp->dn_reg = dnp->dn_left->dn_reg; instr = DIF_INSTR_BRANCH(op, lbl_true); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); instr = DIF_INSTR_MOV(DIF_REG_R0, dnp->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); instr = DIF_INSTR_BRANCH(DIF_OP_BA, lbl_post); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dt_cg_xsetx(dlp, NULL, lbl_true, dnp->dn_reg, 1); dt_irlist_append(dlp, dt_cg_node_alloc(lbl_post, DIF_INSTR_NOP)); } /* * Code generation for the ternary op requires some trickery with the assembler * in order to conserve registers. We generate code for dn_expr and dn_left * and free their registers so they do not have be consumed across codegen for * dn_right. We insert a dummy MOV at the end of dn_left into the destination * register, which is not yet known because we haven't done dn_right yet, and * save the pointer to this instruction node. We then generate code for * dn_right and use its register as our output. Finally, we reach back and * patch the instruction for dn_left to move its output into this register. */ static void dt_cg_ternary_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp) { uint_t lbl_false = dt_irlist_label(dlp); uint_t lbl_post = dt_irlist_label(dlp); dif_instr_t instr; dt_irnode_t *dip; dt_cg_node(dnp->dn_expr, dlp, drp); instr = DIF_INSTR_TST(dnp->dn_expr->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dt_regset_free(drp, dnp->dn_expr->dn_reg); instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_false); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dt_cg_node(dnp->dn_left, dlp, drp); instr = DIF_INSTR_MOV(dnp->dn_left->dn_reg, DIF_REG_R0); dip = dt_cg_node_alloc(DT_LBL_NONE, instr); /* save dip for below */ dt_irlist_append(dlp, dip); dt_regset_free(drp, dnp->dn_left->dn_reg); instr = DIF_INSTR_BRANCH(DIF_OP_BA, lbl_post); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dt_irlist_append(dlp, dt_cg_node_alloc(lbl_false, DIF_INSTR_NOP)); dt_cg_node(dnp->dn_right, dlp, drp); dnp->dn_reg = dnp->dn_right->dn_reg; /* * Now that dn_reg is assigned, reach back and patch the correct MOV * instruction into the tail of dn_left. We know dn_reg was unused * at that point because otherwise dn_right couldn't have allocated it. */ dip->di_instr = DIF_INSTR_MOV(dnp->dn_left->dn_reg, dnp->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(lbl_post, DIF_INSTR_NOP)); } static void dt_cg_logical_and(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp) { uint_t lbl_false = dt_irlist_label(dlp); uint_t lbl_post = dt_irlist_label(dlp); dif_instr_t instr; dt_cg_node(dnp->dn_left, dlp, drp); instr = DIF_INSTR_TST(dnp->dn_left->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dt_regset_free(drp, dnp->dn_left->dn_reg); instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_false); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dt_cg_node(dnp->dn_right, dlp, drp); instr = DIF_INSTR_TST(dnp->dn_right->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dnp->dn_reg = dnp->dn_right->dn_reg; instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_false); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dt_cg_setx(dlp, dnp->dn_reg, 1); instr = DIF_INSTR_BRANCH(DIF_OP_BA, lbl_post); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); instr = DIF_INSTR_MOV(DIF_REG_R0, dnp->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(lbl_false, instr)); dt_irlist_append(dlp, dt_cg_node_alloc(lbl_post, DIF_INSTR_NOP)); } static void dt_cg_logical_xor(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp) { uint_t lbl_next = dt_irlist_label(dlp); uint_t lbl_tail = dt_irlist_label(dlp); dif_instr_t instr; dt_cg_node(dnp->dn_left, dlp, drp); instr = DIF_INSTR_TST(dnp->dn_left->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_next); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dt_cg_setx(dlp, dnp->dn_left->dn_reg, 1); dt_irlist_append(dlp, dt_cg_node_alloc(lbl_next, DIF_INSTR_NOP)); dt_cg_node(dnp->dn_right, dlp, drp); instr = DIF_INSTR_TST(dnp->dn_right->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_tail); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dt_cg_setx(dlp, dnp->dn_right->dn_reg, 1); instr = DIF_INSTR_FMT(DIF_OP_XOR, dnp->dn_left->dn_reg, dnp->dn_right->dn_reg, dnp->dn_left->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(lbl_tail, instr)); dt_regset_free(drp, dnp->dn_right->dn_reg); dnp->dn_reg = dnp->dn_left->dn_reg; } static void dt_cg_logical_or(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp) { uint_t lbl_true = dt_irlist_label(dlp); uint_t lbl_false = dt_irlist_label(dlp); uint_t lbl_post = dt_irlist_label(dlp); dif_instr_t instr; dt_cg_node(dnp->dn_left, dlp, drp); instr = DIF_INSTR_TST(dnp->dn_left->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dt_regset_free(drp, dnp->dn_left->dn_reg); instr = DIF_INSTR_BRANCH(DIF_OP_BNE, lbl_true); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dt_cg_node(dnp->dn_right, dlp, drp); instr = DIF_INSTR_TST(dnp->dn_right->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dnp->dn_reg = dnp->dn_right->dn_reg; instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_false); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dt_cg_xsetx(dlp, NULL, lbl_true, dnp->dn_reg, 1); instr = DIF_INSTR_BRANCH(DIF_OP_BA, lbl_post); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); instr = DIF_INSTR_MOV(DIF_REG_R0, dnp->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(lbl_false, instr)); dt_irlist_append(dlp, dt_cg_node_alloc(lbl_post, DIF_INSTR_NOP)); } static void dt_cg_logical_neg(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp) { uint_t lbl_zero = dt_irlist_label(dlp); uint_t lbl_post = dt_irlist_label(dlp); dif_instr_t instr; dt_cg_node(dnp->dn_child, dlp, drp); dnp->dn_reg = dnp->dn_child->dn_reg; instr = DIF_INSTR_TST(dnp->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); instr = DIF_INSTR_BRANCH(DIF_OP_BE, lbl_zero); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); instr = DIF_INSTR_MOV(DIF_REG_R0, dnp->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); instr = DIF_INSTR_BRANCH(DIF_OP_BA, lbl_post); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dt_cg_xsetx(dlp, NULL, lbl_zero, dnp->dn_reg, 1); dt_irlist_append(dlp, dt_cg_node_alloc(lbl_post, DIF_INSTR_NOP)); } static void dt_cg_asgn_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp) { dif_instr_t instr; dt_ident_t *idp; /* * If we are performing a structure assignment of a translated type, * we must instantiate all members and create a snapshot of the object * in scratch space. We allocs a chunk of memory, generate code for * each member, and then set dnp->dn_reg to the scratch object address. */ if ((idp = dt_node_resolve(dnp->dn_right, DT_IDENT_XLSOU)) != NULL) { ctf_membinfo_t ctm; dt_xlator_t *dxp = idp->di_data; dt_node_t *mnp, dn, mn; int r1, r2; /* * Create two fake dt_node_t's representing operator "." and a * right-hand identifier child node. These will be repeatedly * modified according to each instantiated member so that we * can pass them to dt_cg_store() and effect a member store. */ bzero(&dn, sizeof (dt_node_t)); dn.dn_kind = DT_NODE_OP2; dn.dn_op = DT_TOK_DOT; dn.dn_left = dnp; dn.dn_right = &mn; bzero(&mn, sizeof (dt_node_t)); mn.dn_kind = DT_NODE_IDENT; mn.dn_op = DT_TOK_IDENT; /* * Allocate a register for our scratch data pointer. First we * set it to the size of our data structure, and then replace * it with the result of an allocs of the specified size. */ if ((r1 = dt_regset_alloc(drp)) == -1) longjmp(yypcb->pcb_jmpbuf, EDT_NOREG); dt_cg_setx(dlp, r1, ctf_type_size(dxp->dx_dst_ctfp, dxp->dx_dst_base)); instr = DIF_INSTR_ALLOCS(r1, r1); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); /* * When dt_cg_asgn_op() is called, we have already generated * code for dnp->dn_right, which is the translator input. We * now associate this register with the translator's input * identifier so it can be referenced during our member loop. */ dxp->dx_ident->di_flags |= DT_IDFLG_CGREG; dxp->dx_ident->di_id = dnp->dn_right->dn_reg; for (mnp = dxp->dx_members; mnp != NULL; mnp = mnp->dn_list) { /* * Generate code for the translator member expression, * and then cast the result to the member type. */ dt_cg_node(mnp->dn_membexpr, dlp, drp); mnp->dn_reg = mnp->dn_membexpr->dn_reg; dt_cg_typecast(mnp->dn_membexpr, mnp, dlp, drp); /* * Ask CTF for the offset of the member so we can store * to the appropriate offset. This call has already * been done once by the parser, so it should succeed. */ if (ctf_member_info(dxp->dx_dst_ctfp, dxp->dx_dst_base, mnp->dn_membname, &ctm) == CTF_ERR) { yypcb->pcb_hdl->dt_ctferr = ctf_errno(dxp->dx_dst_ctfp); longjmp(yypcb->pcb_jmpbuf, EDT_CTF); } /* * If the destination member is at offset 0, store the * result directly to r1 (the scratch buffer address). * Otherwise allocate another temporary for the offset * and add r1 to it before storing the result. */ if (ctm.ctm_offset != 0) { if ((r2 = dt_regset_alloc(drp)) == -1) longjmp(yypcb->pcb_jmpbuf, EDT_NOREG); /* * Add the member offset rounded down to the * nearest byte. If the offset was not aligned * on a byte boundary, this member is a bit- * field and dt_cg_store() will handle masking. */ dt_cg_setx(dlp, r2, ctm.ctm_offset / NBBY); instr = DIF_INSTR_FMT(DIF_OP_ADD, r1, r2, r2); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dt_node_type_propagate(mnp, &dn); dn.dn_right->dn_string = mnp->dn_membname; dn.dn_reg = r2; dt_cg_store(mnp, dlp, drp, &dn); dt_regset_free(drp, r2); } else { dt_node_type_propagate(mnp, &dn); dn.dn_right->dn_string = mnp->dn_membname; dn.dn_reg = r1; dt_cg_store(mnp, dlp, drp, &dn); } dt_regset_free(drp, mnp->dn_reg); } dxp->dx_ident->di_flags &= ~DT_IDFLG_CGREG; dxp->dx_ident->di_id = 0; if (dnp->dn_right->dn_reg != -1) dt_regset_free(drp, dnp->dn_right->dn_reg); assert(dnp->dn_reg == dnp->dn_right->dn_reg); dnp->dn_reg = r1; } /* * If we are storing to a variable, generate an stv instruction from * the variable specified by the identifier. If we are storing to a * memory address, generate code again for the left-hand side using * DT_NF_REF to get the address, and then generate a store to it. * In both paths, we assume dnp->dn_reg already has the new value. */ if (dnp->dn_left->dn_kind == DT_NODE_VAR) { idp = dt_ident_resolve(dnp->dn_left->dn_ident); if (idp->di_kind == DT_IDENT_ARRAY) dt_cg_arglist(idp, dnp->dn_left->dn_args, dlp, drp); idp->di_flags |= DT_IDFLG_DIFW; instr = DIF_INSTR_STV(dt_cg_stvar(idp), idp->di_id, dnp->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); } else { uint_t rbit = dnp->dn_left->dn_flags & DT_NF_REF; assert(dnp->dn_left->dn_flags & DT_NF_WRITABLE); assert(dnp->dn_left->dn_flags & DT_NF_LVALUE); dnp->dn_left->dn_flags |= DT_NF_REF; /* force pass-by-ref */ dt_cg_node(dnp->dn_left, dlp, drp); dt_cg_store(dnp, dlp, drp, dnp->dn_left); dt_regset_free(drp, dnp->dn_left->dn_reg); dnp->dn_left->dn_flags &= ~DT_NF_REF; dnp->dn_left->dn_flags |= rbit; } } static void dt_cg_assoc_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp) { dif_instr_t instr; uint_t op; assert(dnp->dn_kind == DT_NODE_VAR); assert(!(dnp->dn_ident->di_flags & DT_IDFLG_LOCAL)); assert(dnp->dn_args != NULL); dt_cg_arglist(dnp->dn_ident, dnp->dn_args, dlp, drp); if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1) longjmp(yypcb->pcb_jmpbuf, EDT_NOREG); if (dnp->dn_ident->di_flags & DT_IDFLG_TLS) op = DIF_OP_LDTAA; else op = DIF_OP_LDGAA; dnp->dn_ident->di_flags |= DT_IDFLG_DIFR; instr = DIF_INSTR_LDV(op, dnp->dn_ident->di_id, dnp->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); /* * If the associative array is a pass-by-reference type, then we are * loading its value as a pointer to either load or store through it. * The array element in question may not have been faulted in yet, in * which case DIF_OP_LD*AA will return zero. We append an epilogue * of instructions similar to the following: * * ld?aa id, %r1 ! base ld?aa instruction above * tst %r1 ! start of epilogue * +--- bne label * | setx size, %r1 * | allocs %r1, %r1 * | st?aa id, %r1 * | ld?aa id, %r1 * v * label: < rest of code > * * The idea is that we allocs a zero-filled chunk of scratch space and * do a DIF_OP_ST*AA to fault in and initialize the array element, and * then reload it to get the faulted-in address of the new variable * storage. This isn't cheap, but pass-by-ref associative array values * are (thus far) uncommon and the allocs cost only occurs once. If * this path becomes important to DTrace users, we can improve things * by adding a new DIF opcode to fault in associative array elements. */ if (dnp->dn_flags & DT_NF_REF) { uint_t stvop = op == DIF_OP_LDTAA ? DIF_OP_STTAA : DIF_OP_STGAA; uint_t label = dt_irlist_label(dlp); instr = DIF_INSTR_TST(dnp->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); instr = DIF_INSTR_BRANCH(DIF_OP_BNE, label); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dt_cg_setx(dlp, dnp->dn_reg, dt_node_type_size(dnp)); instr = DIF_INSTR_ALLOCS(dnp->dn_reg, dnp->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dnp->dn_ident->di_flags |= DT_IDFLG_DIFW; instr = DIF_INSTR_STV(stvop, dnp->dn_ident->di_id, dnp->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); instr = DIF_INSTR_LDV(op, dnp->dn_ident->di_id, dnp->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dt_irlist_append(dlp, dt_cg_node_alloc(label, DIF_INSTR_NOP)); } } static void dt_cg_array_op(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp) { dt_probe_t *prp = yypcb->pcb_probe; uintmax_t saved = dnp->dn_args->dn_value; dt_ident_t *idp = dnp->dn_ident; dif_instr_t instr; uint_t op; size_t size; int reg, n; assert(dnp->dn_kind == DT_NODE_VAR); assert(!(idp->di_flags & DT_IDFLG_LOCAL)); assert(dnp->dn_args->dn_kind == DT_NODE_INT); assert(dnp->dn_args->dn_list == NULL); /* * If this is a reference in the args[] array, temporarily modify the * array index according to the static argument mapping (if any), * unless the argument reference is provided by a dynamic translator. * If we're using a dynamic translator for args[], then just set dn_reg * to an invalid reg and return: DIF_OP_XLARG will fetch the arg later. */ if (idp->di_id == DIF_VAR_ARGS) { if ((idp->di_kind == DT_IDENT_XLPTR || idp->di_kind == DT_IDENT_XLSOU) && dt_xlator_dynamic(idp->di_data)) { dnp->dn_reg = -1; return; } dnp->dn_args->dn_value = prp->pr_mapping[saved]; } dt_cg_node(dnp->dn_args, dlp, drp); dnp->dn_args->dn_value = saved; dnp->dn_reg = dnp->dn_args->dn_reg; if (idp->di_flags & DT_IDFLG_TLS) op = DIF_OP_LDTA; else op = DIF_OP_LDGA; idp->di_flags |= DT_IDFLG_DIFR; instr = DIF_INSTR_LDA(op, idp->di_id, dnp->dn_args->dn_reg, dnp->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); /* * If this is a reference to the args[] array, we need to take the * additional step of explicitly eliminating any bits larger than the * type size: the DIF interpreter in the kernel will always give us * the raw (64-bit) argument value, and any bits larger than the type * size may be junk. As a practical matter, this arises only on 64-bit * architectures and only when the argument index is larger than the * number of arguments passed directly to DTrace: if a 8-, 16- or * 32-bit argument must be retrieved from the stack, it is possible * (and it some cases, likely) that the upper bits will be garbage. */ if (idp->di_id != DIF_VAR_ARGS || !dt_node_is_scalar(dnp)) return; if ((size = dt_node_type_size(dnp)) == sizeof (uint64_t)) return; if ((reg = dt_regset_alloc(drp)) == -1) longjmp(yypcb->pcb_jmpbuf, EDT_NOREG); assert(size < sizeof (uint64_t)); n = sizeof (uint64_t) * NBBY - size * NBBY; dt_cg_setx(dlp, reg, n); instr = DIF_INSTR_FMT(DIF_OP_SLL, dnp->dn_reg, reg, dnp->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); instr = DIF_INSTR_FMT((dnp->dn_flags & DT_NF_SIGNED) ? DIF_OP_SRA : DIF_OP_SRL, dnp->dn_reg, reg, dnp->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dt_regset_free(drp, reg); } /* * Generate code for an inlined variable reference. Inlines can be used to * define either scalar or associative array substitutions. For scalars, we * simply generate code for the parse tree saved in the identifier's din_root, * and then cast the resulting expression to the inline's declaration type. * For arrays, we take the input parameter subtrees from dnp->dn_args and * temporarily store them in the din_root of each din_argv[i] identifier, * which are themselves inlines and were set up for us by the parser. The * result is that any reference to the inlined parameter inside the top-level * din_root will turn into a recursive call to dt_cg_inline() for a scalar * inline whose din_root will refer to the subtree pointed to by the argument. */ static void dt_cg_inline(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp) { dt_ident_t *idp = dnp->dn_ident; dt_idnode_t *inp = idp->di_iarg; dt_idnode_t *pinp; dt_node_t *pnp; int i; assert(idp->di_flags & DT_IDFLG_INLINE); assert(idp->di_ops == &dt_idops_inline); if (idp->di_kind == DT_IDENT_ARRAY) { for (i = 0, pnp = dnp->dn_args; pnp != NULL; pnp = pnp->dn_list, i++) { if (inp->din_argv[i] != NULL) { pinp = inp->din_argv[i]->di_iarg; pinp->din_root = pnp; } } } dt_cg_node(inp->din_root, dlp, drp); dnp->dn_reg = inp->din_root->dn_reg; dt_cg_typecast(inp->din_root, dnp, dlp, drp); if (idp->di_kind == DT_IDENT_ARRAY) { for (i = 0; i < inp->din_argc; i++) { pinp = inp->din_argv[i]->di_iarg; pinp->din_root = NULL; } } } static void dt_cg_node(dt_node_t *dnp, dt_irlist_t *dlp, dt_regset_t *drp) { ctf_file_t *ctfp = dnp->dn_ctfp; ctf_file_t *octfp; ctf_membinfo_t m; ctf_id_t type; dif_instr_t instr; dt_ident_t *idp; ssize_t stroff; uint_t op; int reg; switch (dnp->dn_op) { case DT_TOK_COMMA: dt_cg_node(dnp->dn_left, dlp, drp); dt_regset_free(drp, dnp->dn_left->dn_reg); dt_cg_node(dnp->dn_right, dlp, drp); dnp->dn_reg = dnp->dn_right->dn_reg; break; case DT_TOK_ASGN: dt_cg_node(dnp->dn_right, dlp, drp); dnp->dn_reg = dnp->dn_right->dn_reg; dt_cg_asgn_op(dnp, dlp, drp); break; case DT_TOK_ADD_EQ: dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_ADD); dt_cg_asgn_op(dnp, dlp, drp); break; case DT_TOK_SUB_EQ: dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_SUB); dt_cg_asgn_op(dnp, dlp, drp); break; case DT_TOK_MUL_EQ: dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_MUL); dt_cg_asgn_op(dnp, dlp, drp); break; case DT_TOK_DIV_EQ: dt_cg_arithmetic_op(dnp, dlp, drp, (dnp->dn_flags & DT_NF_SIGNED) ? DIF_OP_SDIV : DIF_OP_UDIV); dt_cg_asgn_op(dnp, dlp, drp); break; case DT_TOK_MOD_EQ: dt_cg_arithmetic_op(dnp, dlp, drp, (dnp->dn_flags & DT_NF_SIGNED) ? DIF_OP_SREM : DIF_OP_UREM); dt_cg_asgn_op(dnp, dlp, drp); break; case DT_TOK_AND_EQ: dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_AND); dt_cg_asgn_op(dnp, dlp, drp); break; case DT_TOK_XOR_EQ: dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_XOR); dt_cg_asgn_op(dnp, dlp, drp); break; case DT_TOK_OR_EQ: dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_OR); dt_cg_asgn_op(dnp, dlp, drp); break; case DT_TOK_LSH_EQ: dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_SLL); dt_cg_asgn_op(dnp, dlp, drp); break; case DT_TOK_RSH_EQ: dt_cg_arithmetic_op(dnp, dlp, drp, (dnp->dn_flags & DT_NF_SIGNED) ? DIF_OP_SRA : DIF_OP_SRL); dt_cg_asgn_op(dnp, dlp, drp); break; case DT_TOK_QUESTION: dt_cg_ternary_op(dnp, dlp, drp); break; case DT_TOK_LOR: dt_cg_logical_or(dnp, dlp, drp); break; case DT_TOK_LXOR: dt_cg_logical_xor(dnp, dlp, drp); break; case DT_TOK_LAND: dt_cg_logical_and(dnp, dlp, drp); break; case DT_TOK_BOR: dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_OR); break; case DT_TOK_XOR: dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_XOR); break; case DT_TOK_BAND: dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_AND); break; case DT_TOK_EQU: dt_cg_compare_op(dnp, dlp, drp, DIF_OP_BE); break; case DT_TOK_NEQ: dt_cg_compare_op(dnp, dlp, drp, DIF_OP_BNE); break; case DT_TOK_LT: dt_cg_compare_op(dnp, dlp, drp, dt_cg_compare_signed(dnp) ? DIF_OP_BL : DIF_OP_BLU); break; case DT_TOK_LE: dt_cg_compare_op(dnp, dlp, drp, dt_cg_compare_signed(dnp) ? DIF_OP_BLE : DIF_OP_BLEU); break; case DT_TOK_GT: dt_cg_compare_op(dnp, dlp, drp, dt_cg_compare_signed(dnp) ? DIF_OP_BG : DIF_OP_BGU); break; case DT_TOK_GE: dt_cg_compare_op(dnp, dlp, drp, dt_cg_compare_signed(dnp) ? DIF_OP_BGE : DIF_OP_BGEU); break; case DT_TOK_LSH: dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_SLL); break; case DT_TOK_RSH: dt_cg_arithmetic_op(dnp, dlp, drp, (dnp->dn_flags & DT_NF_SIGNED) ? DIF_OP_SRA : DIF_OP_SRL); break; case DT_TOK_ADD: dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_ADD); break; case DT_TOK_SUB: dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_SUB); break; case DT_TOK_MUL: dt_cg_arithmetic_op(dnp, dlp, drp, DIF_OP_MUL); break; case DT_TOK_DIV: dt_cg_arithmetic_op(dnp, dlp, drp, (dnp->dn_flags & DT_NF_SIGNED) ? DIF_OP_SDIV : DIF_OP_UDIV); break; case DT_TOK_MOD: dt_cg_arithmetic_op(dnp, dlp, drp, (dnp->dn_flags & DT_NF_SIGNED) ? DIF_OP_SREM : DIF_OP_UREM); break; case DT_TOK_LNEG: dt_cg_logical_neg(dnp, dlp, drp); break; case DT_TOK_BNEG: dt_cg_node(dnp->dn_child, dlp, drp); dnp->dn_reg = dnp->dn_child->dn_reg; instr = DIF_INSTR_NOT(dnp->dn_reg, dnp->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); break; case DT_TOK_PREINC: dt_cg_prearith_op(dnp, dlp, drp, DIF_OP_ADD); break; case DT_TOK_POSTINC: dt_cg_postarith_op(dnp, dlp, drp, DIF_OP_ADD); break; case DT_TOK_PREDEC: dt_cg_prearith_op(dnp, dlp, drp, DIF_OP_SUB); break; case DT_TOK_POSTDEC: dt_cg_postarith_op(dnp, dlp, drp, DIF_OP_SUB); break; case DT_TOK_IPOS: dt_cg_node(dnp->dn_child, dlp, drp); dnp->dn_reg = dnp->dn_child->dn_reg; break; case DT_TOK_INEG: dt_cg_node(dnp->dn_child, dlp, drp); dnp->dn_reg = dnp->dn_child->dn_reg; instr = DIF_INSTR_FMT(DIF_OP_SUB, DIF_REG_R0, dnp->dn_reg, dnp->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); break; case DT_TOK_DEREF: dt_cg_node(dnp->dn_child, dlp, drp); dnp->dn_reg = dnp->dn_child->dn_reg; if (!(dnp->dn_flags & DT_NF_REF)) { uint_t ubit = dnp->dn_flags & DT_NF_USERLAND; /* * Save and restore DT_NF_USERLAND across dt_cg_load(): * we need the sign bit from dnp and the user bit from * dnp->dn_child in order to get the proper opcode. */ dnp->dn_flags |= (dnp->dn_child->dn_flags & DT_NF_USERLAND); instr = DIF_INSTR_LOAD(dt_cg_load(dnp, ctfp, dnp->dn_type), dnp->dn_reg, dnp->dn_reg); dnp->dn_flags &= ~DT_NF_USERLAND; dnp->dn_flags |= ubit; dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); } break; case DT_TOK_ADDROF: { uint_t rbit = dnp->dn_child->dn_flags & DT_NF_REF; dnp->dn_child->dn_flags |= DT_NF_REF; /* force pass-by-ref */ dt_cg_node(dnp->dn_child, dlp, drp); dnp->dn_reg = dnp->dn_child->dn_reg; dnp->dn_child->dn_flags &= ~DT_NF_REF; dnp->dn_child->dn_flags |= rbit; break; } case DT_TOK_SIZEOF: { size_t size = dt_node_sizeof(dnp->dn_child); if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1) longjmp(yypcb->pcb_jmpbuf, EDT_NOREG); assert(size != 0); dt_cg_setx(dlp, dnp->dn_reg, size); break; } case DT_TOK_STRINGOF: dt_cg_node(dnp->dn_child, dlp, drp); dnp->dn_reg = dnp->dn_child->dn_reg; break; case DT_TOK_XLATE: /* * An xlate operator appears in either an XLATOR, indicating a * reference to a dynamic translator, or an OP2, indicating * use of the xlate operator in the user's program. For the * dynamic case, generate an xlate opcode with a reference to * the corresponding member, pre-computed for us in dn_members. */ if (dnp->dn_kind == DT_NODE_XLATOR) { dt_xlator_t *dxp = dnp->dn_xlator; assert(dxp->dx_ident->di_flags & DT_IDFLG_CGREG); assert(dxp->dx_ident->di_id != 0); if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1) longjmp(yypcb->pcb_jmpbuf, EDT_NOREG); if (dxp->dx_arg == -1) { instr = DIF_INSTR_MOV( dxp->dx_ident->di_id, dnp->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); op = DIF_OP_XLATE; } else op = DIF_OP_XLARG; instr = DIF_INSTR_XLATE(op, 0, dnp->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dlp->dl_last->di_extern = dnp->dn_xmember; break; } assert(dnp->dn_kind == DT_NODE_OP2); dt_cg_node(dnp->dn_right, dlp, drp); dnp->dn_reg = dnp->dn_right->dn_reg; break; case DT_TOK_LPAR: dt_cg_node(dnp->dn_right, dlp, drp); dnp->dn_reg = dnp->dn_right->dn_reg; dt_cg_typecast(dnp->dn_right, dnp, dlp, drp); break; case DT_TOK_PTR: case DT_TOK_DOT: assert(dnp->dn_right->dn_kind == DT_NODE_IDENT); dt_cg_node(dnp->dn_left, dlp, drp); /* * If the left-hand side of PTR or DOT is a dynamic variable, * we expect it to be the output of a D translator. In this * case, we look up the parse tree corresponding to the member * that is being accessed and run the code generator over it. * We then cast the result as if by the assignment operator. */ if ((idp = dt_node_resolve( dnp->dn_left, DT_IDENT_XLSOU)) != NULL || (idp = dt_node_resolve( dnp->dn_left, DT_IDENT_XLPTR)) != NULL) { dt_xlator_t *dxp; dt_node_t *mnp; dxp = idp->di_data; mnp = dt_xlator_member(dxp, dnp->dn_right->dn_string); assert(mnp != NULL); dxp->dx_ident->di_flags |= DT_IDFLG_CGREG; dxp->dx_ident->di_id = dnp->dn_left->dn_reg; dt_cg_node(mnp->dn_membexpr, dlp, drp); dnp->dn_reg = mnp->dn_membexpr->dn_reg; dt_cg_typecast(mnp->dn_membexpr, dnp, dlp, drp); dxp->dx_ident->di_flags &= ~DT_IDFLG_CGREG; dxp->dx_ident->di_id = 0; if (dnp->dn_left->dn_reg != -1) dt_regset_free(drp, dnp->dn_left->dn_reg); break; } ctfp = dnp->dn_left->dn_ctfp; type = ctf_type_resolve(ctfp, dnp->dn_left->dn_type); if (dnp->dn_op == DT_TOK_PTR) { type = ctf_type_reference(ctfp, type); type = ctf_type_resolve(ctfp, type); } if ((ctfp = dt_cg_membinfo(octfp = ctfp, type, dnp->dn_right->dn_string, &m)) == NULL) { yypcb->pcb_hdl->dt_ctferr = ctf_errno(octfp); longjmp(yypcb->pcb_jmpbuf, EDT_CTF); } if (m.ctm_offset != 0) { if ((reg = dt_regset_alloc(drp)) == -1) longjmp(yypcb->pcb_jmpbuf, EDT_NOREG); /* * If the offset is not aligned on a byte boundary, it * is a bit-field member and we will extract the value * bits below after we generate the appropriate load. */ dt_cg_setx(dlp, reg, m.ctm_offset / NBBY); instr = DIF_INSTR_FMT(DIF_OP_ADD, dnp->dn_left->dn_reg, reg, dnp->dn_left->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); dt_regset_free(drp, reg); } if (!(dnp->dn_flags & DT_NF_REF)) { uint_t ubit = dnp->dn_flags & DT_NF_USERLAND; /* * Save and restore DT_NF_USERLAND across dt_cg_load(): * we need the sign bit from dnp and the user bit from * dnp->dn_left in order to get the proper opcode. */ dnp->dn_flags |= (dnp->dn_left->dn_flags & DT_NF_USERLAND); instr = DIF_INSTR_LOAD(dt_cg_load(dnp, ctfp, m.ctm_type), dnp->dn_left->dn_reg, dnp->dn_left->dn_reg); dnp->dn_flags &= ~DT_NF_USERLAND; dnp->dn_flags |= ubit; dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); if (dnp->dn_flags & DT_NF_BITFIELD) dt_cg_field_get(dnp, dlp, drp, ctfp, &m); } dnp->dn_reg = dnp->dn_left->dn_reg; break; case DT_TOK_STRING: if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1) longjmp(yypcb->pcb_jmpbuf, EDT_NOREG); assert(dnp->dn_kind == DT_NODE_STRING); stroff = dt_strtab_insert(yypcb->pcb_strtab, dnp->dn_string); if (stroff == -1L) longjmp(yypcb->pcb_jmpbuf, EDT_NOMEM); if (stroff > DIF_STROFF_MAX) longjmp(yypcb->pcb_jmpbuf, EDT_STR2BIG); instr = DIF_INSTR_SETS((ulong_t)stroff, dnp->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); break; case DT_TOK_IDENT: /* * If the specified identifier is a variable on which we have * set the code generator register flag, then this variable * has already had code generated for it and saved in di_id. * Allocate a new register and copy the existing value to it. */ if (dnp->dn_kind == DT_NODE_VAR && (dnp->dn_ident->di_flags & DT_IDFLG_CGREG)) { if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1) longjmp(yypcb->pcb_jmpbuf, EDT_NOREG); instr = DIF_INSTR_MOV(dnp->dn_ident->di_id, dnp->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); break; } /* * Identifiers can represent function calls, variable refs, or * symbols. First we check for inlined variables, and handle * them by generating code for the inline parse tree. */ if (dnp->dn_kind == DT_NODE_VAR && (dnp->dn_ident->di_flags & DT_IDFLG_INLINE)) { dt_cg_inline(dnp, dlp, drp); break; } switch (dnp->dn_kind) { case DT_NODE_FUNC: if ((idp = dnp->dn_ident)->di_kind != DT_IDENT_FUNC) { dnerror(dnp, D_CG_EXPR, "%s %s( ) may not be " "called from a D expression (D program " "context required)\n", dt_idkind_name(idp->di_kind), idp->di_name); } dt_cg_arglist(dnp->dn_ident, dnp->dn_args, dlp, drp); if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1) longjmp(yypcb->pcb_jmpbuf, EDT_NOREG); instr = DIF_INSTR_CALL( dnp->dn_ident->di_id, dnp->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); break; case DT_NODE_VAR: if (dnp->dn_ident->di_kind == DT_IDENT_XLSOU || dnp->dn_ident->di_kind == DT_IDENT_XLPTR) { /* * This can only happen if we have translated * args[]. See dt_idcook_args() for details. */ assert(dnp->dn_ident->di_id == DIF_VAR_ARGS); dt_cg_array_op(dnp, dlp, drp); break; } if (dnp->dn_ident->di_kind == DT_IDENT_ARRAY) { if (dnp->dn_ident->di_id > DIF_VAR_ARRAY_MAX) dt_cg_assoc_op(dnp, dlp, drp); else dt_cg_array_op(dnp, dlp, drp); break; } if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1) longjmp(yypcb->pcb_jmpbuf, EDT_NOREG); if (dnp->dn_ident->di_flags & DT_IDFLG_LOCAL) op = DIF_OP_LDLS; else if (dnp->dn_ident->di_flags & DT_IDFLG_TLS) op = DIF_OP_LDTS; else op = DIF_OP_LDGS; dnp->dn_ident->di_flags |= DT_IDFLG_DIFR; instr = DIF_INSTR_LDV(op, dnp->dn_ident->di_id, dnp->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); break; case DT_NODE_SYM: { dtrace_hdl_t *dtp = yypcb->pcb_hdl; dtrace_syminfo_t *sip = dnp->dn_ident->di_data; GElf_Sym sym; if (dtrace_lookup_by_name(dtp, sip->dts_object, sip->dts_name, &sym, NULL) == -1) { xyerror(D_UNKNOWN, "cg failed for symbol %s`%s:" " %s\n", sip->dts_object, sip->dts_name, dtrace_errmsg(dtp, dtrace_errno(dtp))); } if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1) longjmp(yypcb->pcb_jmpbuf, EDT_NOREG); dt_cg_xsetx(dlp, dnp->dn_ident, DT_LBL_NONE, dnp->dn_reg, sym.st_value); if (!(dnp->dn_flags & DT_NF_REF)) { instr = DIF_INSTR_LOAD(dt_cg_load(dnp, ctfp, dnp->dn_type), dnp->dn_reg, dnp->dn_reg); dt_irlist_append(dlp, dt_cg_node_alloc(DT_LBL_NONE, instr)); } break; } default: xyerror(D_UNKNOWN, "internal error -- node type %u is " "not valid for an identifier\n", dnp->dn_kind); } break; case DT_TOK_INT: if ((dnp->dn_reg = dt_regset_alloc(drp)) == -1) longjmp(yypcb->pcb_jmpbuf, EDT_NOREG); dt_cg_setx(dlp, dnp->dn_reg, dnp->dn_value); break; default: xyerror(D_UNKNOWN, "internal error -- token type %u is not a " "valid D compilation token\n", dnp->dn_op); } } void dt_cg(dt_pcb_t *pcb, dt_node_t *dnp) { dif_instr_t instr; dt_xlator_t *dxp; if (pcb->pcb_regs == NULL && (pcb->pcb_regs = dt_regset_create(pcb->pcb_hdl->dt_conf.dtc_difintregs)) == NULL) longjmp(pcb->pcb_jmpbuf, EDT_NOMEM); dt_regset_reset(pcb->pcb_regs); (void) dt_regset_alloc(pcb->pcb_regs); /* allocate %r0 */ if (pcb->pcb_inttab != NULL) dt_inttab_destroy(pcb->pcb_inttab); if ((pcb->pcb_inttab = dt_inttab_create(yypcb->pcb_hdl)) == NULL) longjmp(pcb->pcb_jmpbuf, EDT_NOMEM); if (pcb->pcb_strtab != NULL) dt_strtab_destroy(pcb->pcb_strtab); if ((pcb->pcb_strtab = dt_strtab_create(BUFSIZ)) == NULL) longjmp(pcb->pcb_jmpbuf, EDT_NOMEM); dt_irlist_destroy(&pcb->pcb_ir); dt_irlist_create(&pcb->pcb_ir); assert(pcb->pcb_dret == NULL); pcb->pcb_dret = dnp; if (dt_node_is_dynamic(dnp)) { dnerror(dnp, D_CG_DYN, "expression cannot evaluate to result " "of dynamic type\n"); } /* * If we're generating code for a translator body, assign the input * parameter to the first available register (i.e. caller passes %r1). */ if (dnp->dn_kind == DT_NODE_MEMBER) { dxp = dnp->dn_membxlator; dnp = dnp->dn_membexpr; dxp->dx_ident->di_flags |= DT_IDFLG_CGREG; dxp->dx_ident->di_id = dt_regset_alloc(pcb->pcb_regs); } dt_cg_node(dnp, &pcb->pcb_ir, pcb->pcb_regs); instr = DIF_INSTR_RET(dnp->dn_reg); dt_regset_free(pcb->pcb_regs, dnp->dn_reg); dt_irlist_append(&pcb->pcb_ir, dt_cg_node_alloc(DT_LBL_NONE, instr)); if (dnp->dn_kind == DT_NODE_MEMBER) { dt_regset_free(pcb->pcb_regs, dxp->dx_ident->di_id); dxp->dx_ident->di_id = 0; dxp->dx_ident->di_flags &= ~DT_IDFLG_CGREG; } }