/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2004 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dhcp_symbol.h" #include "dhcp_inittab.h" static uint64_t dhcp_htonll(uint64_t); static uint64_t dhcp_ntohll(uint64_t); static void inittab_msg(const char *, ...); static uchar_t category_to_code(const char *); static boolean_t encode_number(uint8_t, uint8_t, boolean_t, uint8_t, const char *, uint8_t *, int *); static boolean_t decode_number(uint8_t, uint8_t, boolean_t, uint8_t, const uint8_t *, char *, int *); static dhcp_symbol_t *inittab_lookup(uchar_t, char, const char *, int32_t, size_t *); static dsym_category_t itabcode_to_dsymcode(uchar_t); static boolean_t parse_entry(char *, char **); /* * forward declaration of our internal inittab_table[]. too bulky to put * up front -- check the end of this file for its definition. */ static dhcp_symbol_t inittab_table[]; /* * the number of fields in the inittab and names for the fields. note that * this order is meaningful to parse_entry(); other functions should just * use them as indexes into the array returned from parse_entry(). */ #define ITAB_FIELDS 7 enum { ITAB_NAME, ITAB_CODE, ITAB_TYPE, ITAB_GRAN, ITAB_MAX, ITAB_CONS, ITAB_CAT }; /* * the category_map_entry_t is used to map the inittab category codes to * the dsym codes. the reason the codes are different is that the inittab * needs to have the codes be ORable such that queries can retrieve more * than one category at a time. this map is also used to map the inittab * string representation of a category to its numerical code. */ typedef struct category_map_entry { dsym_category_t cme_dsymcode; char *cme_name; uchar_t cme_itabcode; } category_map_entry_t; static category_map_entry_t category_map[] = { { DSYM_STANDARD, "STANDARD", ITAB_CAT_STANDARD }, { DSYM_FIELD, "FIELD", ITAB_CAT_FIELD }, { DSYM_INTERNAL, "INTERNAL", ITAB_CAT_INTERNAL }, { DSYM_VENDOR, "VENDOR", ITAB_CAT_VENDOR }, { DSYM_SITE, "SITE", ITAB_CAT_SITE } }; /* * inittab_load(): returns all inittab entries with the specified criteria * * input: uchar_t: the categories the consumer is interested in * char: the consumer type of the caller * size_t *: set to the number of entries returned * output: dhcp_symbol_t *: an array of dynamically allocated entries * on success, NULL upon failure */ dhcp_symbol_t * inittab_load(uchar_t categories, char consumer, size_t *n_entries) { return (inittab_lookup(categories, consumer, NULL, -1, n_entries)); } /* * inittab_getbyname(): returns an inittab entry with the specified criteria * * input: int: the categories the consumer is interested in * char: the consumer type of the caller * char *: the name of the inittab entry the consumer wants * output: dhcp_symbol_t *: a dynamically allocated dhcp_symbol structure * on success, NULL upon failure */ dhcp_symbol_t * inittab_getbyname(uchar_t categories, char consumer, const char *name) { return (inittab_lookup(categories, consumer, name, -1, NULL)); } /* * inittab_getbycode(): returns an inittab entry with the specified criteria * * input: uchar_t: the categories the consumer is interested in * char: the consumer type of the caller * uint16_t: the code of the inittab entry the consumer wants * output: dhcp_symbol_t *: a dynamically allocated dhcp_symbol structure * on success, NULL upon failure */ dhcp_symbol_t * inittab_getbycode(uchar_t categories, char consumer, uint16_t code) { return (inittab_lookup(categories, consumer, NULL, code, NULL)); } /* * inittab_lookup(): returns inittab entries with the specified criteria * * input: uchar_t: the categories the consumer is interested in * char: the consumer type of the caller * const char *: the name of the entry the caller is interested * in, or NULL if the caller doesn't care * int32_t: the code the caller is interested in, or -1 if the * caller doesn't care * size_t *: set to the number of entries returned * output: dhcp_symbol_t *: dynamically allocated dhcp_symbol structures * on success, NULL upon failure */ static dhcp_symbol_t * inittab_lookup(uchar_t categories, char consumer, const char *name, int32_t code, size_t *n_entriesp) { FILE *inittab_fp; dhcp_symbol_t *new_entries, *entries = NULL; dhcp_symbol_t entry; char buffer[ITAB_MAX_LINE_LEN]; char *fields[ITAB_FIELDS]; unsigned long line = 0; size_t i, n_entries = 0; char *inittab_path; uchar_t category_code; dsym_cdtype_t type; inittab_path = getenv("DHCP_INITTAB_PATH"); if (inittab_path == NULL) inittab_path = ITAB_INITTAB_PATH; inittab_fp = fopen(inittab_path, "r"); if (inittab_fp == NULL) { inittab_msg("inittab_lookup: fopen: %s: %s", ITAB_INITTAB_PATH, strerror(errno)); return (NULL); } (void) bufsplit(",\n", 0, NULL); while (fgets(buffer, sizeof (buffer), inittab_fp) != NULL) { line++; /* * make sure the string didn't overflow our buffer */ if (strchr(buffer, '\n') == NULL) { inittab_msg("inittab_lookup: line %li: too long, " "skipping", line); continue; } /* * skip `pure comment' lines */ for (i = 0; buffer[i] != '\0'; i++) if (isspace(buffer[i]) == 0) break; if (buffer[i] == ITAB_COMMENT_CHAR || buffer[i] == '\0') continue; /* * parse the entry out into fields. */ if (parse_entry(buffer, fields) == B_FALSE) { inittab_msg("inittab_lookup: line %li: syntax error, " "skipping", line); continue; } /* * validate the values in the entries; skip if invalid. */ if (atoi(fields[ITAB_GRAN]) > ITAB_GRAN_MAX) { inittab_msg("inittab_lookup: line %li: granularity `%s'" " out of range, skipping", line, fields[ITAB_GRAN]); continue; } if (atoi(fields[ITAB_MAX]) > ITAB_MAX_MAX) { inittab_msg("inittab_lookup: line %li: maximum `%s' " "out of range, skipping", line, fields[ITAB_MAX]); continue; } if (dsym_get_type_id(fields[ITAB_TYPE], &type, B_FALSE) != DSYM_SUCCESS) { inittab_msg("inittab_lookup: line %li: type `%s' " "is invalid, skipping", line, fields[ITAB_TYPE]); continue; } /* * find out whether this entry of interest to our consumer, * and if so, throw it onto the set of entries we'll return. * check categories last since it's the most expensive check. */ if (strchr(fields[ITAB_CONS], consumer) == NULL) continue; if (code != -1 && atoi(fields[ITAB_CODE]) != code) continue; if (name != NULL && strcasecmp(fields[ITAB_NAME], name) != 0) continue; category_code = category_to_code(fields[ITAB_CAT]); if ((category_code & categories) == 0) continue; /* * looks like a match. allocate an entry and fill it in */ new_entries = realloc(entries, (n_entries + 1) * sizeof (dhcp_symbol_t)); /* * if we run out of memory, might as well return what we can */ if (new_entries == NULL) { inittab_msg("inittab_lookup: ran out of memory " "allocating dhcp_symbol_t's"); break; } entry.ds_max = atoi(fields[ITAB_MAX]); entry.ds_code = atoi(fields[ITAB_CODE]); entry.ds_type = type; entry.ds_gran = atoi(fields[ITAB_GRAN]); entry.ds_category = itabcode_to_dsymcode(category_code); entry.ds_classes.dc_cnt = 0; entry.ds_classes.dc_names = NULL; (void) strlcpy(entry.ds_name, fields[ITAB_NAME], sizeof (entry.ds_name)); entries = new_entries; entries[n_entries++] = entry; } if (ferror(inittab_fp) != 0) { inittab_msg("inittab_lookup: error on inittab stream"); clearerr(inittab_fp); } (void) fclose(inittab_fp); if (n_entriesp != NULL) *n_entriesp = n_entries; return (entries); } /* * parse_entry(): parses an entry out into its constituent fields * * input: char *: the entry * char **: an array of ITAB_FIELDS length which contains * pointers into the entry on upon return * output: boolean_t: B_TRUE on success, B_FALSE on failure */ static boolean_t parse_entry(char *entry, char **fields) { char *category, *spacep; size_t n_fields, i; /* * due to a mistake made long ago, the first and second fields of * each entry are not separated by a comma, but rather by * whitespace -- have bufsplit() treat the two fields as one, then * pull them apart afterwards. */ n_fields = bufsplit(entry, ITAB_FIELDS - 1, fields); if (n_fields != (ITAB_FIELDS - 1)) return (B_FALSE); /* * pull the first and second fields apart. this is complicated * since the first field can contain embedded whitespace (so we * must separate the two fields by the last span of whitespace). * * first, find the initial span of whitespace. if there isn't one, * then the entry is malformed. */ category = strpbrk(fields[ITAB_NAME], " \t"); if (category == NULL) return (B_FALSE); /* * find the last span of whitespace. */ do { while (isspace(*category)) category++; spacep = strpbrk(category, " \t"); if (spacep != NULL) category = spacep; } while (spacep != NULL); /* * NUL-terminate the first byte of the last span of whitespace, so * that the first field doesn't have any residual trailing * whitespace. */ spacep = category - 1; while (isspace(*spacep)) spacep--; if (spacep <= fields[0]) return (B_FALSE); *++spacep = '\0'; /* * remove any whitespace from the fields. */ for (i = 0; i < n_fields; i++) { while (isspace(*fields[i])) fields[i]++; } fields[ITAB_CAT] = category; return (B_TRUE); } /* * inittab_verify(): verifies that a given inittab entry matches an internal * definition * * input: dhcp_symbol_t *: the inittab entry to verify * dhcp_symbol_t *: if non-NULL, a place to store the internal * inittab entry upon return * output: int: ITAB_FAILURE, ITAB_SUCCESS, or ITAB_UNKNOWN */ int inittab_verify(dhcp_symbol_t *inittab_ent, dhcp_symbol_t *internal_ent) { unsigned int i; for (i = 0; inittab_table[i].ds_name[0] != '\0'; i++) { if (inittab_ent->ds_category != inittab_table[i].ds_category) continue; if (inittab_ent->ds_code == inittab_table[i].ds_code) { if (internal_ent != NULL) *internal_ent = inittab_table[i]; if (inittab_table[i].ds_type != inittab_ent->ds_type || inittab_table[i].ds_gran != inittab_ent->ds_gran || inittab_table[i].ds_max != inittab_ent->ds_max) return (ITAB_FAILURE); return (ITAB_SUCCESS); } } return (ITAB_UNKNOWN); } /* * inittab_encode_e(): converts a string representation of a given datatype into * binary; used for encoding ascii values into a form that * can be put in DHCP packets to be sent on the wire. * * input: dhcp_symbol_t *: the entry describing the value option * const char *: the value to convert * uint16_t *: set to the length of the binary data returned * boolean_t: if false, return a full DHCP option * output: uchar_t *: a dynamically allocated byte array with converted data */ uchar_t * inittab_encode_e(dhcp_symbol_t *ie, const char *value, uint16_t *lengthp, boolean_t just_payload, int *ierrnop) { uint16_t length = 0; uchar_t n_entries = 0; const char *valuep; char *currp; uchar_t *result = NULL; unsigned int i; uint8_t type_size = inittab_type_to_size(ie); boolean_t is_signed; uint_t vallen, reslen; *ierrnop = 0; if (type_size == 0) { *ierrnop = ITAB_SYNTAX_ERROR; return (NULL); } if (ie->ds_type == DSYM_ASCII) n_entries = strlen(value); /* no NUL */ else if (ie->ds_type == DSYM_OCTET) { vallen = strlen(value); n_entries = vallen / 2; n_entries += vallen % 2; } else { /* * figure out the number of entries by counting the spaces * in the value string */ for (valuep = value; valuep++ != NULL; n_entries++) valuep = strchr(valuep, ' '); } /* * if we're gonna return a complete option, then include the * option length and code in the size of the packet we allocate */ if (just_payload == B_FALSE) length += 2; length += n_entries * type_size; if (length > 0) result = malloc(length); switch (ie->ds_type) { case DSYM_ASCII: if (result == NULL) { *ierrnop = ITAB_NOMEM; return (NULL); } if (strlen(value) > length) { free(result); *ierrnop = ITAB_BAD_STRING; return (NULL); } (void) memcpy(result, value, length); break; case DSYM_OCTET: if (result == NULL) { *ierrnop = ITAB_BAD_OCTET; return (NULL); } reslen = length; /* Call libinetutil function to decode */ if (hexascii_to_octet(value, vallen, result, &reslen) != 0) { free(result); *ierrnop = ITAB_BAD_OCTET; return (NULL); } break; case DSYM_IP: if (result == NULL) { *ierrnop = ITAB_BAD_IPADDR; return (NULL); } if (n_entries % ie->ds_gran != 0) { *ierrnop = ITAB_BAD_GRAN; inittab_msg("inittab_encode: number of entries " "not compatible with option granularity"); free(result); return (NULL); } for (valuep = value, i = 0; i < n_entries; i++, valuep++) { currp = strchr(valuep, ' '); if (currp != NULL) *currp = '\0'; if (inet_pton(AF_INET, valuep, &result[i * sizeof (ipaddr_t)]) != 1) { *ierrnop = ITAB_BAD_IPADDR; inittab_msg("inittab_encode: bogus ip address"); free(result); return (NULL); } valuep = currp; if (valuep == NULL) { if (i < (n_entries - 1)) { *ierrnop = ITAB_NOT_ENOUGH_IP; inittab_msg("inittab_encode: too few " "ip addresses"); free(result); return (NULL); } break; } } break; case DSYM_NUMBER: /* FALLTHRU */ case DSYM_UNUMBER8: /* FALLTHRU */ case DSYM_SNUMBER8: /* FALLTHRU */ case DSYM_UNUMBER16: /* FALLTHRU */ case DSYM_SNUMBER16: /* FALLTHRU */ case DSYM_UNUMBER32: /* FALLTHRU */ case DSYM_SNUMBER32: /* FALLTHRU */ case DSYM_UNUMBER64: /* FALLTHRU */ case DSYM_SNUMBER64: if (result == NULL) { *ierrnop = ITAB_BAD_NUMBER; return (NULL); } is_signed = (ie->ds_type == DSYM_SNUMBER64 || ie->ds_type == DSYM_SNUMBER32 || ie->ds_type == DSYM_SNUMBER16 || ie->ds_type == DSYM_SNUMBER8); if (encode_number(n_entries, type_size, is_signed, 0, value, result, ierrnop) == B_FALSE) { free(result); return (NULL); } break; default: if (ie->ds_type == DSYM_BOOL) *ierrnop = ITAB_BAD_BOOLEAN; else *ierrnop = ITAB_SYNTAX_ERROR; inittab_msg("inittab_encode: unsupported type `%d'", ie->ds_type); free(result); return (NULL); } /* * if just_payload is false, then we need to slide the option * code and length fields in. (length includes them in its * count, so we have to subtract 2) */ if (just_payload == B_FALSE) { (void) memmove(result + 2, result, length - 2); result[0] = ie->ds_code; result[1] = length - 2; } if (lengthp != NULL) *lengthp = length; return (result); } /* * inittab_decode_e(): converts a binary representation of a given datatype into * a string; used for decoding DHCP options in a packet off * the wire into ascii * * input: dhcp_symbol_t *: the entry describing the payload option * uchar_t *: the payload to convert * uint16_t: the payload length (only used if just_payload is true) * boolean_t: if false, payload is assumed to be a DHCP option * int *: set to extended error code if error occurs. * output: char *: a dynamically allocated string containing the converted data */ char * inittab_decode_e(dhcp_symbol_t *ie, uchar_t *payload, uint16_t length, boolean_t just_payload, int *ierrnop) { char *resultp, *end, *result = NULL; char *currp; uchar_t n_entries; struct in_addr in_addr; uint8_t type_size = inittab_type_to_size(ie); boolean_t is_signed; *ierrnop = 0; if (type_size == 0) { *ierrnop = ITAB_SYNTAX_ERROR; return (NULL); } if (just_payload == B_FALSE) { length = payload[1]; payload += 2; } /* * figure out the number of elements to convert. note that * for ds_type NUMBER, the granularity is really 1 since the * value of ds_gran is the number of bytes in the number. */ if (ie->ds_type == DSYM_NUMBER) n_entries = MIN(ie->ds_max, length / type_size); else n_entries = MIN(ie->ds_max * ie->ds_gran, length / type_size); if (n_entries == 0) n_entries = length / type_size; if ((length % type_size) != 0) { inittab_msg("inittab_decode: length of string not compatible " "with option type `%i'", ie->ds_type); *ierrnop = ITAB_BAD_STRING; return (NULL); } switch (ie->ds_type) { case DSYM_ASCII: result = malloc(n_entries + 1); if (result == NULL) { *ierrnop = ITAB_NOMEM; return (NULL); } (void) memcpy(result, payload, n_entries); result[n_entries] = '\0'; break; case DSYM_OCTET: result = malloc(n_entries * (sizeof ("0xNN") + 1)); if (result == NULL) { *ierrnop = ITAB_NOMEM; return (NULL); } for (resultp = result; n_entries != 0; n_entries--) { currp = resultp; resultp += sprintf(resultp, "0x%02X ", *payload++); if (currp == resultp) { free(result); *ierrnop = ITAB_BAD_OCTET; return (NULL); } } resultp[-1] = '\0'; break; case DSYM_IP: if ((length / sizeof (ipaddr_t)) % ie->ds_gran != 0) { *ierrnop = ITAB_BAD_GRAN; inittab_msg("inittab_decode: number of entries " "not compatible with option granularity"); return (NULL); } result = malloc(n_entries * (sizeof ("aaa.bbb.ccc.ddd") + 1)); end = &result[n_entries * (sizeof ("aaa.bbb.ccc.ddd") + 1)]; if (result == NULL) { *ierrnop = ITAB_NOMEM; return (NULL); } for (resultp = result; n_entries != 0; n_entries--) { (void) memcpy(&in_addr.s_addr, payload, sizeof (ipaddr_t)); currp = resultp; resultp += snprintf(resultp, end - resultp, "%s ", inet_ntoa(in_addr)); if (currp == resultp) { free(result); *ierrnop = ITAB_BAD_IPADDR; return (NULL); } payload += sizeof (ipaddr_t); } resultp[-1] = '\0'; break; case DSYM_NUMBER: /* FALLTHRU */ case DSYM_UNUMBER8: /* FALLTHRU */ case DSYM_SNUMBER8: /* FALLTHRU */ case DSYM_UNUMBER16: /* FALLTHRU */ case DSYM_SNUMBER16: /* FALLTHRU */ case DSYM_UNUMBER32: /* FALLTHRU */ case DSYM_SNUMBER32: /* FALLTHRU */ case DSYM_UNUMBER64: /* FALLTHRU */ case DSYM_SNUMBER64: is_signed = (ie->ds_type == DSYM_SNUMBER64 || ie->ds_type == DSYM_SNUMBER32 || ie->ds_type == DSYM_SNUMBER16 || ie->ds_type == DSYM_SNUMBER8); result = malloc(n_entries * ITAB_MAX_NUMBER_LEN); if (result == NULL) { *ierrnop = ITAB_NOMEM; return (NULL); } if (decode_number(n_entries, type_size, is_signed, ie->ds_gran, payload, result, ierrnop) == B_FALSE) { free(result); return (NULL); } break; default: inittab_msg("inittab_decode: unsupported type `%d'", ie->ds_type); break; } return (result); } /* * inittab_encode(): converts a string representation of a given datatype into * binary; used for encoding ascii values into a form that * can be put in DHCP packets to be sent on the wire. * * input: dhcp_symbol_t *: the entry describing the value option * const char *: the value to convert * uint16_t *: set to the length of the binary data returned * boolean_t: if false, return a full DHCP option * output: uchar_t *: a dynamically allocated byte array with converted data */ uchar_t * inittab_encode(dhcp_symbol_t *ie, const char *value, uint16_t *lengthp, boolean_t just_payload) { int ierrno; return (inittab_encode_e(ie, value, lengthp, just_payload, &ierrno)); } /* * inittab_decode(): converts a binary representation of a given datatype into * a string; used for decoding DHCP options in a packet off * the wire into ascii * * input: dhcp_symbol_t *: the entry describing the payload option * uchar_t *: the payload to convert * uint16_t: the payload length (only used if just_payload is true) * boolean_t: if false, payload is assumed to be a DHCP option * output: char *: a dynamically allocated string containing the converted data */ char * inittab_decode(dhcp_symbol_t *ie, uchar_t *payload, uint16_t length, boolean_t just_payload) { int ierrno; return (inittab_decode_e(ie, payload, length, just_payload, &ierrno)); } /* * inittab_msg(): prints diagnostic messages if INITTAB_DEBUG is set * * const char *: a printf-like format string * ...: arguments to the format string * output: void */ /*PRINTFLIKE1*/ static void inittab_msg(const char *fmt, ...) { enum { INITTAB_MSG_CHECK, INITTAB_MSG_RETURN, INITTAB_MSG_OUTPUT }; va_list ap; char buf[512]; static int action = INITTAB_MSG_CHECK; /* * check DHCP_INITTAB_DEBUG the first time in; thereafter, use * the the cached result (stored in `action'). */ switch (action) { case INITTAB_MSG_CHECK: if (getenv("DHCP_INITTAB_DEBUG") == NULL) { action = INITTAB_MSG_RETURN; return; } action = INITTAB_MSG_OUTPUT; /* FALLTHRU into INITTAB_MSG_OUTPUT */ case INITTAB_MSG_OUTPUT: va_start(ap, fmt); (void) snprintf(buf, sizeof (buf), "inittab: %s\n", fmt); (void) vfprintf(stderr, buf, ap); va_end(ap); break; case INITTAB_MSG_RETURN: return; } } /* * decode_number(): decodes a sequence of numbers from binary into ascii; * binary is coming off of the network, so it is in nbo * * input: uint8_t: the number of "granularity" numbers to decode * uint8_t: the length of each number * boolean_t: whether the numbers should be considered signed * uint8_t: the number of numbers per granularity * const uint8_t *: where to decode the numbers from * char *: where to decode the numbers to * output: boolean_t: true on successful conversion, false on failure */ static boolean_t decode_number(uint8_t n_entries, uint8_t size, boolean_t is_signed, uint8_t granularity, const uint8_t *from, char *to, int *ierrnop) { uint16_t uint16; uint32_t uint32; uint64_t uint64; if (granularity != 0) { if ((granularity % n_entries) != 0) { inittab_msg("decode_number: number of entries " "not compatible with option granularity"); *ierrnop = ITAB_BAD_GRAN; return (B_FALSE); } } for (; n_entries != 0; n_entries--, from += size) { switch (size) { case 1: to += sprintf(to, is_signed ? "%d " : "%u ", *from); break; case 2: (void) memcpy(&uint16, from, 2); to += sprintf(to, is_signed ? "%hd " : "%hu ", ntohs(uint16)); break; case 4: (void) memcpy(&uint32, from, 4); to += sprintf(to, is_signed ? "%ld " : "%lu ", ntohl(uint32)); break; case 8: (void) memcpy(&uint64, from, 8); to += sprintf(to, is_signed ? "%lld " : "%llu ", dhcp_ntohll(uint64)); break; default: *ierrnop = ITAB_BAD_NUMBER; inittab_msg("decode_number: unknown integer size `%d'", size); return (B_FALSE); } } to[-1] = '\0'; return (B_TRUE); } /* * encode_number(): encodes a sequence of numbers from ascii into binary; * number will end up on the wire so it needs to be in nbo * * input: uint8_t: the number of "granularity" numbers to encode * uint8_t: the length of each number * boolean_t: whether the numbers should be considered signed * uint8_t: the number of numbers per granularity * const uint8_t *: where to encode the numbers from * char *: where to encode the numbers to * int *: set to extended error code if error occurs. * output: boolean_t: true on successful conversion, false on failure */ static boolean_t /* ARGSUSED */ encode_number(uint8_t n_entries, uint8_t size, boolean_t is_signed, uint8_t granularity, const char *from, uint8_t *to, int *ierrnop) { uint8_t i; uint16_t uint16; uint32_t uint32; uint64_t uint64; char *endptr; if (granularity != 0) { if ((granularity % n_entries) != 0) { *ierrnop = ITAB_BAD_GRAN; inittab_msg("encode_number: number of entries " "not compatible with option granularity"); return (B_FALSE); } } for (i = 0; i < n_entries; i++, from++) { /* * totally obscure c factoid: it is legal to pass a * string representing a negative number to strtoul(). * in this case, strtoul() will return an unsigned * long that if cast to a long, would represent the * negative number. we take advantage of this to * cut down on code here. */ errno = 0; switch (size) { case 1: to[i] = strtoul(from, &endptr, 0); if (errno != 0 || from == endptr) { goto error; } break; case 2: uint16 = htons(strtoul(from, &endptr, 0)); if (errno != 0 || from == endptr) { goto error; } (void) memcpy(to + (i * 2), &uint16, 2); break; case 4: uint32 = htonl(strtoul(from, &endptr, 0)); if (errno != 0 || from == endptr) { goto error; } (void) memcpy(to + (i * 4), &uint32, 4); break; case 8: uint64 = dhcp_htonll(strtoull(from, &endptr, 0)); if (errno != 0 || from == endptr) { goto error; } (void) memcpy(to + (i * 8), &uint64, 8); break; default: inittab_msg("encode_number: unsupported integer " "size `%d'", size); return (B_FALSE); } from = strchr(from, ' '); if (from == NULL) break; } return (B_TRUE); error: *ierrnop = ITAB_BAD_NUMBER; inittab_msg("encode_number: cannot convert to integer"); return (B_FALSE); } /* * inittab_type_to_size(): given an inittab entry, returns size of one entry of * its type * * input: dhcp_symbol_t *: an entry of the given type * output: uint8_t: the size in bytes of an entry of that type */ uint8_t inittab_type_to_size(dhcp_symbol_t *ie) { switch (ie->ds_type) { case DSYM_ASCII: case DSYM_OCTET: case DSYM_SNUMBER8: case DSYM_UNUMBER8: return (1); case DSYM_SNUMBER16: case DSYM_UNUMBER16: return (2); case DSYM_SNUMBER32: case DSYM_UNUMBER32: case DSYM_IP: return (4); case DSYM_SNUMBER64: case DSYM_UNUMBER64: return (8); case DSYM_NUMBER: return (ie->ds_gran); } return (0); } /* * itabcode_to_dsymcode(): maps an inittab category code to its dsym * representation * * input: uchar_t: the inittab category code * output: dsym_category_t: the dsym category code */ static dsym_category_t itabcode_to_dsymcode(uchar_t itabcode) { unsigned int i; for (i = 0; i < ITAB_CAT_COUNT; i++) if (category_map[i].cme_itabcode == itabcode) return (category_map[i].cme_dsymcode); return (DSYM_BAD_CAT); } /* * category_to_code(): maps a category name to its numeric representation * * input: const char *: the category name * output: uchar_t: its internal code (numeric representation) */ static uchar_t category_to_code(const char *category) { unsigned int i; for (i = 0; i < ITAB_CAT_COUNT; i++) if (strcasecmp(category_map[i].cme_name, category) == 0) return (category_map[i].cme_itabcode); return (0); } /* * dhcp_htonll(): converts a 64-bit number from host to network byte order * * input: uint64_t: the number to convert * output: uint64_t: its value in network byte order */ static uint64_t dhcp_htonll(uint64_t uint64_hbo) { return (dhcp_ntohll(uint64_hbo)); } /* * dhcp_ntohll(): converts a 64-bit number from network to host byte order * * input: uint64_t: the number to convert * output: uint64_t: its value in host byte order */ static uint64_t dhcp_ntohll(uint64_t uint64_nbo) { #ifdef _LITTLE_ENDIAN return ((uint64_t)ntohl(uint64_nbo & 0xffffffff) << 32 | ntohl(uint64_nbo >> 32)); #else return (uint64_nbo); #endif } /* * our internal table of DHCP option values, used by inittab_verify() */ static dhcp_symbol_t inittab_table[] = { { DSYM_INTERNAL, 1024, "Hostname", DSYM_BOOL, 0, 0 }, { DSYM_INTERNAL, 1025, "LeaseNeg", DSYM_BOOL, 0, 0 }, { DSYM_INTERNAL, 1026, "EchoVC", DSYM_BOOL, 0, 0 }, { DSYM_INTERNAL, 1027, "BootPath", DSYM_ASCII, 1, 128 }, { DSYM_FIELD, 0, "Opcode", DSYM_UNUMBER8, 1, 1 }, { DSYM_FIELD, 1, "Htype", DSYM_UNUMBER8, 1, 1 }, { DSYM_FIELD, 2, "HLen", DSYM_UNUMBER8, 1, 1 }, { DSYM_FIELD, 3, "Hops", DSYM_UNUMBER8, 1, 1 }, { DSYM_FIELD, 4, "Xid", DSYM_UNUMBER32, 1, 1 }, { DSYM_FIELD, 8, "Secs", DSYM_UNUMBER16, 1, 1 }, { DSYM_FIELD, 10, "Flags", DSYM_OCTET, 1, 2 }, { DSYM_FIELD, 12, "Ciaddr", DSYM_IP, 1, 1 }, { DSYM_FIELD, 16, "Yiaddr", DSYM_IP, 1, 1 }, { DSYM_FIELD, 20, "BootSrvA", DSYM_IP, 1, 1 }, { DSYM_FIELD, 24, "Giaddr", DSYM_IP, 1, 1 }, { DSYM_FIELD, 28, "Chaddr", DSYM_OCTET, 1, 16 }, { DSYM_FIELD, 44, "BootSrvN", DSYM_ASCII, 1, 64 }, { DSYM_FIELD, 108, "BootFile", DSYM_ASCII, 1, 128 }, { DSYM_FIELD, 236, "Magic", DSYM_OCTET, 1, 4 }, { DSYM_FIELD, 240, "Options", DSYM_OCTET, 1, 60 }, { DSYM_STANDARD, 1, "Subnet", DSYM_IP, 1, 1 }, { DSYM_STANDARD, 2, "UTCoffst", DSYM_SNUMBER32, 1, 1 }, { DSYM_STANDARD, 3, "Router", DSYM_IP, 1, 0 }, { DSYM_STANDARD, 4, "Timeserv", DSYM_IP, 1, 0 }, { DSYM_STANDARD, 5, "IEN116ns", DSYM_IP, 1, 0 }, { DSYM_STANDARD, 6, "DNSserv", DSYM_IP, 1, 0 }, { DSYM_STANDARD, 7, "Logserv", DSYM_IP, 1, 0 }, { DSYM_STANDARD, 8, "Cookie", DSYM_IP, 1, 0 }, { DSYM_STANDARD, 9, "Lprserv", DSYM_IP, 1, 0 }, { DSYM_STANDARD, 10, "Impress", DSYM_IP, 1, 0 }, { DSYM_STANDARD, 11, "Resource", DSYM_IP, 1, 0 }, { DSYM_STANDARD, 12, "Hostname", DSYM_ASCII, 1, 0 }, { DSYM_STANDARD, 13, "Bootsize", DSYM_UNUMBER16, 1, 1 }, { DSYM_STANDARD, 14, "Dumpfile", DSYM_ASCII, 1, 0 }, { DSYM_STANDARD, 15, "DNSdmain", DSYM_ASCII, 1, 0 }, { DSYM_STANDARD, 16, "Swapserv", DSYM_IP, 1, 1 }, { DSYM_STANDARD, 17, "Rootpath", DSYM_ASCII, 1, 0 }, { DSYM_STANDARD, 18, "ExtendP", DSYM_ASCII, 1, 0 }, { DSYM_STANDARD, 19, "IpFwdF", DSYM_UNUMBER8, 1, 1 }, { DSYM_STANDARD, 20, "NLrouteF", DSYM_UNUMBER8, 1, 1 }, { DSYM_STANDARD, 21, "PFilter", DSYM_IP, 2, 0 }, { DSYM_STANDARD, 22, "MaxIpSiz", DSYM_UNUMBER16, 1, 1 }, { DSYM_STANDARD, 23, "IpTTL", DSYM_UNUMBER8, 1, 1 }, { DSYM_STANDARD, 24, "PathTO", DSYM_UNUMBER32, 1, 1 }, { DSYM_STANDARD, 25, "PathTbl", DSYM_UNUMBER16, 1, 0 }, { DSYM_STANDARD, 26, "MTU", DSYM_UNUMBER16, 1, 1 }, { DSYM_STANDARD, 27, "SameMtuF", DSYM_UNUMBER8, 1, 1 }, { DSYM_STANDARD, 28, "Broadcst", DSYM_IP, 1, 1 }, { DSYM_STANDARD, 29, "MaskDscF", DSYM_UNUMBER8, 1, 1 }, { DSYM_STANDARD, 30, "MaskSupF", DSYM_UNUMBER8, 1, 1 }, { DSYM_STANDARD, 31, "RDiscvyF", DSYM_UNUMBER8, 1, 1 }, { DSYM_STANDARD, 32, "RSolictS", DSYM_IP, 1, 1 }, { DSYM_STANDARD, 33, "StaticRt", DSYM_IP, 2, 0 }, { DSYM_STANDARD, 34, "TrailerF", DSYM_UNUMBER8, 1, 1 }, { DSYM_STANDARD, 35, "ArpTimeO", DSYM_UNUMBER32, 1, 1 }, { DSYM_STANDARD, 36, "EthEncap", DSYM_UNUMBER8, 1, 1 }, { DSYM_STANDARD, 37, "TcpTTL", DSYM_UNUMBER8, 1, 1 }, { DSYM_STANDARD, 38, "TcpKaInt", DSYM_UNUMBER32, 1, 1 }, { DSYM_STANDARD, 39, "TcpKaGbF", DSYM_UNUMBER8, 1, 1 }, { DSYM_STANDARD, 40, "NISdmain", DSYM_ASCII, 1, 0 }, { DSYM_STANDARD, 41, "NISservs", DSYM_IP, 1, 0 }, { DSYM_STANDARD, 42, "NTPservs", DSYM_IP, 1, 0 }, { DSYM_STANDARD, 43, "Vendor", DSYM_OCTET, 1, 0 }, { DSYM_STANDARD, 44, "NetBNms", DSYM_IP, 1, 0 }, { DSYM_STANDARD, 45, "NetBDsts", DSYM_IP, 1, 0 }, { DSYM_STANDARD, 46, "NetBNdT", DSYM_UNUMBER8, 1, 1 }, { DSYM_STANDARD, 47, "NetBScop", DSYM_ASCII, 1, 0 }, { DSYM_STANDARD, 48, "XFontSrv", DSYM_IP, 1, 0 }, { DSYM_STANDARD, 49, "XDispMgr", DSYM_IP, 1, 0 }, { DSYM_STANDARD, 50, "ReqIP", DSYM_IP, 1, 1 }, { DSYM_STANDARD, 51, "LeaseTim", DSYM_UNUMBER32, 1, 1 }, { DSYM_STANDARD, 52, "OptOvrld", DSYM_UNUMBER8, 1, 1 }, { DSYM_STANDARD, 53, "DHCPType", DSYM_UNUMBER8, 1, 1 }, { DSYM_STANDARD, 54, "ServerID", DSYM_IP, 1, 1 }, { DSYM_STANDARD, 55, "ReqList", DSYM_OCTET, 1, 0 }, { DSYM_STANDARD, 56, "Message", DSYM_ASCII, 1, 0 }, { DSYM_STANDARD, 57, "DHCP_MTU", DSYM_UNUMBER16, 1, 1 }, { DSYM_STANDARD, 58, "T1Time", DSYM_UNUMBER32, 1, 1 }, { DSYM_STANDARD, 59, "T2Time", DSYM_UNUMBER32, 1, 1 }, { DSYM_STANDARD, 60, "ClassID", DSYM_ASCII, 1, 0 }, { DSYM_STANDARD, 61, "ClientID", DSYM_OCTET, 1, 0 }, { DSYM_STANDARD, 62, "NW_dmain", DSYM_ASCII, 1, 0 }, { DSYM_STANDARD, 63, "NWIPOpts", DSYM_OCTET, 1, 128 }, { DSYM_STANDARD, 64, "NIS+dom", DSYM_ASCII, 1, 0 }, { DSYM_STANDARD, 65, "NIS+serv", DSYM_IP, 1, 0 }, { DSYM_STANDARD, 66, "TFTPsrvN", DSYM_ASCII, 1, 64 }, { DSYM_STANDARD, 67, "OptBootF", DSYM_ASCII, 1, 128 }, { DSYM_STANDARD, 68, "MblIPAgt", DSYM_IP, 1, 0 }, { DSYM_STANDARD, 69, "SMTPserv", DSYM_IP, 1, 0 }, { DSYM_STANDARD, 70, "POP3serv", DSYM_IP, 1, 0 }, { DSYM_STANDARD, 71, "NNTPserv", DSYM_IP, 1, 0 }, { DSYM_STANDARD, 72, "WWWservs", DSYM_IP, 1, 0 }, { DSYM_STANDARD, 73, "Fingersv", DSYM_IP, 1, 0 }, { DSYM_STANDARD, 74, "IRCservs", DSYM_IP, 1, 0 }, { DSYM_STANDARD, 75, "STservs", DSYM_IP, 1, 0 }, { DSYM_STANDARD, 76, "STDAservs", DSYM_IP, 1, 0 }, { DSYM_STANDARD, 77, "UserClas", DSYM_ASCII, 1, 0 }, { DSYM_STANDARD, 78, "SLP_DA", DSYM_OCTET, 1, 0 }, { DSYM_STANDARD, 79, "SLP_SS", DSYM_OCTET, 1, 0 }, { DSYM_STANDARD, 82, "AgentOpt", DSYM_OCTET, 1, 0 }, { DSYM_STANDARD, 89, "FQDN", DSYM_OCTET, 1, 0 }, { 0, 0, "", 0, 0, 0 } };