/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* snprintf */ #include /* ntohl, ntohs, etc */ #include "dhcpagent_ipc.h" #include "dhcpagent_util.h" /* * the protocol used here is a simple request/reply scheme: a client * sends a dhcp_ipc_request_t message to the agent, and the agent * sends a dhcp_ipc_reply_t back to the client. since the requests * and replies can be variable-length, they are prefixed on "the wire" * by a 32-bit number that tells the other end how many bytes to * expect. * * the format of a request consists of a single dhcp_ipc_request_t; * note that the length of this dhcp_ipc_request_t is variable (using * the standard c array-of-size-1 trick). the type of the payload is * given by `data_type', which is guaranteed to be `data_length' bytes * long starting at `buffer'. note that `buffer' is guaranteed to be * 32-bit aligned but it is poor taste to rely on this. * * the format of a reply is much the same: a single dhcp_ipc_reply_t; * note again that the length of the dhcp_ipc_reply_t is variable. * the type of the payload is given by `data_type', which is * guaranteed to be `data_length' bytes long starting at `buffer'. * once again, note that `buffer' is guaranteed to be 32-bit aligned * but it is poor taste to rely on this. * * requests and replies can be paired up by comparing `ipc_id' fields. */ #define BUFMAX 256 static int dhcp_ipc_timed_read(int, void *, unsigned int, int *); static int getinfo_ifnames(const char *, dhcp_optnum_t *, DHCP_OPT **); static char *get_ifnames(int, int); /* must be kept in sync with enum in dhcpagent_ipc.h */ static const char *ipc_typestr[] = { "drop", "extend", "ping", "release", "start", "status", "inform", "get_tag" }; /* * dhcp_ipc_alloc_request(): allocates a dhcp_ipc_request_t of the given type * and interface, with a timeout of 0. * * input: dhcp_ipc_type_t: the type of ipc request to allocate * const char *: the interface to associate the request with * const void *: the payload to send with the message (NULL if none) * uint32_t: the payload size (0 if none) * dhcp_data_type_t: the description of the type of payload * output: dhcp_ipc_request_t *: the request on success, NULL on failure */ dhcp_ipc_request_t * dhcp_ipc_alloc_request(dhcp_ipc_type_t type, const char *ifname, const void *buffer, uint32_t buffer_size, dhcp_data_type_t data_type) { dhcp_ipc_request_t *request = calloc(1, DHCP_IPC_REQUEST_SIZE + buffer_size); if (request == NULL) return (NULL); request->message_type = type; request->data_length = buffer_size; request->data_type = data_type; if (ifname != NULL) (void) strlcpy(request->ifname, ifname, LIFNAMSIZ); if (buffer != NULL) (void) memcpy(request->buffer, buffer, buffer_size); return (request); } /* * dhcp_ipc_alloc_reply(): allocates a dhcp_ipc_reply_t * * input: dhcp_ipc_request_t *: the request the reply is for * int: the return code (0 for success, DHCP_IPC_E_* otherwise) * const void *: the payload to send with the message (NULL if none) * uint32_t: the payload size (0 if none) * dhcp_data_type_t: the description of the type of payload * output: dhcp_ipc_reply_t *: the reply on success, NULL on failure */ dhcp_ipc_reply_t * dhcp_ipc_alloc_reply(dhcp_ipc_request_t *request, int return_code, const void *buffer, uint32_t buffer_size, dhcp_data_type_t data_type) { dhcp_ipc_reply_t *reply = calloc(1, DHCP_IPC_REPLY_SIZE + buffer_size); if (reply == NULL) return (NULL); reply->message_type = request->message_type; reply->ipc_id = request->ipc_id; reply->return_code = return_code; reply->data_length = buffer_size; reply->data_type = data_type; if (buffer != NULL) (void) memcpy(reply->buffer, buffer, buffer_size); return (reply); } /* * dhcp_ipc_get_data(): gets the data and data type from a dhcp_ipc_reply_t * * input: dhcp_ipc_reply_t *: the reply to get data from * size_t *: the size of the resulting data * dhcp_data_type_t *: the type of the message (returned) * output: void *: a pointer to the data, if there is any. */ void * dhcp_ipc_get_data(dhcp_ipc_reply_t *reply, size_t *size, dhcp_data_type_t *type) { if (reply == NULL || reply->data_length == 0) { *size = 0; return (NULL); } if (type != NULL) *type = reply->data_type; *size = reply->data_length; return (reply->buffer); } /* * dhcp_ipc_recv_msg(): gets a message using the agent's ipc protocol * * input: int: the file descriptor to get the message from * void **: the address of a pointer to store the message * (dynamically allocated) * uint32_t: the minimum length of the packet * int: the # of milliseconds to wait for the message (-1 is forever) * output: int: DHCP_IPC_SUCCESS on success, DHCP_IPC_E_* otherwise */ static int dhcp_ipc_recv_msg(int fd, void **msg, uint32_t base_length, int msec) { int retval; dhcp_ipc_reply_t *ipc_msg; uint32_t length; retval = dhcp_ipc_timed_read(fd, &length, sizeof (uint32_t), &msec); if (retval != DHCP_IPC_SUCCESS) return (retval); if (length == 0) return (DHCP_IPC_E_PROTO); *msg = malloc(length); if (*msg == NULL) return (DHCP_IPC_E_MEMORY); retval = dhcp_ipc_timed_read(fd, *msg, length, &msec); if (retval != DHCP_IPC_SUCCESS) { free(*msg); return (retval); } if (length < base_length) { free(*msg); return (DHCP_IPC_E_PROTO); } /* * the data_length field is in the same place in either ipc message. */ ipc_msg = (dhcp_ipc_reply_t *)(*msg); if (ipc_msg->data_length + base_length != length) { free(*msg); return (DHCP_IPC_E_PROTO); } return (DHCP_IPC_SUCCESS); } /* * dhcp_ipc_recv_request(): gets a request using the agent's ipc protocol * * input: int: the file descriptor to get the message from * dhcp_ipc_request_t **: address of a pointer to store the request * (dynamically allocated) * int: the # of milliseconds to wait for the message (-1 is forever) * output: int: 0 on success, DHCP_IPC_E_* otherwise */ int dhcp_ipc_recv_request(int fd, dhcp_ipc_request_t **request, int msec) { int retval; retval = dhcp_ipc_recv_msg(fd, (void **)request, DHCP_IPC_REQUEST_SIZE, msec); /* guarantee that ifname will be NUL-terminated */ if (retval == 0) (*request)->ifname[LIFNAMSIZ - 1] = '\0'; return (retval); } /* * dhcp_ipc_recv_reply(): gets a reply using the agent's ipc protocol * * input: int: the file descriptor to get the message from * dhcp_ipc_reply_t **: address of a pointer to store the reply * (dynamically allocated) * int32_t: timeout (in seconds), or DHCP_IPC_WAIT_FOREVER, * or DHCP_IPC_WAIT_DEFAULT * output: int: 0 on success, DHCP_IPC_E_* otherwise */ static int dhcp_ipc_recv_reply(int fd, dhcp_ipc_reply_t **reply, int32_t timeout) { /* * If the caller doesn't want to wait forever, and the amount of time * he wants to wait is expressible as an integer number of milliseconds * (as needed by the msg function), then we wait that amount of time * plus an extra two seconds for the daemon to do its work. The extra * two seconds is arbitrary; it should allow plenty of time for the * daemon to respond within the existing timeout, as specified in the * original request, so the only time we give up is when the daemon is * stopped or otherwise malfunctioning. * * Note that the wait limit (milliseconds in an 'int') is over 24 days, * so it's unlikely that any request will actually be that long, and * it's unlikely that anyone will care if we wait forever on a request * for a 30 day timer. The point is to protect against daemon * malfunction in the usual cases, not to provide an absolute command * timer. */ if (timeout == DHCP_IPC_WAIT_DEFAULT) timeout = DHCP_IPC_DEFAULT_WAIT; if (timeout != DHCP_IPC_WAIT_FOREVER && timeout < INT_MAX / 1000 - 2) timeout = (timeout + 2) * 1000; else timeout = -1; return (dhcp_ipc_recv_msg(fd, (void **)reply, DHCP_IPC_REPLY_SIZE, timeout)); } /* * dhcp_ipc_send_msg(): transmits a message using the agent's ipc protocol * * input: int: the file descriptor to transmit on * void *: the message to send * uint32_t: the message length * output: int: 0 on success, DHCP_IPC_E_* otherwise */ static int dhcp_ipc_send_msg(int fd, void *msg, uint32_t message_length) { struct iovec iovec[2]; iovec[0].iov_base = (caddr_t)&message_length; iovec[0].iov_len = sizeof (uint32_t); iovec[1].iov_base = msg; iovec[1].iov_len = message_length; if (writev(fd, iovec, sizeof (iovec) / sizeof (*iovec)) == -1) return (DHCP_IPC_E_WRITEV); return (0); } /* * dhcp_ipc_send_reply(): transmits a reply using the agent's ipc protocol * * input: int: the file descriptor to transmit on * dhcp_ipc_reply_t *: the reply to send * output: int: 0 on success, DHCP_IPC_E_* otherwise */ int dhcp_ipc_send_reply(int fd, dhcp_ipc_reply_t *reply) { return (dhcp_ipc_send_msg(fd, reply, DHCP_IPC_REPLY_SIZE + reply->data_length)); } /* * dhcp_ipc_send_request(): transmits a request using the agent's ipc protocol * * input: int: the file descriptor to transmit on * dhcp_ipc_request_t *: the request to send * output: int: 0 on success, DHCP_IPC_E_* otherwise */ static int dhcp_ipc_send_request(int fd, dhcp_ipc_request_t *request) { /* * for now, ipc_ids aren't really used, but they're intended * to make it easy to send several requests and then collect * all of the replies (and pair them with the requests). */ request->ipc_id = gethrtime(); return (dhcp_ipc_send_msg(fd, request, DHCP_IPC_REQUEST_SIZE + request->data_length)); } /* * dhcp_ipc_make_request(): sends the provided request to the agent and reaps * the reply * * input: dhcp_ipc_request_t *: the request to make * dhcp_ipc_reply_t **: the reply (dynamically allocated) * int32_t: timeout (in seconds), or DHCP_IPC_WAIT_FOREVER, * or DHCP_IPC_WAIT_DEFAULT * output: int: 0 on success, DHCP_IPC_E_* otherwise */ int dhcp_ipc_make_request(dhcp_ipc_request_t *request, dhcp_ipc_reply_t **reply, int32_t timeout) { int fd, on, retval; struct sockaddr_in sinv; fd = socket(AF_INET, SOCK_STREAM, 0); if (fd == -1) return (DHCP_IPC_E_SOCKET); /* * Bind a privileged port if we have sufficient privilege to do so. * Continue as non-privileged otherwise. */ on = 1; (void) setsockopt(fd, IPPROTO_TCP, TCP_ANONPRIVBIND, &on, sizeof (on)); (void) memset(&sinv, 0, sizeof (sinv)); sinv.sin_family = AF_INET; if (bind(fd, (struct sockaddr *)&sinv, sizeof (sinv)) == -1) { (void) dhcp_ipc_close(fd); return (DHCP_IPC_E_BIND); } sinv.sin_port = htons(IPPORT_DHCPAGENT); sinv.sin_addr.s_addr = htonl(INADDR_LOOPBACK); retval = connect(fd, (struct sockaddr *)&sinv, sizeof (sinv)); if (retval == -1) { (void) dhcp_ipc_close(fd); return (DHCP_IPC_E_CONNECT); } request->timeout = timeout; retval = dhcp_ipc_send_request(fd, request); if (retval == 0) retval = dhcp_ipc_recv_reply(fd, reply, timeout); (void) dhcp_ipc_close(fd); return (retval); } /* * dhcp_ipc_init(): initializes the ipc channel for use by the agent * * input: int *: the file descriptor to accept on (returned) * output: int: 0 on success, DHCP_IPC_E_* otherwise */ int dhcp_ipc_init(int *listen_fd) { struct sockaddr_in sin; int on = 1; (void) memset(&sin, 0, sizeof (struct sockaddr_in)); sin.sin_family = AF_INET; sin.sin_port = htons(IPPORT_DHCPAGENT); sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK); *listen_fd = socket(AF_INET, SOCK_STREAM, 0); if (*listen_fd == -1) return (DHCP_IPC_E_SOCKET); /* * we use SO_REUSEADDR here since in the case where there * really is another daemon running that is using the agent's * port, bind(3N) will fail. so we can't lose. */ (void) setsockopt(*listen_fd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof (on)); if (bind(*listen_fd, (struct sockaddr *)&sin, sizeof (sin)) == -1) { (void) close(*listen_fd); return (DHCP_IPC_E_BIND); } if (listen(*listen_fd, DHCP_IPC_LISTEN_BACKLOG) == -1) { (void) close(*listen_fd); return (DHCP_IPC_E_LISTEN); } return (0); } /* * dhcp_ipc_accept(): accepts an incoming connection for the agent * * input: int: the file descriptor to accept on * int *: the accepted file descriptor (returned) * int *: nonzero if the client is privileged (returned) * output: int: 0 on success, DHCP_IPC_E_* otherwise * note: sets the socket into nonblocking mode */ int dhcp_ipc_accept(int listen_fd, int *fd, int *is_priv) { struct sockaddr_in sin_peer; int sin_len = sizeof (sin_peer); int sockflags; /* * if we were extremely concerned with portability, we would * set the socket into nonblocking mode before doing the * accept(3N), since on BSD-based networking stacks, there is * a potential race that can occur if the socket which * connected to us performs a TCP RST before we accept, since * BSD handles this case entirely in the kernel and as a * result even though select said we will not block, we can * end up blocking since there is no longer a connection to * accept. on SVR4-based systems, this should be okay, * and we will get EPROTO back, even though POSIX.1g says * we should get ECONNABORTED. */ *fd = accept(listen_fd, (struct sockaddr *)&sin_peer, &sin_len); if (*fd == -1) return (DHCP_IPC_E_ACCEPT); /* get credentials */ *is_priv = ntohs(sin_peer.sin_port) < IPPORT_RESERVED; /* * kick the socket into non-blocking mode so that later * operations on the socket don't block and hold up the whole * application. with the event demuxing approach, this may * seem unnecessary, but in order to get partial reads/writes * and to handle our internal protocol for passing data * between the agent and its consumers, this is needed. */ if ((sockflags = fcntl(*fd, F_GETFL, 0)) == -1) { (void) close(*fd); return (DHCP_IPC_E_FCNTL); } if (fcntl(*fd, F_SETFL, sockflags | O_NONBLOCK) == -1) { (void) close(*fd); return (DHCP_IPC_E_FCNTL); } return (0); } /* * dhcp_ipc_close(): closes an ipc descriptor * * input: int: the file descriptor to close * output: int: 0 on success, DHCP_IPC_E_* otherwise */ int dhcp_ipc_close(int fd) { return ((close(fd) == -1) ? DHCP_IPC_E_CLOSE : 0); } /* * dhcp_ipc_strerror(): maps an ipc error code into a human-readable string * * input: int: the ipc error code to map * output: const char *: the corresponding human-readable string */ const char * dhcp_ipc_strerror(int error) { /* note: this must be kept in sync with DHCP_IPC_E_* definitions */ const char *syscalls[] = { "", "socket", "fcntl", "read", "accept", "close", "bind", "listen", "malloc", "connect", "writev", "poll" }; const char *error_string; static char buffer[BUFMAX]; switch (error) { /* * none of these errors actually go over the wire. * hence, we assume that errno is still fresh. */ case DHCP_IPC_E_SOCKET: /* FALLTHRU */ case DHCP_IPC_E_FCNTL: /* FALLTHRU */ case DHCP_IPC_E_READ: /* FALLTHRU */ case DHCP_IPC_E_ACCEPT: /* FALLTHRU */ case DHCP_IPC_E_CLOSE: /* FALLTHRU */ case DHCP_IPC_E_BIND: /* FALLTHRU */ case DHCP_IPC_E_LISTEN: /* FALLTHRU */ case DHCP_IPC_E_CONNECT: /* FALLTHRU */ case DHCP_IPC_E_WRITEV: /* FALLTHRU */ case DHCP_IPC_E_POLL: error_string = strerror(errno); if (error_string == NULL) error_string = "unknown error"; (void) snprintf(buffer, sizeof (buffer), "%s: %s", syscalls[error], error_string); error_string = buffer; break; case DHCP_IPC_E_MEMORY: error_string = "out of memory"; break; case DHCP_IPC_E_TIMEOUT: error_string = "wait timed out, operation still pending..."; break; case DHCP_IPC_E_INVIF: error_string = "interface does not exist or cannot be managed " "using DHCP"; break; case DHCP_IPC_E_INT: error_string = "internal error (might work later)"; break; case DHCP_IPC_E_PERM: error_string = "permission denied"; break; case DHCP_IPC_E_OUTSTATE: error_string = "interface not in appropriate state for command"; break; case DHCP_IPC_E_PEND: error_string = "interface currently has a pending command " "(try later)"; break; case DHCP_IPC_E_BOOTP: error_string = "interface is administered with BOOTP, not DHCP"; break; case DHCP_IPC_E_CMD_UNKNOWN: error_string = "unknown command"; break; case DHCP_IPC_E_UNKIF: error_string = "interface is not under DHCP control"; break; case DHCP_IPC_E_PROTO: error_string = "ipc protocol violation"; break; case DHCP_IPC_E_FAILEDIF: error_string = "interface is in a FAILED state and must be " "manually restarted"; break; case DHCP_IPC_E_NOPRIMARY: error_string = "primary interface requested but no primary " "interface is set"; break; case DHCP_IPC_E_NOIPIF: error_string = "interface currently has no IP address"; break; case DHCP_IPC_E_DOWNIF: error_string = "interface is currently down"; break; case DHCP_IPC_E_NOVALUE: error_string = "no value was found for this option"; break; case DHCP_IPC_E_RUNNING: error_string = "DHCP is already running"; break; case DHCP_IPC_E_SRVFAILED: error_string = "DHCP server refused request"; break; case DHCP_IPC_E_EOF: error_string = "ipc connection closed"; break; default: error_string = "unknown error"; break; } /* * TODO: internationalize this error string */ return (error_string); } /* * dhcp_string_to_request(): maps a string into a request code * * input: const char *: the string to map * output: dhcp_ipc_type_t: the request code, or -1 if unknown */ dhcp_ipc_type_t dhcp_string_to_request(const char *request) { unsigned int i; for (i = 0; i < DHCP_NIPC; i++) if (strcmp(ipc_typestr[i], request) == 0) return ((dhcp_ipc_type_t)i); return ((dhcp_ipc_type_t)-1); } /* * dhcp_ipc_type_to_string(): maps an ipc command code into a human-readable * string * * input: int: the ipc command code to map * output: const char *: the corresponding human-readable string */ const char * dhcp_ipc_type_to_string(dhcp_ipc_type_t type) { if (type < 0 || type >= DHCP_NIPC) return ("unknown"); else return (ipc_typestr[(int)type]); } /* * getinfo_ifnames(): checks the value of a specified option on a list of * interface names. * input: const char *: a list of interface names to query (in order) for * the option; "" queries the primary interface * dhcp_optnum_t *: a description of the desired option * DHCP_OPT **: filled in with the (dynamically allocated) value of * the option upon success. * output: int: DHCP_IPC_E_* on error, 0 on success or if no value was * found but no error occurred either (*result will be NULL) */ static int getinfo_ifnames(const char *ifn, dhcp_optnum_t *optnum, DHCP_OPT **result) { dhcp_ipc_request_t *request; dhcp_ipc_reply_t *reply; char *ifnames, *ifnames_head; DHCP_OPT *opt; size_t opt_size; int retval = 0; *result = NULL; ifnames_head = ifnames = strdup(ifn); if (ifnames == NULL) return (DHCP_IPC_E_MEMORY); request = dhcp_ipc_alloc_request(DHCP_GET_TAG, "", optnum, sizeof (dhcp_optnum_t), DHCP_TYPE_OPTNUM); if (request == NULL) { free(ifnames_head); return (DHCP_IPC_E_MEMORY); } ifnames = strtok(ifnames, " "); if (ifnames == NULL) ifnames = ""; for (; ifnames != NULL; ifnames = strtok(NULL, " ")) { (void) strlcpy(request->ifname, ifnames, LIFNAMSIZ); retval = dhcp_ipc_make_request(request, &reply, 0); if (retval != 0) break; if (reply->return_code == 0) { opt = dhcp_ipc_get_data(reply, &opt_size, NULL); if (opt_size > 2 && (opt->len == opt_size - 2)) { *result = malloc(opt_size); if (*result == NULL) retval = DHCP_IPC_E_MEMORY; else (void) memcpy(*result, opt, opt_size); free(reply); break; } } free(reply); if (ifnames[0] == '\0') break; } free(request); free(ifnames_head); return (retval); } /* * get_ifnames(): returns a space-separated list of interface names that * match the specified flags * * input: int: flags which must be on in each interface returned * int: flags which must be off in each interface returned * output: char *: a dynamically-allocated list of interface names, or * NULL upon failure. */ static char * get_ifnames(int flags_on, int flags_off) { struct ifconf ifc; int n_ifs, i, sock_fd; char *ifnames; sock_fd = socket(AF_INET, SOCK_DGRAM, 0); if (sock_fd == -1) return (NULL); if ((ioctl(sock_fd, SIOCGIFNUM, &n_ifs) == -1) || (n_ifs <= 0)) { (void) close(sock_fd); return (NULL); } ifnames = calloc(1, n_ifs * (LIFNAMSIZ + 1)); ifc.ifc_len = n_ifs * sizeof (struct ifreq); ifc.ifc_req = calloc(n_ifs, sizeof (struct ifreq)); if (ifc.ifc_req != NULL && ifnames != NULL) { if (ioctl(sock_fd, SIOCGIFCONF, &ifc) == -1) { (void) close(sock_fd); free(ifnames); free(ifc.ifc_req); return (NULL); } for (i = 0; i < n_ifs; i++) { if (ioctl(sock_fd, SIOCGIFFLAGS, &ifc.ifc_req[i]) == 0) if ((ifc.ifc_req[i].ifr_flags & (flags_on | flags_off)) != flags_on) continue; (void) strcat(ifnames, ifc.ifc_req[i].ifr_name); (void) strcat(ifnames, " "); } if (strlen(ifnames) > 1) ifnames[strlen(ifnames) - 1] = '\0'; } (void) close(sock_fd); free(ifc.ifc_req); return (ifnames); } /* * dhcp_ipc_getinfo(): attempts to retrieve a value for the specified DHCP * option; tries primary interface, then all DHCP-owned * interfaces, then INFORMs on the remaining interfaces * (these interfaces are dropped prior to returning). * input: dhcp_optnum_t *: a description of the desired option * DHCP_OPT **: filled in with the (dynamically allocated) value of * the option upon success. * int32_t: timeout (in seconds), or DHCP_IPC_WAIT_FOREVER, * or DHCP_IPC_WAIT_DEFAULT. * output: int: DHCP_IPC_E_* on error, 0 upon success. */ int dhcp_ipc_getinfo(dhcp_optnum_t *optnum, DHCP_OPT **result, int32_t timeout) { dhcp_ipc_request_t *request; dhcp_ipc_reply_t *reply; char *ifnames, *ifnames_copy, *ifnames_head; int retval; time_t start_time = time(NULL); if (timeout == DHCP_IPC_WAIT_DEFAULT) timeout = DHCP_IPC_DEFAULT_WAIT; /* * wait at most 5 seconds for the agent to start. */ if (dhcp_start_agent((timeout > 5 || timeout < 0) ? 5 : timeout) == -1) return (DHCP_IPC_E_INT); /* * check the primary interface for the option value first. */ retval = getinfo_ifnames("", optnum, result); if ((retval != 0) || (retval == 0 && *result != NULL)) return (retval); /* * no luck. get a list of the interfaces under DHCP control * and perform a GET_TAG on each one. */ ifnames = get_ifnames(IFF_DHCPRUNNING, 0); if (ifnames != NULL && strlen(ifnames) != 0) { retval = getinfo_ifnames(ifnames, optnum, result); if ((retval != 0) || (retval == 0 && *result != NULL)) { free(ifnames); return (retval); } } free(ifnames); /* * still no luck. retrieve a list of all interfaces on the * system that could use DHCP but aren't. send INFORMs out on * each one. after that, sit in a loop for the next `timeout' * seconds, trying every second to see if a response for the * option we want has come in on one of the interfaces. */ ifnames = get_ifnames(IFF_UP|IFF_RUNNING, IFF_LOOPBACK|IFF_DHCPRUNNING); if (ifnames == NULL || strlen(ifnames) == 0) { free(ifnames); return (DHCP_IPC_E_NOVALUE); } ifnames_head = ifnames_copy = strdup(ifnames); if (ifnames_copy == NULL) { free(ifnames); return (DHCP_IPC_E_MEMORY); } request = dhcp_ipc_alloc_request(DHCP_INFORM, "", NULL, 0, DHCP_TYPE_NONE); if (request == NULL) { free(ifnames); free(ifnames_head); return (DHCP_IPC_E_MEMORY); } ifnames_copy = strtok(ifnames_copy, " "); for (; ifnames_copy != NULL; ifnames_copy = strtok(NULL, " ")) { (void) strlcpy(request->ifname, ifnames_copy, LIFNAMSIZ); if (dhcp_ipc_make_request(request, &reply, 0) == 0) free(reply); } for (;;) { if ((timeout != DHCP_IPC_WAIT_FOREVER) && (time(NULL) - start_time > timeout)) { retval = DHCP_IPC_E_TIMEOUT; break; } retval = getinfo_ifnames(ifnames, optnum, result); if (retval != 0 || (retval == 0 && *result != NULL)) break; (void) sleep(1); } /* * drop any interfaces that weren't under DHCP control before * we got here; this keeps this function more of a black box * and the behavior more consistent from call to call. */ request->message_type = DHCP_DROP; ifnames_copy = strcpy(ifnames_head, ifnames); ifnames_copy = strtok(ifnames_copy, " "); for (; ifnames_copy != NULL; ifnames_copy = strtok(NULL, " ")) { (void) strlcpy(request->ifname, ifnames_copy, LIFNAMSIZ); if (dhcp_ipc_make_request(request, &reply, 0) == 0) free(reply); } free(request); free(ifnames_head); free(ifnames); return (retval); } /* * dhcp_ipc_timed_read(): reads from a descriptor using a maximum timeout * * input: int: the file descriptor to read from * void *: the buffer to read into * unsigned int: the total length of data to read * int *: the number of milliseconds to wait; the number of * milliseconds left are returned (-1 is "forever") * output: int: DHCP_IPC_SUCCESS on success, DHCP_IPC_E_* otherwise */ static int dhcp_ipc_timed_read(int fd, void *buffer, unsigned int length, int *msec) { unsigned int n_total = 0; ssize_t n_read; struct pollfd pollfd; hrtime_t start, end; int retv; pollfd.fd = fd; pollfd.events = POLLIN; while (n_total < length) { start = gethrtime(); retv = poll(&pollfd, 1, *msec); if (retv == 0) { /* This can happen only if *msec is not -1 */ *msec = 0; return (DHCP_IPC_E_TIMEOUT); } if (*msec != -1) { end = gethrtime(); *msec -= NSEC2MSEC(end - start); if (*msec < 0) *msec = 0; } if (retv == -1) { if (errno != EINTR) return (DHCP_IPC_E_POLL); else if (*msec == 0) return (DHCP_IPC_E_TIMEOUT); continue; } if (!(pollfd.revents & POLLIN)) { errno = EINVAL; return (DHCP_IPC_E_POLL); } n_read = read(fd, (caddr_t)buffer + n_total, length - n_total); if (n_read == -1) { if (errno != EINTR) return (DHCP_IPC_E_READ); else if (*msec == 0) return (DHCP_IPC_E_TIMEOUT); continue; } if (n_read == 0) { return (n_total == 0 ? DHCP_IPC_E_EOF : DHCP_IPC_E_PROTO); } n_total += n_read; if (*msec == 0 && n_total < length) return (DHCP_IPC_E_TIMEOUT); } return (DHCP_IPC_SUCCESS); }