/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2010 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Redirection ld.so. Based on the 4.x binary compatibility ld.so, used * to redirect aliases for ld.so to the real one. */ /* * Import data structures */ #include "lint.h" #include #include #include #include #include #include #include #include #include #include "alias_boot.h" /* * Local manifest constants and macros. */ #define ALIGN(x, a) ((uintptr_t)(x) & ~((a) - 1)) #define ROUND(x, a) (((uintptr_t)(x) + ((a) - 1)) & ~((a) - 1)) #define EMPTY strings[EMPTY_S] #define LDSO strings[LDSO_S] #define ZERO strings[ZERO_S] #define CLOSE (*(funcs[CLOSE_F])) #define FSTATAT (*(funcs[FSTATAT_F])) #define MMAP (*(funcs[MMAP_F])) #define MUNMAP (*(funcs[MUNMAP_F])) #define OPENAT (*(funcs[OPENAT_F])) #define PANIC (*(funcs[PANIC_F])) #define SYSCONFIG (*(funcs[SYSCONFIG_F])) /* * Alias ld.so entry point -- receives a bootstrap structure and a vector * of strings. The vector is "well-known" to us, and consists of pointers * to string constants. This aliasing bootstrap requires no relocation in * order to run, save for the pointers of constant strings. This second * parameter provides this. Note that this program is carefully coded in * order to maintain the "no bootstrapping" requirement -- it calls only * local functions, uses no intrinsics, etc. */ static void * __rtld(Elf32_Boot *ebp, const char *strings[], int (*funcs[])()) { int i, p; /* working */ long j; /* working */ long page_size = 0; /* size of a page */ const char *program_name = EMPTY; /* our name */ int ldfd; /* fd assigned to ld.so */ int dzfd = 0; /* fd assigned to /dev/zero */ Elf32_Ehdr *ehdr; /* ELF header of ld.so */ Elf32_Phdr *phdr; /* first Phdr in file */ Elf32_Phdr *pptr; /* working Phdr */ Elf32_Phdr *lph = NULL; /* last loadable Phdr */ Elf32_Phdr *fph = NULL; /* first loadable Phdr */ caddr_t maddr; /* pointer to mapping claim */ Elf32_Off mlen; /* total mapping claim */ caddr_t faddr; /* first program mapping of ld.so */ Elf32_Off foff; /* file offset for segment mapping */ Elf32_Off flen; /* file length for segment mapping */ caddr_t addr; /* working mapping address */ caddr_t zaddr; /* /dev/zero working mapping addr */ struct stat sb; /* stat buffer for sizing */ auxv_t *ap; /* working aux pointer */ /* * Discover things about our environment: auxiliary vector (if * any), arguments, program name, and the like. */ while (ebp->eb_tag != NULL) { switch (ebp->eb_tag) { case EB_ARGV: program_name = *((char **)ebp->eb_un.eb_ptr); break; case EB_AUXV: for (ap = (auxv_t *)ebp->eb_un.eb_ptr; ap->a_type != AT_NULL; ap++) if (ap->a_type == AT_PAGESZ) { page_size = ap->a_un.a_val; break; } break; } ebp++; } /* * If we didn't get a page size from looking in the auxiliary * vector, we need to get one now. */ if (page_size == 0) { page_size = SYSCONFIG(_CONFIG_PAGESIZE); ebp->eb_tag = EB_PAGESIZE, (ebp++)->eb_un.eb_val = (Elf32_Word)page_size; } /* * Map in the real ld.so. Note that we're mapping it as * an ELF database, not as a program -- we just want to walk it's * data structures. Further mappings will actually establish the * program in the address space. */ if ((ldfd = OPENAT(AT_FDCWD, LDSO, O_RDONLY)) == -1) PANIC(program_name); if (FSTATAT(ldfd, NULL, &sb, 0) == -1) PANIC(program_name); ehdr = (Elf32_Ehdr *)MMAP(0, sb.st_size, PROT_READ | PROT_EXEC, MAP_SHARED, ldfd, 0); if (ehdr == (Elf32_Ehdr *)-1) PANIC(program_name); /* * Validate the file we're looking at, ensure it has the correct * ELF structures, such as: ELF magic numbers, coded for SPARC, * is a ".so", etc. */ if (ehdr->e_ident[EI_MAG0] != ELFMAG0 || ehdr->e_ident[EI_MAG1] != ELFMAG1 || ehdr->e_ident[EI_MAG2] != ELFMAG2 || ehdr->e_ident[EI_MAG3] != ELFMAG3) PANIC(program_name); if (ehdr->e_ident[EI_CLASS] != ELFCLASS32 || ehdr->e_ident[EI_DATA] != ELFDATA2MSB) PANIC(program_name); if (ehdr->e_type != ET_DYN) PANIC(program_name); if ((ehdr->e_machine != EM_SPARC) && (ehdr->e_machine != EM_SPARC32PLUS)) PANIC(program_name); if (ehdr->e_version > EV_CURRENT) PANIC(program_name); /* * Point at program headers and start figuring out what to load. */ phdr = (Elf32_Phdr *)((caddr_t)ehdr + ehdr->e_phoff); for (p = 0, pptr = phdr; p < (int)ehdr->e_phnum; p++, pptr = (Elf32_Phdr *)((caddr_t)pptr + ehdr->e_phentsize)) if (pptr->p_type == PT_LOAD) { if (fph == 0) { fph = pptr; } else if (pptr->p_vaddr <= lph->p_vaddr) PANIC(program_name); lph = pptr; } /* * We'd better have at least one loadable segment. */ if (fph == 0) PANIC(program_name); /* * Map enough address space to hold the program (as opposed to the * file) represented by ld.so. The amount to be assigned is the * range between the end of the last loadable segment and the * beginning of the first PLUS the alignment of the first segment. * mmap() can assign us any page-aligned address, but the relocations * assume the alignments included in the program header. As an * optimization, however, let's assume that mmap() will actually * give us an aligned address -- since if it does, we can save * an munmap() later on. If it doesn't -- then go try it again. */ mlen = ROUND((lph->p_vaddr + lph->p_memsz) - ALIGN(fph->p_vaddr, page_size), page_size); maddr = (caddr_t)MMAP(0, mlen, PROT_READ | PROT_EXEC, MAP_SHARED, ldfd, 0); if (maddr == (caddr_t)-1) PANIC(program_name); faddr = (caddr_t)ROUND(maddr, fph->p_align); /* * Check to see whether alignment skew was really needed. */ if (faddr != maddr) { (void) MUNMAP(maddr, mlen); mlen = ROUND((lph->p_vaddr + lph->p_memsz) - ALIGN(fph->p_vaddr, fph->p_align) + fph->p_align, page_size); maddr = (caddr_t)MMAP(0, mlen, PROT_READ | PROT_EXEC, MAP_SHARED, ldfd, 0); if (maddr == (caddr_t)-1) PANIC(program_name); faddr = (caddr_t)ROUND(maddr, fph->p_align); } /* * We have the address space reserved, so map each loadable segment. */ for (p = 0, pptr = phdr; p < (int)ehdr->e_phnum; p++, pptr = (Elf32_Phdr *)((caddr_t)pptr + ehdr->e_phentsize)) { /* * Skip non-loadable segments or segments that don't occupy * any memory. */ if ((pptr->p_type != PT_LOAD) || (pptr->p_memsz == 0)) continue; /* * Determine the file offset to which the mapping will * directed (must be aligned) and how much to map (might * be more than the file in the case of .bss.) */ foff = ALIGN(pptr->p_offset, page_size); flen = pptr->p_memsz + (pptr->p_offset - foff); /* * Set address of this segment relative to our base. */ addr = (caddr_t)ALIGN(faddr + pptr->p_vaddr, page_size); /* * If this is the first program header, record our base * address for later use. */ if (pptr == phdr) { ebp->eb_tag = EB_LDSO_BASE; (ebp++)->eb_un.eb_ptr = (Elf32_Addr)addr; } /* * Unmap anything from the last mapping address to this * one. */ if (addr - maddr) { (void) MUNMAP(maddr, addr - maddr); mlen -= addr - maddr; } /* * Determine the mapping protection from the section * attributes. */ i = 0; if (pptr->p_flags & PF_R) i |= PROT_READ; if (pptr->p_flags & PF_W) i |= PROT_WRITE; if (pptr->p_flags & PF_X) i |= PROT_EXEC; if ((caddr_t)MMAP((caddr_t)addr, flen, i, MAP_FIXED | MAP_PRIVATE, ldfd, foff) == (caddr_t)-1) PANIC(program_name); /* * If the memory occupancy of the segment overflows the * definition in the file, we need to "zero out" the * end of the mapping we've established, and if necessary, * map some more space from /dev/zero. */ if (pptr->p_memsz > pptr->p_filesz) { foff = (uintptr_t)faddr + pptr->p_vaddr + pptr->p_filesz; zaddr = (caddr_t)ROUND(foff, page_size); for (j = 0; j < (int)(zaddr - foff); j++) *((char *)foff + j) = 0; j = (faddr + pptr->p_vaddr + pptr->p_memsz) - zaddr; if (j > 0) { if (dzfd == 0) { dzfd = OPENAT(AT_FDCWD, ZERO, O_RDWR); if (dzfd == -1) PANIC(program_name); } if ((caddr_t)MMAP((caddr_t)zaddr, j, i, MAP_FIXED | MAP_PRIVATE, dzfd, 0) == (caddr_t)-1) PANIC(program_name); } } /* * Update the mapping claim pointer. */ maddr = addr + ROUND(flen, page_size); mlen -= maddr - addr; } /* * Unmap any final reservation. */ if (mlen != 0) (void) MUNMAP(maddr, mlen); /* * Clean up file descriptor space we've consumed. Pass along * the /dev/zero file descriptor we got -- every cycle counts. */ (void) CLOSE(ldfd); if (dzfd != 0) ebp->eb_tag = EB_DEVZERO, (ebp++)->eb_un.eb_val = dzfd; /* * The call itself. Note that we start 1 instruction word in. * The ELF ld.so contains an "entry vector" of branch instructions, * which, for our interest are: * +0: ba, a * +4: ba, a * +8: ba, a * By starting at the alias startup, the ELF ld.so knows * that a pointer to "eb" is available to it and further knows * how to calculate the offset to the program's arguments and * other structures. We do the "call" by returning to our * bootstrap and then jumping to the address that we return. */ ebp->eb_tag = EB_NULL, ebp->eb_un.eb_val = 0; return ((void *)(ehdr->e_entry + faddr + 8)); }