/* * ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is the elliptic curve math library for binary polynomial field curves. * * The Initial Developer of the Original Code is * Sun Microsystems, Inc. * Portions created by the Initial Developer are Copyright (C) 2003 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Sheueling Chang-Shantz , * Stephen Fung , and * Douglas Stebila , Sun Microsystems Laboratories. * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ /* * Copyright 2007 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. * * Sun elects to use this software under the MPL license. */ #pragma ident "%Z%%M% %I% %E% SMI" #include "ec2.h" #include "mp_gf2m.h" #include "mp_gf2m-priv.h" #include "mpi.h" #include "mpi-priv.h" #ifndef _KERNEL #include #endif /* Fast reduction for polynomials over a 193-bit curve. Assumes reduction * polynomial with terms {193, 15, 0}. */ mp_err ec_GF2m_193_mod(const mp_int *a, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; mp_digit *u, z; if (a != r) { MP_CHECKOK(mp_copy(a, r)); } #ifdef ECL_SIXTY_FOUR_BIT if (MP_USED(r) < 7) { MP_CHECKOK(s_mp_pad(r, 7)); } u = MP_DIGITS(r); MP_USED(r) = 7; /* u[6] only has 2 significant bits */ z = u[6]; u[3] ^= (z << 14) ^ (z >> 1); u[2] ^= (z << 63); z = u[5]; u[3] ^= (z >> 50); u[2] ^= (z << 14) ^ (z >> 1); u[1] ^= (z << 63); z = u[4]; u[2] ^= (z >> 50); u[1] ^= (z << 14) ^ (z >> 1); u[0] ^= (z << 63); z = u[3] >> 1; /* z only has 63 significant bits */ u[1] ^= (z >> 49); u[0] ^= (z << 15) ^ z; /* clear bits above 193 */ u[6] = u[5] = u[4] = 0; u[3] ^= z << 1; #else if (MP_USED(r) < 13) { MP_CHECKOK(s_mp_pad(r, 13)); } u = MP_DIGITS(r); MP_USED(r) = 13; /* u[12] only has 2 significant bits */ z = u[12]; u[6] ^= (z << 14) ^ (z >> 1); u[5] ^= (z << 31); z = u[11]; u[6] ^= (z >> 18); u[5] ^= (z << 14) ^ (z >> 1); u[4] ^= (z << 31); z = u[10]; u[5] ^= (z >> 18); u[4] ^= (z << 14) ^ (z >> 1); u[3] ^= (z << 31); z = u[9]; u[4] ^= (z >> 18); u[3] ^= (z << 14) ^ (z >> 1); u[2] ^= (z << 31); z = u[8]; u[3] ^= (z >> 18); u[2] ^= (z << 14) ^ (z >> 1); u[1] ^= (z << 31); z = u[7]; u[2] ^= (z >> 18); u[1] ^= (z << 14) ^ (z >> 1); u[0] ^= (z << 31); z = u[6] >> 1; /* z only has 31 significant bits */ u[1] ^= (z >> 17); u[0] ^= (z << 15) ^ z; /* clear bits above 193 */ u[12] = u[11] = u[10] = u[9] = u[8] = u[7] = 0; u[6] ^= z << 1; #endif s_mp_clamp(r); CLEANUP: return res; } /* Fast squaring for polynomials over a 193-bit curve. Assumes reduction * polynomial with terms {193, 15, 0}. */ mp_err ec_GF2m_193_sqr(const mp_int *a, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; mp_digit *u, *v; v = MP_DIGITS(a); #ifdef ECL_SIXTY_FOUR_BIT if (MP_USED(a) < 4) { return mp_bsqrmod(a, meth->irr_arr, r); } if (MP_USED(r) < 7) { MP_CHECKOK(s_mp_pad(r, 7)); } MP_USED(r) = 7; #else if (MP_USED(a) < 7) { return mp_bsqrmod(a, meth->irr_arr, r); } if (MP_USED(r) < 13) { MP_CHECKOK(s_mp_pad(r, 13)); } MP_USED(r) = 13; #endif u = MP_DIGITS(r); #ifdef ECL_THIRTY_TWO_BIT u[12] = gf2m_SQR0(v[6]); u[11] = gf2m_SQR1(v[5]); u[10] = gf2m_SQR0(v[5]); u[9] = gf2m_SQR1(v[4]); u[8] = gf2m_SQR0(v[4]); u[7] = gf2m_SQR1(v[3]); #endif u[6] = gf2m_SQR0(v[3]); u[5] = gf2m_SQR1(v[2]); u[4] = gf2m_SQR0(v[2]); u[3] = gf2m_SQR1(v[1]); u[2] = gf2m_SQR0(v[1]); u[1] = gf2m_SQR1(v[0]); u[0] = gf2m_SQR0(v[0]); return ec_GF2m_193_mod(r, r, meth); CLEANUP: return res; } /* Fast multiplication for polynomials over a 193-bit curve. Assumes * reduction polynomial with terms {193, 15, 0}. */ mp_err ec_GF2m_193_mul(const mp_int *a, const mp_int *b, mp_int *r, const GFMethod *meth) { mp_err res = MP_OKAY; mp_digit a3 = 0, a2 = 0, a1 = 0, a0, b3 = 0, b2 = 0, b1 = 0, b0; #ifdef ECL_THIRTY_TWO_BIT mp_digit a6 = 0, a5 = 0, a4 = 0, b6 = 0, b5 = 0, b4 = 0; mp_digit rm[8]; #endif if (a == b) { return ec_GF2m_193_sqr(a, r, meth); } else { switch (MP_USED(a)) { #ifdef ECL_THIRTY_TWO_BIT case 7: a6 = MP_DIGIT(a, 6); case 6: a5 = MP_DIGIT(a, 5); case 5: a4 = MP_DIGIT(a, 4); #endif case 4: a3 = MP_DIGIT(a, 3); case 3: a2 = MP_DIGIT(a, 2); case 2: a1 = MP_DIGIT(a, 1); default: a0 = MP_DIGIT(a, 0); } switch (MP_USED(b)) { #ifdef ECL_THIRTY_TWO_BIT case 7: b6 = MP_DIGIT(b, 6); case 6: b5 = MP_DIGIT(b, 5); case 5: b4 = MP_DIGIT(b, 4); #endif case 4: b3 = MP_DIGIT(b, 3); case 3: b2 = MP_DIGIT(b, 2); case 2: b1 = MP_DIGIT(b, 1); default: b0 = MP_DIGIT(b, 0); } #ifdef ECL_SIXTY_FOUR_BIT MP_CHECKOK(s_mp_pad(r, 8)); s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0); MP_USED(r) = 8; s_mp_clamp(r); #else MP_CHECKOK(s_mp_pad(r, 14)); s_bmul_3x3(MP_DIGITS(r) + 8, a6, a5, a4, b6, b5, b4); s_bmul_4x4(MP_DIGITS(r), a3, a2, a1, a0, b3, b2, b1, b0); s_bmul_4x4(rm, a3, a6 ^ a2, a5 ^ a1, a4 ^ a0, b3, b6 ^ b2, b5 ^ b1, b4 ^ b0); rm[7] ^= MP_DIGIT(r, 7); rm[6] ^= MP_DIGIT(r, 6); rm[5] ^= MP_DIGIT(r, 5) ^ MP_DIGIT(r, 13); rm[4] ^= MP_DIGIT(r, 4) ^ MP_DIGIT(r, 12); rm[3] ^= MP_DIGIT(r, 3) ^ MP_DIGIT(r, 11); rm[2] ^= MP_DIGIT(r, 2) ^ MP_DIGIT(r, 10); rm[1] ^= MP_DIGIT(r, 1) ^ MP_DIGIT(r, 9); rm[0] ^= MP_DIGIT(r, 0) ^ MP_DIGIT(r, 8); MP_DIGIT(r, 11) ^= rm[7]; MP_DIGIT(r, 10) ^= rm[6]; MP_DIGIT(r, 9) ^= rm[5]; MP_DIGIT(r, 8) ^= rm[4]; MP_DIGIT(r, 7) ^= rm[3]; MP_DIGIT(r, 6) ^= rm[2]; MP_DIGIT(r, 5) ^= rm[1]; MP_DIGIT(r, 4) ^= rm[0]; MP_USED(r) = 14; s_mp_clamp(r); #endif return ec_GF2m_193_mod(r, r, meth); } CLEANUP: return res; } /* Wire in fast field arithmetic for 193-bit curves. */ mp_err ec_group_set_gf2m193(ECGroup *group, ECCurveName name) { group->meth->field_mod = &ec_GF2m_193_mod; group->meth->field_mul = &ec_GF2m_193_mul; group->meth->field_sqr = &ec_GF2m_193_sqr; return MP_OKAY; }