/* * --------------------------------------------------------------------------- * Copyright (c) 1998-2007, Brian Gladman, Worcester, UK. All rights reserved. * * LICENSE TERMS * * The free distribution and use of this software is allowed (with or without * changes) provided that: * * 1. source code distributions include the above copyright notice, this * list of conditions and the following disclaimer; * * 2. binary distributions include the above copyright notice, this list * of conditions and the following disclaimer in their documentation; * * 3. the name of the copyright holder is not used to endorse products * built using this software without specific written permission. * * DISCLAIMER * * This software is provided 'as is' with no explicit or implied warranties * in respect of its properties, including, but not limited to, correctness * and/or fitness for purpose. * --------------------------------------------------------------------------- * Issue 20/12/2007 * * I am grateful to Dag Arne Osvik for many discussions of the techniques that * can be used to optimise AES assembler code on AMD64/EM64T architectures. * Some of the techniques used in this implementation are the result of * suggestions made by him for which I am most grateful. * * An AES implementation for AMD64 processors using the YASM assembler. This * implementation provides only encryption, decryption and hence requires key * scheduling support in C. It uses 8k bytes of tables but its encryption and * decryption performance is very close to that obtained using large tables. * It can use either MS Windows or Gnu/Linux/OpenSolaris OS calling conventions, * which are as follows: * ms windows gnu/linux/opensolaris os * * in_blk rcx rdi * out_blk rdx rsi * context (cx) r8 rdx * * preserved rsi - + rbx, rbp, rsp, r12, r13, r14 & r15 * registers rdi - on both * * destroyed - rsi + rax, rcx, rdx, r8, r9, r10 & r11 * registers - rdi on both * * The convention used here is that for gnu/linux/opensolaris os. * * This code provides the standard AES block size (128 bits, 16 bytes) and the * three standard AES key sizes (128, 192 and 256 bits). It has the same call * interface as my C implementation. It uses the Microsoft C AMD64 calling * conventions in which the three parameters are placed in rcx, rdx and r8 * respectively. The rbx, rsi, rdi, rbp and r12..r15 registers are preserved. * * OpenSolaris Note: * Modified to use GNU/Linux/Solaris calling conventions. * That is parameters are placed in rdi, rsi, rdx, and rcx, respectively. * * AES_RETURN aes_encrypt(const unsigned char in_blk[], * unsigned char out_blk[], const aes_encrypt_ctx cx[1])/ * * AES_RETURN aes_decrypt(const unsigned char in_blk[], * unsigned char out_blk[], const aes_decrypt_ctx cx[1])/ * * AES_RETURN aes_encrypt_key(const unsigned char key[], * const aes_encrypt_ctx cx[1])/ * * AES_RETURN aes_decrypt_key(const unsigned char key[], * const aes_decrypt_ctx cx[1])/ * * AES_RETURN aes_encrypt_key(const unsigned char key[], * unsigned int len, const aes_decrypt_ctx cx[1])/ * * AES_RETURN aes_decrypt_key(const unsigned char key[], * unsigned int len, const aes_decrypt_ctx cx[1])/ * * where is 128, 102 or 256. In the last two calls the length can be in * either bits or bytes. * * Comment in/out the following lines to obtain the desired subroutines. These * selections MUST match those in the C header file aesopt.h */ #define AES_REV_DKS /* define if key decryption schedule is reversed */ #define LAST_ROUND_TABLES /* define for the faster version using extra tables */ /* * The encryption key schedule has the following in memory layout where N is the * number of rounds (10, 12 or 14): * * lo: | input key (round 0) | / each round is four 32-bit words * | encryption round 1 | * | encryption round 2 | * .... * | encryption round N-1 | * hi: | encryption round N | * * The decryption key schedule is normally set up so that it has the same * layout as above by actually reversing the order of the encryption key * schedule in memory (this happens when AES_REV_DKS is set): * * lo: | decryption round 0 | = | encryption round N | * | decryption round 1 | = INV_MIX_COL[ | encryption round N-1 | ] * | decryption round 2 | = INV_MIX_COL[ | encryption round N-2 | ] * .... .... * | decryption round N-1 | = INV_MIX_COL[ | encryption round 1 | ] * hi: | decryption round N | = | input key (round 0) | * * with rounds except the first and last modified using inv_mix_column() * But if AES_REV_DKS is NOT set the order of keys is left as it is for * encryption so that it has to be accessed in reverse when used for * decryption (although the inverse mix column modifications are done) * * lo: | decryption round 0 | = | input key (round 0) | * | decryption round 1 | = INV_MIX_COL[ | encryption round 1 | ] * | decryption round 2 | = INV_MIX_COL[ | encryption round 2 | ] * .... .... * | decryption round N-1 | = INV_MIX_COL[ | encryption round N-1 | ] * hi: | decryption round N | = | encryption round N | * * This layout is faster when the assembler key scheduling provided here * is used. * * End of user defines */ /* * --------------------------------------------------------------------------- * OpenSolaris OS modifications * * This source originates from Brian Gladman file aes_amd64.asm * in http://fp.gladman.plus.com/AES/aes-src-04-03-08.zip * with these changes: * * 1. Removed MS Windows-specific code within DLL_EXPORT, _SEH_, and * !__GNUC__ ifdefs. Also removed ENCRYPTION, DECRYPTION, * AES_128, AES_192, AES_256, AES_VAR ifdefs. * * 2. Translate yasm/nasm %define and .macro definitions to cpp(1) #define * * 3. Translate yasm/nasm %ifdef/%ifndef to cpp(1) #ifdef * * 4. Translate Intel/yasm/nasm syntax to ATT/OpenSolaris as(1) syntax * (operands reversed, literals prefixed with "$", registers prefixed with "%", * and "[register+offset]", addressing changed to "offset(register)", * parenthesis in constant expressions "()" changed to square brackets "[]", * "." removed from local (numeric) labels, and other changes. * Examples: * Intel/yasm/nasm Syntax ATT/OpenSolaris Syntax * mov rax,(4*20h) mov $[4*0x20],%rax * mov rax,[ebx+20h] mov 0x20(%ebx),%rax * lea rax,[ebx+ecx] lea (%ebx,%ecx),%rax * sub rax,[ebx+ecx*4-20h] sub -0x20(%ebx,%ecx,4),%rax * * 5. Added OpenSolaris ENTRY_NP/SET_SIZE macros from * /usr/include/sys/asm_linkage.h, lint(1B) guards, EXPORT DELETE START * and EXPORT DELETE END markers, and dummy C function definitions for lint. * * 6. Renamed functions and reordered parameters to match OpenSolaris: * Original Gladman interface: * int aes_encrypt(const unsigned char *in, * unsigned char *out, const aes_encrypt_ctx cx[1])/ * int aes_decrypt(const unsigned char *in, * unsigned char *out, const aes_encrypt_ctx cx[1])/ * Note: aes_encrypt_ctx contains ks, a 60 element array of uint32_t, * and a union type, inf., containing inf.l, a uint32_t and * inf.b, a 4-element array of uint32_t. Only b[0] in the array (aka "l") is * used and contains the key schedule length * 16 where key schedule length is * 10, 12, or 14 bytes. * * OpenSolaris OS interface: * void aes_encrypt_amd64(const aes_ks_t *ks, int Nr, * const uint32_t pt[4], uint32_t ct[4])/ * void aes_decrypt_amd64(const aes_ks_t *ks, int Nr, * const uint32_t pt[4], uint32_t ct[4])/ * typedef union {uint64_t ks64[(MAX_AES_NR + 1) * 4]/ * uint32_t ks32[(MAX_AES_NR + 1) * 4]/ } aes_ks_t/ * Note: ks is the AES key schedule, Nr is number of rounds, pt is plain text, * ct is crypto text, and MAX_AES_NR is 14. * For the x86 64-bit architecture, OpenSolaris OS uses ks32 instead of ks64. */ #if defined(lint) || defined(__lint) #include /* ARGSUSED */ void aes_encrypt_amd64(const uint32_t rk[], int Nr, const uint32_t pt[4], uint32_t ct[4]) { } /* ARGSUSED */ void aes_decrypt_amd64(const uint32_t rk[], int Nr, const uint32_t ct[4], uint32_t pt[4]) { } #else #include #define KS_LENGTH 60 #define raxd eax #define rdxd edx #define rcxd ecx #define rbxd ebx #define rsid esi #define rdid edi #define raxb al #define rdxb dl #define rcxb cl #define rbxb bl #define rsib sil #define rdib dil / finite field multiplies by {02}, {04} and {08} #define f2(x) [[x<<1]^[[[x>>7]&1]*0x11b]] #define f4(x) [[x<<2]^[[[x>>6]&1]*0x11b]^[[[x>>6]&2]*0x11b]] #define f8(x) [[x<<3]^[[[x>>5]&1]*0x11b]^[[[x>>5]&2]*0x11b]^[[[x>>5]&4]*0x11b]] / finite field multiplies required in table generation #define f3(x) [[f2(x)] ^ [x]] #define f9(x) [[f8(x)] ^ [x]] #define fb(x) [[f8(x)] ^ [f2(x)] ^ [x]] #define fd(x) [[f8(x)] ^ [f4(x)] ^ [x]] #define fe(x) [[f8(x)] ^ [f4(x)] ^ [f2(x)]] / macros for expanding S-box data #define u8(x) [f2(x)], [x], [x], [f3(x)], [f2(x)], [x], [x], [f3(x)] #define v8(x) [fe(x)], [f9(x)], [fd(x)], [fb(x)], [fe(x)], [f9(x)], [fd(x)], [x] #define w8(x) [x], 0, 0, 0, [x], 0, 0, 0 #define enc_vals(x) \ .byte x(0x63),x(0x7c),x(0x77),x(0x7b),x(0xf2),x(0x6b),x(0x6f),x(0xc5); \ .byte x(0x30),x(0x01),x(0x67),x(0x2b),x(0xfe),x(0xd7),x(0xab),x(0x76); \ .byte x(0xca),x(0x82),x(0xc9),x(0x7d),x(0xfa),x(0x59),x(0x47),x(0xf0); \ .byte x(0xad),x(0xd4),x(0xa2),x(0xaf),x(0x9c),x(0xa4),x(0x72),x(0xc0); \ .byte x(0xb7),x(0xfd),x(0x93),x(0x26),x(0x36),x(0x3f),x(0xf7),x(0xcc); \ .byte x(0x34),x(0xa5),x(0xe5),x(0xf1),x(0x71),x(0xd8),x(0x31),x(0x15); \ .byte x(0x04),x(0xc7),x(0x23),x(0xc3),x(0x18),x(0x96),x(0x05),x(0x9a); \ .byte x(0x07),x(0x12),x(0x80),x(0xe2),x(0xeb),x(0x27),x(0xb2),x(0x75); \ .byte x(0x09),x(0x83),x(0x2c),x(0x1a),x(0x1b),x(0x6e),x(0x5a),x(0xa0); \ .byte x(0x52),x(0x3b),x(0xd6),x(0xb3),x(0x29),x(0xe3),x(0x2f),x(0x84); \ .byte x(0x53),x(0xd1),x(0x00),x(0xed),x(0x20),x(0xfc),x(0xb1),x(0x5b); \ .byte x(0x6a),x(0xcb),x(0xbe),x(0x39),x(0x4a),x(0x4c),x(0x58),x(0xcf); \ .byte x(0xd0),x(0xef),x(0xaa),x(0xfb),x(0x43),x(0x4d),x(0x33),x(0x85); \ .byte x(0x45),x(0xf9),x(0x02),x(0x7f),x(0x50),x(0x3c),x(0x9f),x(0xa8); \ .byte x(0x51),x(0xa3),x(0x40),x(0x8f),x(0x92),x(0x9d),x(0x38),x(0xf5); \ .byte x(0xbc),x(0xb6),x(0xda),x(0x21),x(0x10),x(0xff),x(0xf3),x(0xd2); \ .byte x(0xcd),x(0x0c),x(0x13),x(0xec),x(0x5f),x(0x97),x(0x44),x(0x17); \ .byte x(0xc4),x(0xa7),x(0x7e),x(0x3d),x(0x64),x(0x5d),x(0x19),x(0x73); \ .byte x(0x60),x(0x81),x(0x4f),x(0xdc),x(0x22),x(0x2a),x(0x90),x(0x88); \ .byte x(0x46),x(0xee),x(0xb8),x(0x14),x(0xde),x(0x5e),x(0x0b),x(0xdb); \ .byte x(0xe0),x(0x32),x(0x3a),x(0x0a),x(0x49),x(0x06),x(0x24),x(0x5c); \ .byte x(0xc2),x(0xd3),x(0xac),x(0x62),x(0x91),x(0x95),x(0xe4),x(0x79); \ .byte x(0xe7),x(0xc8),x(0x37),x(0x6d),x(0x8d),x(0xd5),x(0x4e),x(0xa9); \ .byte x(0x6c),x(0x56),x(0xf4),x(0xea),x(0x65),x(0x7a),x(0xae),x(0x08); \ .byte x(0xba),x(0x78),x(0x25),x(0x2e),x(0x1c),x(0xa6),x(0xb4),x(0xc6); \ .byte x(0xe8),x(0xdd),x(0x74),x(0x1f),x(0x4b),x(0xbd),x(0x8b),x(0x8a); \ .byte x(0x70),x(0x3e),x(0xb5),x(0x66),x(0x48),x(0x03),x(0xf6),x(0x0e); \ .byte x(0x61),x(0x35),x(0x57),x(0xb9),x(0x86),x(0xc1),x(0x1d),x(0x9e); \ .byte x(0xe1),x(0xf8),x(0x98),x(0x11),x(0x69),x(0xd9),x(0x8e),x(0x94); \ .byte x(0x9b),x(0x1e),x(0x87),x(0xe9),x(0xce),x(0x55),x(0x28),x(0xdf); \ .byte x(0x8c),x(0xa1),x(0x89),x(0x0d),x(0xbf),x(0xe6),x(0x42),x(0x68); \ .byte x(0x41),x(0x99),x(0x2d),x(0x0f),x(0xb0),x(0x54),x(0xbb),x(0x16) #define dec_vals(x) \ .byte x(0x52),x(0x09),x(0x6a),x(0xd5),x(0x30),x(0x36),x(0xa5),x(0x38); \ .byte x(0xbf),x(0x40),x(0xa3),x(0x9e),x(0x81),x(0xf3),x(0xd7),x(0xfb); \ .byte x(0x7c),x(0xe3),x(0x39),x(0x82),x(0x9b),x(0x2f),x(0xff),x(0x87); \ .byte x(0x34),x(0x8e),x(0x43),x(0x44),x(0xc4),x(0xde),x(0xe9),x(0xcb); \ .byte x(0x54),x(0x7b),x(0x94),x(0x32),x(0xa6),x(0xc2),x(0x23),x(0x3d); \ .byte x(0xee),x(0x4c),x(0x95),x(0x0b),x(0x42),x(0xfa),x(0xc3),x(0x4e); \ .byte x(0x08),x(0x2e),x(0xa1),x(0x66),x(0x28),x(0xd9),x(0x24),x(0xb2); \ .byte x(0x76),x(0x5b),x(0xa2),x(0x49),x(0x6d),x(0x8b),x(0xd1),x(0x25); \ .byte x(0x72),x(0xf8),x(0xf6),x(0x64),x(0x86),x(0x68),x(0x98),x(0x16); \ .byte x(0xd4),x(0xa4),x(0x5c),x(0xcc),x(0x5d),x(0x65),x(0xb6),x(0x92); \ .byte x(0x6c),x(0x70),x(0x48),x(0x50),x(0xfd),x(0xed),x(0xb9),x(0xda); \ .byte x(0x5e),x(0x15),x(0x46),x(0x57),x(0xa7),x(0x8d),x(0x9d),x(0x84); \ .byte x(0x90),x(0xd8),x(0xab),x(0x00),x(0x8c),x(0xbc),x(0xd3),x(0x0a); \ .byte x(0xf7),x(0xe4),x(0x58),x(0x05),x(0xb8),x(0xb3),x(0x45),x(0x06); \ .byte x(0xd0),x(0x2c),x(0x1e),x(0x8f),x(0xca),x(0x3f),x(0x0f),x(0x02); \ .byte x(0xc1),x(0xaf),x(0xbd),x(0x03),x(0x01),x(0x13),x(0x8a),x(0x6b); \ .byte x(0x3a),x(0x91),x(0x11),x(0x41),x(0x4f),x(0x67),x(0xdc),x(0xea); \ .byte x(0x97),x(0xf2),x(0xcf),x(0xce),x(0xf0),x(0xb4),x(0xe6),x(0x73); \ .byte x(0x96),x(0xac),x(0x74),x(0x22),x(0xe7),x(0xad),x(0x35),x(0x85); \ .byte x(0xe2),x(0xf9),x(0x37),x(0xe8),x(0x1c),x(0x75),x(0xdf),x(0x6e); \ .byte x(0x47),x(0xf1),x(0x1a),x(0x71),x(0x1d),x(0x29),x(0xc5),x(0x89); \ .byte x(0x6f),x(0xb7),x(0x62),x(0x0e),x(0xaa),x(0x18),x(0xbe),x(0x1b); \ .byte x(0xfc),x(0x56),x(0x3e),x(0x4b),x(0xc6),x(0xd2),x(0x79),x(0x20); \ .byte x(0x9a),x(0xdb),x(0xc0),x(0xfe),x(0x78),x(0xcd),x(0x5a),x(0xf4); \ .byte x(0x1f),x(0xdd),x(0xa8),x(0x33),x(0x88),x(0x07),x(0xc7),x(0x31); \ .byte x(0xb1),x(0x12),x(0x10),x(0x59),x(0x27),x(0x80),x(0xec),x(0x5f); \ .byte x(0x60),x(0x51),x(0x7f),x(0xa9),x(0x19),x(0xb5),x(0x4a),x(0x0d); \ .byte x(0x2d),x(0xe5),x(0x7a),x(0x9f),x(0x93),x(0xc9),x(0x9c),x(0xef); \ .byte x(0xa0),x(0xe0),x(0x3b),x(0x4d),x(0xae),x(0x2a),x(0xf5),x(0xb0); \ .byte x(0xc8),x(0xeb),x(0xbb),x(0x3c),x(0x83),x(0x53),x(0x99),x(0x61); \ .byte x(0x17),x(0x2b),x(0x04),x(0x7e),x(0xba),x(0x77),x(0xd6),x(0x26); \ .byte x(0xe1),x(0x69),x(0x14),x(0x63),x(0x55),x(0x21),x(0x0c),x(0x7d) #define tptr %rbp /* table pointer */ #define kptr %r8 /* key schedule pointer */ #define fofs 128 /* adjust offset in key schedule to keep |disp| < 128 */ #define fk_ref(x, y) -16*x+fofs+4*y(kptr) #ifdef AES_REV_DKS #define rofs 128 #define ik_ref(x, y) -16*x+rofs+4*y(kptr) #else #define rofs -128 #define ik_ref(x, y) 16*x+rofs+4*y(kptr) #endif /* AES_REV_DKS */ #define tab_0(x) (tptr,x,8) #define tab_1(x) 3(tptr,x,8) #define tab_2(x) 2(tptr,x,8) #define tab_3(x) 1(tptr,x,8) #define tab_f(x) 1(tptr,x,8) #define tab_i(x) 7(tptr,x,8) /* EXPORT DELETE START */ #define ff_rnd(p1, p2, p3, p4, round) /* normal forward round */ \ mov fk_ref(round,0), p1; \ mov fk_ref(round,1), p2; \ mov fk_ref(round,2), p3; \ mov fk_ref(round,3), p4; \ \ movzx %al, %esi; \ movzx %ah, %edi; \ shr $16, %eax; \ xor tab_0(%rsi), p1; \ xor tab_1(%rdi), p4; \ movzx %al, %esi; \ movzx %ah, %edi; \ xor tab_2(%rsi), p3; \ xor tab_3(%rdi), p2; \ \ movzx %bl, %esi; \ movzx %bh, %edi; \ shr $16, %ebx; \ xor tab_0(%rsi), p2; \ xor tab_1(%rdi), p1; \ movzx %bl, %esi; \ movzx %bh, %edi; \ xor tab_2(%rsi), p4; \ xor tab_3(%rdi), p3; \ \ movzx %cl, %esi; \ movzx %ch, %edi; \ shr $16, %ecx; \ xor tab_0(%rsi), p3; \ xor tab_1(%rdi), p2; \ movzx %cl, %esi; \ movzx %ch, %edi; \ xor tab_2(%rsi), p1; \ xor tab_3(%rdi), p4; \ \ movzx %dl, %esi; \ movzx %dh, %edi; \ shr $16, %edx; \ xor tab_0(%rsi), p4; \ xor tab_1(%rdi), p3; \ movzx %dl, %esi; \ movzx %dh, %edi; \ xor tab_2(%rsi), p2; \ xor tab_3(%rdi), p1; \ \ mov p1, %eax; \ mov p2, %ebx; \ mov p3, %ecx; \ mov p4, %edx #ifdef LAST_ROUND_TABLES #define fl_rnd(p1, p2, p3, p4, round) /* last forward round */ \ add $2048, tptr; \ mov fk_ref(round,0), p1; \ mov fk_ref(round,1), p2; \ mov fk_ref(round,2), p3; \ mov fk_ref(round,3), p4; \ \ movzx %al, %esi; \ movzx %ah, %edi; \ shr $16, %eax; \ xor tab_0(%rsi), p1; \ xor tab_1(%rdi), p4; \ movzx %al, %esi; \ movzx %ah, %edi; \ xor tab_2(%rsi), p3; \ xor tab_3(%rdi), p2; \ \ movzx %bl, %esi; \ movzx %bh, %edi; \ shr $16, %ebx; \ xor tab_0(%rsi), p2; \ xor tab_1(%rdi), p1; \ movzx %bl, %esi; \ movzx %bh, %edi; \ xor tab_2(%rsi), p4; \ xor tab_3(%rdi), p3; \ \ movzx %cl, %esi; \ movzx %ch, %edi; \ shr $16, %ecx; \ xor tab_0(%rsi), p3; \ xor tab_1(%rdi), p2; \ movzx %cl, %esi; \ movzx %ch, %edi; \ xor tab_2(%rsi), p1; \ xor tab_3(%rdi), p4; \ \ movzx %dl, %esi; \ movzx %dh, %edi; \ shr $16, %edx; \ xor tab_0(%rsi), p4; \ xor tab_1(%rdi), p3; \ movzx %dl, %esi; \ movzx %dh, %edi; \ xor tab_2(%rsi), p2; \ xor tab_3(%rdi), p1 #else #define fl_rnd(p1, p2, p3, p4, round) /* last forward round */ \ mov fk_ref(round,0), p1; \ mov fk_ref(round,1), p2; \ mov fk_ref(round,2), p3; \ mov fk_ref(round,3), p4; \ \ movzx %al, %esi; \ movzx %ah, %edi; \ shr $16, %eax; \ movzx tab_f(%rsi), %esi; \ movzx tab_f(%rdi), %edi; \ xor %esi, p1; \ rol $8, %edi; \ xor %edi, p4; \ movzx %al, %esi; \ movzx %ah, %edi; \ movzx tab_f(%rsi), %esi; \ movzx tab_f(%rdi), %edi; \ rol $16, %esi; \ rol $24, %edi; \ xor %esi, p3; \ xor %edi, p2; \ \ movzx %bl, %esi; \ movzx %bh, %edi; \ shr $16, %ebx; \ movzx tab_f(%rsi), %esi; \ movzx tab_f(%rdi), %edi; \ xor %esi, p2; \ rol $8, %edi; \ xor %edi, p1; \ movzx %bl, %esi; \ movzx %bh, %edi; \ movzx tab_f(%rsi), %esi; \ movzx tab_f(%rdi), %edi; \ rol $16, %esi; \ rol $24, %edi; \ xor %esi, p4; \ xor %edi, p3; \ \ movzx %cl, %esi; \ movzx %ch, %edi; \ movzx tab_f(%rsi), %esi; \ movzx tab_f(%rdi), %edi; \ shr $16, %ecx; \ xor %esi, p3; \ rol $8, %edi; \ xor %edi, p2; \ movzx %cl, %esi; \ movzx %ch, %edi; \ movzx tab_f(%rsi), %esi; \ movzx tab_f(%rdi), %edi; \ rol $16, %esi; \ rol $24, %edi; \ xor %esi, p1; \ xor %edi, p4; \ \ movzx %dl, %esi; \ movzx %dh, %edi; \ movzx tab_f(%rsi), %esi; \ movzx tab_f(%rdi), %edi; \ shr $16, %edx; \ xor %esi, p4; \ rol $8, %edi; \ xor %edi, p3; \ movzx %dl, %esi; \ movzx %dh, %edi; \ movzx tab_f(%rsi), %esi; \ movzx tab_f(%rdi), %edi; \ rol $16, %esi; \ rol $24, %edi; \ xor %esi, p2; \ xor %edi, p1 #endif /* LAST_ROUND_TABLES */ #define ii_rnd(p1, p2, p3, p4, round) /* normal inverse round */ \ mov ik_ref(round,0), p1; \ mov ik_ref(round,1), p2; \ mov ik_ref(round,2), p3; \ mov ik_ref(round,3), p4; \ \ movzx %al, %esi; \ movzx %ah, %edi; \ shr $16, %eax; \ xor tab_0(%rsi), p1; \ xor tab_1(%rdi), p2; \ movzx %al, %esi; \ movzx %ah, %edi; \ xor tab_2(%rsi), p3; \ xor tab_3(%rdi), p4; \ \ movzx %bl, %esi; \ movzx %bh, %edi; \ shr $16, %ebx; \ xor tab_0(%rsi), p2; \ xor tab_1(%rdi), p3; \ movzx %bl, %esi; \ movzx %bh, %edi; \ xor tab_2(%rsi), p4; \ xor tab_3(%rdi), p1; \ \ movzx %cl, %esi; \ movzx %ch, %edi; \ shr $16, %ecx; \ xor tab_0(%rsi), p3; \ xor tab_1(%rdi), p4; \ movzx %cl, %esi; \ movzx %ch, %edi; \ xor tab_2(%rsi), p1; \ xor tab_3(%rdi), p2; \ \ movzx %dl, %esi; \ movzx %dh, %edi; \ shr $16, %edx; \ xor tab_0(%rsi), p4; \ xor tab_1(%rdi), p1; \ movzx %dl, %esi; \ movzx %dh, %edi; \ xor tab_2(%rsi), p2; \ xor tab_3(%rdi), p3; \ \ mov p1, %eax; \ mov p2, %ebx; \ mov p3, %ecx; \ mov p4, %edx #ifdef LAST_ROUND_TABLES #define il_rnd(p1, p2, p3, p4, round) /* last inverse round */ \ add $2048, tptr; \ mov ik_ref(round,0), p1; \ mov ik_ref(round,1), p2; \ mov ik_ref(round,2), p3; \ mov ik_ref(round,3), p4; \ \ movzx %al, %esi; \ movzx %ah, %edi; \ shr $16, %eax; \ xor tab_0(%rsi), p1; \ xor tab_1(%rdi), p2; \ movzx %al, %esi; \ movzx %ah, %edi; \ xor tab_2(%rsi), p3; \ xor tab_3(%rdi), p4; \ \ movzx %bl, %esi; \ movzx %bh, %edi; \ shr $16, %ebx; \ xor tab_0(%rsi), p2; \ xor tab_1(%rdi), p3; \ movzx %bl, %esi; \ movzx %bh, %edi; \ xor tab_2(%rsi), p4; \ xor tab_3(%rdi), p1; \ \ movzx %cl, %esi; \ movzx %ch, %edi; \ shr $16, %ecx; \ xor tab_0(%rsi), p3; \ xor tab_1(%rdi), p4; \ movzx %cl, %esi; \ movzx %ch, %edi; \ xor tab_2(%rsi), p1; \ xor tab_3(%rdi), p2; \ \ movzx %dl, %esi; \ movzx %dh, %edi; \ shr $16, %edx; \ xor tab_0(%rsi), p4; \ xor tab_1(%rdi), p1; \ movzx %dl, %esi; \ movzx %dh, %edi; \ xor tab_2(%rsi), p2; \ xor tab_3(%rdi), p3 #else #define il_rnd(p1, p2, p3, p4, round) /* last inverse round */ \ mov ik_ref(round,0), p1; \ mov ik_ref(round,1), p2; \ mov ik_ref(round,2), p3; \ mov ik_ref(round,3), p4; \ \ movzx %al, %esi; \ movzx %ah, %edi; \ movzx tab_i(%rsi), %esi; \ movzx tab_i(%rdi), %edi; \ shr $16, %eax; \ xor %esi, p1; \ rol $8, %edi; \ xor %edi, p2; \ movzx %al, %esi; \ movzx %ah, %edi; \ movzx tab_i(%rsi), %esi; \ movzx tab_i(%rdi), %edi; \ rol $16, %esi; \ rol $24, %edi; \ xor %esi, p3; \ xor %edi, p4; \ \ movzx %bl, %esi; \ movzx %bh, %edi; \ movzx tab_i(%rsi), %esi; \ movzx tab_i(%rdi), %edi; \ shr $16, %ebx; \ xor %esi, p2; \ rol $8, %edi; \ xor %edi, p3; \ movzx %bl, %esi; \ movzx %bh, %edi; \ movzx tab_i(%rsi), %esi; \ movzx tab_i(%rdi), %edi; \ rol $16, %esi; \ rol $24, %edi; \ xor %esi, p4; \ xor %edi, p1; \ \ movzx %cl, %esi; \ movzx %ch, %edi; \ movzx tab_i(%rsi), %esi; \ movzx tab_i(%rdi), %edi; \ shr $16, %ecx; \ xor %esi, p3; \ rol $8, %edi; \ xor %edi, p4; \ movzx %cl, %esi; \ movzx %ch, %edi; \ movzx tab_i(%rsi), %esi; \ movzx tab_i(%rdi), %edi; \ rol $16, %esi; \ rol $24, %edi; \ xor %esi, p1; \ xor %edi, p2; \ \ movzx %dl, %esi; \ movzx %dh, %edi; \ movzx tab_i(%rsi), %esi; \ movzx tab_i(%rdi), %edi; \ shr $16, %edx; \ xor %esi, p4; \ rol $8, %edi; \ xor %edi, p1; \ movzx %dl, %esi; \ movzx %dh, %edi; \ movzx tab_i(%rsi), %esi; \ movzx tab_i(%rdi), %edi; \ rol $16, %esi; \ rol $24, %edi; \ xor %esi, p2; \ xor %edi, p3 #endif /* LAST_ROUND_TABLES */ /* EXPORT DELETE END */ /* * OpenSolaris OS: * void aes_encrypt_amd64(const aes_ks_t *ks, int Nr, * const uint32_t pt[4], uint32_t ct[4])/ * * Original interface: * int aes_encrypt(const unsigned char *in, * unsigned char *out, const aes_encrypt_ctx cx[1])/ */ .align 64 enc_tab: enc_vals(u8) #ifdef LAST_ROUND_TABLES / Last Round Tables: enc_vals(w8) #endif ENTRY_NP(aes_encrypt_amd64) /* EXPORT DELETE START */ #ifdef GLADMAN_INTERFACE / Original interface sub $[4*8], %rsp / gnu/linux/opensolaris binary interface mov %rsi, (%rsp) / output pointer (P2) mov %rdx, %r8 / context (P3) mov %rbx, 1*8(%rsp) / P1: input pointer in rdi mov %rbp, 2*8(%rsp) / P2: output pointer in (rsp) mov %r12, 3*8(%rsp) / P3: context in r8 movzx 4*KS_LENGTH(kptr), %esi / Get byte key length * 16 #else / OpenSolaris OS interface sub $[4*8], %rsp / Make room on stack to save registers mov %rcx, (%rsp) / Save output pointer (P4) on stack mov %rdi, %r8 / context (P1) mov %rdx, %rdi / P3: save input pointer shl $4, %esi / P2: esi byte key length * 16 mov %rbx, 1*8(%rsp) / Save registers mov %rbp, 2*8(%rsp) mov %r12, 3*8(%rsp) / P1: context in r8 / P2: byte key length * 16 in esi / P3: input pointer in rdi / P4: output pointer in (rsp) #endif /* GLADMAN_INTERFACE */ lea enc_tab(%rip), tptr sub $fofs, kptr / Load input block into registers mov (%rdi), %eax mov 1*4(%rdi), %ebx mov 2*4(%rdi), %ecx mov 3*4(%rdi), %edx xor fofs(kptr), %eax xor fofs+4(kptr), %ebx xor fofs+8(kptr), %ecx xor fofs+12(kptr), %edx lea (kptr,%rsi), kptr / Jump based on byte key length * 16: cmp $[10*16], %esi je 3f cmp $[12*16], %esi je 2f cmp $[14*16], %esi je 1f mov $-1, %rax / error jmp 4f / Perform normal forward rounds 1: ff_rnd(%r9d, %r10d, %r11d, %r12d, 13) ff_rnd(%r9d, %r10d, %r11d, %r12d, 12) 2: ff_rnd(%r9d, %r10d, %r11d, %r12d, 11) ff_rnd(%r9d, %r10d, %r11d, %r12d, 10) 3: ff_rnd(%r9d, %r10d, %r11d, %r12d, 9) ff_rnd(%r9d, %r10d, %r11d, %r12d, 8) ff_rnd(%r9d, %r10d, %r11d, %r12d, 7) ff_rnd(%r9d, %r10d, %r11d, %r12d, 6) ff_rnd(%r9d, %r10d, %r11d, %r12d, 5) ff_rnd(%r9d, %r10d, %r11d, %r12d, 4) ff_rnd(%r9d, %r10d, %r11d, %r12d, 3) ff_rnd(%r9d, %r10d, %r11d, %r12d, 2) ff_rnd(%r9d, %r10d, %r11d, %r12d, 1) fl_rnd(%r9d, %r10d, %r11d, %r12d, 0) / Copy results mov (%rsp), %rbx mov %r9d, (%rbx) mov %r10d, 4(%rbx) mov %r11d, 8(%rbx) mov %r12d, 12(%rbx) xor %rax, %rax 4: / Restore registers mov 1*8(%rsp), %rbx mov 2*8(%rsp), %rbp mov 3*8(%rsp), %r12 add $[4*8], %rsp /* EXPORT DELETE END */ ret SET_SIZE(aes_encrypt_amd64) /* * OpenSolaris OS: * void aes_decrypt_amd64(const aes_ks_t *ks, int Nr, * const uint32_t pt[4], uint32_t ct[4])/ * * Original interface: * int aes_decrypt(const unsigned char *in, * unsigned char *out, const aes_encrypt_ctx cx[1])/ */ .align 64 dec_tab: dec_vals(v8) #ifdef LAST_ROUND_TABLES / Last Round Tables: dec_vals(w8) #endif ENTRY_NP(aes_decrypt_amd64) /* EXPORT DELETE START */ #ifdef GLADMAN_INTERFACE / Original interface sub $[4*8], %rsp / gnu/linux/opensolaris binary interface mov %rsi, (%rsp) / output pointer (P2) mov %rdx, %r8 / context (P3) mov %rbx, 1*8(%rsp) / P1: input pointer in rdi mov %rbp, 2*8(%rsp) / P2: output pointer in (rsp) mov %r12, 3*8(%rsp) / P3: context in r8 movzx 4*KS_LENGTH(kptr), %esi / Get byte key length * 16 #else / OpenSolaris OS interface sub $[4*8], %rsp / Make room on stack to save registers mov %rcx, (%rsp) / Save output pointer (P4) on stack mov %rdi, %r8 / context (P1) mov %rdx, %rdi / P3: save input pointer shl $4, %esi / P2: esi byte key length * 16 mov %rbx, 1*8(%rsp) / Save registers mov %rbp, 2*8(%rsp) mov %r12, 3*8(%rsp) / P1: context in r8 / P2: byte key length * 16 in esi / P3: input pointer in rdi / P4: output pointer in (rsp) #endif /* GLADMAN_INTERFACE */ lea dec_tab(%rip), tptr sub $rofs, kptr / Load input block into registers mov (%rdi), %eax mov 1*4(%rdi), %ebx mov 2*4(%rdi), %ecx mov 3*4(%rdi), %edx #ifdef AES_REV_DKS mov kptr, %rdi lea (kptr,%rsi), kptr #else lea (kptr,%rsi), %rdi #endif xor rofs(%rdi), %eax xor rofs+4(%rdi), %ebx xor rofs+8(%rdi), %ecx xor rofs+12(%rdi), %edx / Jump based on byte key length * 16: cmp $[10*16], %esi je 3f cmp $[12*16], %esi je 2f cmp $[14*16], %esi je 1f mov $-1, %rax / error jmp 4f / Perform normal inverse rounds 1: ii_rnd(%r9d, %r10d, %r11d, %r12d, 13) ii_rnd(%r9d, %r10d, %r11d, %r12d, 12) 2: ii_rnd(%r9d, %r10d, %r11d, %r12d, 11) ii_rnd(%r9d, %r10d, %r11d, %r12d, 10) 3: ii_rnd(%r9d, %r10d, %r11d, %r12d, 9) ii_rnd(%r9d, %r10d, %r11d, %r12d, 8) ii_rnd(%r9d, %r10d, %r11d, %r12d, 7) ii_rnd(%r9d, %r10d, %r11d, %r12d, 6) ii_rnd(%r9d, %r10d, %r11d, %r12d, 5) ii_rnd(%r9d, %r10d, %r11d, %r12d, 4) ii_rnd(%r9d, %r10d, %r11d, %r12d, 3) ii_rnd(%r9d, %r10d, %r11d, %r12d, 2) ii_rnd(%r9d, %r10d, %r11d, %r12d, 1) il_rnd(%r9d, %r10d, %r11d, %r12d, 0) / Copy results mov (%rsp), %rbx mov %r9d, (%rbx) mov %r10d, 4(%rbx) mov %r11d, 8(%rbx) mov %r12d, 12(%rbx) xor %rax, %rax 4: / Restore registers mov 1*8(%rsp), %rbx mov 2*8(%rsp), %rbp mov 3*8(%rsp), %r12 add $[4*8], %rsp /* EXPORT DELETE END */ ret SET_SIZE(aes_decrypt_amd64) #endif /* lint || __lint */