/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2009 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef _KERNEL #include "../genunix/list.h" #endif #ifdef _KERNEL #define ZFS_OBJ_NAME "zfs" #else #define ZFS_OBJ_NAME "libzpool.so.1" #endif static int getmember(uintptr_t addr, const char *type, mdb_ctf_id_t *idp, const char *member, int len, void *buf) { mdb_ctf_id_t id; ulong_t off; char name[64]; if (idp == NULL) { if (mdb_ctf_lookup_by_name(type, &id) == -1) { mdb_warn("couldn't find type %s", type); return (DCMD_ERR); } idp = &id; } else { type = name; mdb_ctf_type_name(*idp, name, sizeof (name)); } if (mdb_ctf_offsetof(*idp, member, &off) == -1) { mdb_warn("couldn't find member %s of type %s\n", member, type); return (DCMD_ERR); } if (off % 8 != 0) { mdb_warn("member %s of type %s is unsupported bitfield", member, type); return (DCMD_ERR); } off /= 8; if (mdb_vread(buf, len, addr + off) == -1) { mdb_warn("failed to read %s from %s at %p", member, type, addr + off); return (DCMD_ERR); } /* mdb_warn("read %s from %s at %p+%llx\n", member, type, addr, off); */ return (0); } #define GETMEMB(addr, type, member, dest) \ getmember(addr, #type, NULL, #member, sizeof (dest), &(dest)) #define GETMEMBID(addr, ctfid, member, dest) \ getmember(addr, NULL, ctfid, #member, sizeof (dest), &(dest)) static int getrefcount(uintptr_t addr, mdb_ctf_id_t *id, const char *member, uint64_t *rc) { static int gotid; static mdb_ctf_id_t rc_id; ulong_t off; if (!gotid) { if (mdb_ctf_lookup_by_name("struct refcount", &rc_id) == -1) { mdb_warn("couldn't find struct refcount"); return (DCMD_ERR); } gotid = TRUE; } if (mdb_ctf_offsetof(*id, member, &off) == -1) { char name[64]; mdb_ctf_type_name(*id, name, sizeof (name)); mdb_warn("couldn't find member %s of type %s\n", member, name); return (DCMD_ERR); } off /= 8; return (GETMEMBID(addr + off, &rc_id, rc_count, *rc)); } static int verbose; static int freelist_walk_init(mdb_walk_state_t *wsp) { if (wsp->walk_addr == NULL) { mdb_warn("must supply starting address\n"); return (WALK_ERR); } wsp->walk_data = 0; /* Index into the freelist */ return (WALK_NEXT); } static int freelist_walk_step(mdb_walk_state_t *wsp) { uint64_t entry; uintptr_t number = (uintptr_t)wsp->walk_data; char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID", "INVALID", "INVALID", "INVALID", "INVALID" }; int mapshift = SPA_MINBLOCKSHIFT; if (mdb_vread(&entry, sizeof (entry), wsp->walk_addr) == -1) { mdb_warn("failed to read freelist entry %p", wsp->walk_addr); return (WALK_DONE); } wsp->walk_addr += sizeof (entry); wsp->walk_data = (void *)(number + 1); if (SM_DEBUG_DECODE(entry)) { mdb_printf("DEBUG: %3u %10s: txg=%llu pass=%llu\n", number, ddata[SM_DEBUG_ACTION_DECODE(entry)], SM_DEBUG_TXG_DECODE(entry), SM_DEBUG_SYNCPASS_DECODE(entry)); } else { mdb_printf("Entry: %3u offsets=%08llx-%08llx type=%c " "size=%06llx", number, SM_OFFSET_DECODE(entry) << mapshift, (SM_OFFSET_DECODE(entry) + SM_RUN_DECODE(entry)) << mapshift, SM_TYPE_DECODE(entry) == SM_ALLOC ? 'A' : 'F', SM_RUN_DECODE(entry) << mapshift); if (verbose) mdb_printf(" (raw=%012llx)\n", entry); mdb_printf("\n"); } return (WALK_NEXT); } static int dataset_name(uintptr_t addr, char *buf) { static int gotid; static mdb_ctf_id_t dd_id; uintptr_t dd_parent; char dd_myname[MAXNAMELEN]; if (!gotid) { if (mdb_ctf_lookup_by_name("struct dsl_dir", &dd_id) == -1) { mdb_warn("couldn't find struct dsl_dir"); return (DCMD_ERR); } gotid = TRUE; } if (GETMEMBID(addr, &dd_id, dd_parent, dd_parent) || GETMEMBID(addr, &dd_id, dd_myname, dd_myname)) { return (DCMD_ERR); } if (dd_parent) { if (dataset_name(dd_parent, buf)) return (DCMD_ERR); strcat(buf, "/"); } if (dd_myname[0]) strcat(buf, dd_myname); else strcat(buf, "???"); return (0); } static int objset_name(uintptr_t addr, char *buf) { static int gotid; static mdb_ctf_id_t os_id, ds_id; uintptr_t os_dsl_dataset; char ds_snapname[MAXNAMELEN]; uintptr_t ds_dir; buf[0] = '\0'; if (!gotid) { if (mdb_ctf_lookup_by_name("struct objset", &os_id) == -1) { mdb_warn("couldn't find struct objset"); return (DCMD_ERR); } if (mdb_ctf_lookup_by_name("struct dsl_dataset", &ds_id) == -1) { mdb_warn("couldn't find struct dsl_dataset"); return (DCMD_ERR); } gotid = TRUE; } if (GETMEMBID(addr, &os_id, os_dsl_dataset, os_dsl_dataset)) return (DCMD_ERR); if (os_dsl_dataset == 0) { strcat(buf, "mos"); return (0); } if (GETMEMBID(os_dsl_dataset, &ds_id, ds_snapname, ds_snapname) || GETMEMBID(os_dsl_dataset, &ds_id, ds_dir, ds_dir)) { return (DCMD_ERR); } if (ds_dir && dataset_name(ds_dir, buf)) return (DCMD_ERR); if (ds_snapname[0]) { strcat(buf, "@"); strcat(buf, ds_snapname); } return (0); } static void enum_lookup(char *out, size_t size, mdb_ctf_id_t id, int val, const char *prefix) { const char *cp; size_t len = strlen(prefix); if ((cp = mdb_ctf_enum_name(id, val)) != NULL) { if (strncmp(cp, prefix, len) == 0) cp += len; (void) strncpy(out, cp, size); } else { mdb_snprintf(out, size, "? (%d)", val); } } /* ARGSUSED */ static int zfs_params(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { /* * This table can be approximately generated by running: * egrep "^[a-z0-9_]+ [a-z0-9_]+( =.*)?;" *.c | cut -d ' ' -f 2 */ static const char *params[] = { "arc_reduce_dnlc_percent", "zfs_arc_max", "zfs_arc_min", "arc_shrink_shift", "zfs_mdcomp_disable", "zfs_prefetch_disable", "zfetch_max_streams", "zfetch_min_sec_reap", "zfetch_block_cap", "zfetch_array_rd_sz", "zfs_default_bs", "zfs_default_ibs", "metaslab_aliquot", "reference_tracking_enable", "reference_history", "spa_max_replication_override", "spa_mode_global", "zfs_flags", "zfs_txg_synctime", "zfs_txg_timeout", "zfs_write_limit_min", "zfs_write_limit_max", "zfs_write_limit_shift", "zfs_write_limit_override", "zfs_no_write_throttle", "zfs_vdev_cache_max", "zfs_vdev_cache_size", "zfs_vdev_cache_bshift", "vdev_mirror_shift", "zfs_vdev_max_pending", "zfs_vdev_min_pending", "zfs_scrub_limit", "zfs_no_scrub_io", "zfs_no_scrub_prefetch", "zfs_vdev_time_shift", "zfs_vdev_ramp_rate", "zfs_vdev_aggregation_limit", "fzap_default_block_shift", "zfs_immediate_write_sz", "zfs_read_chunk_size", "zil_disable", "zfs_nocacheflush", "metaslab_gang_bang", "metaslab_df_alloc_threshold", "metaslab_df_free_pct", "zio_injection_enabled", "zvol_immediate_write_sz", }; for (int i = 0; i < sizeof (params) / sizeof (params[0]); i++) { int sz; uint64_t val64; uint32_t *val32p = (uint32_t *)&val64; sz = mdb_readvar(&val64, params[i]); if (sz == 4) { mdb_printf("%s = 0x%x\n", params[i], *val32p); } else if (sz == 8) { mdb_printf("%s = 0x%llx\n", params[i], val64); } else { mdb_warn("variable %s not found", params[i]); } } return (DCMD_OK); } /* ARGSUSED */ static int blkptr(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { mdb_ctf_id_t type_enum, checksum_enum, compress_enum; char type[80], checksum[80], compress[80]; blkptr_t blk, *bp = &blk; char buf[BP_SPRINTF_LEN]; if (mdb_vread(&blk, sizeof (blkptr_t), addr) == -1) { mdb_warn("failed to read blkptr_t"); return (DCMD_ERR); } if (mdb_ctf_lookup_by_name("enum dmu_object_type", &type_enum) == -1 || mdb_ctf_lookup_by_name("enum zio_checksum", &checksum_enum) == -1 || mdb_ctf_lookup_by_name("enum zio_compress", &compress_enum) == -1) { mdb_warn("Could not find blkptr enumerated types"); return (DCMD_ERR); } enum_lookup(type, sizeof (type), type_enum, BP_GET_TYPE(bp), "DMU_OT_"); enum_lookup(checksum, sizeof (checksum), checksum_enum, BP_GET_CHECKSUM(bp), "ZIO_CHECKSUM_"); enum_lookup(compress, sizeof (compress), compress_enum, BP_GET_COMPRESS(bp), "ZIO_COMPRESS_"); SPRINTF_BLKPTR(mdb_snprintf, '\n', buf, bp, type, checksum, compress); mdb_printf("%s\n", buf); return (DCMD_OK); } /* ARGSUSED */ static int dbuf(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { mdb_ctf_id_t id; dmu_buf_t db; uintptr_t objset; uint8_t level; uint64_t blkid; uint64_t holds; char objectname[32]; char blkidname[32]; char path[MAXNAMELEN]; if (DCMD_HDRSPEC(flags)) { mdb_printf(" addr object lvl blkid holds os\n"); } if (mdb_ctf_lookup_by_name("struct dmu_buf_impl", &id) == -1) { mdb_warn("couldn't find struct dmu_buf_impl_t"); return (DCMD_ERR); } if (GETMEMBID(addr, &id, db_objset, objset) || GETMEMBID(addr, &id, db, db) || GETMEMBID(addr, &id, db_level, level) || GETMEMBID(addr, &id, db_blkid, blkid)) { return (WALK_ERR); } if (getrefcount(addr, &id, "db_holds", &holds)) { return (WALK_ERR); } if (db.db_object == DMU_META_DNODE_OBJECT) (void) strcpy(objectname, "mdn"); else (void) mdb_snprintf(objectname, sizeof (objectname), "%llx", (u_longlong_t)db.db_object); if (blkid == DB_BONUS_BLKID) (void) strcpy(blkidname, "bonus"); else (void) mdb_snprintf(blkidname, sizeof (blkidname), "%llx", (u_longlong_t)blkid); if (objset_name(objset, path)) { return (WALK_ERR); } mdb_printf("%p %8s %1u %9s %2llu %s\n", addr, objectname, level, blkidname, holds, path); return (DCMD_OK); } /* ARGSUSED */ static int dbuf_stats(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { #define HISTOSZ 32 uintptr_t dbp; dmu_buf_impl_t db; dbuf_hash_table_t ht; uint64_t bucket, ndbufs; uint64_t histo[HISTOSZ]; uint64_t histo2[HISTOSZ]; int i, maxidx; if (mdb_readvar(&ht, "dbuf_hash_table") == -1) { mdb_warn("failed to read 'dbuf_hash_table'"); return (DCMD_ERR); } for (i = 0; i < HISTOSZ; i++) { histo[i] = 0; histo2[i] = 0; } ndbufs = 0; for (bucket = 0; bucket < ht.hash_table_mask+1; bucket++) { int len; if (mdb_vread(&dbp, sizeof (void *), (uintptr_t)(ht.hash_table+bucket)) == -1) { mdb_warn("failed to read hash bucket %u at %p", bucket, ht.hash_table+bucket); return (DCMD_ERR); } len = 0; while (dbp != 0) { if (mdb_vread(&db, sizeof (dmu_buf_impl_t), dbp) == -1) { mdb_warn("failed to read dbuf at %p", dbp); return (DCMD_ERR); } dbp = (uintptr_t)db.db_hash_next; for (i = MIN(len, HISTOSZ - 1); i >= 0; i--) histo2[i]++; len++; ndbufs++; } if (len >= HISTOSZ) len = HISTOSZ-1; histo[len]++; } mdb_printf("hash table has %llu buckets, %llu dbufs " "(avg %llu buckets/dbuf)\n", ht.hash_table_mask+1, ndbufs, (ht.hash_table_mask+1)/ndbufs); mdb_printf("\n"); maxidx = 0; for (i = 0; i < HISTOSZ; i++) if (histo[i] > 0) maxidx = i; mdb_printf("hash chain length number of buckets\n"); for (i = 0; i <= maxidx; i++) mdb_printf("%u %llu\n", i, histo[i]); mdb_printf("\n"); maxidx = 0; for (i = 0; i < HISTOSZ; i++) if (histo2[i] > 0) maxidx = i; mdb_printf("hash chain depth number of dbufs\n"); for (i = 0; i <= maxidx; i++) mdb_printf("%u or more %llu %llu%%\n", i, histo2[i], histo2[i]*100/ndbufs); return (DCMD_OK); } typedef struct dbufs_data { mdb_ctf_id_t id; uint64_t objset; uint64_t object; uint64_t level; uint64_t blkid; char *osname; } dbufs_data_t; #define DBUFS_UNSET (0xbaddcafedeadbeefULL) /* ARGSUSED */ static int dbufs_cb(uintptr_t addr, const void *unknown, void *arg) { dbufs_data_t *data = arg; uintptr_t objset; dmu_buf_t db; uint8_t level; uint64_t blkid; char osname[MAXNAMELEN]; if (GETMEMBID(addr, &data->id, db_objset, objset) || GETMEMBID(addr, &data->id, db, db) || GETMEMBID(addr, &data->id, db_level, level) || GETMEMBID(addr, &data->id, db_blkid, blkid)) { return (WALK_ERR); } if ((data->objset == DBUFS_UNSET || data->objset == objset) && (data->osname == NULL || (objset_name(objset, osname) == 0 && strcmp(data->osname, osname) == 0)) && (data->object == DBUFS_UNSET || data->object == db.db_object) && (data->level == DBUFS_UNSET || data->level == level) && (data->blkid == DBUFS_UNSET || data->blkid == blkid)) { mdb_printf("%#lr\n", addr); } return (WALK_NEXT); } /* ARGSUSED */ static int dbufs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { dbufs_data_t data; char *object = NULL; char *blkid = NULL; data.objset = data.object = data.level = data.blkid = DBUFS_UNSET; data.osname = NULL; if (mdb_getopts(argc, argv, 'O', MDB_OPT_UINT64, &data.objset, 'n', MDB_OPT_STR, &data.osname, 'o', MDB_OPT_STR, &object, 'l', MDB_OPT_UINT64, &data.level, 'b', MDB_OPT_STR, &blkid) != argc) { return (DCMD_USAGE); } if (object) { if (strcmp(object, "mdn") == 0) { data.object = DMU_META_DNODE_OBJECT; } else { data.object = mdb_strtoull(object); } } if (blkid) { if (strcmp(blkid, "bonus") == 0) { data.blkid = DB_BONUS_BLKID; } else { data.blkid = mdb_strtoull(blkid); } } if (mdb_ctf_lookup_by_name("struct dmu_buf_impl", &data.id) == -1) { mdb_warn("couldn't find struct dmu_buf_impl_t"); return (DCMD_ERR); } if (mdb_walk("dmu_buf_impl_t", dbufs_cb, &data) != 0) { mdb_warn("can't walk dbufs"); return (DCMD_ERR); } return (DCMD_OK); } typedef struct abuf_find_data { dva_t dva; mdb_ctf_id_t id; } abuf_find_data_t; /* ARGSUSED */ static int abuf_find_cb(uintptr_t addr, const void *unknown, void *arg) { abuf_find_data_t *data = arg; dva_t dva; if (GETMEMBID(addr, &data->id, b_dva, dva)) { return (WALK_ERR); } if (dva.dva_word[0] == data->dva.dva_word[0] && dva.dva_word[1] == data->dva.dva_word[1]) { mdb_printf("%#lr\n", addr); } return (WALK_NEXT); } /* ARGSUSED */ static int abuf_find(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { abuf_find_data_t data; GElf_Sym sym; int i; const char *syms[] = { "ARC_mru", "ARC_mru_ghost", "ARC_mfu", "ARC_mfu_ghost", }; if (argc != 2) return (DCMD_USAGE); for (i = 0; i < 2; i ++) { switch (argv[i].a_type) { case MDB_TYPE_STRING: data.dva.dva_word[i] = mdb_strtoull(argv[i].a_un.a_str); break; case MDB_TYPE_IMMEDIATE: data.dva.dva_word[i] = argv[i].a_un.a_val; break; default: return (DCMD_USAGE); } } if (mdb_ctf_lookup_by_name("struct arc_buf_hdr", &data.id) == -1) { mdb_warn("couldn't find struct arc_buf_hdr"); return (DCMD_ERR); } for (i = 0; i < sizeof (syms) / sizeof (syms[0]); i++) { if (mdb_lookup_by_name(syms[i], &sym)) { mdb_warn("can't find symbol %s", syms[i]); return (DCMD_ERR); } if (mdb_pwalk("list", abuf_find_cb, &data, sym.st_value) != 0) { mdb_warn("can't walk %s", syms[i]); return (DCMD_ERR); } } return (DCMD_OK); } /*ARGSUSED*/ static int arc_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { kstat_named_t *stats; GElf_Sym sym; int nstats, i; uint_t opt_a = FALSE; uint_t opt_b = FALSE; uint_t shift = 0; const char *suffix; static const char *bytestats[] = { "p", "c", "c_min", "c_max", "size", NULL }; static const char *extras[] = { "arc_no_grow", "arc_tempreserve", "arc_meta_used", "arc_meta_limit", "arc_meta_max", NULL }; if (mdb_lookup_by_name("arc_stats", &sym) == -1) { mdb_warn("failed to find 'arc_stats'"); return (DCMD_ERR); } stats = mdb_zalloc(sym.st_size, UM_SLEEP | UM_GC); if (mdb_vread(stats, sym.st_size, sym.st_value) == -1) { mdb_warn("couldn't read 'arc_stats' at %p", sym.st_value); return (DCMD_ERR); } nstats = sym.st_size / sizeof (kstat_named_t); /* NB: -a / opt_a are ignored for backwards compatability */ if (mdb_getopts(argc, argv, 'a', MDB_OPT_SETBITS, TRUE, &opt_a, 'b', MDB_OPT_SETBITS, TRUE, &opt_b, 'k', MDB_OPT_SETBITS, 10, &shift, 'm', MDB_OPT_SETBITS, 20, &shift, 'g', MDB_OPT_SETBITS, 30, &shift, NULL) != argc) return (DCMD_USAGE); if (!opt_b && !shift) shift = 20; switch (shift) { case 0: suffix = "B"; break; case 10: suffix = "KB"; break; case 20: suffix = "MB"; break; case 30: suffix = "GB"; break; default: suffix = "XX"; } for (i = 0; i < nstats; i++) { int j; boolean_t bytes = B_FALSE; for (j = 0; bytestats[j]; j++) { if (strcmp(stats[i].name, bytestats[j]) == 0) { bytes = B_TRUE; break; } } if (bytes) { mdb_printf("%-25s = %9llu %s\n", stats[i].name, stats[i].value.ui64 >> shift, suffix); } else { mdb_printf("%-25s = %9llu\n", stats[i].name, stats[i].value.ui64); } } for (i = 0; extras[i]; i++) { uint64_t buf; if (mdb_lookup_by_name(extras[i], &sym) == -1) { mdb_warn("failed to find '%s'", extras[i]); return (DCMD_ERR); } if (sym.st_size != sizeof (uint64_t) && sym.st_size != sizeof (uint32_t)) { mdb_warn("expected scalar for variable '%s'\n", extras[i]); return (DCMD_ERR); } if (mdb_vread(&buf, sym.st_size, sym.st_value) == -1) { mdb_warn("couldn't read '%s'", extras[i]); return (DCMD_ERR); } mdb_printf("%-25s = ", extras[i]); /* NB: all the 64-bit extras happen to be byte counts */ if (sym.st_size == sizeof (uint64_t)) mdb_printf("%9llu %s\n", buf >> shift, suffix); if (sym.st_size == sizeof (uint32_t)) mdb_printf("%9d\n", *((uint32_t *)&buf)); } return (DCMD_OK); } /* * ::spa * * -c Print configuration information as well * -v Print vdev state * -e Print vdev error stats * * Print a summarized spa_t. When given no arguments, prints out a table of all * active pools on the system. */ /* ARGSUSED */ static int spa_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { spa_t spa; const char *statetab[] = { "ACTIVE", "EXPORTED", "DESTROYED", "SPARE", "L2CACHE", "UNINIT", "UNAVAIL", "POTENTIAL" }; const char *state; int config = FALSE; int vdevs = FALSE; int errors = FALSE; if (mdb_getopts(argc, argv, 'c', MDB_OPT_SETBITS, TRUE, &config, 'v', MDB_OPT_SETBITS, TRUE, &vdevs, 'e', MDB_OPT_SETBITS, TRUE, &errors, NULL) != argc) return (DCMD_USAGE); if (!(flags & DCMD_ADDRSPEC)) { if (mdb_walk_dcmd("spa", "spa", argc, argv) == -1) { mdb_warn("can't walk spa"); return (DCMD_ERR); } return (DCMD_OK); } if (flags & DCMD_PIPE_OUT) { mdb_printf("%#lr\n", addr); return (DCMD_OK); } if (DCMD_HDRSPEC(flags)) mdb_printf("%%-?s %9s %-*s%\n", "ADDR", "STATE", sizeof (uintptr_t) == 4 ? 60 : 52, "NAME"); if (mdb_vread(&spa, sizeof (spa), addr) == -1) { mdb_warn("failed to read spa_t at %p", addr); return (DCMD_ERR); } if (spa.spa_state < 0 || spa.spa_state > POOL_STATE_UNAVAIL) state = "UNKNOWN"; else state = statetab[spa.spa_state]; mdb_printf("%0?p %9s %s\n", addr, state, spa.spa_name); if (config) { mdb_printf("\n"); mdb_inc_indent(4); if (mdb_call_dcmd("spa_config", addr, flags, 0, NULL) != DCMD_OK) return (DCMD_ERR); mdb_dec_indent(4); } if (vdevs || errors) { mdb_arg_t v; v.a_type = MDB_TYPE_STRING; v.a_un.a_str = "-e"; mdb_printf("\n"); mdb_inc_indent(4); if (mdb_call_dcmd("spa_vdevs", addr, flags, errors ? 1 : 0, &v) != DCMD_OK) return (DCMD_ERR); mdb_dec_indent(4); } return (DCMD_OK); } /* * ::spa_config * * Given a spa_t, print the configuration information stored in spa_config. * Since it's just an nvlist, format it as an indented list of name=value pairs. * We simply read the value of spa_config and pass off to ::nvlist. */ /* ARGSUSED */ static int spa_print_config(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { spa_t spa; if (argc != 0 || !(flags & DCMD_ADDRSPEC)) return (DCMD_USAGE); if (mdb_vread(&spa, sizeof (spa), addr) == -1) { mdb_warn("failed to read spa_t at %p", addr); return (DCMD_ERR); } if (spa.spa_config == NULL) { mdb_printf("(none)\n"); return (DCMD_OK); } return (mdb_call_dcmd("nvlist", (uintptr_t)spa.spa_config, flags, 0, NULL)); } /* * ::vdev * * Print out a summarized vdev_t, in the following form: * * ADDR STATE AUX DESC * fffffffbcde23df0 HEALTHY - /dev/dsk/c0t0d0 * * If '-r' is specified, recursively visit all children. * * With '-e', the statistics associated with the vdev are printed as well. */ static int do_print_vdev(uintptr_t addr, int flags, int depth, int stats, int recursive) { vdev_t vdev; char desc[MAXNAMELEN]; int c, children; uintptr_t *child; const char *state, *aux; if (mdb_vread(&vdev, sizeof (vdev), (uintptr_t)addr) == -1) { mdb_warn("failed to read vdev_t at %p\n", (uintptr_t)addr); return (DCMD_ERR); } if (flags & DCMD_PIPE_OUT) { mdb_printf("%#lr", addr); } else { if (vdev.vdev_path != NULL) { if (mdb_readstr(desc, sizeof (desc), (uintptr_t)vdev.vdev_path) == -1) { mdb_warn("failed to read vdev_path at %p\n", vdev.vdev_path); return (DCMD_ERR); } } else if (vdev.vdev_ops != NULL) { vdev_ops_t ops; if (mdb_vread(&ops, sizeof (ops), (uintptr_t)vdev.vdev_ops) == -1) { mdb_warn("failed to read vdev_ops at %p\n", vdev.vdev_ops); return (DCMD_ERR); } (void) strcpy(desc, ops.vdev_op_type); } else { (void) strcpy(desc, ""); } if (depth == 0 && DCMD_HDRSPEC(flags)) mdb_printf("%%-?s %-9s %-12s %-*s%\n", "ADDR", "STATE", "AUX", sizeof (uintptr_t) == 4 ? 43 : 35, "DESCRIPTION"); mdb_printf("%0?p ", addr); switch (vdev.vdev_state) { case VDEV_STATE_CLOSED: state = "CLOSED"; break; case VDEV_STATE_OFFLINE: state = "OFFLINE"; break; case VDEV_STATE_CANT_OPEN: state = "CANT_OPEN"; break; case VDEV_STATE_DEGRADED: state = "DEGRADED"; break; case VDEV_STATE_HEALTHY: state = "HEALTHY"; break; case VDEV_STATE_REMOVED: state = "REMOVED"; break; case VDEV_STATE_FAULTED: state = "FAULTED"; break; default: state = "UNKNOWN"; break; } switch (vdev.vdev_stat.vs_aux) { case VDEV_AUX_NONE: aux = "-"; break; case VDEV_AUX_OPEN_FAILED: aux = "OPEN_FAILED"; break; case VDEV_AUX_CORRUPT_DATA: aux = "CORRUPT_DATA"; break; case VDEV_AUX_NO_REPLICAS: aux = "NO_REPLICAS"; break; case VDEV_AUX_BAD_GUID_SUM: aux = "BAD_GUID_SUM"; break; case VDEV_AUX_TOO_SMALL: aux = "TOO_SMALL"; break; case VDEV_AUX_BAD_LABEL: aux = "BAD_LABEL"; break; case VDEV_AUX_VERSION_NEWER: aux = "VERS_NEWER"; break; case VDEV_AUX_VERSION_OLDER: aux = "VERS_OLDER"; break; case VDEV_AUX_SPARED: aux = "SPARED"; break; case VDEV_AUX_ERR_EXCEEDED: aux = "ERR_EXCEEDED"; break; case VDEV_AUX_IO_FAILURE: aux = "IO_FAILURE"; break; case VDEV_AUX_BAD_LOG: aux = "BAD_LOG"; break; default: aux = "UNKNOWN"; break; } mdb_printf("%-9s %-12s %*s%s\n", state, aux, depth, "", desc); if (stats) { vdev_stat_t *vs = &vdev.vdev_stat; int i; mdb_inc_indent(4); mdb_printf("\n"); mdb_printf("% %12s %12s %12s %12s " "%12s%\n", "READ", "WRITE", "FREE", "CLAIM", "IOCTL"); mdb_printf("OPS "); for (i = 1; i < ZIO_TYPES; i++) mdb_printf("%11#llx%s", vs->vs_ops[i], i == ZIO_TYPES - 1 ? "" : " "); mdb_printf("\n"); mdb_printf("BYTES "); for (i = 1; i < ZIO_TYPES; i++) mdb_printf("%11#llx%s", vs->vs_bytes[i], i == ZIO_TYPES - 1 ? "" : " "); mdb_printf("\n"); mdb_printf("EREAD %10#llx\n", vs->vs_read_errors); mdb_printf("EWRITE %10#llx\n", vs->vs_write_errors); mdb_printf("ECKSUM %10#llx\n", vs->vs_checksum_errors); mdb_dec_indent(4); } if (stats) mdb_printf("\n"); } children = vdev.vdev_children; if (children == 0 || !recursive) return (DCMD_OK); child = mdb_alloc(children * sizeof (void *), UM_SLEEP | UM_GC); if (mdb_vread(child, children * sizeof (void *), (uintptr_t)vdev.vdev_child) == -1) { mdb_warn("failed to read vdev children at %p", vdev.vdev_child); return (DCMD_ERR); } for (c = 0; c < children; c++) { if (do_print_vdev(child[c], flags, depth + 2, stats, recursive)) return (DCMD_ERR); } return (DCMD_OK); } static int vdev_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { int recursive = FALSE; int stats = FALSE; uint64_t depth = 0; if (mdb_getopts(argc, argv, 'r', MDB_OPT_SETBITS, TRUE, &recursive, 'e', MDB_OPT_SETBITS, TRUE, &stats, 'd', MDB_OPT_UINT64, &depth, NULL) != argc) return (DCMD_USAGE); if (!(flags & DCMD_ADDRSPEC)) { mdb_warn("no vdev_t address given\n"); return (DCMD_ERR); } return (do_print_vdev(addr, flags, (int)depth, stats, recursive)); } typedef struct metaslab_walk_data { uint64_t mw_numvdevs; uintptr_t *mw_vdevs; int mw_curvdev; uint64_t mw_nummss; uintptr_t *mw_mss; int mw_curms; } metaslab_walk_data_t; static int metaslab_walk_step(mdb_walk_state_t *wsp) { metaslab_walk_data_t *mw = wsp->walk_data; metaslab_t ms; uintptr_t msp; if (mw->mw_curvdev >= mw->mw_numvdevs) return (WALK_DONE); if (mw->mw_mss == NULL) { uintptr_t mssp; uintptr_t vdevp; ASSERT(mw->mw_curms == 0); ASSERT(mw->mw_nummss == 0); vdevp = mw->mw_vdevs[mw->mw_curvdev]; if (GETMEMB(vdevp, struct vdev, vdev_ms, mssp) || GETMEMB(vdevp, struct vdev, vdev_ms_count, mw->mw_nummss)) { return (WALK_ERR); } mw->mw_mss = mdb_alloc(mw->mw_nummss * sizeof (void*), UM_SLEEP | UM_GC); if (mdb_vread(mw->mw_mss, mw->mw_nummss * sizeof (void*), mssp) == -1) { mdb_warn("failed to read vdev_ms at %p", mssp); return (WALK_ERR); } } if (mw->mw_curms >= mw->mw_nummss) { mw->mw_mss = NULL; mw->mw_curms = 0; mw->mw_nummss = 0; mw->mw_curvdev++; return (WALK_NEXT); } msp = mw->mw_mss[mw->mw_curms]; if (mdb_vread(&ms, sizeof (metaslab_t), msp) == -1) { mdb_warn("failed to read metaslab_t at %p", msp); return (WALK_ERR); } mw->mw_curms++; return (wsp->walk_callback(msp, &ms, wsp->walk_cbdata)); } /* ARGSUSED */ static int metaslab_walk_init(mdb_walk_state_t *wsp) { metaslab_walk_data_t *mw; uintptr_t root_vdevp; uintptr_t childp; if (wsp->walk_addr == NULL) { mdb_warn("must supply address of spa_t\n"); return (WALK_ERR); } mw = mdb_zalloc(sizeof (metaslab_walk_data_t), UM_SLEEP | UM_GC); if (GETMEMB(wsp->walk_addr, struct spa, spa_root_vdev, root_vdevp) || GETMEMB(root_vdevp, struct vdev, vdev_children, mw->mw_numvdevs) || GETMEMB(root_vdevp, struct vdev, vdev_child, childp)) { return (DCMD_ERR); } mw->mw_vdevs = mdb_alloc(mw->mw_numvdevs * sizeof (void *), UM_SLEEP | UM_GC); if (mdb_vread(mw->mw_vdevs, mw->mw_numvdevs * sizeof (void *), childp) == -1) { mdb_warn("failed to read root vdev children at %p", childp); return (DCMD_ERR); } wsp->walk_data = mw; return (WALK_NEXT); } typedef struct mdb_spa { uintptr_t spa_dsl_pool; uintptr_t spa_root_vdev; } mdb_spa_t; typedef struct mdb_dsl_dir { uintptr_t dd_phys; int64_t dd_space_towrite[TXG_SIZE]; } mdb_dsl_dir_t; typedef struct mdb_dsl_dir_phys { uint64_t dd_used_bytes; uint64_t dd_compressed_bytes; uint64_t dd_uncompressed_bytes; } mdb_dsl_dir_phys_t; typedef struct mdb_vdev { uintptr_t vdev_parent; uintptr_t vdev_ms; uint64_t vdev_ms_count; vdev_stat_t vdev_stat; } mdb_vdev_t; typedef struct mdb_metaslab { space_map_t ms_allocmap[TXG_SIZE]; space_map_t ms_freemap[TXG_SIZE]; space_map_t ms_map; space_map_obj_t ms_smo; space_map_obj_t ms_smo_syncing; } mdb_metaslab_t; typedef struct space_data { uint64_t ms_allocmap[TXG_SIZE]; uint64_t ms_freemap[TXG_SIZE]; uint64_t ms_map; uint64_t avail; uint64_t nowavail; } space_data_t; /* ARGSUSED */ static int space_cb(uintptr_t addr, const void *unknown, void *arg) { space_data_t *sd = arg; mdb_metaslab_t ms; if (GETMEMB(addr, struct metaslab, ms_allocmap, ms.ms_allocmap) || GETMEMB(addr, struct metaslab, ms_freemap, ms.ms_freemap) || GETMEMB(addr, struct metaslab, ms_map, ms.ms_map) || GETMEMB(addr, struct metaslab, ms_smo, ms.ms_smo) || GETMEMB(addr, struct metaslab, ms_smo_syncing, ms.ms_smo_syncing)) { return (WALK_ERR); } sd->ms_allocmap[0] += ms.ms_allocmap[0].sm_space; sd->ms_allocmap[1] += ms.ms_allocmap[1].sm_space; sd->ms_allocmap[2] += ms.ms_allocmap[2].sm_space; sd->ms_allocmap[3] += ms.ms_allocmap[3].sm_space; sd->ms_freemap[0] += ms.ms_freemap[0].sm_space; sd->ms_freemap[1] += ms.ms_freemap[1].sm_space; sd->ms_freemap[2] += ms.ms_freemap[2].sm_space; sd->ms_freemap[3] += ms.ms_freemap[3].sm_space; sd->ms_map += ms.ms_map.sm_space; sd->avail += ms.ms_map.sm_size - ms.ms_smo.smo_alloc; sd->nowavail += ms.ms_map.sm_size - ms.ms_smo_syncing.smo_alloc; return (WALK_NEXT); } /* * ::spa_space [-b] * * Given a spa_t, print out it's on-disk space usage and in-core * estimates of future usage. If -b is given, print space in bytes. * Otherwise print in megabytes. */ /* ARGSUSED */ static int spa_space(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { mdb_spa_t spa; uintptr_t dp_root_dir; mdb_dsl_dir_t dd; mdb_dsl_dir_phys_t dsp; uint64_t children; uintptr_t childaddr; space_data_t sd; int shift = 20; char *suffix = "M"; int bits = FALSE; if (mdb_getopts(argc, argv, 'b', MDB_OPT_SETBITS, TRUE, &bits, NULL) != argc) return (DCMD_USAGE); if (!(flags & DCMD_ADDRSPEC)) return (DCMD_USAGE); if (bits) { shift = 0; suffix = ""; } if (GETMEMB(addr, struct spa, spa_dsl_pool, spa.spa_dsl_pool) || GETMEMB(addr, struct spa, spa_root_vdev, spa.spa_root_vdev) || GETMEMB(spa.spa_root_vdev, struct vdev, vdev_children, children) || GETMEMB(spa.spa_root_vdev, struct vdev, vdev_child, childaddr) || GETMEMB(spa.spa_dsl_pool, struct dsl_pool, dp_root_dir, dp_root_dir) || GETMEMB(dp_root_dir, struct dsl_dir, dd_phys, dd.dd_phys) || GETMEMB(dp_root_dir, struct dsl_dir, dd_space_towrite, dd.dd_space_towrite) || GETMEMB(dd.dd_phys, struct dsl_dir_phys, dd_used_bytes, dsp.dd_used_bytes) || GETMEMB(dd.dd_phys, struct dsl_dir_phys, dd_compressed_bytes, dsp.dd_compressed_bytes) || GETMEMB(dd.dd_phys, struct dsl_dir_phys, dd_uncompressed_bytes, dsp.dd_uncompressed_bytes)) { return (DCMD_ERR); } mdb_printf("dd_space_towrite = %llu%s %llu%s %llu%s %llu%s\n", dd.dd_space_towrite[0] >> shift, suffix, dd.dd_space_towrite[1] >> shift, suffix, dd.dd_space_towrite[2] >> shift, suffix, dd.dd_space_towrite[3] >> shift, suffix); mdb_printf("dd_phys.dd_used_bytes = %llu%s\n", dsp.dd_used_bytes >> shift, suffix); mdb_printf("dd_phys.dd_compressed_bytes = %llu%s\n", dsp.dd_compressed_bytes >> shift, suffix); mdb_printf("dd_phys.dd_uncompressed_bytes = %llu%s\n", dsp.dd_uncompressed_bytes >> shift, suffix); bzero(&sd, sizeof (sd)); if (mdb_pwalk("metaslab", space_cb, &sd, addr) != 0) { mdb_warn("can't walk metaslabs"); return (DCMD_ERR); } mdb_printf("ms_allocmap = %llu%s %llu%s %llu%s %llu%s\n", sd.ms_allocmap[0] >> shift, suffix, sd.ms_allocmap[1] >> shift, suffix, sd.ms_allocmap[2] >> shift, suffix, sd.ms_allocmap[3] >> shift, suffix); mdb_printf("ms_freemap = %llu%s %llu%s %llu%s %llu%s\n", sd.ms_freemap[0] >> shift, suffix, sd.ms_freemap[1] >> shift, suffix, sd.ms_freemap[2] >> shift, suffix, sd.ms_freemap[3] >> shift, suffix); mdb_printf("ms_map = %llu%s\n", sd.ms_map >> shift, suffix); mdb_printf("last synced avail = %llu%s\n", sd.avail >> shift, suffix); mdb_printf("current syncing avail = %llu%s\n", sd.nowavail >> shift, suffix); return (DCMD_OK); } /* * ::spa_verify * * Given a spa_t, verify that that the pool is self-consistent. * Currently, it only checks to make sure that the vdev tree exists. */ /* ARGSUSED */ static int spa_verify(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { spa_t spa; if (argc != 0 || !(flags & DCMD_ADDRSPEC)) return (DCMD_USAGE); if (mdb_vread(&spa, sizeof (spa), addr) == -1) { mdb_warn("failed to read spa_t at %p", addr); return (DCMD_ERR); } if (spa.spa_root_vdev == NULL) { mdb_printf("no vdev tree present\n"); return (DCMD_OK); } return (DCMD_OK); } static int spa_print_aux(spa_aux_vdev_t *sav, uint_t flags, mdb_arg_t *v, const char *name) { uintptr_t *aux; size_t len; int ret, i; /* * Iterate over aux vdevs and print those out as well. This is a * little annoying because we don't have a root vdev to pass to ::vdev. * Instead, we print a single line and then call it for each child * vdev. */ if (sav->sav_count != 0) { v[1].a_type = MDB_TYPE_STRING; v[1].a_un.a_str = "-d"; v[2].a_type = MDB_TYPE_IMMEDIATE; v[2].a_un.a_val = 2; len = sav->sav_count * sizeof (uintptr_t); aux = mdb_alloc(len, UM_SLEEP); if (mdb_vread(aux, len, (uintptr_t)sav->sav_vdevs) == -1) { mdb_free(aux, len); mdb_warn("failed to read l2cache vdevs at %p", sav->sav_vdevs); return (DCMD_ERR); } mdb_printf("%-?s %-9s %-12s %s\n", "-", "-", "-", name); for (i = 0; i < sav->sav_count; i++) { ret = mdb_call_dcmd("vdev", aux[i], flags, 3, v); if (ret != DCMD_OK) { mdb_free(aux, len); return (ret); } } mdb_free(aux, len); } return (0); } /* * ::spa_vdevs * * -e Include error stats * * Print out a summarized list of vdevs for the given spa_t. * This is accomplished by invoking "::vdev -re" on the root vdev, as well as * iterating over the cache devices. */ /* ARGSUSED */ static int spa_vdevs(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { spa_t spa; mdb_arg_t v[3]; int errors = FALSE; int ret; if (mdb_getopts(argc, argv, 'e', MDB_OPT_SETBITS, TRUE, &errors, NULL) != argc) return (DCMD_USAGE); if (!(flags & DCMD_ADDRSPEC)) return (DCMD_USAGE); if (mdb_vread(&spa, sizeof (spa), addr) == -1) { mdb_warn("failed to read spa_t at %p", addr); return (DCMD_ERR); } /* * Unitialized spa_t structures can have a NULL root vdev. */ if (spa.spa_root_vdev == NULL) { mdb_printf("no associated vdevs\n"); return (DCMD_OK); } v[0].a_type = MDB_TYPE_STRING; v[0].a_un.a_str = errors ? "-re" : "-r"; ret = mdb_call_dcmd("vdev", (uintptr_t)spa.spa_root_vdev, flags, 1, v); if (ret != DCMD_OK) return (ret); if (spa_print_aux(&spa.spa_l2cache, flags, v, "cache") != 0 || spa_print_aux(&spa.spa_spares, flags, v, "spares") != 0) return (DCMD_ERR); return (DCMD_OK); } /* * ::zio * * Print a summary of zio_t and all its children. This is intended to display a * zio tree, and hence we only pick the most important pieces of information for * the main summary. More detailed information can always be found by doing a * '::print zio' on the underlying zio_t. The columns we display are: * * ADDRESS TYPE STAGE WAITER * * The 'address' column is indented by one space for each depth level as we * descend down the tree. */ #define ZIO_MAXINDENT 24 #define ZIO_MAXWIDTH (sizeof (uintptr_t) * 2 + ZIO_MAXINDENT) #define ZIO_WALK_SELF 0 #define ZIO_WALK_CHILD 1 #define ZIO_WALK_PARENT 2 typedef struct zio_print_args { int zpa_current_depth; int zpa_min_depth; int zpa_max_depth; int zpa_type; uint_t zpa_flags; } zio_print_args_t; static int zio_child_cb(uintptr_t addr, const void *unknown, void *arg); static int zio_print_cb(uintptr_t addr, const void *data, void *priv) { const zio_t *zio = data; zio_print_args_t *zpa = priv; mdb_ctf_id_t type_enum, stage_enum; int indent = zpa->zpa_current_depth; const char *type, *stage; uintptr_t laddr; if (indent > ZIO_MAXINDENT) indent = ZIO_MAXINDENT; if (mdb_ctf_lookup_by_name("enum zio_type", &type_enum) == -1 || mdb_ctf_lookup_by_name("enum zio_stage", &stage_enum) == -1) { mdb_warn("failed to lookup zio enums"); return (WALK_ERR); } if ((type = mdb_ctf_enum_name(type_enum, zio->io_type)) != NULL) type += sizeof ("ZIO_TYPE_") - 1; else type = "?"; if ((stage = mdb_ctf_enum_name(stage_enum, zio->io_stage)) != NULL) stage += sizeof ("ZIO_STAGE_") - 1; else stage = "?"; if (zpa->zpa_current_depth >= zpa->zpa_min_depth) { if (zpa->zpa_flags & DCMD_PIPE_OUT) { mdb_printf("%?p\n", addr); } else { mdb_printf("%*s%-*p %-5s %-16s ", indent, "", ZIO_MAXWIDTH - indent, addr, type, stage); if (zio->io_waiter) mdb_printf("%?p\n", zio->io_waiter); else mdb_printf("-\n"); } } if (zpa->zpa_current_depth >= zpa->zpa_max_depth) return (WALK_NEXT); if (zpa->zpa_type == ZIO_WALK_PARENT) laddr = addr + OFFSETOF(zio_t, io_parent_list); else laddr = addr + OFFSETOF(zio_t, io_child_list); zpa->zpa_current_depth++; if (mdb_pwalk("list", zio_child_cb, zpa, laddr) != 0) { mdb_warn("failed to walk zio_t children at %p\n", laddr); return (WALK_ERR); } zpa->zpa_current_depth--; return (WALK_NEXT); } /* ARGSUSED */ static int zio_child_cb(uintptr_t addr, const void *unknown, void *arg) { zio_link_t zl; zio_t zio; uintptr_t ziop; zio_print_args_t *zpa = arg; if (mdb_vread(&zl, sizeof (zl), addr) == -1) { mdb_warn("failed to read zio_link_t at %p", addr); return (WALK_ERR); } if (zpa->zpa_type == ZIO_WALK_PARENT) ziop = (uintptr_t)zl.zl_parent; else ziop = (uintptr_t)zl.zl_child; if (mdb_vread(&zio, sizeof (zio_t), ziop) == -1) { mdb_warn("failed to read zio_t at %p", ziop); return (WALK_ERR); } return (zio_print_cb(ziop, &zio, arg)); } /* ARGSUSED */ static int zio_print(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { zio_t zio; zio_print_args_t zpa = { 0 }; if (!(flags & DCMD_ADDRSPEC)) return (DCMD_USAGE); if (mdb_getopts(argc, argv, 'r', MDB_OPT_SETBITS, INT_MAX, &zpa.zpa_max_depth, 'c', MDB_OPT_SETBITS, ZIO_WALK_CHILD, &zpa.zpa_type, 'p', MDB_OPT_SETBITS, ZIO_WALK_PARENT, &zpa.zpa_type, NULL) != argc) return (DCMD_USAGE); zpa.zpa_flags = flags; if (zpa.zpa_max_depth != 0) { if (zpa.zpa_type == ZIO_WALK_SELF) zpa.zpa_type = ZIO_WALK_CHILD; } else if (zpa.zpa_type != ZIO_WALK_SELF) { zpa.zpa_min_depth = 1; zpa.zpa_max_depth = 1; } if (mdb_vread(&zio, sizeof (zio_t), addr) == -1) { mdb_warn("failed to read zio_t at %p", addr); return (DCMD_ERR); } if (!(flags & DCMD_PIPE_OUT) && DCMD_HDRSPEC(flags)) mdb_printf("%%-*s %-5s %-16s %-?s%\n", ZIO_MAXWIDTH, "ADDRESS", "TYPE", "STAGE", "WAITER"); if (zio_print_cb(addr, &zio, &zpa) != WALK_NEXT) return (DCMD_ERR); return (DCMD_OK); } /* * [addr]::zio_state * * Print a summary of all zio_t structures on the system, or for a particular * pool. This is equivalent to '::walk zio_root | ::zio'. */ /*ARGSUSED*/ static int zio_state(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { /* * MDB will remember the last address of the pipeline, so if we don't * zero this we'll end up trying to walk zio structures for a * non-existent spa_t. */ if (!(flags & DCMD_ADDRSPEC)) addr = 0; return (mdb_pwalk_dcmd("zio_root", "zio", argc, argv, addr)); } typedef struct txg_list_walk_data { uintptr_t lw_head[TXG_SIZE]; int lw_txgoff; int lw_maxoff; size_t lw_offset; void *lw_obj; } txg_list_walk_data_t; static int txg_list_walk_init_common(mdb_walk_state_t *wsp, int txg, int maxoff) { txg_list_walk_data_t *lwd; txg_list_t list; int i; lwd = mdb_alloc(sizeof (txg_list_walk_data_t), UM_SLEEP | UM_GC); if (mdb_vread(&list, sizeof (txg_list_t), wsp->walk_addr) == -1) { mdb_warn("failed to read txg_list_t at %#lx", wsp->walk_addr); return (WALK_ERR); } for (i = 0; i < TXG_SIZE; i++) lwd->lw_head[i] = (uintptr_t)list.tl_head[i]; lwd->lw_offset = list.tl_offset; lwd->lw_obj = mdb_alloc(lwd->lw_offset + sizeof (txg_node_t), UM_SLEEP | UM_GC); lwd->lw_txgoff = txg; lwd->lw_maxoff = maxoff; wsp->walk_addr = lwd->lw_head[lwd->lw_txgoff]; wsp->walk_data = lwd; return (WALK_NEXT); } static int txg_list_walk_init(mdb_walk_state_t *wsp) { return (txg_list_walk_init_common(wsp, 0, TXG_SIZE-1)); } static int txg_list0_walk_init(mdb_walk_state_t *wsp) { return (txg_list_walk_init_common(wsp, 0, 0)); } static int txg_list1_walk_init(mdb_walk_state_t *wsp) { return (txg_list_walk_init_common(wsp, 1, 1)); } static int txg_list2_walk_init(mdb_walk_state_t *wsp) { return (txg_list_walk_init_common(wsp, 2, 2)); } static int txg_list3_walk_init(mdb_walk_state_t *wsp) { return (txg_list_walk_init_common(wsp, 3, 3)); } static int txg_list_walk_step(mdb_walk_state_t *wsp) { txg_list_walk_data_t *lwd = wsp->walk_data; uintptr_t addr; txg_node_t *node; int status; while (wsp->walk_addr == NULL && lwd->lw_txgoff < lwd->lw_maxoff) { lwd->lw_txgoff++; wsp->walk_addr = lwd->lw_head[lwd->lw_txgoff]; } if (wsp->walk_addr == NULL) return (WALK_DONE); addr = wsp->walk_addr - lwd->lw_offset; if (mdb_vread(lwd->lw_obj, lwd->lw_offset + sizeof (txg_node_t), addr) == -1) { mdb_warn("failed to read list element at %#lx", addr); return (WALK_ERR); } status = wsp->walk_callback(addr, lwd->lw_obj, wsp->walk_cbdata); node = (txg_node_t *)((uintptr_t)lwd->lw_obj + lwd->lw_offset); wsp->walk_addr = (uintptr_t)node->tn_next[lwd->lw_txgoff]; return (status); } /* * ::walk spa * * Walk all named spa_t structures in the namespace. This is nothing more than * a layered avl walk. */ static int spa_walk_init(mdb_walk_state_t *wsp) { GElf_Sym sym; if (wsp->walk_addr != NULL) { mdb_warn("spa walk only supports global walks\n"); return (WALK_ERR); } if (mdb_lookup_by_obj(ZFS_OBJ_NAME, "spa_namespace_avl", &sym) == -1) { mdb_warn("failed to find symbol 'spa_namespace_avl'"); return (WALK_ERR); } wsp->walk_addr = (uintptr_t)sym.st_value; if (mdb_layered_walk("avl", wsp) == -1) { mdb_warn("failed to walk 'avl'\n"); return (WALK_ERR); } return (WALK_NEXT); } static int spa_walk_step(mdb_walk_state_t *wsp) { spa_t spa; if (mdb_vread(&spa, sizeof (spa), wsp->walk_addr) == -1) { mdb_warn("failed to read spa_t at %p", wsp->walk_addr); return (WALK_ERR); } return (wsp->walk_callback(wsp->walk_addr, &spa, wsp->walk_cbdata)); } /* * [addr]::walk zio * * Walk all active zio_t structures on the system. This is simply a layered * walk on top of ::walk zio_cache, with the optional ability to limit the * structures to a particular pool. */ static int zio_walk_init(mdb_walk_state_t *wsp) { wsp->walk_data = (void *)wsp->walk_addr; if (mdb_layered_walk("zio_cache", wsp) == -1) { mdb_warn("failed to walk 'zio_cache'\n"); return (WALK_ERR); } return (WALK_NEXT); } static int zio_walk_step(mdb_walk_state_t *wsp) { zio_t zio; if (mdb_vread(&zio, sizeof (zio), wsp->walk_addr) == -1) { mdb_warn("failed to read zio_t at %p", wsp->walk_addr); return (WALK_ERR); } if (wsp->walk_data != NULL && wsp->walk_data != zio.io_spa) return (WALK_NEXT); return (wsp->walk_callback(wsp->walk_addr, &zio, wsp->walk_cbdata)); } /* * [addr]::walk zio_root * * Walk only root zio_t structures, optionally for a particular spa_t. */ static int zio_walk_root_step(mdb_walk_state_t *wsp) { zio_t zio; if (mdb_vread(&zio, sizeof (zio), wsp->walk_addr) == -1) { mdb_warn("failed to read zio_t at %p", wsp->walk_addr); return (WALK_ERR); } if (wsp->walk_data != NULL && wsp->walk_data != zio.io_spa) return (WALK_NEXT); /* If the parent list is not empty, ignore */ if (zio.io_parent_list.list_head.list_next != &((zio_t *)wsp->walk_addr)->io_parent_list.list_head) return (WALK_NEXT); return (wsp->walk_callback(wsp->walk_addr, &zio, wsp->walk_cbdata)); } #define NICENUM_BUFLEN 6 static int snprintfrac(char *buf, int len, uint64_t numerator, uint64_t denom, int frac_digits) { int mul = 1; int whole, frac, i; for (i = frac_digits; i; i--) mul *= 10; whole = numerator / denom; frac = mul * numerator / denom - mul * whole; return (mdb_snprintf(buf, len, "%u.%0*u", whole, frac_digits, frac)); } static void mdb_nicenum(uint64_t num, char *buf) { uint64_t n = num; int index = 0; char *u; while (n >= 1024) { n = (n + (1024 / 2)) / 1024; /* Round up or down */ index++; } u = &" \0K\0M\0G\0T\0P\0E\0"[index*2]; if (index == 0) { (void) mdb_snprintf(buf, NICENUM_BUFLEN, "%llu", (u_longlong_t)n); } else if (n < 10 && (num & (num - 1)) != 0) { (void) snprintfrac(buf, NICENUM_BUFLEN, num, 1ULL << 10 * index, 2); strcat(buf, u); } else if (n < 100 && (num & (num - 1)) != 0) { (void) snprintfrac(buf, NICENUM_BUFLEN, num, 1ULL << 10 * index, 1); strcat(buf, u); } else { (void) mdb_snprintf(buf, NICENUM_BUFLEN, "%llu%s", (u_longlong_t)n, u); } } /* * ::zfs_blkstats * * -v print verbose per-level information * */ static int zfs_blkstats(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { boolean_t verbose = B_FALSE; zfs_all_blkstats_t stats; dmu_object_type_t t; zfs_blkstat_t *tzb; uint64_t ditto; dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES + 10]; /* +10 in case it grew */ if (mdb_readvar(&dmu_ot, "dmu_ot") == -1) { mdb_warn("failed to read 'dmu_ot'"); return (DCMD_ERR); } if (mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) return (DCMD_USAGE); if (!(flags & DCMD_ADDRSPEC)) return (DCMD_USAGE); if (GETMEMB(addr, struct spa, spa_dsl_pool, addr) || GETMEMB(addr, struct dsl_pool, dp_blkstats, addr) || mdb_vread(&stats, sizeof (zfs_all_blkstats_t), addr) == -1) { mdb_warn("failed to read data at %p;", addr); mdb_printf("maybe no stats? run \"zpool scrub\" first."); return (DCMD_ERR); } tzb = &stats.zab_type[DN_MAX_LEVELS][DMU_OT_NUMTYPES]; if (tzb->zb_gangs != 0) { mdb_printf("Ganged blocks: %llu\n", (longlong_t)tzb->zb_gangs); } ditto = tzb->zb_ditto_2_of_2_samevdev + tzb->zb_ditto_2_of_3_samevdev + tzb->zb_ditto_3_of_3_samevdev; if (ditto != 0) { mdb_printf("Dittoed blocks on same vdev: %llu\n", (longlong_t)ditto); } mdb_printf("\nBlocks\tLSIZE\tPSIZE\tASIZE" "\t avg\t comp\t%%Total\tType\n"); for (t = 0; t <= DMU_OT_NUMTYPES; t++) { char csize[NICENUM_BUFLEN], lsize[NICENUM_BUFLEN]; char psize[NICENUM_BUFLEN], asize[NICENUM_BUFLEN]; char avg[NICENUM_BUFLEN]; char comp[NICENUM_BUFLEN], pct[NICENUM_BUFLEN]; char typename[64]; int l; if (t == DMU_OT_DEFERRED) strcpy(typename, "deferred free"); else if (t == DMU_OT_TOTAL) strcpy(typename, "Total"); else if (mdb_readstr(typename, sizeof (typename), (uintptr_t)dmu_ot[t].ot_name) == -1) { mdb_warn("failed to read type name"); return (DCMD_ERR); } if (stats.zab_type[DN_MAX_LEVELS][t].zb_asize == 0) continue; for (l = -1; l < DN_MAX_LEVELS; l++) { int level = (l == -1 ? DN_MAX_LEVELS : l); zfs_blkstat_t *zb = &stats.zab_type[level][t]; if (zb->zb_asize == 0) continue; /* * Don't print each level unless requested. */ if (!verbose && level != DN_MAX_LEVELS) continue; /* * If all the space is level 0, don't print the * level 0 separately. */ if (level == 0 && zb->zb_asize == stats.zab_type[DN_MAX_LEVELS][t].zb_asize) continue; mdb_nicenum(zb->zb_count, csize); mdb_nicenum(zb->zb_lsize, lsize); mdb_nicenum(zb->zb_psize, psize); mdb_nicenum(zb->zb_asize, asize); mdb_nicenum(zb->zb_asize / zb->zb_count, avg); (void) snprintfrac(comp, NICENUM_BUFLEN, zb->zb_lsize, zb->zb_psize, 2); (void) snprintfrac(pct, NICENUM_BUFLEN, 100 * zb->zb_asize, tzb->zb_asize, 2); mdb_printf("%6s\t%5s\t%5s\t%5s\t%5s" "\t%5s\t%6s\t", csize, lsize, psize, asize, avg, comp, pct); if (level == DN_MAX_LEVELS) mdb_printf("%s\n", typename); else mdb_printf(" L%d %s\n", level, typename); } } return (DCMD_OK); } /* ARGSUSED */ static int reference_cb(uintptr_t addr, const void *ignored, void *arg) { static int gotid; static mdb_ctf_id_t ref_id; uintptr_t ref_holder; uintptr_t ref_removed; uint64_t ref_number; boolean_t holder_is_str; char holder_str[128]; boolean_t removed = (boolean_t)arg; if (!gotid) { if (mdb_ctf_lookup_by_name("struct reference", &ref_id) == -1) { mdb_warn("couldn't find struct reference"); return (WALK_ERR); } gotid = TRUE; } if (GETMEMBID(addr, &ref_id, ref_holder, ref_holder) || GETMEMBID(addr, &ref_id, ref_removed, ref_removed) || GETMEMBID(addr, &ref_id, ref_number, ref_number)) return (WALK_ERR); if (mdb_readstr(holder_str, sizeof (holder_str), ref_holder) != -1) { char *cp; holder_is_str = B_TRUE; for (cp = holder_str; *cp; cp++) { if (!isprint(*cp)) { holder_is_str = B_FALSE; break; } } } else { holder_is_str = B_FALSE; } if (removed) mdb_printf("removed "); mdb_printf("reference "); if (ref_number != 1) mdb_printf("with count=%llu ", ref_number); mdb_printf("with tag %p", (void*)ref_holder); if (holder_is_str) mdb_printf(" \"%s\"", holder_str); mdb_printf(", held at:\n"); (void) mdb_call_dcmd("whatis", addr, DCMD_ADDRSPEC, 0, NULL); if (removed) { mdb_printf("removed at:\n"); (void) mdb_call_dcmd("whatis", ref_removed, DCMD_ADDRSPEC, 0, NULL); } mdb_printf("\n"); return (WALK_NEXT); } /* ARGSUSED */ static int refcount(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { uint64_t rc_count, rc_removed_count; uintptr_t rc_list, rc_removed; static int gotid; static mdb_ctf_id_t rc_id; ulong_t off; if (!(flags & DCMD_ADDRSPEC)) return (DCMD_USAGE); if (!gotid) { if (mdb_ctf_lookup_by_name("struct refcount", &rc_id) == -1) { mdb_warn("couldn't find struct refcount"); return (DCMD_ERR); } gotid = TRUE; } if (GETMEMBID(addr, &rc_id, rc_count, rc_count) || GETMEMBID(addr, &rc_id, rc_removed_count, rc_removed_count)) return (DCMD_ERR); mdb_printf("refcount_t at %p has %llu current holds, " "%llu recently released holds\n", addr, (longlong_t)rc_count, (longlong_t)rc_removed_count); if (rc_count > 0) mdb_printf("current holds:\n"); if (mdb_ctf_offsetof(rc_id, "rc_list", &off) == -1) return (DCMD_ERR); rc_list = addr + off/NBBY; mdb_pwalk("list", reference_cb, (void*)B_FALSE, rc_list); if (rc_removed_count > 0) mdb_printf("released holds:\n"); if (mdb_ctf_offsetof(rc_id, "rc_removed", &off) == -1) return (DCMD_ERR); rc_removed = addr + off/NBBY; mdb_pwalk("list", reference_cb, (void*)B_TRUE, rc_removed); return (DCMD_OK); } /* * MDB module linkage information: * * We declare a list of structures describing our dcmds, and a function * named _mdb_init to return a pointer to our module information. */ static const mdb_dcmd_t dcmds[] = { { "arc", "[-bkmg]", "print ARC variables", arc_print }, { "blkptr", ":", "print blkptr_t", blkptr }, { "dbuf", ":", "print dmu_buf_impl_t", dbuf }, { "dbuf_stats", ":", "dbuf stats", dbuf_stats }, { "dbufs", "\t[-O objset_t*] [-n objset_name | \"mos\"] " "[-o object | \"mdn\"] \n" "\t[-l level] [-b blkid | \"bonus\"]", "find dmu_buf_impl_t's that match specified criteria", dbufs }, { "abuf_find", "dva_word[0] dva_word[1]", "find arc_buf_hdr_t of a specified DVA", abuf_find }, { "spa", "?[-cv]", "spa_t summary", spa_print }, { "spa_config", ":", "print spa_t configuration", spa_print_config }, { "spa_verify", ":", "verify spa_t consistency", spa_verify }, { "spa_space", ":[-b]", "print spa_t on-disk space usage", spa_space }, { "spa_vdevs", ":", "given a spa_t, print vdev summary", spa_vdevs }, { "vdev", ":[-re]\n" "\t-r display recursively\n" "\t-e print statistics", "vdev_t summary", vdev_print }, { "zio", ":[cpr]\n" "\t-c display children\n" "\t-p display parents\n" "\t-r display recursively", "zio_t summary", zio_print }, { "zio_state", "?", "print out all zio_t structures on system or " "for a particular pool", zio_state }, { "zfs_blkstats", ":[-v]", "given a spa_t, print block type stats from last scrub", zfs_blkstats }, { "zfs_params", "", "print zfs tunable parameters", zfs_params }, { "refcount", "", "print refcount_t holders", refcount }, { NULL } }; static const mdb_walker_t walkers[] = { /* * In userland, there is no generic provider of list_t walkers, so we * need to add it. */ #ifndef _KERNEL { LIST_WALK_NAME, LIST_WALK_DESC, list_walk_init, list_walk_step, list_walk_fini }, #endif { "zms_freelist", "walk ZFS metaslab freelist", freelist_walk_init, freelist_walk_step, NULL }, { "txg_list", "given any txg_list_t *, walk all entries in all txgs", txg_list_walk_init, txg_list_walk_step, NULL }, { "txg_list0", "given any txg_list_t *, walk all entries in txg 0", txg_list0_walk_init, txg_list_walk_step, NULL }, { "txg_list1", "given any txg_list_t *, walk all entries in txg 1", txg_list1_walk_init, txg_list_walk_step, NULL }, { "txg_list2", "given any txg_list_t *, walk all entries in txg 2", txg_list2_walk_init, txg_list_walk_step, NULL }, { "txg_list3", "given any txg_list_t *, walk all entries in txg 3", txg_list3_walk_init, txg_list_walk_step, NULL }, { "zio", "walk all zio structures, optionally for a particular spa_t", zio_walk_init, zio_walk_step, NULL }, { "zio_root", "walk all root zio_t structures, optionally for a " "particular spa_t", zio_walk_init, zio_walk_root_step, NULL }, { "spa", "walk all spa_t entries in the namespace", spa_walk_init, spa_walk_step, NULL }, { "metaslab", "given a spa_t *, walk all metaslab_t structures", metaslab_walk_init, metaslab_walk_step, NULL }, { NULL } }; static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; const mdb_modinfo_t * _mdb_init(void) { return (&modinfo); }