/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include #include #include /* HACK HACK so we can bring in rdc_io.h and friends */ #define nstset_t char #include #include #include #include #include #include /* * Walker for an array of rdc_k_info_t structures. * A global walk is assumed to start at rdc_k_info. */ struct rdc_kinfo_winfo { uintptr_t start; uintptr_t end; }; char bitstr[33] = { '0' }; static int rdc_k_info_winit(mdb_walk_state_t *wsp) { struct rdc_kinfo_winfo *winfo; rdc_k_info_t *rdc_k_info; int rdc_max_sets; winfo = mdb_zalloc(sizeof (struct rdc_kinfo_winfo), UM_SLEEP); if (mdb_readvar(&rdc_k_info, "rdc_k_info") == -1) { mdb_warn("failed to read 'rdc_k_info'"); mdb_free(winfo, sizeof (struct rdc_kinfo_winfo)); return (WALK_ERR); } if (mdb_readvar(&rdc_max_sets, "rdc_max_sets") == -1) { mdb_warn("failed to read 'rdc_max_sets'"); mdb_free(winfo, sizeof (struct rdc_kinfo_winfo)); return (WALK_ERR); } winfo->start = (uintptr_t)rdc_k_info; winfo->end = (uintptr_t)(rdc_k_info + rdc_max_sets); if (wsp->walk_addr == NULL) wsp->walk_addr = winfo->start; wsp->walk_data = winfo; return (WALK_NEXT); } static int rdc_k_info_wstep(mdb_walk_state_t *wsp) { struct rdc_kinfo_winfo *winfo = wsp->walk_data; int status; if (wsp->walk_addr == NULL) return (WALK_DONE); if (wsp->walk_addr >= winfo->end) return (WALK_DONE); status = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, wsp->walk_cbdata); wsp->walk_addr += sizeof (rdc_k_info_t); return (status); } static void rdc_k_info_wfini(mdb_walk_state_t *wsp) { mdb_free(wsp->walk_data, sizeof (struct rdc_kinfo_winfo)); } /* * Walker for an array of rdc_u_info_t structures. * A global walk is assumed to start at rdc_u_info. */ struct rdc_uinfo_winfo { uintptr_t start; uintptr_t end; }; static int rdc_u_info_winit(mdb_walk_state_t *wsp) { struct rdc_uinfo_winfo *winfo; rdc_u_info_t *rdc_u_info; int rdc_max_sets; winfo = mdb_zalloc(sizeof (struct rdc_uinfo_winfo), UM_SLEEP); if (mdb_readvar(&rdc_u_info, "rdc_u_info") == -1) { mdb_warn("failed to read 'rdc_u_info'"); mdb_free(winfo, sizeof (struct rdc_uinfo_winfo)); return (WALK_ERR); } if (mdb_readvar(&rdc_max_sets, "rdc_max_sets") == -1) { mdb_warn("failed to read 'rdc_max_sets'"); mdb_free(winfo, sizeof (struct rdc_uinfo_winfo)); return (WALK_ERR); } winfo->start = (uintptr_t)rdc_u_info; winfo->end = (uintptr_t)(rdc_u_info + rdc_max_sets); if (wsp->walk_addr == NULL) wsp->walk_addr = winfo->start; wsp->walk_data = winfo; return (WALK_NEXT); } static int rdc_u_info_wstep(mdb_walk_state_t *wsp) { struct rdc_uinfo_winfo *winfo = wsp->walk_data; int status; if (wsp->walk_addr == NULL) return (WALK_DONE); if (wsp->walk_addr >= winfo->end) return (WALK_DONE); status = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, wsp->walk_cbdata); wsp->walk_addr += sizeof (rdc_u_info_t); return (status); } static void rdc_u_info_wfini(mdb_walk_state_t *wsp) { mdb_free(wsp->walk_data, sizeof (struct rdc_uinfo_winfo)); } /* * Walker for the rdc_if chain. * A global walk is assumed to start at rdc_if_top. */ static int rdc_if_winit(mdb_walk_state_t *wsp) { if (wsp->walk_addr == NULL && mdb_readvar(&wsp->walk_addr, "rdc_if_top") == -1) { mdb_warn("unable to read 'rdc_if_top'"); return (WALK_ERR); } wsp->walk_data = mdb_zalloc(sizeof (rdc_if_t), UM_SLEEP); return (WALK_NEXT); } static int rdc_if_wstep(mdb_walk_state_t *wsp) { int status; if (wsp->walk_addr == NULL) return (WALK_DONE); if (mdb_vread(wsp->walk_data, sizeof (rdc_if_t), wsp->walk_addr) == -1) { mdb_warn("failed to read rdc_if at %p", wsp->walk_addr); return (WALK_DONE); } status = wsp->walk_callback(wsp->walk_addr, wsp->walk_data, wsp->walk_cbdata); wsp->walk_addr = (uintptr_t)(((rdc_if_t *)wsp->walk_data)->next); return (status); } static void rdc_if_wfini(mdb_walk_state_t *wsp) { mdb_free(wsp->walk_data, sizeof (rdc_if_t)); } /* * Displays the asynchronous sleep q on the server. */ /*ARGSUSED*/ static int rdc_sleepq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { rdc_sleepq_t sq; if (!(flags & DCMD_ADDRSPEC)) return (DCMD_USAGE); while (addr) { if (mdb_vread(&sq, sizeof (sq), addr) != sizeof (sq)) { mdb_warn("failed to read rdc_sleepq at %p", addr); return (DCMD_ERR); } mdb_printf("sequence number %u qpos %d \n", sq.seq, sq.qpos); addr = (uintptr_t)sq.next; } return (DCMD_OK); } /* * display the header info for the pending diskq requests */ /*ARGSUSED*/ static int rdc_iohdr(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { io_hdr hdr; if (!(flags & DCMD_ADDRSPEC)) return (DCMD_USAGE); while (addr) { if (mdb_vread(&hdr, sizeof (io_hdr), addr) != sizeof (io_hdr)) { mdb_warn("failed to read io_hdr at %p", addr); return (DCMD_ERR); } mdb_printf("iohdr: type %d pos %d qpos %d len %d flag 0x%x" " iostatus %x setid %d next %p\n", hdr.dat.type, hdr.dat.pos, hdr.dat.qpos, hdr.dat.len, hdr.dat.flag, hdr.dat.iostatus, hdr.dat.setid, hdr.dat.next); addr = (uintptr_t)hdr.dat.next; } return (DCMD_OK); } /* * Display a krdc->group. * Requires an address. */ /*ARGSUSED*/ static int rdc_group(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { struct rdc_group *group; disk_queue *dq; if (!(flags & DCMD_ADDRSPEC)) return (DCMD_USAGE); group = mdb_zalloc(sizeof (*group), UM_GC); if (mdb_vread(group, sizeof (*group), addr) != sizeof (*group)) { mdb_warn("failed to read rdc_group at %p", addr); return (DCMD_ERR); } #ifdef XXXJET if (DCMD_HDRSPEC(flags)) { mdb_printf("%-?s %8T%-8s %8T%s\n", "ADDR", "MAJOR", "INUSE"); } #endif mdb_printf("count: %d %8Twriter: %d %8T flags: %d\n", group->count, group->rdc_writer, group->flags); mdb_printf("thread num %d\n", group->rdc_thrnum); dq = &group->diskq; if (RDC_IS_MEMQ(group)) { mdb_printf("queue type: Memory based\n"); } else if (RDC_IS_DISKQ(group)) { mdb_printf("queue type: Disk based %8Tqstate 0x%x\n", QSTATE(dq)); } mdb_printf("ra_queue head: 0x%p %8Ttail 0x%p\n", group->ra_queue.net_qhead, group->ra_queue.net_qtail); mdb_printf("ra_queue blocks: %d %8Titems %d\n", group->ra_queue.blocks, group->ra_queue.nitems); mdb_printf("ra_queue blockhwm: %d itemhwm: %d\n", group->ra_queue.blocks_hwm, group->ra_queue.nitems_hwm); mdb_printf("ra_queue hwmhit: %d qfillsleep: %d\n", group->ra_queue.hwmhit, group->ra_queue.qfill_sleeping); mdb_printf("ra_queue throttle: %ld\n", group->ra_queue.throttle_delay); if (RDC_IS_DISKQ(group)) { mdb_printf("head: %d %8Tnxtio: %d %8Ttail %d %8Tlastail: %d\n", QHEAD(dq), QNXTIO(dq), QTAIL(dq), LASTQTAIL(dq)); mdb_printf("coalbounds: %d %8Tqwrap: %d\n", QCOALBOUNDS(dq), QWRAP(dq)); mdb_printf("blocks: %d %8Titems %d qfflags 0x%x \n", QBLOCKS(dq), QNITEMS(dq), group->ra_queue.qfflags); mdb_printf("diskq throttle: %ld %8Tflags: %x\n", dq->throttle_delay, group->flags); mdb_printf("disk queue nitems_hwm: %d %8Tblocks_hwm: %d\n", dq->nitems_hwm, dq->blocks_hwm); mdb_printf("diskqfd: 0x%p %8Tdisqrsrv: %d lastio: 0x%p\n", group->diskqfd, group->diskqrsrv, dq->lastio); mdb_printf("outstanding req %d iohdrs 0x%p iohdrs_last 0x%p\n", dq->hdrcnt, dq->iohdrs, dq->hdr_last); } mdb_printf("seq: %u\n", group->seq); mdb_printf("seqack: %u\n", group->seqack); mdb_printf("sleepq: 0x%p\n", group->sleepq); mdb_printf("asyncstall %d\n", group->asyncstall); mdb_printf("asyncdis %d\n", group->asyncdis); mdb_inc_indent(4); if (group->sleepq) { rdc_sleepq((uintptr_t)group->sleepq, DCMD_ADDRSPEC, 0, 0); } mdb_dec_indent(4); return (DCMD_OK); } /* * Display a krdc->lsrv. * Requires an address. */ /*ARGSUSED*/ static int rdc_srv(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { rdc_srv_t *lsrv; char name[MAX_RDC_HOST_SIZE]; if (!(flags & DCMD_ADDRSPEC)) return (DCMD_USAGE); lsrv = mdb_zalloc(sizeof (*lsrv), UM_GC); if (mdb_vread(lsrv, sizeof (*lsrv), addr) != sizeof (*lsrv)) { mdb_warn("failed to read rdc_srv at %p", addr); return (DCMD_ERR); } if (mdb_readstr(name, sizeof (name), (uintptr_t)lsrv->ri_hostname) == -1) { mdb_warn("failed to read ri_hostname name at %p", addr); return (DCMD_ERR); } mdb_printf("host: %s %16Tri_knconf 0x%p\n", name, lsrv->ri_knconf); mdb_printf("ri_addr: 0x%p %8Tsecdata 0x%p\n", addr + OFFSETOF(rdc_srv_t, ri_addr), lsrv->ri_secdata); return (DCMD_OK); } /* * Display a rdc_if_t. * Requires an address. */ static int rdc_if(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { rdc_if_t *ifp; if (!(flags & DCMD_ADDRSPEC)) { /* * paranoid mode on: qualify walker name with module name * using '`' syntax. */ if (mdb_walk_dcmd("rdc`rdc_if", "rdc`rdc_if", argc, argv) == -1) { mdb_warn("failed to walk 'rdc_if'"); return (DCMD_ERR); } return (DCMD_OK); } ifp = mdb_zalloc(sizeof (*ifp), UM_GC); if (mdb_vread(ifp, sizeof (*ifp), addr) != sizeof (*ifp)) { mdb_warn("failed to read rdc_srv at %p", addr); return (DCMD_ERR); } mdb_printf("next: 0x%p %8Tsrv 0x%p\n", ifp->next, ifp->srv); mdb_printf("if_addr: 0x%p %8Tr_ifaddr 0x%p\n", addr + OFFSETOF(rdc_if_t, ifaddr), addr + OFFSETOF(rdc_if_t, r_ifaddr)); mdb_printf("if_down: %d %8Tprimary %d %8Tsecondary %d\n", ifp->if_down, ifp->isprimary, ifp->issecondary); mdb_printf("version %d %8Tnoping %d\n", ifp->rpc_version, ifp->no_ping); mdb_printf("\n"); return (DCMD_OK); } /* * Display a rdc_buf_t * Requires an address. */ /*ARGSUSED*/ static int rdc_buf(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { rdc_buf_t *buf; if (!(flags & DCMD_ADDRSPEC)) return (DCMD_USAGE); buf = mdb_zalloc(sizeof (*buf), UM_GC); if (mdb_vread(buf, sizeof (*buf), addr) != sizeof (*buf)) { mdb_warn("failed to read rdc_buf at %p", addr); return (DCMD_ERR); } mdb_printf("nsc_buf fd: 0x%p %8Tvec 0x%p\n", buf->rdc_bufh.sb_fd, buf->rdc_bufh.sb_vec); mdb_printf("nsc_buf pos: %d %8Tlen %d\n", buf->rdc_bufh.sb_pos, buf->rdc_bufh.sb_len); mdb_printf("nsc_buf flag: 0x%x %8Terror %d\n", buf->rdc_bufh.sb_flag, buf->rdc_bufh.sb_error); mdb_printf("anon_buf : 0x%p %8Tfd 0x%p %8Tbufp 0x%p\n", buf->rdc_anon, buf->rdc_fd, buf->rdc_bufp); mdb_printf("vsize: %d %8Tflags 0x%x\n", buf->rdc_vsize, buf->rdc_flags); return (DCMD_OK); } /*ARGSUSED*/ static int rdc_aio(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { rdc_aio_t *aio; if (!(flags & DCMD_ADDRSPEC)) return (DCMD_USAGE); aio = mdb_zalloc(sizeof (*aio), UM_GC); if (mdb_vread(aio, sizeof (*aio), addr) != sizeof (*aio)) { mdb_warn("failed to read rdc_aio at %p", addr); return (DCMD_ERR); } mdb_printf("rdc_aio next: %p %8T nsc_buf: %p %8T nsc_qbuf %p\n", aio->next, aio->handle, aio->qhandle); mdb_printf("pos: %d len: %d qpos: %d flag: %x iostatus: %d index: %d" " seq: %d\n", aio->pos, aio->len, aio->qpos, aio->flag, aio->iostatus, aio->index, aio->seq); return (DCMD_OK); } /*ARGSUSED*/ static int rdc_dset(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { rdc_net_dataset_t *dset; if (!(flags & DCMD_ADDRSPEC)) return (DCMD_USAGE); dset = mdb_zalloc(sizeof (*dset), UM_GC); if (mdb_vread(dset, sizeof (*dset), addr) != sizeof (*dset)) { mdb_warn("failed to read dset at %p", addr); return (DCMD_ERR); } mdb_printf("dset id: %d %8T dset inuse: %d %8T dset delpend: %d\n", dset->id, dset->inuse, dset->delpend); mdb_printf("dset items: %d %8T dset head %p %8T dset tail %p \n", dset->nitems, dset->head, dset->tail); mdb_printf("dset pos %d %8T dset len %d\n", dset->pos, dset->fbalen); return (DCMD_OK); } /* * Display a single rdc_k_info structure. * If called with no address, performs a global walk of all rdc_k_info. * -a : all (i.e. display all devices, even if disabled * -v : verbose */ const mdb_bitmask_t sv_flag_bits[] = { { "NSC_DEVICE", NSC_DEVICE, NSC_DEVICE }, { "NSC_CACHE", NSC_CACHE, NSC_CACHE }, { NULL, 0, 0 } }; static int rdc_kinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { rdc_k_info_t *krdc; rdc_u_info_t *rdc_u_info, *urdc; int a_opt, v_opt; int dev_t_chars; a_opt = v_opt = FALSE; dev_t_chars = sizeof (dev_t) * 2; /* # chars to display dev_t */ if (mdb_getopts(argc, argv, 'a', MDB_OPT_SETBITS, TRUE, &a_opt, 'v', MDB_OPT_SETBITS, TRUE, &v_opt) != argc) return (DCMD_USAGE); krdc = mdb_zalloc(sizeof (*krdc), UM_GC); urdc = mdb_zalloc(sizeof (*urdc), UM_GC); if (!(flags & DCMD_ADDRSPEC)) { /* * paranoid mode on: qualify walker name with module name * using '`' syntax. */ if (mdb_walk_dcmd("rdc`rdc_kinfo", "rdc`rdc_kinfo", argc, argv) == -1) { mdb_warn("failed to walk 'rdc_kinfo'"); return (DCMD_ERR); } return (DCMD_OK); } if (DCMD_HDRSPEC(flags)) { mdb_printf("%-?s %8T%-*s %8T%s\n", "ADDR", dev_t_chars, "TFLAG", "STATE"); } if (mdb_vread(krdc, sizeof (*krdc), addr) != sizeof (*krdc)) { mdb_warn("failed to read rdc_k_info at %p", addr); return (DCMD_ERR); } if (mdb_readvar(&rdc_u_info, "rdc_u_info") == -1) { mdb_warn("failed to read 'rdc_u_info'"); return (DCMD_ERR); } urdc = &rdc_u_info[krdc->index]; if (!a_opt && ((krdc->type_flag & RDC_CONFIGURED) == 0)) return (DCMD_OK); mdb_printf("%?p %8T%0*lx %8T", addr, dev_t_chars, krdc->type_flag); if (krdc->type_flag & RDC_DISABLEPEND) mdb_printf(" disable pending"); if (krdc->type_flag & RDC_ASYNCMODE) mdb_printf(" async"); if (krdc->type_flag & RDC_RESUMEPEND) mdb_printf(" resume pending"); if (krdc->type_flag & RDC_BUSYWAIT) mdb_printf(" busywait"); #ifdef RDC_SMALLIO if (krdc->type_flag & RDC_SMALLIO) mdb_printf(" smallio"); #endif mdb_printf("\n"); if (!v_opt) return (DCMD_OK); /* * verbose - print the rest of the structure as well. */ mdb_inc_indent(4); mdb_printf("index: %d %8Trindex: %d %8Tbusyc: %d %8Tmaxfbas: %d\n", krdc->index, krdc->remote_index, krdc->busy_count, krdc->maxfbas); mdb_printf("info_dev: 0x%p %8Tiodev: 0x%p %8T %8T vers %d\n", krdc->devices, krdc->iodev, krdc->rpc_version); mdb_printf("iokstats: 0x%p\n", krdc->io_kstats); mdb_printf("group: 0x%p %8Tgroup_next: 0x%p\n", krdc->group, krdc->group_next); mdb_printf("group lock: 0x%p aux_state: %d\n", &krdc->group->lock, krdc->aux_state); mdb_inc_indent(4); if (krdc->type_flag & RDC_ASYNCMODE) { rdc_group((uintptr_t)krdc->group, DCMD_ADDRSPEC, 0, 0); } mdb_dec_indent(4); mdb_printf("servinfo: 0x%p %8Tintf: 0x%p\nbitmap: 0x%p %8T" "bitmap_ref: 0x%p\n", krdc->lsrv, krdc->intf, krdc->dcio_bitmap, krdc->bitmap_ref); mdb_printf("bmap_size: %d %8Tbmaprsrv: %d%8T bmap_write: %d\n", krdc->bitmap_size, krdc->bmaprsrv, krdc->bitmap_write); mdb_printf("bitmapfd: 0x%p %8Tremote_fd: 0x%p %8T\n", krdc->bitmapfd, krdc->remote_fd); mdb_printf("net_dataset: 0x%p %8Tdisk_status: %d %8T\n", krdc->net_dataset, krdc->disk_status); mdb_printf("many: 0x%p %8Tmulti: 0x%p %8T\n", krdc->many_next, krdc->multi_next); mdb_printf("rdc_uinfo: 0x%p\n\n", urdc); mdb_dec_indent(4); return (DCMD_OK); } static int rdc_uinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { rdc_u_info_t *urdc; rdc_k_info_t *rdc_k_info, *krdc, krdc1; rdc_group_t grp; disk_queue *dqp = NULL; int a_opt, v_opt; int dev_t_chars; int rdcflags; a_opt = v_opt = FALSE; dev_t_chars = sizeof (dev_t) * 2; /* # chars to display dev_t */ if (mdb_getopts(argc, argv, 'a', MDB_OPT_SETBITS, TRUE, &a_opt, 'v', MDB_OPT_SETBITS, TRUE, &v_opt) != argc) return (DCMD_USAGE); urdc = mdb_zalloc(sizeof (*urdc), UM_GC); krdc = mdb_zalloc(sizeof (*krdc), UM_GC); if (!(flags & DCMD_ADDRSPEC)) { /* * paranoid mode on: qualify walker name with module name * using '`' syntax. */ if (mdb_walk_dcmd("rdc`rdc_uinfo", "rdc`rdc_uinfo", argc, argv) == -1) { mdb_warn("failed to walk 'rdc_uinfo'"); return (DCMD_ERR); } return (DCMD_OK); } if (DCMD_HDRSPEC(flags)) { mdb_printf("%-?s %8T%-*s %8T%s\n", "ADDR", dev_t_chars, "FLAG", "STATE"); } if (mdb_vread(urdc, sizeof (*urdc), addr) != sizeof (*urdc)) { mdb_warn("failed to read rdc_u_info at %p", addr); return (DCMD_ERR); } if (mdb_readvar(&rdc_k_info, "rdc_k_info") == -1) { mdb_warn("failed to read 'rdc_k_info'"); return (DCMD_ERR); } krdc = &rdc_k_info[urdc->index]; if (!a_opt && ((urdc->flags & RDC_ENABLED) == 0)) return (DCMD_OK); if (mdb_vread(&krdc1, sizeof (krdc1), (uintptr_t)krdc) != sizeof (krdc1)) { mdb_warn("failed to read 'rdc_k_info1'"); return (DCMD_ERR); } if (krdc1.group) { if (mdb_vread(&grp, sizeof (grp), (uintptr_t)krdc1.group) != sizeof (grp)) { mdb_warn("failed to read group info "); return (DCMD_ERR); } dqp = &grp.diskq; } rdcflags = (urdc->flags | urdc->sync_flags | urdc->bmap_flags); mdb_printf("%?p %8T%0*lx %8T", addr, dev_t_chars, rdcflags); if (rdcflags & RDC_PRIMARY) mdb_printf(" primary"); if (rdcflags & RDC_SLAVE) mdb_printf(" slave"); if (rdcflags & RDC_SYNCING) mdb_printf(" syncing"); if (rdcflags & RDC_SYNC_NEEDED) mdb_printf(" sync_need"); if (rdcflags & RDC_RSYNC_NEEDED) mdb_printf(" rsync_need"); if (rdcflags & RDC_LOGGING) mdb_printf(" logging"); if (rdcflags & RDC_QUEUING) mdb_printf(" queuing"); if (rdcflags & RDC_DISKQ_FAILED) mdb_printf(" diskq failed"); if (rdcflags & RDC_VOL_FAILED) mdb_printf(" vol failed"); if (rdcflags & RDC_BMP_FAILED) mdb_printf(" bmp failed"); if (rdcflags & RDC_ASYNC) mdb_printf(" async"); if (rdcflags & RDC_CLR_AFTERSYNC) mdb_printf(" clr_bitmap_aftersync"); if (dqp) { if (IS_QSTATE(dqp, RDC_QNOBLOCK)) mdb_printf(" noblock"); } #ifdef RDC_SMALLIO if (rdcflags & RDC_SMALLIO) mdb_printf(" smallio"); #endif mdb_printf("\n"); if (!v_opt) return (DCMD_OK); /* * verbose - print the rest of the structure as well. */ mdb_inc_indent(4); mdb_printf("\n"); mdb_printf("primary: %s %8Tfile: %s \nbitmap: %s ", urdc->primary.intf, urdc->primary.file, urdc->primary.bitmap); mdb_printf("netbuf: 0x%p\n", addr + OFFSETOF(rdc_set_t, primary)); mdb_printf("secondary: %s %8Tfile: %s \nbitmap: %s ", urdc->secondary.intf, urdc->secondary.file, urdc->secondary.bitmap); mdb_printf("netbuf: 0x%p\n", addr + OFFSETOF(rdc_set_t, secondary)); mdb_printf("sflags: %d %8Tbflags: %d%8T mflags: %d\n", urdc->sync_flags, urdc->bmap_flags, urdc->mflags); mdb_printf("index: %d %8Tsync_pos: %d%8T vsize: %d\n", urdc->index, urdc->sync_pos, urdc->volume_size); mdb_printf("setid: %d %8Tbits set: %d %8Tautosync: %d\n", urdc->setid, urdc->bits_set, urdc->autosync); mdb_printf("maxqfbas: %d %8Tmaxqitems: %d\n", urdc->maxqfbas, urdc->maxqitems); mdb_printf("netconfig: %p\n", urdc->netconfig); mdb_printf("group: %s %8TdirectIO: %s\n", urdc->group_name, urdc->direct_file); mdb_printf("diskqueue: %s ", urdc->disk_queue); if (dqp) { mdb_printf("diskqsize: %d\n", QSIZE(dqp)); } else { mdb_printf("\n"); } mdb_printf("rdc_k_info: 0x%p\n", krdc); mdb_printf("\n"); mdb_dec_indent(4); mdb_printf("\n"); return (DCMD_OK); } /*ARGSUSED*/ static int rdc_infodev(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { rdc_info_dev_t *infodev; _rdc_info_dev_t *infp; if (!(flags & DCMD_ADDRSPEC)) return (DCMD_USAGE); infodev = mdb_zalloc(sizeof (*infodev), UM_GC); infp = mdb_zalloc(sizeof (*infp), UM_GC); if (mdb_vread(infodev, sizeof (*infodev), addr) != sizeof (*infodev)) { mdb_warn("failed to read rdc_infodev at 0x%p\n", addr); return (DCMD_ERR); } infp = &infodev->id_cache_dev; mdb_inc_indent(4); mdb_printf("id_next: 0x%p\n", infodev->id_next); mdb_printf("id_cache_dev:\n"); mdb_inc_indent(4); mdb_printf("bi_fd: 0x%p %8Tbi_iodev: 0x%p %8Tbi_krdc 0x%p\n", infp->bi_fd, infp->bi_iodev, infp->bi_krdc); mdb_printf("bi_rsrv: %d %8Tbi_orsrv: %d %8Tbi_failed: %d %8T\n" "bi_ofailed: %d %8Tbi_flag: %d\n", infp->bi_rsrv, infp->bi_orsrv, infp->bi_failed, infp->bi_ofailed, infp->bi_flag); infp = &infodev->id_raw_dev; mdb_dec_indent(4); mdb_printf("id_cache_dev:\n"); mdb_inc_indent(4); mdb_printf("bi_fd: 0x%p %8Tbi_iodev: 0x%p %8Tbi_krdc 0x%p\n", infp->bi_fd, infp->bi_iodev, infp->bi_krdc); mdb_printf("bi_rsrv: %d %8Tbi_orsrv: %d %8Tbi_failed: %d %8T\n" "bi_ofailed: %d %8Tbi_flag: %d\n", infp->bi_rsrv, infp->bi_orsrv, infp->bi_failed, infp->bi_ofailed, infp->bi_flag); mdb_dec_indent(4); mdb_printf("id_sets: %d %8Tid_release: %d %8Tid_flag %d", infodev->id_sets, infodev->id_release, infodev->id_flag); if (infodev->id_flag & RDC_ID_CLOSING) { mdb_printf("closing"); } mdb_printf("\n"); mdb_dec_indent(4); return (DCMD_OK); } /* * Display general sv module information. */ #define rdc_get_print(kvar, str, fmt, val) \ if (mdb_readvar(&(val), #kvar) == -1) { \ mdb_dec_indent(4); \ mdb_warn("unable to read '" #kvar "'"); \ return (DCMD_ERR); \ } \ mdb_printf("%-20s" fmt "\n", str ":", val) /*ARGSUSED*/ static int rdc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { int maj, min, mic, baseline, i; if (argc != 0) return (DCMD_USAGE); if (mdb_readvar(&maj, "sndr_major_rev") == -1) { mdb_warn("unable to read 'sndr_major_rev'"); return (DCMD_ERR); } if (mdb_readvar(&min, "sndr_minor_rev") == -1) { mdb_warn("unable to read 'sndr_minor_rev'"); return (DCMD_ERR); } if (mdb_readvar(&mic, "sndr_micro_rev") == -1) { mdb_warn("unable to read 'sndr_micro_rev'"); return (DCMD_ERR); } if (mdb_readvar(&baseline, "sndr_baseline_rev") == -1) { mdb_warn("unable to read 'sndr_baseline_rev'"); return (DCMD_ERR); } mdb_printf("Remote Mirror module version: kernel %d.%d.%d.%d; " "mdb %d.%d.%d.%d\n", maj, min, mic, baseline, ISS_VERSION_MAJ, ISS_VERSION_MIN, ISS_VERSION_MIC, ISS_VERSION_NUM); mdb_inc_indent(4); rdc_get_print(rdc_debug, "debug", "%d", i); rdc_get_print(rdc_bitmap_mode, "bitmap mode", "%d", i); rdc_get_print(rdc_max_sets, "max sndr devices", "%d", i); rdc_get_print(rdc_rpc_tmout, "client RPC timeout", "%d", i); rdc_get_print(rdc_health_thres, "health threshold", "%d", i); rdc_get_print(MAX_RDC_FBAS, "max trans fba", "%d", i); mdb_dec_indent(4); return (DCMD_OK); } static int rdc_k2u(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { rdc_k_info_t *krdc; rdc_u_info_t *rdc_u_info, *urdc; int rc; if (!(flags & DCMD_ADDRSPEC)) return (DCMD_USAGE); krdc = mdb_zalloc(sizeof (*krdc), UM_GC); urdc = mdb_zalloc(sizeof (*urdc), UM_GC); if (mdb_vread(krdc, sizeof (*krdc), addr) != sizeof (*krdc)) { mdb_warn("failed to read krdc at %p", addr); return (DCMD_ERR); } if (mdb_readvar(&rdc_u_info, "rdc_u_info") == -1) { mdb_warn("failed to read 'rdc_u_info'"); return (DCMD_ERR); } urdc = &rdc_u_info[krdc->index]; rc = rdc_uinfo((uintptr_t)urdc, DCMD_ADDRSPEC, argc, argv); return (rc); } static int rdc_u2k(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { rdc_u_info_t *urdc; rdc_k_info_t *rdc_k_info, *krdc; int rc; if (!(flags & DCMD_ADDRSPEC)) return (DCMD_USAGE); urdc = mdb_zalloc(sizeof (*urdc), UM_GC); krdc = mdb_zalloc(sizeof (*krdc), UM_GC); if (mdb_vread(urdc, sizeof (*urdc), addr) != sizeof (*urdc)) { mdb_warn("failed to read urdc at %p\n", addr); return (DCMD_ERR); } if (mdb_readvar(&rdc_k_info, "rdc_k_info") == -1) { mdb_warn("failed to read 'rdc_k_info'"); return (DCMD_ERR); } krdc = &rdc_k_info[urdc->index]; rc = rdc_kinfo((uintptr_t)krdc, DCMD_ADDRSPEC, argc, argv); return (rc); } #ifdef DEBUG /* * This routine is used to set the seq field in the rdc_kinfo->group * structure. Used to test that the queue code handles the integer * overflow correctly. * Takes two arguments index and value. * The index is the index into the kinfo structure array and * the value is the new value to set into the seq field. */ /*ARGSUSED*/ static int rdc_setseq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { rdc_k_info_t *rdc_k_info; rdc_group_t *group; int index; uint_t val; uintptr_t pokeaddr; if (argc != 2) { mdb_warn("must have two arguments, index and value\n"); return (DCMD_ERR); } index = (int)mdb_strtoull(argv[0].a_un.a_str); val = (uint_t)mdb_strtoull(argv[1].a_un.a_str); /* * Find out where in memory the seq field. * The structure offset first. */ if (mdb_readvar(&rdc_k_info, "rdc_k_info") == -1) { mdb_warn("failed to read 'rdc_k_info'"); return (DCMD_ERR); } pokeaddr = (uintptr_t)&rdc_k_info[index].group; if (mdb_vread(&group, sizeof (rdc_group_t *), pokeaddr) != sizeof (rdc_group_t *)) { mdb_warn("failed to fetch the group structure for set %d\n", index); return (DCMD_ERR); } pokeaddr = (uintptr_t)(&group->seq); if (mdb_vwrite(&val, sizeof (val), pokeaddr) != sizeof (val)) { mdb_warn("failed to write seq at %p\n", pokeaddr); return (DCMD_ERR); } return (DCMD_OK); } /* * This routine is used to set the seqack field in the rdc_kinfo->group * structure. Used to test that the queue code handles the integer * overflow correctly. * Takes two arguments index and value. * The index is the index into the kinfo structure array and * the value is the new value to set into the seqack field. */ /*ARGSUSED*/ static int rdc_setseqack(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { rdc_k_info_t *rdc_k_info; rdc_group_t *group; int index; uint_t val; uintptr_t pokeaddr; if (argc != 2) { mdb_warn("must have two arguments, index and value\n"); return (DCMD_ERR); } index = (int)mdb_strtoull(argv[0].a_un.a_str); val = (uint_t)mdb_strtoull(argv[1].a_un.a_str); /* * Find out where in memory the seqack field. * The structure offset first. */ if (mdb_readvar(&rdc_k_info, "rdc_k_info") == -1) { mdb_warn("failed to read 'rdc_k_info'"); return (DCMD_ERR); } pokeaddr = (uintptr_t)&rdc_k_info[index].group; if (mdb_vread(&group, sizeof (rdc_group_t *), pokeaddr) != sizeof (rdc_group_t *)) { mdb_warn("failed to fetch the group structure for set %d\n", index); return (DCMD_ERR); } pokeaddr = (uintptr_t)(&group->seqack); if (mdb_vwrite(&val, sizeof (val), pokeaddr) != sizeof (val)) { mdb_warn("failed to write seqack at %p\n", pokeaddr); return (DCMD_ERR); } return (DCMD_OK); } /* * random define printing stuff, just does the define, and print the result */ /*ARGSUSED*/ static int fba_to_log_num(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { int num; if (argc < 1) { mdb_warn("must have an argument\n"); return (DCMD_ERR); } num = (int)mdb_strtoull(argv[0].a_un.a_str); num = FBA_TO_LOG_NUM(num); mdb_printf("LOG NUM: %d (0x%x)", num, num); return (DCMD_OK); } /*ARGSUSED*/ static int log_to_fba_num(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { int num; if (argc < 1) { mdb_warn("must have an argument\n"); return (DCMD_ERR); } num = (int)mdb_strtoull(argv[0].a_un.a_str); num = LOG_TO_FBA_NUM(num); mdb_printf("LOG NUM: %d (0x%x)", num, num); return (DCMD_OK); } static int bmap_bit_isset(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { int st; int i, num; rdc_k_info_t *krdc; unsigned char *bmap; unsigned char *bmaddr; int bmsize; if (!(flags & DCMD_ADDRSPEC)) return (DCMD_USAGE); if (argc < 1) { mdb_warn("must have an argument\n"); return (DCMD_ERR); } krdc = mdb_zalloc(sizeof (*krdc), UM_GC); if (mdb_vread(krdc, sizeof (*krdc), addr) != sizeof (*krdc)) { mdb_warn("failed to read rdc_k_info at %p", addr); return (DCMD_ERR); } bmaddr = krdc->dcio_bitmap; bmsize = krdc->bitmap_size; bmap = mdb_zalloc(bmsize, UM_GC); if (mdb_vread(bmap, bmsize, (uintptr_t)bmaddr) != bmsize) { mdb_warn("failed to read bitmap"); return (DCMD_ERR); } num = (int)mdb_strtoull(argv[0].a_un.a_str); st = FBA_TO_LOG_NUM(num); i = BMAP_BIT_ISSET(bmap, st); mdb_printf(" BIT (%d) for %x %s set (%02x)", st, num, i?"IS":"IS NOT", bmap[IND_BYTE(st)] & 0xff); return (DCMD_OK); } static int bmap_bitref_isset(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { int num, st, i; rdc_k_info_t *krdc; unsigned char *brefbyte; unsigned int *brefint; void *bradder; int brsize; size_t refcntsize = sizeof (unsigned char); struct bm_ref_ops *refops; if (!(flags & DCMD_ADDRSPEC)) return (DCMD_USAGE); if (argc < 1) { mdb_warn("must have an argument\n"); return (DCMD_ERR); } krdc = mdb_zalloc(sizeof (*krdc), UM_GC); if (mdb_vread(krdc, sizeof (*krdc), addr) != sizeof (*krdc)) { mdb_warn("failed to read rdc_k_info at %p", addr); return (DCMD_ERR); } bradder = krdc->bitmap_ref; refops = mdb_zalloc(sizeof (*refops), UM_GC); if (mdb_vread(refops, sizeof (*refops), (uintptr_t)krdc->bm_refs) != sizeof (*refops)) { mdb_warn("failed to read bm_refops at %p", krdc->bm_refs); return (DCMD_ERR); } refcntsize = refops->bmap_ref_size; brsize = krdc->bitmap_size * BITS_IN_BYTE * refcntsize; if (refcntsize == sizeof (unsigned char)) { brefbyte = mdb_zalloc(brsize, UM_GC); if (mdb_vread(brefbyte, brsize, (uintptr_t)bradder) != brsize) { mdb_warn("failed to read bitmap"); return (DCMD_ERR); } } else { brefint = mdb_zalloc(brsize, UM_GC); if (mdb_vread(brefint, brsize, (uintptr_t)bradder) != brsize) { mdb_warn("failed to read bitmap"); return (DCMD_ERR); } } num = (int)mdb_strtoull(argv[0].a_un.a_str); st = FBA_TO_LOG_NUM(num); if (refcntsize == sizeof (unsigned char)) i = brefbyte[st]; else i = brefint[st]; mdb_printf("BITREF (%d) for %x %s set (%02x)", st, num, i?"IS":"IS NOT", i); return (DCMD_OK); } /*ARGSUSED*/ static int ind_byte(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { int num; if (argc < 1) { mdb_warn("must have an argument\n"); return (DCMD_ERR); } num = FBA_TO_LOG_NUM((int)mdb_strtoull(argv[0].a_un.a_str)); mdb_printf("IND_BYTE: %d", IND_BYTE(num)); return (DCMD_OK); } /*ARGSUSED*/ static int ind_bit(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { int num; if (argc < 1) { mdb_warn("must have an argument\n"); return (DCMD_ERR); } num = FBA_TO_LOG_NUM((int)mdb_strtoull(argv[0].a_un.a_str)); mdb_printf("IND_BIT: %d 0x%x", IND_BIT(num), IND_BIT(num)); return (DCMD_OK); } static char * print_bit(uint_t bitmask) { int bitval = 1; int i; bitstr[32] = '\0'; for (i = 31; i >= 0; i--) { if (bitmask & bitval) { bitstr[i] = '1'; } else { bitstr[i] = '0'; } bitval *= 2; } return (bitstr); } /*ARGSUSED*/ static int rdc_bitmask(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { uint_t bitmask = 0; int first, st, en, pos, len; if (argc < 2) { mdb_warn("must have 2 args (pos, len)\n"); return (DCMD_ERR); } pos = (int)mdb_strtoull(argv[0].a_un.a_str); len = (int)mdb_strtoull(argv[1].a_un.a_str); if (len <= 0) { mdb_printf("non positive len specified"); return (DCMD_ERR); } if ((len - pos) > 2048) { mdb_printf("len out of range, 32 bit bitmask"); return (DCMD_ERR); } first = st = FBA_TO_LOG_NUM(pos); en = FBA_TO_LOG_NUM(pos + len - 1); while (st <= en) { BMAP_BIT_SET((uchar_t *)&bitmask, st - first); st++; } mdb_printf("bitmask for POS: %d LEN: %d : 0x%08x (%s)", pos, len, bitmask & 0xffffffff, print_bit(bitmask)); return (DCMD_OK); } /* * Dump the bitmap of the krdc structure indicated by the index * argument. Used by the ZatoIchi tests. */ /*ARGSUSED*/ static int rdc_bmapdump(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { rdc_k_info_t *rdc_k_info; int index; uintptr_t bmapaddr; uintptr_t bmapdata; unsigned char *data; int bmapsize; int i; int st = 0; int en = 0; if (argc < 1) { mdb_warn("must have index argument\n"); return (DCMD_ERR); } i = argc; if (i == 3) { en = (int)mdb_strtoull(argv[2].a_un.a_str); en = FBA_TO_LOG_NUM(en); i--; } if (i == 2) { st = (int)mdb_strtoull(argv[1].a_un.a_str); st = FBA_TO_LOG_NUM(st); } index = (int)mdb_strtoull(argv[0].a_un.a_str); /* * Find out where in memory the rdc_k_kinfo array starts */ if (mdb_readvar(&rdc_k_info, "rdc_k_info") == -1) { mdb_warn("failed to read 'rdc_k_info'"); return (DCMD_ERR); } bmapaddr = (uintptr_t)(&rdc_k_info[index].bitmap_size); if (mdb_vread(&bmapsize, sizeof (bmapsize), bmapaddr) != sizeof (bmapsize)) { mdb_warn("failed to read dcio_bitmap at %p\n", bmapaddr); return (DCMD_ERR); } bmapaddr = (uintptr_t)(&rdc_k_info[index].dcio_bitmap); if (mdb_vread(&bmapdata, sizeof (bmapdata), bmapaddr) != sizeof (bmapdata)) { mdb_warn("failed to read dcio_bitmap at %p\n", bmapaddr); return (DCMD_ERR); } data = mdb_zalloc(bmapsize, UM_SLEEP); if (mdb_vread(data, bmapsize, bmapdata) != bmapsize) { mdb_warn("failed to read the bitmap data\n"); mdb_free(data, bmapsize); return (DCMD_ERR); } mdb_printf("bitmap data address 0x%p bitmap size %d\n" "kinfo 0x%p\n", bmapdata, bmapsize, &rdc_k_info[index]); if ((st < 0) || ((st/8) > bmapsize) || (en < 0)) { mdb_warn("offset is out of range st %d bms %d en %d", st, bmapsize, en); return (DCMD_ERR); } if (((en/8) > bmapsize) || (en == 0)) en = bmapsize * 8; mdb_printf("bit start pos: %d bit end pos: %d\n\n", st, en); st /= 8; en /= 8; for (i = st; i < en; i++) { mdb_printf("%02x ", data[i] & 0xff); if ((i % 16) == 15) { int s = LOG_TO_FBA_NUM((i-15)*8); int e = LOG_TO_FBA_NUM(((i+1)*8)) - 1; mdb_printf(" fbas: %x - %x\n", s, e); } } mdb_printf("\n"); mdb_free(data, bmapsize); return (DCMD_OK); } /* * dump the bitmap reference count */ /*ARGSUSED*/ static int rdc_brefdump(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { rdc_k_info_t *rdc_k_info; int index; uintptr_t bmapaddr; uintptr_t bmapdata; unsigned char *data; int bmapsize; int i; int st = 0; int en = 0; if (argc < 1) { mdb_warn("must have index argument\n"); return (DCMD_ERR); } index = (int)mdb_strtoull(argv[0].a_un.a_str); i = argc; if (i == 3) { en = (int)mdb_strtoull(argv[2].a_un.a_str); en = FBA_TO_LOG_NUM(en); i--; } if (i == 2) { st = (int)mdb_strtoull(argv[1].a_un.a_str); st = FBA_TO_LOG_NUM(st); } /* * Find out where in memory the rdc_k_kinfo array starts */ if (mdb_readvar(&rdc_k_info, "rdc_k_info") == -1) { mdb_warn("failed to read 'rdc_k_info'"); return (DCMD_ERR); } bmapaddr = (uintptr_t)(&rdc_k_info[index].bitmap_size); if (mdb_vread(&bmapsize, sizeof (bmapsize), bmapaddr) != sizeof (bmapsize)) { mdb_warn("failed to read dcio_bitmap at %p\n", bmapaddr); return (DCMD_ERR); } bmapsize *= 8; bmapaddr = (uintptr_t)(&rdc_k_info[index].bitmap_ref); if (mdb_vread(&bmapdata, sizeof (bmapdata), bmapaddr) != sizeof (bmapdata)) { mdb_warn("failed to read dcio_bitmap at %p\n", bmapaddr); return (DCMD_ERR); } data = mdb_zalloc(bmapsize, UM_SLEEP); if (mdb_vread(data, bmapsize, bmapdata) != bmapsize) { mdb_warn("failed to read the bitmap data\n"); mdb_free(data, bmapsize); return (DCMD_ERR); } mdb_printf("bitmap data address 0x%p bitmap size %d\n" "kinfo 0x%p\n", bmapdata, bmapsize, &rdc_k_info[index]); if ((st < 0) || (st > bmapsize) || (en < 0)) { mdb_warn("offset is out of range"); } if ((en > bmapsize) || (en == 0)) en = bmapsize; mdb_printf("bit start pos: %d bit end pos: %d\n\n", st, en); for (i = st; i < en; i++) { mdb_printf("%02x ", data[i] & 0xff); if ((i % 16) == 15) { int s = LOG_TO_FBA_NUM(i-15); int e = LOG_TO_FBA_NUM(i+1) - 1; mdb_printf(" fbas: 0x%x - 0x%x \n", s, e); } } mdb_printf("\n"); mdb_free(data, bmapsize); return (DCMD_OK); } static int rdc_bmapnref(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { mdb_printf("\nRDC bitmap info\n"); rdc_bmapdump(addr, flags, argc, argv); mdb_printf("RDC bitmap reference count info\n"); rdc_brefdump(addr, flags, argc, argv); return (DCMD_OK); } #endif /* * MDB module linkage information: */ static const mdb_dcmd_t dcmds[] = { { "rdc", NULL, "display sndr module info", rdc }, { "rdc_buf", "?[-v]", "rdc_buf structure", rdc_buf }, { "rdc_kinfo", "?[-av]", "rdc_k_info structure", rdc_kinfo }, { "rdc_uinfo", "?[-av]", "rdc_u_info structure", rdc_uinfo }, { "rdc_group", "?", "rdc group structure", rdc_group }, { "rdc_srv", "?", "rdc_srv structure", rdc_srv }, { "rdc_if", "?", "rdc_if structure", rdc_if }, { "rdc_infodev", "?", "rdc_info_dev structure", rdc_infodev }, { "rdc_k2u", "?", "rdc_kinfo to rdc_uinfo", rdc_k2u }, { "rdc_u2k", "?", "rdc_uinfo to rdc_kinfo", rdc_u2k }, { "rdc_aio", "?", "rdc_aio structure", rdc_aio}, { "rdc_iohdr", "?", "rdc_iohdr structure", rdc_iohdr}, #ifdef DEBUG { "rdc_setseq", "?", "Write seq field in group", rdc_setseq }, { "rdc_setseqack", "?", "Write seqack field in group", rdc_setseqack }, { "rdc_dset", "?", "Dump dset info", rdc_dset }, { "rdc_bmapdump", "?", "Dump bitmap", rdc_bmapdump }, { "rdc_brefdump", "?", "Dump bitmap reference count", rdc_brefdump }, { "rdc_bmapnref", "?", "Dump bitmap and ref count", rdc_bmapnref }, { "rdc_fba2log", "?", "fba to log num", fba_to_log_num }, { "rdc_log2fba", "?", "log to fba num", log_to_fba_num }, { "rdc_bitisset", "?", "check bit set", bmap_bit_isset }, { "rdc_brefisset", "?", "check bit ref set", bmap_bitref_isset }, { "rdc_indbyte", "?", "print indbyte", ind_byte }, { "rdc_indbit", "?", "print indbit", ind_bit }, { "rdc_bitmask", "?", "print bitmask for pos->len", rdc_bitmask }, #endif { NULL } }; static const mdb_walker_t walkers[] = { { "rdc_kinfo", "walk the rdc_k_info array", rdc_k_info_winit, rdc_k_info_wstep, rdc_k_info_wfini }, { "rdc_uinfo", "walk the rdc_u_info array", rdc_u_info_winit, rdc_u_info_wstep, rdc_u_info_wfini }, { "rdc_if", "walk rdc_if chain", rdc_if_winit, rdc_if_wstep, rdc_if_wfini }, { NULL } }; static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; const mdb_modinfo_t * _mdb_init(void) { return (&modinfo); }