/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include #include #ifndef STACK_BIAS #define STACK_BIAS 0 #endif typedef struct thread_walk { kthread_t *tw_thread; uintptr_t tw_last; uint_t tw_inproc; uint_t tw_step; } thread_walk_t; int thread_walk_init(mdb_walk_state_t *wsp) { thread_walk_t *twp = mdb_alloc(sizeof (thread_walk_t), UM_SLEEP); if (wsp->walk_addr == NULL) { if (mdb_readvar(&wsp->walk_addr, "allthreads") == -1) { mdb_warn("failed to read 'allthreads'"); mdb_free(twp, sizeof (thread_walk_t)); return (WALK_ERR); } twp->tw_inproc = FALSE; } else { proc_t pr; if (mdb_vread(&pr, sizeof (proc_t), wsp->walk_addr) == -1) { mdb_warn("failed to read proc at %p", wsp->walk_addr); mdb_free(twp, sizeof (thread_walk_t)); return (WALK_ERR); } wsp->walk_addr = (uintptr_t)pr.p_tlist; twp->tw_inproc = TRUE; } twp->tw_thread = mdb_alloc(sizeof (kthread_t), UM_SLEEP); twp->tw_last = wsp->walk_addr; twp->tw_step = FALSE; wsp->walk_data = twp; return (WALK_NEXT); } int thread_walk_step(mdb_walk_state_t *wsp) { thread_walk_t *twp = (thread_walk_t *)wsp->walk_data; int status; if (wsp->walk_addr == NULL) return (WALK_DONE); /* Proc has 0 threads or allthreads = 0 */ if (twp->tw_step && wsp->walk_addr == twp->tw_last) return (WALK_DONE); /* We've wrapped around */ if (mdb_vread(twp->tw_thread, sizeof (kthread_t), wsp->walk_addr) == -1) { mdb_warn("failed to read thread at %p", wsp->walk_addr); return (WALK_DONE); } status = wsp->walk_callback(wsp->walk_addr, twp->tw_thread, wsp->walk_cbdata); if (twp->tw_inproc) wsp->walk_addr = (uintptr_t)twp->tw_thread->t_forw; else wsp->walk_addr = (uintptr_t)twp->tw_thread->t_next; twp->tw_step = TRUE; return (status); } void thread_walk_fini(mdb_walk_state_t *wsp) { thread_walk_t *twp = (thread_walk_t *)wsp->walk_data; mdb_free(twp->tw_thread, sizeof (kthread_t)); mdb_free(twp, sizeof (thread_walk_t)); } int deathrow_walk_init(mdb_walk_state_t *wsp) { if (mdb_layered_walk("thread_deathrow", wsp) == -1) { mdb_warn("couldn't walk 'thread_deathrow'"); return (WALK_ERR); } if (mdb_layered_walk("lwp_deathrow", wsp) == -1) { mdb_warn("couldn't walk 'lwp_deathrow'"); return (WALK_ERR); } return (WALK_NEXT); } int deathrow_walk_step(mdb_walk_state_t *wsp) { kthread_t t; uintptr_t addr = wsp->walk_addr; if (addr == NULL) return (WALK_DONE); if (mdb_vread(&t, sizeof (t), addr) == -1) { mdb_warn("couldn't read deathrow thread at %p", addr); return (WALK_ERR); } wsp->walk_addr = (uintptr_t)t.t_forw; return (wsp->walk_callback(addr, &t, wsp->walk_cbdata)); } int thread_deathrow_walk_init(mdb_walk_state_t *wsp) { if (mdb_readvar(&wsp->walk_addr, "thread_deathrow") == -1) { mdb_warn("couldn't read symbol 'thread_deathrow'"); return (WALK_ERR); } return (WALK_NEXT); } int lwp_deathrow_walk_init(mdb_walk_state_t *wsp) { if (mdb_readvar(&wsp->walk_addr, "lwp_deathrow") == -1) { mdb_warn("couldn't read symbol 'lwp_deathrow'"); return (WALK_ERR); } return (WALK_NEXT); } typedef struct dispq_walk { int dw_npri; uintptr_t dw_dispq; uintptr_t dw_last; } dispq_walk_t; int cpu_dispq_walk_init(mdb_walk_state_t *wsp) { uintptr_t addr = wsp->walk_addr; dispq_walk_t *dw; cpu_t cpu; dispq_t dispq; disp_t disp; if (addr == NULL) { mdb_warn("cpu_dispq walk needs a cpu_t address\n"); return (WALK_ERR); } if (mdb_vread(&cpu, sizeof (cpu_t), addr) == -1) { mdb_warn("failed to read cpu_t at %p", addr); return (WALK_ERR); } if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu.cpu_disp) == -1) { mdb_warn("failed to read disp_t at %p", cpu.cpu_disp); return (WALK_ERR); } if (mdb_vread(&dispq, sizeof (dispq_t), (uintptr_t)disp.disp_q) == -1) { mdb_warn("failed to read dispq_t at %p", disp.disp_q); return (WALK_ERR); } dw = mdb_alloc(sizeof (dispq_walk_t), UM_SLEEP); dw->dw_npri = disp.disp_npri; dw->dw_dispq = (uintptr_t)disp.disp_q; dw->dw_last = (uintptr_t)dispq.dq_last; wsp->walk_addr = (uintptr_t)dispq.dq_first; wsp->walk_data = dw; return (WALK_NEXT); } int cpupart_dispq_walk_init(mdb_walk_state_t *wsp) { uintptr_t addr = wsp->walk_addr; dispq_walk_t *dw; cpupart_t cpupart; dispq_t dispq; if (addr == NULL) { mdb_warn("cpupart_dispq walk needs a cpupart_t address\n"); return (WALK_ERR); } if (mdb_vread(&cpupart, sizeof (cpupart_t), addr) == -1) { mdb_warn("failed to read cpupart_t at %p", addr); return (WALK_ERR); } if (mdb_vread(&dispq, sizeof (dispq_t), (uintptr_t)cpupart.cp_kp_queue.disp_q) == -1) { mdb_warn("failed to read dispq_t at %p", cpupart.cp_kp_queue.disp_q); return (WALK_ERR); } dw = mdb_alloc(sizeof (dispq_walk_t), UM_SLEEP); dw->dw_npri = cpupart.cp_kp_queue.disp_npri; dw->dw_dispq = (uintptr_t)cpupart.cp_kp_queue.disp_q; dw->dw_last = (uintptr_t)dispq.dq_last; wsp->walk_addr = (uintptr_t)dispq.dq_first; wsp->walk_data = dw; return (WALK_NEXT); } int dispq_walk_step(mdb_walk_state_t *wsp) { uintptr_t addr = wsp->walk_addr; dispq_walk_t *dw = wsp->walk_data; dispq_t dispq; kthread_t t; while (addr == NULL) { if (--dw->dw_npri == 0) return (WALK_DONE); dw->dw_dispq += sizeof (dispq_t); if (mdb_vread(&dispq, sizeof (dispq_t), dw->dw_dispq) == -1) { mdb_warn("failed to read dispq_t at %p", dw->dw_dispq); return (WALK_ERR); } dw->dw_last = (uintptr_t)dispq.dq_last; addr = (uintptr_t)dispq.dq_first; } if (mdb_vread(&t, sizeof (kthread_t), addr) == -1) { mdb_warn("failed to read kthread_t at %p", addr); return (WALK_ERR); } if (addr == dw->dw_last) wsp->walk_addr = NULL; else wsp->walk_addr = (uintptr_t)t.t_link; return (wsp->walk_callback(addr, &t, wsp->walk_cbdata)); } void dispq_walk_fini(mdb_walk_state_t *wsp) { mdb_free(wsp->walk_data, sizeof (dispq_walk_t)); } #define TF_INTR 0x01 #define TF_PROC 0x02 #define TF_BLOCK 0x04 #define TF_SIG 0x08 #define TF_DISP 0x10 #define TF_MERGE 0x20 /* * Display a kthread_t. * This is a little complicated, as there is a lot of information that * the user could be interested in. The flags "ipbsd" are used to * indicate which subset of the thread's members are to be displayed * ('i' is the default). If multiple options are specified, multiple * sets of data will be displayed in a vaguely readable format. If the * 'm' option is specified, all the selected sets will be merged onto a * single line for the benefit of those using wider-than-normal * terminals. Having a generic mechanism for doing this would be * really useful, but is a project best left to another day. */ int thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { kthread_t t; uint_t oflags = 0; uint_t fflag = FALSE; int first; char *state; char stbuf[20]; /* * "Gracefully" handle printing a boatload of stuff to the * screen. If we are not printing our first set of data, and * we haven't been instructed to merge sets together, output a * newline and indent such that the thread addresses form a * column of their own. */ #define SPACER() \ if (first) { \ first = FALSE; \ } else if (!(oflags & TF_MERGE)) { \ mdb_printf("\n%?s", ""); \ } if (!(flags & DCMD_ADDRSPEC)) { if (mdb_walk_dcmd("thread", "thread", argc, argv) == -1) { mdb_warn("can't walk threads"); return (DCMD_ERR); } return (DCMD_OK); } if (mdb_getopts(argc, argv, 'f', MDB_OPT_SETBITS, TRUE, &fflag, 'i', MDB_OPT_SETBITS, TF_INTR, &oflags, 'p', MDB_OPT_SETBITS, TF_PROC, &oflags, 'b', MDB_OPT_SETBITS, TF_BLOCK, &oflags, 's', MDB_OPT_SETBITS, TF_SIG, &oflags, 'd', MDB_OPT_SETBITS, TF_DISP, &oflags, 'm', MDB_OPT_SETBITS, TF_MERGE, &oflags, NULL) != argc) return (DCMD_USAGE); /* * If no sets were specified, choose the 'i' set. */ if (!(oflags & ~TF_MERGE)) #ifdef _LP64 oflags = TF_INTR; #else oflags = TF_INTR | TF_DISP | TF_MERGE; #endif /* * Print the relevant headers; note use of SPACER(). */ if (DCMD_HDRSPEC(flags)) { first = TRUE; mdb_printf("%%?s%", "ADDR"); mdb_flush(); if (oflags & TF_PROC) { SPACER(); mdb_printf("% %?s %?s %?s%", "PROC", "LWP", "CRED"); } if (oflags & TF_INTR) { SPACER(); mdb_printf("% %8s %4s %4s %4s %5s %5s %3s %?s%", "STATE", "FLG", "PFLG", "SFLG", "PRI", "EPRI", "PIL", "INTR"); } if (oflags & TF_BLOCK) { SPACER(); mdb_printf("% %?s %?s %?s %11s%", "WCHAN", "TS", "PITS", "SOBJ OPS"); } if (oflags & TF_SIG) { SPACER(); mdb_printf("% %?s %16s %16s%", "SIGQUEUE", "SIG PEND", "SIG HELD"); } if (oflags & TF_DISP) { SPACER(); mdb_printf("% %?s %5s %2s%", "DISPTIME", "BOUND", "PR"); } mdb_printf("\n"); } if (mdb_vread(&t, sizeof (kthread_t), addr) == -1) { mdb_warn("can't read kthread_t at %#lx", addr); return (DCMD_ERR); } if (fflag && (t.t_state == TS_FREE)) return (DCMD_OK); first = TRUE; mdb_printf("%0?lx", addr); /* process information */ if (oflags & TF_PROC) { SPACER(); mdb_printf(" %?p %?p %?p", t.t_procp, t.t_lwp, t.t_cred); } /* priority/interrupt information */ if (oflags & TF_INTR) { SPACER(); switch (t.t_state) { case TS_FREE: state = "free"; break; case TS_SLEEP: state = "sleep"; break; case TS_RUN: state = "run"; break; case TS_ONPROC: state = "onproc"; break; case TS_ZOMB: state = "zomb"; break; case TS_STOPPED: state = "stopped"; break; case TS_WAIT: state = "wait"; break; default: (void) mdb_snprintf(stbuf, 11, "inval/%02x", t.t_state); state = stbuf; } if (t.t_intr == NULL) { mdb_printf(" %-8s %4x %4x %4x %5d %5d %3d %?s", state, t.t_flag, t.t_proc_flag, t.t_schedflag, t.t_pri, t.t_epri, t.t_pil, "n/a"); } else { mdb_printf(" %-8s %4x %4x %4x %5d %5d %3d %?p", state, t.t_flag, t.t_proc_flag, t.t_schedflag, t.t_pri, t.t_epri, t.t_pil, t.t_intr); } } /* blocking information */ if (oflags & TF_BLOCK) { SPACER(); (void) mdb_snprintf(stbuf, 20, "%a", t.t_sobj_ops); stbuf[11] = '\0'; mdb_printf(" %?p %?p %?p %11s", t.t_wchan, t.t_ts, t.t_prioinv, stbuf); } /* signal information */ if (oflags & TF_SIG) { SPACER(); mdb_printf(" %?p %016llx %016llx", t.t_sigqueue, t.t_sig, t.t_hold); } /* dispatcher stuff */ if (oflags & TF_DISP) { SPACER(); mdb_printf(" %?lx %5d %2d", t.t_disp_time, t.t_bind_cpu, t.t_preempt); } mdb_printf("\n"); #undef SPACER return (DCMD_OK); } void thread_help(void) { mdb_printf( "The flags -ipbsd control which information is displayed. When\n" "combined, the fields are displayed on separate lines unless the\n" "-m option is given.\n" "\n" "\t-b\tprint blocked thread state\n" "\t-d\tprint dispatcher state\n" "\t-f\tignore freed threads\n" "\t-i\tprint basic thread state (default)\n" "\t-m\tdisplay results on a single line\n" "\t-p\tprint process and lwp state\n" "\t-s\tprint signal state\n"); } /* * List a combination of kthread_t and proc_t. Add stack traces in verbose mode. */ int threadlist(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { int i; uint_t count = 0; uint_t verbose = FALSE; uint_t notaskq = FALSE; kthread_t t; taskq_t tq; proc_t p; char cmd[80]; mdb_arg_t cmdarg; if (!(flags & DCMD_ADDRSPEC)) { if (mdb_walk_dcmd("thread", "threadlist", argc, argv) == -1) { mdb_warn("can't walk threads"); return (DCMD_ERR); } return (DCMD_OK); } i = mdb_getopts(argc, argv, 't', MDB_OPT_SETBITS, TRUE, ¬askq, 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL); if (i != argc) { if (i != argc - 1 || !verbose) return (DCMD_USAGE); if (argv[i].a_type == MDB_TYPE_IMMEDIATE) count = (uint_t)argv[i].a_un.a_val; else count = (uint_t)mdb_strtoull(argv[i].a_un.a_str); } if (DCMD_HDRSPEC(flags)) { if (verbose) mdb_printf("%%?s %?s %?s %3s %3s %?s%\n", "ADDR", "PROC", "LWP", "CLS", "PRI", "WCHAN"); else mdb_printf("%%?s %?s %?s %s/%s%\n", "ADDR", "PROC", "LWP", "CMD", "LWPID"); } if (mdb_vread(&t, sizeof (kthread_t), addr) == -1) { mdb_warn("failed to read kthread_t at %p", addr); return (DCMD_ERR); } if (notaskq && t.t_taskq != NULL) return (DCMD_OK); if (t.t_state == TS_FREE) return (DCMD_OK); if (mdb_vread(&p, sizeof (proc_t), (uintptr_t)t.t_procp) == -1) { mdb_warn("failed to read proc at %p", t.t_procp); return (DCMD_ERR); } if (mdb_vread(&tq, sizeof (taskq_t), (uintptr_t)t.t_taskq) == -1) tq.tq_name[0] = '\0'; if (verbose) { mdb_printf("%0?p %?p %?p %3u %3d %?p\n", addr, t.t_procp, t.t_lwp, t.t_cid, t.t_pri, t.t_wchan); mdb_inc_indent(2); mdb_printf("PC: %a", t.t_pc); if (t.t_tid == 0) { if (tq.tq_name[0] != '\0') mdb_printf(" TASKQ: %s\n", tq.tq_name); else mdb_printf(" THREAD: %a()\n", t.t_startpc); } else { mdb_printf(" CMD: %s\n", p.p_user.u_psargs); } mdb_snprintf(cmd, sizeof (cmd), "<.$c%d", count); cmdarg.a_type = MDB_TYPE_STRING; cmdarg.a_un.a_str = cmd; (void) mdb_call_dcmd("findstack", addr, flags, 1, &cmdarg); mdb_dec_indent(2); mdb_printf("\n"); } else { mdb_printf("%0?p %?p %?p", addr, t.t_procp, t.t_lwp); if (t.t_tid == 0) { if (tq.tq_name[0] != '\0') mdb_printf(" tq:%s\n", tq.tq_name); else mdb_printf(" %a()\n", t.t_startpc); } else { mdb_printf(" %s/%u\n", p.p_user.u_comm, t.t_tid); } } return (DCMD_OK); } void threadlist_help(void) { mdb_printf( " -v print verbose output including C stack trace\n" " -t skip threads belonging to a taskq\n" " count print no more than count arguments (default 0)\n"); } static size_t stk_compute_percent(caddr_t t_stk, caddr_t t_stkbase, caddr_t sp) { size_t percent; size_t s; if (t_stk > t_stkbase) { /* stack grows down */ if (sp > t_stk) { return (0); } if (sp < t_stkbase) { return (100); } percent = t_stk - sp + 1; s = t_stk - t_stkbase + 1; } else { /* stack grows up */ if (sp < t_stk) { return (0); } if (sp > t_stkbase) { return (100); } percent = sp - t_stk + 1; s = t_stkbase - t_stk + 1; } percent = ((100 * percent) / s) + 1; if (percent > 100) { percent = 100; } return (percent); } /* * Display kthread stack infos. */ int stackinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) { kthread_t t; proc_t p; uint64_t *ptr; /* pattern pointer */ caddr_t start; /* kernel stack start */ caddr_t end; /* kernel stack end */ caddr_t ustack; /* userland copy of kernel stack */ size_t usize; /* userland copy of kernel stack size */ caddr_t ustart; /* userland copy of kernel stack, aligned start */ caddr_t uend; /* userland copy of kernel stack, aligned end */ size_t percent = 0; uint_t all = FALSE; /* don't show TS_FREE kthread by default */ uint_t history = FALSE; int i = 0; unsigned int ukmem_stackinfo; uintptr_t allthreads; /* handle options */ if (mdb_getopts(argc, argv, 'a', MDB_OPT_SETBITS, TRUE, &all, 'h', MDB_OPT_SETBITS, TRUE, &history, NULL) != argc) { return (DCMD_USAGE); } /* walk all kthread if needed */ if ((history == FALSE) && !(flags & DCMD_ADDRSPEC)) { if (mdb_walk_dcmd("thread", "stackinfo", argc, argv) == -1) { mdb_warn("can't walk threads"); return (DCMD_ERR); } return (DCMD_OK); } /* read 'kmem_stackinfo' */ if (mdb_readsym(&ukmem_stackinfo, sizeof (ukmem_stackinfo), "kmem_stackinfo") == -1) { mdb_warn("failed to read 'kmem_stackinfo'\n"); ukmem_stackinfo = 0; } /* read 'allthreads' */ if (mdb_readsym(&allthreads, sizeof (kthread_t *), "allthreads") == -1) { mdb_warn("failed to read 'allthreads'\n"); allthreads = NULL; } if (history == TRUE) { kmem_stkinfo_t *log; uintptr_t kaddr; mdb_printf("Dead kthreads stack usage history:\n"); if (ukmem_stackinfo == 0) { mdb_printf("Tunable kmem_stackinfo is unset, history "); mdb_printf("feature is off.\nUse ::help stackinfo "); mdb_printf("for more details.\n"); return (DCMD_OK); } mdb_printf("%%?s%", "THREAD"); mdb_printf(" %%?s%", "STACK"); mdb_printf("%%s%", " SIZE MAX CMD/LWPID or STARTPC"); mdb_printf("\n"); usize = KMEM_STKINFO_LOG_SIZE * sizeof (kmem_stkinfo_t); log = (kmem_stkinfo_t *)mdb_alloc(usize, UM_SLEEP); if (mdb_readsym(&kaddr, sizeof (kaddr), "kmem_stkinfo_log") == -1) { mdb_free((void *)log, usize); mdb_warn("failed to read 'kmem_stkinfo_log'\n"); return (DCMD_ERR); } if (kaddr == NULL) { mdb_free((void *)log, usize); return (DCMD_OK); } if (mdb_vread(log, usize, kaddr) == -1) { mdb_free((void *)log, usize); mdb_warn("failed to read %p\n", kaddr); return (DCMD_ERR); } for (i = 0; i < KMEM_STKINFO_LOG_SIZE; i++) { if (log[i].kthread == NULL) { continue; } mdb_printf("%0?p %0?p %6x %3d%%", log[i].kthread, log[i].start, (uint_t)log[i].stksz, (int)log[i].percent); if (log[i].t_tid != 0) { mdb_printf(" %s/%u\n", log[i].cmd, log[i].t_tid); } else { mdb_printf(" %p (%a)\n", log[i].t_startpc, log[i].t_startpc); } } mdb_free((void *)log, usize); return (DCMD_OK); } /* display header */ if (DCMD_HDRSPEC(flags)) { if (ukmem_stackinfo == 0) { mdb_printf("Tunable kmem_stackinfo is unset, "); mdb_printf("MAX value is not available.\n"); mdb_printf("Use ::help stackinfo for more details.\n"); } mdb_printf("%%?s%", "THREAD"); mdb_printf(" %%?s%", "STACK"); mdb_printf("%%s%", " SIZE CUR MAX CMD/LWPID"); mdb_printf("\n"); } /* read kthread */ if (mdb_vread(&t, sizeof (kthread_t), addr) == -1) { mdb_warn("can't read kthread_t at %#lx\n", addr); return (DCMD_ERR); } if (t.t_state == TS_FREE && all == FALSE) { return (DCMD_OK); } /* read proc */ if (mdb_vread(&p, sizeof (proc_t), (uintptr_t)t.t_procp) == -1) { mdb_warn("failed to read proc at %p\n", t.t_procp); return (DCMD_ERR); } /* * Stack grows up or down, see thread_create(), * compute stack memory aera start and end (start < end). */ if (t.t_stk > t.t_stkbase) { /* stack grows down */ start = t.t_stkbase; end = t.t_stk; } else { /* stack grows up */ start = t.t_stk; end = t.t_stkbase; } /* display stack info */ mdb_printf("%0?p %0?p", addr, start); /* (end - start), kernel stack size as found in kthread_t */ if ((end <= start) || ((end - start) > (1024 * 1024))) { /* negative or stack size > 1 meg, assume bogus */ mdb_warn(" t_stk/t_stkbase problem\n"); return (DCMD_ERR); } /* display stack size */ mdb_printf(" %6x", end - start); /* display current stack usage */ percent = stk_compute_percent(t.t_stk, t.t_stkbase, (caddr_t)t.t_sp + STACK_BIAS); mdb_printf(" %3d%%", percent); percent = 0; if (ukmem_stackinfo == 0) { mdb_printf(" n/a"); if (t.t_tid == 0) { mdb_printf(" %a()", t.t_startpc); } else { mdb_printf(" %s/%u", p.p_user.u_comm, t.t_tid); } mdb_printf("\n"); return (DCMD_OK); } if ((((uintptr_t)start) & 0x7) != 0) { start = (caddr_t)((((uintptr_t)start) & (~0x7)) + 8); } end = (caddr_t)(((uintptr_t)end) & (~0x7)); /* size to scan in userland copy of kernel stack */ usize = end - start; /* is a multiple of 8 bytes */ /* * Stackinfo pattern size is 8 bytes. Ensure proper 8 bytes * alignement for ustart and uend, in boundaries. */ ustart = ustack = (caddr_t)mdb_alloc(usize + 8, UM_SLEEP); if ((((uintptr_t)ustart) & 0x7) != 0) { ustart = (caddr_t)((((uintptr_t)ustart) & (~0x7)) + 8); } uend = ustart + usize; /* read the kernel stack */ if (mdb_vread(ustart, usize, (uintptr_t)start) != usize) { mdb_free((void *)ustack, usize + 8); mdb_printf("\n"); mdb_warn("couldn't read entire stack\n"); return (DCMD_ERR); } /* scan the stack */ if (t.t_stk > t.t_stkbase) { /* stack grows down */ #if defined(__i386) || defined(__amd64) /* * 6 longs are pushed on stack, see thread_load(). Skip * them, so if kthread has never run, percent is zero. * 8 bytes alignement is preserved for a 32 bit kernel, * 6 x 4 = 24, 24 is a multiple of 8. */ uend -= (6 * sizeof (long)); #endif ptr = (uint64_t *)((void *)ustart); while (ptr < (uint64_t *)((void *)uend)) { if (*ptr != KMEM_STKINFO_PATTERN) { percent = stk_compute_percent(uend, ustart, (caddr_t)ptr); break; } ptr++; } } else { /* stack grows up */ ptr = (uint64_t *)((void *)uend); ptr--; while (ptr >= (uint64_t *)((void *)ustart)) { if (*ptr != KMEM_STKINFO_PATTERN) { percent = stk_compute_percent(ustart, uend, (caddr_t)ptr); break; } ptr--; } } /* thread 't0' stack is not created by thread_create() */ if (addr == allthreads) { percent = 0; } if (percent != 0) { mdb_printf(" %3d%%", percent); } else { mdb_printf(" n/a"); } if (t.t_tid == 0) { mdb_printf(" %a()", t.t_startpc); } else { mdb_printf(" %s/%u", p.p_user.u_comm, t.t_tid); } mdb_printf("\n"); mdb_free((void *)ustack, usize + 8); return (DCMD_OK); } void stackinfo_help(void) { mdb_printf( "Shows kernel stacks real utilization, if /etc/system " "kmem_stackinfo tunable\n"); mdb_printf( "(an unsigned integer) is non zero at kthread creation time. "); mdb_printf("For example:\n"); mdb_printf( " THREAD STACK SIZE CUR MAX CMD/LWPID\n"); mdb_printf( "ffffff014f5f2c20 ffffff0004153000 4f00 4%% 43%% init/1\n"); mdb_printf( "The stack size utilization for this kthread is at 4%%" " of its maximum size,\n"); mdb_printf( "but has already used up to 43%%, stack size is 4f00 bytes.\n"); mdb_printf( "MAX value can be shown as n/a (not available):\n"); mdb_printf( " - for the very first kthread (sched/1)\n"); mdb_printf( " - kmem_stackinfo was zero at kthread creation time\n"); mdb_printf( " - kthread has not yet run\n"); mdb_printf("\n"); mdb_printf("Options:\n"); mdb_printf( "-a shows also TS_FREE kthreads (interrupt kthreads)\n"); mdb_printf( "-h shows history, dead kthreads that used their " "kernel stack the most\n"); mdb_printf( "\nSee Solaris Modular Debugger Guide for detailed usage.\n"); mdb_flush(); }