/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2006 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #pragma ident "%Z%%M% %I% %E% SMI" #include #include #include #include #include /* * Given a DIMM or bank unum, mem_unum_burst will break it apart into individual * DIMM names. If it's a DIMM, one name will be returned. If it's a bank, the * unums for the individual DIMMs will be returned. * * Plain J-number DIMM and bank unums are simple. J DIMMs have one J number. J * banks have multiple whitespace-separated J numbers. * * The others are more complex, and consist of a common portion c, a colon, and * a DIMM-specific portion d. DIMMs are of the form "c: d", while banks are of * the form "c: d d ...". The patterns are designed to handle the complex case, * but also handle the simple ones as an afterthought. bd_pat is used to * match specific styles of unum. In bd_pat, the first %n indicates the end of * the common portion ("c" above). The second %n marks the beginning of the * repetitive portion ("d" above). The third %n is used to determine whether or * not the entire pattern matched. bd_reppat is used to match instances of the * repetitive part. * * sscanf is your disturbingly powerful friend. * * The "bd_subst" element of the bank_dimm structure was added for Ontario * in order to accommodate its bank string names. Previously, to convert * from a bank representation ... * we concatenated the common piece with each dimm-specific piece in turn, * possibly deleting some characters in between. Ontario is the first * platform which requires that characters be substituted (like a vi s/1/2/) * in place of characters deleted. "bd_subst" represents the character(s) * to be substituted between the common piece and each dimm-specific piece * as part of the bursting. For prior platforms, this value is skipped. * * Example: * input: "MB/CMP0/CH3: R1/D0/J1901 R1/D1/J2001" * outputs: "MB/CMP0/CH3/R1/D0/J1901", "MB/CMP0/CH3/R1/D1/J2001" */ typedef struct bank_dimm { const char *bd_pat; const char *bd_reppat; const char *bd_subst; } bank_dimm_t; static const bank_dimm_t bank_dimm[] = { { "%n%nJ%*4d%n", " J%*4d%n" }, { "MB/P%*d/%nB%*d:%n%n", " B%*d/D%*d%n" }, { "MB/P%*d/%nB%*d/D%*d:%n%n", " B%*d/D%*d%n" }, { "C%*d/P%*d/%nB%*d:%n%n", " B%*d/D%*d%n" }, { "C%*d/P%*d/%nB%*d/D%*d:%n%n", " B%*d/D%*d%n" }, { "Slot %*c: %n%nJ%*4d%n", " J%*4d%n" }, { "%n%nDIMM%*d%n", " DIMM%*d%n" }, { "MB/%nDIMM%*d MB/DIMM%*d: %n%n", " DIMM%*d%n" }, { "MB/%nDIMM%*d:%n%n", " DIMM%*d%n" }, { "MB/CMP%*d/CH%*d%n:%n%n", " R%*d/D%*d/J%*4d%n", "/" }, { "MB/CMP%*d/CH%*d%n%n%n", "/R%*d/D%*d/J%*4d%n" }, { "MB/C%*d/P%*d/%nB%*d:%n%n", " B%*d/D%*d%n" }, { "MB/C%*d/P%*d/%nB%*d/D%*d:%n%n", " B%*d/D%*d%n" }, { NULL } }; /* * Burst Serengeti and Starcat-style unums. * A DIMM unum string is expected to be in this form: * "[/N0/]SB12/P0/B0/D2 [J13500]" * A bank unum string is expected to be in this form: * "[/N0/]SB12/P0/B0 [J13500, ...]" */ static int mem_unum_burst_sgsc(const char *pat, char ***dimmsp, size_t *ndimmsp) { char buf[64]; char **dimms; char *base; const char *c; char *copy; size_t copysz; int i; /* * No expansion is required for a DIMM unum */ if (strchr(pat, 'D') != NULL) { dimms = fmd_fmri_alloc(sizeof (char *)); dimms[0] = fmd_fmri_strdup(pat); *dimmsp = dimms; *ndimmsp = 1; return (0); } /* * strtok is destructive so we need to work with * a copy and keep track of the size allocated. */ copysz = strlen(pat) + 1; copy = fmd_fmri_alloc(copysz); (void) strcpy(copy, pat); base = strtok(copy, " "); /* There are four DIMMs in a bank */ dimms = fmd_fmri_alloc(sizeof (char *) * 4); for (i = 0; i < 4; i++) { (void) snprintf(buf, sizeof (buf), "%s/D%d", base, i); if ((c = strtok(NULL, " ")) != NULL) (void) snprintf(buf, sizeof (buf), "%s %s", buf, c); dimms[i] = fmd_fmri_strdup(buf); } fmd_fmri_free(copy, copysz); *dimmsp = dimms; *ndimmsp = 4; return (0); } /* * Returns 0 (with dimmsp and ndimmsp set) if the unum could be bursted, -1 * otherwise. */ static int mem_unum_burst_pattern(const char *pat, char ***dimmsp, size_t *ndimmsp) { const bank_dimm_t *bd; char **dimms = NULL, **newdimms; size_t ndimms = 0; const char *c; for (bd = bank_dimm; bd->bd_pat != NULL; bd++) { int replace, start, matched; char dimmname[64]; replace = start = matched = -1; (void) sscanf(pat, bd->bd_pat, &replace, &start, &matched); if (matched == -1) continue; (void) strlcpy(dimmname, pat, sizeof (dimmname)); if (bd->bd_subst != NULL) { (void) strlcpy(dimmname+replace, bd->bd_subst, sizeof (dimmname) - strlen(bd->bd_subst)); replace += strlen(bd->bd_subst); } c = pat + start; while (*c != '\0') { int dimmlen = -1; (void) sscanf(c, bd->bd_reppat, &dimmlen); if (dimmlen == -1) break; while (*c == ' ') { c++; dimmlen--; } if (dimmlen > sizeof (dimmname) - replace) break; (void) strlcpy(dimmname + replace, c, dimmlen + 1); newdimms = fmd_fmri_alloc(sizeof (char *) * (ndimms + 1)); if (ndimms != 0) { bcopy(dimms, newdimms, sizeof (char *) * ndimms); fmd_fmri_free(dimms, sizeof (char *) * ndimms); } newdimms[ndimms++] = fmd_fmri_strdup(dimmname); dimms = newdimms; c += dimmlen; if (*c != ' ' && *c != '\0') break; } if (*c != '\0') break; *dimmsp = dimms; *ndimmsp = ndimms; return (0); } mem_strarray_free(dimms, ndimms); return (fmd_fmri_set_errno(EINVAL)); } int mem_unum_burst(const char *pat, char ***dimmsp, size_t *ndimmsp) { const char *platform = fmd_fmri_get_platform(); /* * Call mem_unum_burst_sgsc() for Starcat, Serengeti, and * Lightweight 8 platforms. Call mem_unum_burst_pattern() * for all other platforms. */ if (strcmp(platform, "SUNW,Sun-Fire-15000") == 0 || strcmp(platform, "SUNW,Sun-Fire") == 0 || strcmp(platform, "SUNW,Netra-T12") == 0) return (mem_unum_burst_sgsc(pat, dimmsp, ndimmsp)); else return (mem_unum_burst_pattern(pat, dimmsp, ndimmsp)); } /* * The unum containership operation is designed to tell the caller whether a * given FMRI contains another. In the case of this plugin, we tell the caller * whether a given memory FMRI (usually a bank) contains another (usually a * DIMM). We do this in one of two ways, depending on the platform. For most * platforms, we can use the bursting routine to generate the list of member * unums from the container unum. Membership can then be determined by * searching the bursted list for the containee's unum. * * Some platforms, however, cannot be bursted, as their bank unums do not * contain all of the information needed to generate the complete list of * member DIMM unums. For these unums, we must make do with a substring * comparison. */ static int unum_contains_bypat(const char *erunum, const char *eeunum) { char **ernms, **eenms; size_t nernms, neenms; int i, j, rv = 1; if (mem_unum_burst(erunum, &ernms, &nernms) < 0) return (fmd_fmri_set_errno(EINVAL)); if (mem_unum_burst(eeunum, &eenms, &neenms) < 0) { mem_strarray_free(ernms, nernms); return (fmd_fmri_set_errno(EINVAL)); } for (i = 0; i < neenms; i++) { for (j = 0; j < nernms; j++) { if (strcmp(eenms[i], ernms[j]) == 0) break; } if (j == nernms) { /* * This DIMM was not found in the container. */ rv = 0; break; } } mem_strarray_free(ernms, nernms); mem_strarray_free(eenms, neenms); return (rv); } static int unum_strip_one_jnum(const char *unum, uint_t *endp) { char *c; int i; if ((c = strrchr(unum, 'J')) == NULL) return (0); while (c > unum && isspace(c[-1])) c--; (void) sscanf(c, " J%*[0-9] %n", &i); if (i == 0 || (uintptr_t)(c - unum) + i != strlen(unum)) return (0); *endp = (uint_t)(c - unum); return (1); } static int unum_contains_bysubstr(const char *erunum, const char *eeunum) { uint_t erlen, eelen; /* * This comparison method is only known to work on specific types of * unums. Check for those types here. */ if ((strncmp(erunum, "/N", 2) != 0 && strncmp(erunum, "/IO", 3) != 0 && strncmp(erunum, "/SB", 3) != 0) || (strncmp(eeunum, "/N", 2) != 0 && strncmp(eeunum, "/IO", 3) != 0 && strncmp(eeunum, "/SB", 3) != 0)) return (fmd_fmri_set_errno(EINVAL)); erlen = unum_strip_one_jnum(erunum, &erlen) ? erlen : strlen(erunum); eelen = unum_strip_one_jnum(eeunum, &eelen) ? eelen : strlen(eeunum); return (strncmp(erunum, eeunum, MIN(erlen, eelen)) == 0); } typedef int unum_cmptor_f(const char *, const char *); static unum_cmptor_f *const unum_cmptors[] = { unum_contains_bypat, unum_contains_bysubstr }; int mem_unum_contains(const char *erunum, const char *eeunum) { static int cmptor = 0; int rc; while (isspace(*erunum)) erunum++; while (isspace(*eeunum)) eeunum++; if ((rc = unum_cmptors[cmptor](erunum, eeunum)) >= 0) return (rc); if ((rc = unum_cmptors[cmptor == 0](erunum, eeunum)) >= 0) { /* * We succeeded with the non-default comparator. Change the * default so we use the correct one next time. */ cmptor = (cmptor == 0); } return (rc); }