/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License (the "License"). * You may not use this file except in compliance with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END */ /* * Copyright 2008 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "async.h" #include "agent.h" #include "script_handler.h" #include "util.h" #include "class_id.h" #include "states.h" #include "packet.h" #include "interface.h" #include "defaults.h" #ifndef TEXT_DOMAIN #define TEXT_DOMAIN "SYS_TEST" #endif iu_timer_id_t inactivity_id; int class_id_len = 0; char *class_id; iu_eh_t *eh; iu_tq_t *tq; pid_t grandparent; int rtsock_fd; static boolean_t shutdown_started = B_FALSE; static boolean_t do_adopt = B_FALSE; static unsigned int debug_level = 0; static iu_eh_callback_t accept_event, ipc_event, rtsock_event; /* * The ipc_cmd_allowed[] table indicates which IPC commands are allowed in * which states; a non-zero value indicates the command is permitted. * * START is permitted if the state machine is fresh, or if we are in the * process of trying to obtain a lease (as a convenience to save the * administrator from having to do an explicit DROP). EXTEND, RELEASE, and * GET_TAG require a lease to be obtained in order to make sense. INFORM is * permitted if the interface is fresh or has an INFORM in progress or * previously done on it -- otherwise a DROP or RELEASE is first required. * PING and STATUS always make sense and thus are always permitted, as is DROP * in order to permit the administrator to always bail out. */ static int ipc_cmd_allowed[DHCP_NSTATES][DHCP_NIPC] = { /* D E P R S S I G */ /* R X I E T T N E */ /* O T N L A A F T */ /* P E G E R T O _ */ /* . N . A T U R T */ /* . D . S . S M A */ /* . . . E . . . G */ /* INIT */ { 1, 0, 1, 0, 1, 1, 1, 0 }, /* SELECTING */ { 1, 0, 1, 0, 1, 1, 0, 0 }, /* REQUESTING */ { 1, 0, 1, 0, 1, 1, 0, 0 }, /* PRE_BOUND */ { 1, 1, 1, 1, 0, 1, 0, 1 }, /* BOUND */ { 1, 1, 1, 1, 0, 1, 0, 1 }, /* RENEWING */ { 1, 1, 1, 1, 0, 1, 0, 1 }, /* REBINDING */ { 1, 1, 1, 1, 0, 1, 0, 1 }, /* INFORMATION */ { 1, 0, 1, 0, 1, 1, 1, 1 }, /* INIT_REBOOT */ { 1, 0, 1, 1, 1, 1, 0, 0 }, /* ADOPTING */ { 1, 0, 1, 1, 0, 1, 0, 0 }, /* INFORM_SENT */ { 1, 0, 1, 0, 1, 1, 1, 0 }, /* DECLINING */ { 1, 1, 1, 1, 0, 1, 0, 1 }, /* RELEASING */ { 1, 0, 1, 0, 0, 1, 0, 1 }, }; #define CMD_ISPRIV 0x1 /* Command requires privileges */ #define CMD_CREATE 0x2 /* Command creates an interface */ #define CMD_BOOTP 0x4 /* Command is valid with BOOTP */ #define CMD_IMMED 0x8 /* Reply is immediate (no BUSY state) */ static uint_t ipc_cmd_flags[DHCP_NIPC] = { /* DHCP_DROP */ CMD_ISPRIV|CMD_BOOTP, /* DHCP_EXTEND */ CMD_ISPRIV, /* DHCP_PING */ CMD_BOOTP|CMD_IMMED, /* DHCP_RELEASE */ CMD_ISPRIV, /* DHCP_START */ CMD_CREATE|CMD_ISPRIV|CMD_BOOTP, /* DHCP_STATUS */ CMD_BOOTP|CMD_IMMED, /* DHCP_INFORM */ CMD_CREATE|CMD_ISPRIV, /* DHCP_GET_TAG */ CMD_BOOTP|CMD_IMMED }; static boolean_t is_iscsi_active(void); int main(int argc, char **argv) { boolean_t is_daemon = B_TRUE; boolean_t is_verbose; int ipc_fd; int c; struct rlimit rl; debug_level = df_get_int("", B_FALSE, DF_DEBUG_LEVEL); is_verbose = df_get_bool("", B_FALSE, DF_VERBOSE); /* * -l is ignored for compatibility with old agent. */ while ((c = getopt(argc, argv, "vd:l:fa")) != EOF) { switch (c) { case 'a': do_adopt = B_TRUE; grandparent = getpid(); break; case 'd': debug_level = strtoul(optarg, NULL, 0); break; case 'f': is_daemon = B_FALSE; break; case 'v': is_verbose = B_TRUE; break; case '?': (void) fprintf(stderr, "usage: %s [-a] [-d n] [-f] [-v]" "\n", argv[0]); return (EXIT_FAILURE); default: break; } } (void) setlocale(LC_ALL, ""); (void) textdomain(TEXT_DOMAIN); if (geteuid() != 0) { dhcpmsg_init(argv[0], B_FALSE, is_verbose, debug_level); dhcpmsg(MSG_ERROR, "must be super-user"); dhcpmsg_fini(); return (EXIT_FAILURE); } if (is_daemon && daemonize() == 0) { dhcpmsg_init(argv[0], B_FALSE, is_verbose, debug_level); dhcpmsg(MSG_ERR, "cannot become daemon, exiting"); dhcpmsg_fini(); return (EXIT_FAILURE); } /* * Seed the random number generator, since we're going to need it * to set transaction id's and for exponential backoff. */ srand48(gethrtime() ^ gethostid() ^ getpid()); dhcpmsg_init(argv[0], is_daemon, is_verbose, debug_level); (void) atexit(dhcpmsg_fini); tq = iu_tq_create(); eh = iu_eh_create(); if (eh == NULL || tq == NULL) { errno = ENOMEM; dhcpmsg(MSG_ERR, "cannot create timer queue or event handler"); return (EXIT_FAILURE); } /* * ignore most signals that could be reasonably generated. */ (void) signal(SIGTERM, graceful_shutdown); (void) signal(SIGQUIT, graceful_shutdown); (void) signal(SIGPIPE, SIG_IGN); (void) signal(SIGUSR1, SIG_IGN); (void) signal(SIGUSR2, SIG_IGN); (void) signal(SIGINT, SIG_IGN); (void) signal(SIGHUP, SIG_IGN); (void) signal(SIGCHLD, SIG_IGN); /* * upon SIGTHAW we need to refresh any non-infinite leases. */ (void) iu_eh_register_signal(eh, SIGTHAW, refresh_smachs, NULL); class_id = get_class_id(); if (class_id != NULL) class_id_len = strlen(class_id); else dhcpmsg(MSG_WARNING, "get_class_id failed, continuing " "with no vendor class id"); /* * the inactivity timer is enabled any time there are no * interfaces under DHCP control. if DHCP_INACTIVITY_WAIT * seconds transpire without an interface under DHCP control, * the agent shuts down. */ inactivity_id = iu_schedule_timer(tq, DHCP_INACTIVITY_WAIT, inactivity_shutdown, NULL); /* * max out the number available descriptors, just in case.. */ rl.rlim_cur = RLIM_INFINITY; rl.rlim_max = RLIM_INFINITY; if (setrlimit(RLIMIT_NOFILE, &rl) == -1) dhcpmsg(MSG_ERR, "setrlimit failed"); (void) enable_extended_FILE_stdio(-1, -1); /* * Create and bind default IP sockets used to control interfaces and to * catch stray packets. */ if (!dhcp_ip_default()) return (EXIT_FAILURE); /* * create the ipc channel that the agent will listen for * requests on, and register it with the event handler so that * `accept_event' will be called back. */ switch (dhcp_ipc_init(&ipc_fd)) { case 0: break; case DHCP_IPC_E_BIND: dhcpmsg(MSG_ERROR, "dhcp_ipc_init: cannot bind to port " "%i (agent already running?)", IPPORT_DHCPAGENT); return (EXIT_FAILURE); default: dhcpmsg(MSG_ERROR, "dhcp_ipc_init failed"); return (EXIT_FAILURE); } if (iu_register_event(eh, ipc_fd, POLLIN, accept_event, 0) == -1) { dhcpmsg(MSG_ERR, "cannot register ipc fd for messages"); return (EXIT_FAILURE); } /* * Create the global routing socket. This is used for monitoring * interface transitions, so that we learn about the kernel's Duplicate * Address Detection status, and for inserting and removing default * routes as learned from DHCP servers. Both v4 and v6 are handed * with this one socket. */ rtsock_fd = socket(PF_ROUTE, SOCK_RAW, 0); if (rtsock_fd == -1) { dhcpmsg(MSG_ERR, "cannot open routing socket"); return (EXIT_FAILURE); } if (iu_register_event(eh, rtsock_fd, POLLIN, rtsock_event, 0) == -1) { dhcpmsg(MSG_ERR, "cannot register routing socket for messages"); return (EXIT_FAILURE); } /* * if the -a (adopt) option was specified, try to adopt the * kernel-managed interface before we start. */ if (do_adopt && !dhcp_adopt()) return (EXIT_FAILURE); /* * For DHCPv6, we own all of the interfaces marked DHCPRUNNING. As * we're starting operation here, if there are any of those interfaces * lingering around, they're strays, and need to be removed. * * It might be nice to save these addresses off somewhere -- for both * v4 and v6 -- and use them as hints for later negotiation. */ remove_v6_strays(); /* * enter the main event loop; this is where all the real work * takes place (through registering events and scheduling timers). * this function only returns when the agent is shutting down. */ switch (iu_handle_events(eh, tq)) { case -1: dhcpmsg(MSG_WARNING, "iu_handle_events exited abnormally"); break; case DHCP_REASON_INACTIVITY: dhcpmsg(MSG_INFO, "no interfaces to manage, shutting down..."); break; case DHCP_REASON_TERMINATE: dhcpmsg(MSG_INFO, "received SIGTERM, shutting down..."); break; case DHCP_REASON_SIGNAL: dhcpmsg(MSG_WARNING, "received unexpected signal, shutting " "down..."); break; } (void) iu_eh_unregister_signal(eh, SIGTHAW, NULL); iu_eh_destroy(eh); iu_tq_destroy(tq); return (EXIT_SUCCESS); } /* * drain_script(): event loop callback during shutdown * * input: eh_t *: unused * void *: unused * output: boolean_t: B_TRUE if event loop should exit; B_FALSE otherwise */ /* ARGSUSED */ boolean_t drain_script(iu_eh_t *ehp, void *arg) { if (shutdown_started == B_FALSE) { shutdown_started = B_TRUE; /* * Check if the system is diskless client and/or * there are active iSCSI sessions * * Do not drop the lease, or the system will be * unable to sync(dump) through nfs/iSCSI driver */ if (!do_adopt && !is_iscsi_active()) { nuke_smach_list(); } } return (script_count == 0); } /* * accept_event(): accepts a new connection on the ipc socket and registers * to receive its messages with the event handler * * input: iu_eh_t *: unused * int: the file descriptor in the iu_eh_t * the connection came in on * (other arguments unused) * output: void */ /* ARGSUSED */ static void accept_event(iu_eh_t *ehp, int fd, short events, iu_event_id_t id, void *arg) { int client_fd; int is_priv; if (dhcp_ipc_accept(fd, &client_fd, &is_priv) != 0) { dhcpmsg(MSG_ERR, "accept_event: accept on ipc socket"); return; } if (iu_register_event(eh, client_fd, POLLIN, ipc_event, (void *)is_priv) == -1) { dhcpmsg(MSG_ERROR, "accept_event: cannot register ipc socket " "for callback"); } } /* * ipc_event(): processes incoming ipc requests * * input: iu_eh_t *: unused * int: the file descriptor in the iu_eh_t * the request came in on * short: unused * iu_event_id_t: event ID * void *: indicates whether the request is from a privileged client * output: void */ /* ARGSUSED */ static void ipc_event(iu_eh_t *ehp, int fd, short events, iu_event_id_t id, void *arg) { ipc_action_t ia, *iap; dhcp_smach_t *dsmp; int error, is_priv = (int)arg; const char *ifname; boolean_t isv6; ipc_action_init(&ia); error = dhcp_ipc_recv_request(fd, &ia.ia_request, DHCP_IPC_REQUEST_WAIT); if (error != DHCP_IPC_SUCCESS) { if (error != DHCP_IPC_E_EOF) { dhcpmsg(MSG_ERROR, "ipc_event: dhcp_ipc_recv_request failed: %s", dhcp_ipc_strerror(error)); } else { dhcpmsg(MSG_DEBUG, "ipc_event: connection closed"); } if ((dsmp = lookup_smach_by_event(id)) != NULL) { ipc_action_finish(dsmp, error); } else { (void) iu_unregister_event(eh, id, NULL); (void) dhcp_ipc_close(fd); } return; } /* Fill in temporary ipc_action structure for utility functions */ ia.ia_cmd = DHCP_IPC_CMD(ia.ia_request->message_type); ia.ia_fd = fd; ia.ia_eid = id; if (ia.ia_cmd >= DHCP_NIPC) { dhcpmsg(MSG_ERROR, "ipc_event: invalid command (%s) attempted on %s", dhcp_ipc_type_to_string(ia.ia_cmd), ia.ia_request->ifname); send_error_reply(&ia, DHCP_IPC_E_CMD_UNKNOWN); return; } /* return EPERM for any of the privileged actions */ if (!is_priv && (ipc_cmd_flags[ia.ia_cmd] & CMD_ISPRIV)) { dhcpmsg(MSG_WARNING, "ipc_event: privileged ipc command (%s) attempted on %s", dhcp_ipc_type_to_string(ia.ia_cmd), ia.ia_request->ifname); send_error_reply(&ia, DHCP_IPC_E_PERM); return; } /* * Try to locate the state machine associated with this command. If * the command is DHCP_START or DHCP_INFORM and there isn't a state * machine already, make one (there may already be one from a previous * failed attempt to START or INFORM). Otherwise, verify the reference * is still valid. * * The interface name may be blank. In that case, we look up the * primary interface, and the requested type (v4 or v6) doesn't matter. */ isv6 = (ia.ia_request->message_type & DHCP_V6) != 0; ifname = ia.ia_request->ifname; if (*ifname == '\0') dsmp = primary_smach(isv6); else dsmp = lookup_smach(ifname, isv6); if (dsmp != NULL) { /* Note that verify_smach drops a reference */ hold_smach(dsmp); if (!verify_smach(dsmp)) dsmp = NULL; } if (dsmp == NULL) { /* * If the user asked for the primary DHCP interface, but there * is none, then report failure. */ if (ifname[0] == '\0') { error = DHCP_IPC_E_NOPRIMARY; /* * If there's no interface, and we're starting up, then create * it now, along with a state machine for it. Note that if * insert_smach fails, it discards the LIF reference. */ } else if (ipc_cmd_flags[ia.ia_cmd] & CMD_CREATE) { dhcp_lif_t *lif; lif = attach_lif(ifname, isv6, &error); if (lif != NULL && (dsmp = insert_smach(lif, &error)) != NULL) { /* * Get client ID and set "DHCPRUNNING" flag on * logical interface. (V4 only, because V6 * plumbs its own interfaces.) */ error = get_smach_cid(dsmp); if (error == DHCP_IPC_SUCCESS) error = set_lif_dhcp(lif, B_FALSE); if (error != DHCP_IPC_SUCCESS) { remove_smach(dsmp); dsmp = NULL; } } /* * Otherwise, this is an operation on an unknown interface. */ } else { error = DHCP_IPC_E_UNKIF; } if (dsmp == NULL) { send_error_reply(&ia, error); return; } } if ((dsmp->dsm_dflags & DHCP_IF_BOOTP) && !(ipc_cmd_flags[ia.ia_cmd] & CMD_BOOTP)) { dhcpmsg(MSG_ERROR, "command %s not valid for BOOTP on %s", dhcp_ipc_type_to_string(ia.ia_cmd), dsmp->dsm_name); send_error_reply(&ia, DHCP_IPC_E_BOOTP); return; } /* * verify that the state machine is in a state which will allow the * command. we do this up front so that we can return an error * *before* needlessly cancelling an in-progress transaction. */ if (!check_cmd_allowed(dsmp->dsm_state, ia.ia_cmd)) { dhcpmsg(MSG_DEBUG, "in state %s; not allowing %s command on %s", dhcp_state_to_string(dsmp->dsm_state), dhcp_ipc_type_to_string(ia.ia_cmd), dsmp->dsm_name); send_error_reply(&ia, ia.ia_cmd == DHCP_START && dsmp->dsm_state != INIT ? DHCP_IPC_E_RUNNING : DHCP_IPC_E_OUTSTATE); return; } dhcpmsg(MSG_DEBUG, "in state %s; allowing %s command on %s", dhcp_state_to_string(dsmp->dsm_state), dhcp_ipc_type_to_string(ia.ia_cmd), dsmp->dsm_name); if ((ia.ia_request->message_type & DHCP_PRIMARY) && is_priv) make_primary(dsmp); /* * The current design dictates that there can be only one outstanding * transaction per state machine -- this simplifies the code * considerably and also fits well with RFCs 2131 and 3315. It is * worth classifying the different DHCP commands into synchronous * (those which we will handle now and reply to immediately) and * asynchronous (those which require transactions and will be completed * at an indeterminate time in the future): * * DROP: removes the agent's management of a state machine. * asynchronous as the script program may be invoked. * * PING: checks to see if the agent has a named state machine. * synchronous, since no packets need to be sent * to the DHCP server. * * STATUS: returns information about a state machine. * synchronous, since no packets need to be sent * to the DHCP server. * * RELEASE: releases the agent's management of a state machine * and brings the associated interfaces down. asynchronous * as the script program may be invoked. * * EXTEND: renews a lease. asynchronous, since the agent * needs to wait for an ACK, etc. * * START: starts DHCP on a named state machine. asynchronous since * the agent needs to wait for OFFERs, ACKs, etc. * * INFORM: obtains configuration parameters for the system using * externally configured interface. asynchronous, since the * agent needs to wait for an ACK. * * Notice that EXTEND, INFORM, START, DROP and RELEASE are * asynchronous. Notice also that asynchronous commands may occur from * within the agent -- for instance, the agent will need to do implicit * EXTENDs to extend the lease. In order to make the code simpler, the * following rules apply for asynchronous commands: * * There can only be one asynchronous command at a time per state * machine. The current asynchronous command is managed by the async_* * api: async_start(), async_finish(), and async_cancel(). * async_start() starts management of a new asynchronous command on an * state machine, which should only be done after async_cancel() to * terminate a previous command. When the command is completed, * async_finish() should be called. * * Asynchronous commands started by a user command have an associated * ipc_action which provides the agent with information for how to get * in touch with the user command when the action completes. These * ipc_action records also have an associated timeout which may be * infinite. ipc_action_start() should be called when starting an * asynchronous command requested by a user, which sets up the timer * and keeps track of the ipc information (file descriptor, request * type). When the asynchronous command completes, ipc_action_finish() * should be called to return a command status code to the user and * close the ipc connection). If the command does not complete before * the timer fires, ipc_action_timeout() is called which closes the ipc * connection and returns DHCP_IPC_E_TIMEOUT to the user. Note that * independent of ipc_action_timeout(), ipc_action_finish() should be * called. * * on a case-by-case basis, here is what happens (per state machine): * * o When an asynchronous command is requested, then * async_cancel() is called to terminate any non-user * action in progress. If there's a user action running, * the user command is sent DHCP_IPC_E_PEND. * * o otherwise, the the transaction is started with * async_start(). if the transaction is on behalf * of a user, ipc_action_start() is called to keep * track of the ipc information and set up the * ipc_action timer. * * o if the command completes normally and before a * timeout fires, then async_finish() is called. * if there was an associated ipc_action, * ipc_action_finish() is called to complete it. * * o if the command fails before a timeout fires, then * async_finish() is called, and the state machine is * is returned to a known state based on the command. * if there was an associated ipc_action, * ipc_action_finish() is called to complete it. * * o if the ipc_action timer fires before command * completion, then DHCP_IPC_E_TIMEOUT is returned to * the user. however, the transaction continues to * be carried out asynchronously. */ if (ipc_cmd_flags[ia.ia_cmd] & CMD_IMMED) { /* * Only immediate commands (ping, status, get_tag) need to * worry about freeing ia through one of the reply functions * before returning. */ iap = &ia; } else { /* * if shutdown request has been received, send back an error. */ if (shutdown_started) { send_error_reply(&ia, DHCP_IPC_E_OUTSTATE); return; } if (dsmp->dsm_dflags & DHCP_IF_BUSY) { send_error_reply(&ia, DHCP_IPC_E_PEND); return; } if (!ipc_action_start(dsmp, &ia)) { dhcpmsg(MSG_WARNING, "ipc_event: ipc_action_start " "failed for %s", dsmp->dsm_name); send_error_reply(&ia, DHCP_IPC_E_MEMORY); return; } /* Action structure consumed by above function */ iap = &dsmp->dsm_ia; } switch (iap->ia_cmd) { case DHCP_DROP: if (dsmp->dsm_droprelease) break; dsmp->dsm_droprelease = B_TRUE; (void) script_start(dsmp, isv6 ? EVENT_DROP6 : EVENT_DROP, dhcp_drop, NULL, NULL); break; /* not an immediate function */ case DHCP_EXTEND: (void) dhcp_extending(dsmp); break; case DHCP_GET_TAG: { dhcp_optnum_t optnum; void *opt = NULL; uint_t optlen; boolean_t did_alloc = B_FALSE; PKT_LIST *ack = dsmp->dsm_ack; /* * verify the request makes sense. */ if (iap->ia_request->data_type != DHCP_TYPE_OPTNUM || iap->ia_request->data_length != sizeof (dhcp_optnum_t)) { send_error_reply(iap, DHCP_IPC_E_PROTO); break; } (void) memcpy(&optnum, iap->ia_request->buffer, sizeof (dhcp_optnum_t)); load_option: switch (optnum.category) { case DSYM_SITE: /* FALLTHRU */ case DSYM_STANDARD: if (isv6) { opt = dhcpv6_pkt_option(ack, NULL, optnum.code, NULL); } else { if (optnum.code <= DHCP_LAST_OPT) opt = ack->opts[optnum.code]; } break; case DSYM_VENDOR: if (isv6) { dhcpv6_option_t *d6o; uint32_t ent; /* * Look through vendor options to find our * enterprise number. */ d6o = NULL; for (;;) { d6o = dhcpv6_pkt_option(ack, d6o, DHCPV6_OPT_VENDOR_OPT, &optlen); if (d6o == NULL) break; optlen -= sizeof (*d6o); if (optlen < sizeof (ent)) continue; (void) memcpy(&ent, d6o + 1, sizeof (ent)); if (ntohl(ent) != DHCPV6_SUN_ENT) continue; break; } if (d6o != NULL) { /* * Now find the requested vendor option * within the vendor options block. */ opt = dhcpv6_find_option( (char *)(d6o + 1) + sizeof (ent), optlen - sizeof (ent), NULL, optnum.code, NULL); } } else { /* * the test against VS_OPTION_START is broken * up into two tests to avoid compiler warnings * under intel. */ if ((optnum.code > VS_OPTION_START || optnum.code == VS_OPTION_START) && optnum.code <= VS_OPTION_END) opt = ack->vs[optnum.code]; } break; case DSYM_FIELD: if (isv6) { dhcpv6_message_t *d6m = (dhcpv6_message_t *)ack->pkt; dhcpv6_option_t *d6o; /* Validate the packet field the user wants */ optlen = optnum.code + optnum.size; if (d6m->d6m_msg_type == DHCPV6_MSG_RELAY_FORW || d6m->d6m_msg_type == DHCPV6_MSG_RELAY_REPL) { if (optlen > sizeof (dhcpv6_relay_t)) break; } else { if (optlen > sizeof (*d6m)) break; } opt = malloc(sizeof (*d6o) + optnum.size); if (opt != NULL) { d6o = opt; d6o->d6o_code = htons(optnum.code); d6o->d6o_len = htons(optnum.size); (void) memcpy(d6o + 1, (caddr_t)d6m + optnum.code, optnum.size); } } else { if (optnum.code + optnum.size > sizeof (PKT)) break; /* * + 2 to account for option code and length * byte */ opt = malloc(optnum.size + 2); if (opt != NULL) { DHCP_OPT *v4opt = opt; v4opt->len = optnum.size; v4opt->code = optnum.code; (void) memcpy(v4opt->value, (caddr_t)ack->pkt + optnum.code, optnum.size); } } if (opt == NULL) { send_error_reply(iap, DHCP_IPC_E_MEMORY); return; } did_alloc = B_TRUE; break; default: send_error_reply(iap, DHCP_IPC_E_PROTO); return; } /* * return the option payload, if there was one. the "+ 2" * accounts for the option code number and length byte. */ if (opt != NULL) { if (isv6) { dhcpv6_option_t d6ov; (void) memcpy(&d6ov, opt, sizeof (d6ov)); optlen = ntohs(d6ov.d6o_len) + sizeof (d6ov); } else { optlen = ((DHCP_OPT *)opt)->len + 2; } send_data_reply(iap, 0, DHCP_TYPE_OPTION, opt, optlen); if (did_alloc) free(opt); break; } else if (ack != dsmp->dsm_orig_ack) { /* * There wasn't any definition for the option in the * current ack, so now retry with the original ack if * the original ack is not the current ack. */ ack = dsmp->dsm_orig_ack; goto load_option; } /* * note that an "okay" response is returned either in * the case of an unknown option or a known option * with no payload. this is okay (for now) since * dhcpinfo checks whether an option is valid before * ever performing ipc with the agent. */ send_ok_reply(iap); break; } case DHCP_INFORM: dhcp_inform(dsmp); /* next destination: dhcp_acknak() */ break; /* not an immediate function */ case DHCP_PING: if (dsmp->dsm_dflags & DHCP_IF_FAILED) send_error_reply(iap, DHCP_IPC_E_FAILEDIF); else send_ok_reply(iap); break; case DHCP_RELEASE: if (dsmp->dsm_droprelease) break; dsmp->dsm_droprelease = B_TRUE; (void) script_start(dsmp, isv6 ? EVENT_RELEASE6 : EVENT_RELEASE, dhcp_release, "Finished with lease.", NULL); break; /* not an immediate function */ case DHCP_START: { PKT_LIST *ack, *oack; PKT_LIST *plp[2]; deprecate_leases(dsmp); /* * if we have a valid hostconf lying around, then jump * into INIT_REBOOT. if it fails, we'll end up going * through the whole selecting() procedure again. */ error = read_hostconf(dsmp->dsm_name, plp, 2, dsmp->dsm_isv6); ack = error > 0 ? plp[0] : NULL; oack = error > 1 ? plp[1] : NULL; /* * If the allocation of the old ack fails, that's fine; * continue without it. */ if (oack == NULL) oack = ack; /* * As long as we've allocated something, start using it. */ if (ack != NULL) { dsmp->dsm_orig_ack = oack; dsmp->dsm_ack = ack; dhcp_init_reboot(dsmp); /* next destination: dhcp_acknak() */ break; } /* * if not debugging, wait for a few seconds before * going into SELECTING. */ if (debug_level == 0 && set_start_timer(dsmp)) { /* next destination: dhcp_start() */ break; } else { dhcp_selecting(dsmp); /* next destination: dhcp_requesting() */ break; } } case DHCP_STATUS: { dhcp_status_t status; dhcp_lease_t *dlp; status.if_began = monosec_to_time(dsmp->dsm_curstart_monosec); /* * We return information on just the first lease as being * representative of the lot. A better status mechanism is * needed. */ dlp = dsmp->dsm_leases; if (dlp == NULL || dlp->dl_lifs->lif_expire.dt_start == DHCP_PERM) { status.if_t1 = DHCP_PERM; status.if_t2 = DHCP_PERM; status.if_lease = DHCP_PERM; } else { status.if_t1 = status.if_began + dlp->dl_t1.dt_start; status.if_t2 = status.if_began + dlp->dl_t2.dt_start; status.if_lease = status.if_began + dlp->dl_lifs->lif_expire.dt_start; } status.version = DHCP_STATUS_VER; status.if_state = dsmp->dsm_state; status.if_dflags = dsmp->dsm_dflags; status.if_sent = dsmp->dsm_sent; status.if_recv = dsmp->dsm_received; status.if_bad_offers = dsmp->dsm_bad_offers; (void) strlcpy(status.if_name, dsmp->dsm_name, IFNAMSIZ); send_data_reply(iap, 0, DHCP_TYPE_STATUS, &status, sizeof (dhcp_status_t)); break; } } } /* * check_rtm_addr(): determine if routing socket message matches interface * address * * input: const struct if_msghdr *: pointer to routing socket message * int: routing socket message length * boolean_t: set to B_TRUE if IPv6 * const in6_addr_t *: pointer to IP address * output: boolean_t: B_TRUE if address is a match */ static boolean_t check_rtm_addr(const struct ifa_msghdr *ifam, int msglen, boolean_t isv6, const in6_addr_t *addr) { const char *cp, *lim; uint_t flag; const struct sockaddr *sa; if (!(ifam->ifam_addrs & RTA_IFA)) return (B_FALSE); cp = (const char *)(ifam + 1); lim = (const char *)ifam + msglen; for (flag = 1; flag < RTA_IFA; flag <<= 1) { if (ifam->ifam_addrs & flag) { /* LINTED: alignment */ sa = (const struct sockaddr *)cp; if ((const char *)(sa + 1) > lim) return (B_FALSE); switch (sa->sa_family) { case AF_INET: cp += sizeof (struct sockaddr_in); break; case AF_LINK: cp += sizeof (struct sockaddr_dl); break; case AF_INET6: cp += sizeof (struct sockaddr_in6); break; default: cp += sizeof (struct sockaddr); break; } } } if (isv6) { const struct sockaddr_in6 *sin6; /* LINTED: alignment */ sin6 = (const struct sockaddr_in6 *)cp; if ((const char *)(sin6 + 1) > lim) return (B_FALSE); if (sin6->sin6_family != AF_INET6) return (B_FALSE); return (IN6_ARE_ADDR_EQUAL(&sin6->sin6_addr, addr)); } else { const struct sockaddr_in *sinp; ipaddr_t v4addr; /* LINTED: alignment */ sinp = (const struct sockaddr_in *)cp; if ((const char *)(sinp + 1) > lim) return (B_FALSE); if (sinp->sin_family != AF_INET) return (B_FALSE); IN6_V4MAPPED_TO_IPADDR(addr, v4addr); return (sinp->sin_addr.s_addr == v4addr); } } /* * is_rtm_v6(): determine if routing socket message is IPv6 * * input: struct ifa_msghdr *: pointer to routing socket message * int: message length * output: boolean_t */ static boolean_t is_rtm_v6(const struct ifa_msghdr *ifam, int msglen) { const char *cp, *lim; uint_t flag; const struct sockaddr *sa; cp = (const char *)(ifam + 1); lim = (const char *)ifam + msglen; for (flag = ifam->ifam_addrs; flag != 0; flag &= flag - 1) { /* LINTED: alignment */ sa = (const struct sockaddr *)cp; if ((const char *)(sa + 1) > lim) return (B_FALSE); switch (sa->sa_family) { case AF_INET: return (B_FALSE); case AF_LINK: cp += sizeof (struct sockaddr_dl); break; case AF_INET6: return (B_TRUE); default: cp += sizeof (struct sockaddr); break; } } return (B_FALSE); } /* * check_lif(): check the state of a given logical interface and its DHCP * lease. We've been told by the routing socket that the * corresponding ifIndex has changed. This may mean that DAD has * completed or failed. * * input: dhcp_lif_t *: pointer to the LIF * const struct ifa_msghdr *: routing socket message * int: size of routing socket message * output: boolean_t: B_TRUE if DAD has completed on this interface */ static boolean_t check_lif(dhcp_lif_t *lif, const struct ifa_msghdr *ifam, int msglen) { boolean_t isv6, dad_wait, unplumb; int fd; struct lifreq lifr; isv6 = lif->lif_pif->pif_isv6; fd = isv6 ? v6_sock_fd : v4_sock_fd; /* * Get the real (64 bit) logical interface flags. Note that the * routing socket message has flags, but these are just the lower 32 * bits. */ unplumb = B_FALSE; (void) memset(&lifr, 0, sizeof (lifr)); (void) strlcpy(lifr.lifr_name, lif->lif_name, sizeof (lifr.lifr_name)); if (ioctl(fd, SIOCGLIFFLAGS, &lifr) == -1) { /* * Failing to retrieve flags means that the interface is gone. * It hasn't failed to verify with DAD, but we still have to * give up on it. */ lifr.lifr_flags = 0; if (errno == ENXIO) { lif->lif_plumbed = B_FALSE; dhcpmsg(MSG_INFO, "%s has been removed; abandoning", lif->lif_name); if (!isv6) discard_default_routes(lif->lif_smachs); } else { dhcpmsg(MSG_ERR, "unable to retrieve interface flags on %s", lif->lif_name); } unplumb = B_TRUE; } else if (!check_rtm_addr(ifam, msglen, isv6, &lif->lif_v6addr)) { /* * If the message is not about this logical interface, * then just ignore it. */ return (B_FALSE); } else if (lifr.lifr_flags & IFF_DUPLICATE) { dhcpmsg(MSG_ERROR, "interface %s has duplicate address", lif->lif_name); lif_mark_decline(lif, "duplicate address"); close_ip_lif(lif); (void) open_ip_lif(lif, INADDR_ANY); } dad_wait = lif->lif_dad_wait; if (dad_wait) { dhcpmsg(MSG_VERBOSE, "check_lif: %s has finished DAD", lif->lif_name); lif->lif_dad_wait = B_FALSE; } if (unplumb) unplumb_lif(lif); return (dad_wait); } /* * check_main_lif(): check the state of a main logical interface for a state * machine. This is used only for DHCPv6. * * input: dhcp_smach_t *: pointer to the state machine * const struct ifa_msghdr *: routing socket message * int: size of routing socket message * output: boolean_t: B_TRUE if LIF is ok. */ static boolean_t check_main_lif(dhcp_smach_t *dsmp, const struct ifa_msghdr *ifam, int msglen) { dhcp_lif_t *lif = dsmp->dsm_lif; struct lifreq lifr; /* * Get the real (64 bit) logical interface flags. Note that the * routing socket message has flags, but these are just the lower 32 * bits. */ (void) memset(&lifr, 0, sizeof (lifr)); (void) strlcpy(lifr.lifr_name, lif->lif_name, sizeof (lifr.lifr_name)); if (ioctl(v6_sock_fd, SIOCGLIFFLAGS, &lifr) == -1) { /* * Failing to retrieve flags means that the interface is gone. * Our state machine is now trash. */ if (errno == ENXIO) { dhcpmsg(MSG_INFO, "%s has been removed; abandoning", lif->lif_name); } else { dhcpmsg(MSG_ERR, "unable to retrieve interface flags on %s", lif->lif_name); } return (B_FALSE); } else if (!check_rtm_addr(ifam, msglen, B_TRUE, &lif->lif_v6addr)) { /* * If the message is not about this logical interface, * then just ignore it. */ return (B_TRUE); } else if (lifr.lifr_flags & IFF_DUPLICATE) { dhcpmsg(MSG_ERROR, "interface %s has duplicate address", lif->lif_name); return (B_FALSE); } else { return (B_TRUE); } } /* * process_link_up_down(): check the state of a physical interface for up/down * transitions; must go through INIT_REBOOT state if * the link flaps. * * input: dhcp_pif_t *: pointer to the physical interface to check * const struct if_msghdr *: routing socket message * output: none */ static void process_link_up_down(dhcp_pif_t *pif, const struct if_msghdr *ifm) { struct lifreq lifr; boolean_t isv6; int fd; /* * If the message implies no change of flags, then we're done; no need * to check further. Note that if we have multiple state machines on a * single physical interface, this test keeps us from issuing an ioctl * for each one. */ if ((ifm->ifm_flags & IFF_RUNNING) && pif->pif_running || !(ifm->ifm_flags & IFF_RUNNING) && !pif->pif_running) return; /* * We don't know what the real interface flags are, because the * if_index number is only 16 bits; we must go ask. */ isv6 = pif->pif_isv6; fd = isv6 ? v6_sock_fd : v4_sock_fd; (void) memset(&lifr, 0, sizeof (lifr)); (void) strlcpy(lifr.lifr_name, pif->pif_name, sizeof (lifr.lifr_name)); if (ioctl(fd, SIOCGLIFFLAGS, &lifr) == -1 || !(lifr.lifr_flags & IFF_RUNNING)) { /* * If we've lost the interface or it has gone down, then * nothing special to do; just turn off the running flag. */ pif_status(pif, B_FALSE); } else { /* * Interface has come back up: go through verification process. */ pif_status(pif, B_TRUE); } } /* * rtsock_event(): fetches routing socket messages and updates internal * interface state based on those messages. * * input: iu_eh_t *: unused * int: the routing socket file descriptor * (other arguments unused) * output: void */ /* ARGSUSED */ static void rtsock_event(iu_eh_t *ehp, int fd, short events, iu_event_id_t id, void *arg) { dhcp_smach_t *dsmp, *dsmnext; union { struct ifa_msghdr ifam; struct if_msghdr ifm; char buf[1024]; } msg; uint16_t ifindex; int msglen; boolean_t isv6; if ((msglen = read(fd, &msg, sizeof (msg))) <= 0) return; /* Note that the routing socket interface index is just 16 bits */ if (msg.ifm.ifm_type == RTM_IFINFO) { ifindex = msg.ifm.ifm_index; isv6 = (msg.ifm.ifm_flags & IFF_IPV6) ? B_TRUE : B_FALSE; } else if (msg.ifam.ifam_type == RTM_DELADDR || msg.ifam.ifam_type == RTM_NEWADDR) { ifindex = msg.ifam.ifam_index; isv6 = is_rtm_v6(&msg.ifam, msglen); } else { return; } for (dsmp = lookup_smach_by_uindex(ifindex, NULL, isv6); dsmp != NULL; dsmp = dsmnext) { DHCPSTATE oldstate; boolean_t lif_finished; boolean_t lease_removed; dhcp_lease_t *dlp, *dlnext; /* * Note that script_start can call dhcp_drop directly, and * that will do release_smach. */ dsmnext = lookup_smach_by_uindex(ifindex, dsmp, isv6); oldstate = dsmp->dsm_state; /* * Ignore state machines that are currently processing drop or * release; there is nothing more we can do for them. */ if (dsmp->dsm_droprelease) continue; /* * Look for link up/down notifications. These occur on a * physical interface basis. */ if (msg.ifm.ifm_type == RTM_IFINFO) { process_link_up_down(dsmp->dsm_lif->lif_pif, &msg.ifm); continue; } /* * Since we cannot trust the flags reported by the routing * socket (they're just 32 bits -- and thus never include * IFF_DUPLICATE), and we can't trust the ifindex (it's only 16 * bits and also doesn't reflect the alias in use), we get * flags on all matching interfaces, and go by that. */ lif_finished = B_FALSE; lease_removed = B_FALSE; for (dlp = dsmp->dsm_leases; dlp != NULL; dlp = dlnext) { dhcp_lif_t *lif, *lifnext; uint_t nlifs = dlp->dl_nlifs; dlnext = dlp->dl_next; for (lif = dlp->dl_lifs; lif != NULL && nlifs > 0; lif = lifnext, nlifs--) { lifnext = lif->lif_next; if (check_lif(lif, &msg.ifam, msglen)) { dsmp->dsm_lif_wait--; lif_finished = B_TRUE; } } if (dlp->dl_nlifs == 0) { remove_lease(dlp); lease_removed = B_TRUE; } } if ((isv6 && !check_main_lif(dsmp, &msg.ifam, msglen)) || (!isv6 && !verify_lif(dsmp->dsm_lif))) { if (dsmp->dsm_script_pid != -1) script_stop(dsmp); dsmp->dsm_droprelease = B_TRUE; (void) script_start(dsmp, isv6 ? EVENT_DROP6 : EVENT_DROP, dhcp_drop, NULL, NULL); continue; } /* * Ignore this state machine if nothing interesting has * happened. */ if (!lif_finished && dsmp->dsm_lif_down == 0 && (dsmp->dsm_leases != NULL || !lease_removed)) continue; /* * If we're still waiting for DAD to complete on some of the * configured LIFs, then don't send a response. */ if (dsmp->dsm_lif_wait != 0) { dhcpmsg(MSG_VERBOSE, "rtsock_event: %s still has %d " "LIFs waiting on DAD", dsmp->dsm_name, dsmp->dsm_lif_wait); continue; } /* * If we have some failed LIFs, then handle them now. We'll * remove them from the list. Any leases that become empty are * also removed as part of the decline-generation process. */ if (dsmp->dsm_lif_down != 0) send_declines(dsmp); if (dsmp->dsm_leases == NULL) { dsmp->dsm_bad_offers++; /* * For DHCPv6, we'll process the restart once we're * done sending Decline messages, because these are * supposed to be acknowledged. With DHCPv4, there's * no acknowledgment for a DECLINE, so after sending * it, we just restart right away. */ if (!dsmp->dsm_isv6) { dhcpmsg(MSG_VERBOSE, "rtsock_event: %s has no " "LIFs left", dsmp->dsm_name); dhcp_restart(dsmp); } } else { /* * If we're now up on at least some of the leases and * we were waiting for that, then kick off the rest of * configuration. Lease validation and DAD are done. */ dhcpmsg(MSG_VERBOSE, "rtsock_event: all LIFs verified " "on %s in %s state", dsmp->dsm_name, dhcp_state_to_string(oldstate)); if (oldstate == PRE_BOUND || oldstate == ADOPTING) dhcp_bound_complete(dsmp); if (oldstate == ADOPTING) dhcp_adopt_complete(dsmp); } } } /* * check_cmd_allowed(): check whether the requested command is allowed in the * state specified. * * input: DHCPSTATE: current state * dhcp_ipc_type_t: requested command * output: boolean_t: B_TRUE if command is allowed in this state */ boolean_t check_cmd_allowed(DHCPSTATE state, dhcp_ipc_type_t cmd) { return (ipc_cmd_allowed[state][cmd] != 0); } static boolean_t is_iscsi_active(void) { int fd; int active; if ((fd = open(ISCSI_DRIVER_DEVCTL, O_RDONLY)) == -1) { return (B_FALSE); } if ((ioctl(fd, ISCSI_IS_ACTIVE, &active)) != 0) { active = 0; } (void) close(fd); if (active) { return (B_TRUE); } else { return (B_FALSE); } }