// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2024 ARM Ltd. * * Author: Dev Jain * * Test describing a clear distinction between signal states - delivered and * blocked, and their relation with ucontext. * * A process can request blocking of a signal by masking it into its set of * blocked signals; such a signal, when sent to the process by the kernel, * will get blocked by the process and it may later unblock it and take an * action. At that point, the signal will be delivered. * * We test the following functionalities of the kernel: * * ucontext_t describes the interrupted context of the thread; this implies * that, in case of registering a handler and catching the corresponding * signal, that state is before what was jumping into the handler. * * The thread's mask of blocked signals can be permanently changed, i.e, not * just during the execution of the handler, by mangling with uc_sigmask * from inside the handler. * * Assume that we block the set of signals, S1, by sigaction(), and say, the * signal for which the handler was installed, is S2. When S2 is sent to the * program, it will be considered "delivered", since we will act on the * signal and jump to the handler. Any instances of S1 or S2 raised, while the * program is executing inside the handler, will be blocked; they will be * delivered immediately upon termination of the handler. * * For standard signals (also see real-time signals in the man page), multiple * blocked instances of the same signal are not queued; such a signal will * be delivered just once. */ #include #include #include #include #include "../kselftest.h" void handler_verify_ucontext(int signo, siginfo_t *info, void *uc) { int ret; /* Kernel dumps ucontext with USR2 blocked */ ret = sigismember(&(((ucontext_t *)uc)->uc_sigmask), SIGUSR2); ksft_test_result(ret == 1, "USR2 blocked in ucontext\n"); /* * USR2 is blocked; can be delivered neither here, nor after * exit from handler */ if (raise(SIGUSR2)) ksft_exit_fail_perror("raise"); } void handler_segv(int signo, siginfo_t *info, void *uc) { /* * Three cases possible: * 1. Program already terminated due to segmentation fault. * 2. SEGV was blocked even after returning from handler_usr. * 3. SEGV was delivered on returning from handler_usr. * The last option must happen. */ ksft_test_result_pass("SEGV delivered\n"); } static int cnt; void handler_usr(int signo, siginfo_t *info, void *uc) { int ret; /* * Break out of infinite recursion caused by raise(SIGUSR1) invoked * from inside the handler */ ++cnt; if (cnt > 1) return; /* SEGV blocked during handler execution, delivered on return */ if (raise(SIGSEGV)) ksft_exit_fail_perror("raise"); ksft_print_msg("SEGV bypassed successfully\n"); /* * Signal responsible for handler invocation is blocked by default; * delivered on return, leading to recursion */ if (raise(SIGUSR1)) ksft_exit_fail_perror("raise"); ksft_test_result(cnt == 1, "USR1 is blocked, cannot invoke handler right now\n"); /* Raise USR1 again; only one instance must be delivered upon exit */ if (raise(SIGUSR1)) ksft_exit_fail_perror("raise"); /* SEGV has been blocked in sa_mask, but ucontext is empty */ ret = sigismember(&(((ucontext_t *)uc)->uc_sigmask), SIGSEGV); ksft_test_result(ret == 0, "SEGV not blocked in ucontext\n"); /* USR1 has been blocked, but ucontext is empty */ ret = sigismember(&(((ucontext_t *)uc)->uc_sigmask), SIGUSR1); ksft_test_result(ret == 0, "USR1 not blocked in ucontext\n"); /* * Mangle ucontext; this will be copied back into ¤t->blocked * on return from the handler. */ if (sigaddset(&((ucontext_t *)uc)->uc_sigmask, SIGUSR2)) ksft_exit_fail_perror("sigaddset"); } int main(int argc, char *argv[]) { struct sigaction act, act2; sigset_t set, oldset; ksft_print_header(); ksft_set_plan(7); act.sa_flags = SA_SIGINFO; act.sa_sigaction = &handler_usr; /* Add SEGV to blocked mask */ if (sigemptyset(&act.sa_mask) || sigaddset(&act.sa_mask, SIGSEGV) || (sigismember(&act.sa_mask, SIGSEGV) != 1)) ksft_exit_fail_msg("Cannot add SEGV to blocked mask\n"); if (sigaction(SIGUSR1, &act, NULL)) ksft_exit_fail_perror("Cannot install handler"); act2.sa_flags = SA_SIGINFO; act2.sa_sigaction = &handler_segv; if (sigaction(SIGSEGV, &act2, NULL)) ksft_exit_fail_perror("Cannot install handler"); /* Invoke handler */ if (raise(SIGUSR1)) ksft_exit_fail_perror("raise"); /* USR1 must not be queued */ ksft_test_result(cnt == 2, "handler invoked only twice\n"); /* Mangled ucontext implies USR2 is blocked for current thread */ if (raise(SIGUSR2)) ksft_exit_fail_perror("raise"); ksft_print_msg("USR2 bypassed successfully\n"); act.sa_sigaction = &handler_verify_ucontext; if (sigaction(SIGUSR1, &act, NULL)) ksft_exit_fail_perror("Cannot install handler"); if (raise(SIGUSR1)) ksft_exit_fail_perror("raise"); /* * Raising USR2 in handler_verify_ucontext is redundant since it * is blocked */ ksft_print_msg("USR2 still blocked on return from handler\n"); /* Confirm USR2 blockage by sigprocmask() too */ if (sigemptyset(&set)) ksft_exit_fail_perror("sigemptyset"); if (sigprocmask(SIG_BLOCK, &set, &oldset)) ksft_exit_fail_perror("sigprocmask"); ksft_test_result(sigismember(&oldset, SIGUSR2) == 1, "USR2 present in ¤t->blocked\n"); ksft_finished(); }