// SPDX-License-Identifier: GPL-2.0-or-later #define _GNU_SOURCE #include "../kselftest_harness.h" #include <asm-generic/mman.h> /* Force the import of the tools version. */ #include <assert.h> #include <errno.h> #include <fcntl.h> #include <linux/userfaultfd.h> #include <setjmp.h> #include <signal.h> #include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/ioctl.h> #include <sys/mman.h> #include <sys/syscall.h> #include <sys/uio.h> #include <unistd.h> /* * Ignore the checkpatch warning, as per the C99 standard, section 7.14.1.1: * * "If the signal occurs other than as the result of calling the abort or raise * function, the behavior is undefined if the signal handler refers to any * object with static storage duration other than by assigning a value to an * object declared as volatile sig_atomic_t" */ static volatile sig_atomic_t signal_jump_set; static sigjmp_buf signal_jmp_buf; /* * Ignore the checkpatch warning, we must read from x but don't want to do * anything with it in order to trigger a read page fault. We therefore must use * volatile to stop the compiler from optimising this away. */ #define FORCE_READ(x) (*(volatile typeof(x) *)x) static int userfaultfd(int flags) { return syscall(SYS_userfaultfd, flags); } static void handle_fatal(int c) { if (!signal_jump_set) return; siglongjmp(signal_jmp_buf, c); } static int pidfd_open(pid_t pid, unsigned int flags) { return syscall(SYS_pidfd_open, pid, flags); } /* * Enable our signal catcher and try to read/write the specified buffer. The * return value indicates whether the read/write succeeds without a fatal * signal. */ static bool try_access_buf(char *ptr, bool write) { bool failed; /* Tell signal handler to jump back here on fatal signal. */ signal_jump_set = true; /* If a fatal signal arose, we will jump back here and failed is set. */ failed = sigsetjmp(signal_jmp_buf, 0) != 0; if (!failed) { if (write) *ptr = 'x'; else FORCE_READ(ptr); } signal_jump_set = false; return !failed; } /* Try and read from a buffer, return true if no fatal signal. */ static bool try_read_buf(char *ptr) { return try_access_buf(ptr, false); } /* Try and write to a buffer, return true if no fatal signal. */ static bool try_write_buf(char *ptr) { return try_access_buf(ptr, true); } /* * Try and BOTH read from AND write to a buffer, return true if BOTH operations * succeed. */ static bool try_read_write_buf(char *ptr) { return try_read_buf(ptr) && try_write_buf(ptr); } FIXTURE(guard_pages) { unsigned long page_size; }; FIXTURE_SETUP(guard_pages) { struct sigaction act = { .sa_handler = &handle_fatal, .sa_flags = SA_NODEFER, }; sigemptyset(&act.sa_mask); if (sigaction(SIGSEGV, &act, NULL)) ksft_exit_fail_perror("sigaction"); self->page_size = (unsigned long)sysconf(_SC_PAGESIZE); }; FIXTURE_TEARDOWN(guard_pages) { struct sigaction act = { .sa_handler = SIG_DFL, .sa_flags = SA_NODEFER, }; sigemptyset(&act.sa_mask); sigaction(SIGSEGV, &act, NULL); } TEST_F(guard_pages, basic) { const unsigned long NUM_PAGES = 10; const unsigned long page_size = self->page_size; char *ptr; int i; ptr = mmap(NULL, NUM_PAGES * page_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0); ASSERT_NE(ptr, MAP_FAILED); /* Trivially assert we can touch the first page. */ ASSERT_TRUE(try_read_write_buf(ptr)); ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0); /* Establish that 1st page SIGSEGV's. */ ASSERT_FALSE(try_read_write_buf(ptr)); /* Ensure we can touch everything else.*/ for (i = 1; i < NUM_PAGES; i++) { char *curr = &ptr[i * page_size]; ASSERT_TRUE(try_read_write_buf(curr)); } /* Establish a guard page at the end of the mapping. */ ASSERT_EQ(madvise(&ptr[(NUM_PAGES - 1) * page_size], page_size, MADV_GUARD_INSTALL), 0); /* Check that both guard pages result in SIGSEGV. */ ASSERT_FALSE(try_read_write_buf(ptr)); ASSERT_FALSE(try_read_write_buf(&ptr[(NUM_PAGES - 1) * page_size])); /* Remove the first guard page. */ ASSERT_FALSE(madvise(ptr, page_size, MADV_GUARD_REMOVE)); /* Make sure we can touch it. */ ASSERT_TRUE(try_read_write_buf(ptr)); /* Remove the last guard page. */ ASSERT_FALSE(madvise(&ptr[(NUM_PAGES - 1) * page_size], page_size, MADV_GUARD_REMOVE)); /* Make sure we can touch it. */ ASSERT_TRUE(try_read_write_buf(&ptr[(NUM_PAGES - 1) * page_size])); /* * Test setting a _range_ of pages, namely the first 3. The first of * these be faulted in, so this also tests that we can install guard * pages over backed pages. */ ASSERT_EQ(madvise(ptr, 3 * page_size, MADV_GUARD_INSTALL), 0); /* Make sure they are all guard pages. */ for (i = 0; i < 3; i++) { char *curr = &ptr[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } /* Make sure the rest are not. */ for (i = 3; i < NUM_PAGES; i++) { char *curr = &ptr[i * page_size]; ASSERT_TRUE(try_read_write_buf(curr)); } /* Remove guard pages. */ ASSERT_EQ(madvise(ptr, NUM_PAGES * page_size, MADV_GUARD_REMOVE), 0); /* Now make sure we can touch everything. */ for (i = 0; i < NUM_PAGES; i++) { char *curr = &ptr[i * page_size]; ASSERT_TRUE(try_read_write_buf(curr)); } /* * Now remove all guard pages, make sure we don't remove existing * entries. */ ASSERT_EQ(madvise(ptr, NUM_PAGES * page_size, MADV_GUARD_REMOVE), 0); for (i = 0; i < NUM_PAGES * page_size; i += page_size) { char chr = ptr[i]; ASSERT_EQ(chr, 'x'); } ASSERT_EQ(munmap(ptr, NUM_PAGES * page_size), 0); } /* Assert that operations applied across multiple VMAs work as expected. */ TEST_F(guard_pages, multi_vma) { const unsigned long page_size = self->page_size; char *ptr_region, *ptr, *ptr1, *ptr2, *ptr3; int i; /* Reserve a 100 page region over which we can install VMAs. */ ptr_region = mmap(NULL, 100 * page_size, PROT_NONE, MAP_ANON | MAP_PRIVATE, -1, 0); ASSERT_NE(ptr_region, MAP_FAILED); /* Place a VMA of 10 pages size at the start of the region. */ ptr1 = mmap(ptr_region, 10 * page_size, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0); ASSERT_NE(ptr1, MAP_FAILED); /* Place a VMA of 5 pages size 50 pages into the region. */ ptr2 = mmap(&ptr_region[50 * page_size], 5 * page_size, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0); ASSERT_NE(ptr2, MAP_FAILED); /* Place a VMA of 20 pages size at the end of the region. */ ptr3 = mmap(&ptr_region[80 * page_size], 20 * page_size, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0); ASSERT_NE(ptr3, MAP_FAILED); /* Unmap gaps. */ ASSERT_EQ(munmap(&ptr_region[10 * page_size], 40 * page_size), 0); ASSERT_EQ(munmap(&ptr_region[55 * page_size], 25 * page_size), 0); /* * We end up with VMAs like this: * * 0 10 .. 50 55 .. 80 100 * [---] [---] [---] */ /* * Now mark the whole range as guard pages and make sure all VMAs are as * such. */ /* * madvise() is certifiable and lets you perform operations over gaps, * everything works, but it indicates an error and errno is set to * -ENOMEM. Also if anything runs out of memory it is set to * -ENOMEM. You are meant to guess which is which. */ ASSERT_EQ(madvise(ptr_region, 100 * page_size, MADV_GUARD_INSTALL), -1); ASSERT_EQ(errno, ENOMEM); for (i = 0; i < 10; i++) { char *curr = &ptr1[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } for (i = 0; i < 5; i++) { char *curr = &ptr2[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } for (i = 0; i < 20; i++) { char *curr = &ptr3[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } /* Now remove guar pages over range and assert the opposite. */ ASSERT_EQ(madvise(ptr_region, 100 * page_size, MADV_GUARD_REMOVE), -1); ASSERT_EQ(errno, ENOMEM); for (i = 0; i < 10; i++) { char *curr = &ptr1[i * page_size]; ASSERT_TRUE(try_read_write_buf(curr)); } for (i = 0; i < 5; i++) { char *curr = &ptr2[i * page_size]; ASSERT_TRUE(try_read_write_buf(curr)); } for (i = 0; i < 20; i++) { char *curr = &ptr3[i * page_size]; ASSERT_TRUE(try_read_write_buf(curr)); } /* Now map incompatible VMAs in the gaps. */ ptr = mmap(&ptr_region[10 * page_size], 40 * page_size, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0); ASSERT_NE(ptr, MAP_FAILED); ptr = mmap(&ptr_region[55 * page_size], 25 * page_size, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0); ASSERT_NE(ptr, MAP_FAILED); /* * We end up with VMAs like this: * * 0 10 .. 50 55 .. 80 100 * [---][xxxx][---][xxxx][---] * * Where 'x' signifies VMAs that cannot be merged with those adjacent to * them. */ /* Multiple VMAs adjacent to one another should result in no error. */ ASSERT_EQ(madvise(ptr_region, 100 * page_size, MADV_GUARD_INSTALL), 0); for (i = 0; i < 100; i++) { char *curr = &ptr_region[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } ASSERT_EQ(madvise(ptr_region, 100 * page_size, MADV_GUARD_REMOVE), 0); for (i = 0; i < 100; i++) { char *curr = &ptr_region[i * page_size]; ASSERT_TRUE(try_read_write_buf(curr)); } /* Cleanup. */ ASSERT_EQ(munmap(ptr_region, 100 * page_size), 0); } /* * Assert that batched operations performed using process_madvise() work as * expected. */ TEST_F(guard_pages, process_madvise) { const unsigned long page_size = self->page_size; pid_t pid = getpid(); int pidfd = pidfd_open(pid, 0); char *ptr_region, *ptr1, *ptr2, *ptr3; ssize_t count; struct iovec vec[6]; ASSERT_NE(pidfd, -1); /* Reserve region to map over. */ ptr_region = mmap(NULL, 100 * page_size, PROT_NONE, MAP_ANON | MAP_PRIVATE, -1, 0); ASSERT_NE(ptr_region, MAP_FAILED); /* * 10 pages offset 1 page into reserve region. We MAP_POPULATE so we * overwrite existing entries and test this code path against * overwriting existing entries. */ ptr1 = mmap(&ptr_region[page_size], 10 * page_size, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_ANON | MAP_PRIVATE | MAP_POPULATE, -1, 0); ASSERT_NE(ptr1, MAP_FAILED); /* We want guard markers at start/end of each VMA. */ vec[0].iov_base = ptr1; vec[0].iov_len = page_size; vec[1].iov_base = &ptr1[9 * page_size]; vec[1].iov_len = page_size; /* 5 pages offset 50 pages into reserve region. */ ptr2 = mmap(&ptr_region[50 * page_size], 5 * page_size, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0); ASSERT_NE(ptr2, MAP_FAILED); vec[2].iov_base = ptr2; vec[2].iov_len = page_size; vec[3].iov_base = &ptr2[4 * page_size]; vec[3].iov_len = page_size; /* 20 pages offset 79 pages into reserve region. */ ptr3 = mmap(&ptr_region[79 * page_size], 20 * page_size, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0); ASSERT_NE(ptr3, MAP_FAILED); vec[4].iov_base = ptr3; vec[4].iov_len = page_size; vec[5].iov_base = &ptr3[19 * page_size]; vec[5].iov_len = page_size; /* Free surrounding VMAs. */ ASSERT_EQ(munmap(ptr_region, page_size), 0); ASSERT_EQ(munmap(&ptr_region[11 * page_size], 39 * page_size), 0); ASSERT_EQ(munmap(&ptr_region[55 * page_size], 24 * page_size), 0); ASSERT_EQ(munmap(&ptr_region[99 * page_size], page_size), 0); /* Now guard in one step. */ count = process_madvise(pidfd, vec, 6, MADV_GUARD_INSTALL, 0); /* OK we don't have permission to do this, skip. */ if (count == -1 && errno == EPERM) ksft_exit_skip("No process_madvise() permissions, try running as root.\n"); /* Returns the number of bytes advised. */ ASSERT_EQ(count, 6 * page_size); /* Now make sure the guarding was applied. */ ASSERT_FALSE(try_read_write_buf(ptr1)); ASSERT_FALSE(try_read_write_buf(&ptr1[9 * page_size])); ASSERT_FALSE(try_read_write_buf(ptr2)); ASSERT_FALSE(try_read_write_buf(&ptr2[4 * page_size])); ASSERT_FALSE(try_read_write_buf(ptr3)); ASSERT_FALSE(try_read_write_buf(&ptr3[19 * page_size])); /* Now do the same with unguard... */ count = process_madvise(pidfd, vec, 6, MADV_GUARD_REMOVE, 0); /* ...and everything should now succeed. */ ASSERT_TRUE(try_read_write_buf(ptr1)); ASSERT_TRUE(try_read_write_buf(&ptr1[9 * page_size])); ASSERT_TRUE(try_read_write_buf(ptr2)); ASSERT_TRUE(try_read_write_buf(&ptr2[4 * page_size])); ASSERT_TRUE(try_read_write_buf(ptr3)); ASSERT_TRUE(try_read_write_buf(&ptr3[19 * page_size])); /* Cleanup. */ ASSERT_EQ(munmap(ptr1, 10 * page_size), 0); ASSERT_EQ(munmap(ptr2, 5 * page_size), 0); ASSERT_EQ(munmap(ptr3, 20 * page_size), 0); close(pidfd); } /* Assert that unmapping ranges does not leave guard markers behind. */ TEST_F(guard_pages, munmap) { const unsigned long page_size = self->page_size; char *ptr, *ptr_new1, *ptr_new2; ptr = mmap(NULL, 10 * page_size, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); ASSERT_NE(ptr, MAP_FAILED); /* Guard first and last pages. */ ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0); ASSERT_EQ(madvise(&ptr[9 * page_size], page_size, MADV_GUARD_INSTALL), 0); /* Assert that they are guarded. */ ASSERT_FALSE(try_read_write_buf(ptr)); ASSERT_FALSE(try_read_write_buf(&ptr[9 * page_size])); /* Unmap them. */ ASSERT_EQ(munmap(ptr, page_size), 0); ASSERT_EQ(munmap(&ptr[9 * page_size], page_size), 0); /* Map over them.*/ ptr_new1 = mmap(ptr, page_size, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0); ASSERT_NE(ptr_new1, MAP_FAILED); ptr_new2 = mmap(&ptr[9 * page_size], page_size, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0); ASSERT_NE(ptr_new2, MAP_FAILED); /* Assert that they are now not guarded. */ ASSERT_TRUE(try_read_write_buf(ptr_new1)); ASSERT_TRUE(try_read_write_buf(ptr_new2)); /* Cleanup. */ ASSERT_EQ(munmap(ptr, 10 * page_size), 0); } /* Assert that mprotect() operations have no bearing on guard markers. */ TEST_F(guard_pages, mprotect) { const unsigned long page_size = self->page_size; char *ptr; int i; ptr = mmap(NULL, 10 * page_size, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); ASSERT_NE(ptr, MAP_FAILED); /* Guard the middle of the range. */ ASSERT_EQ(madvise(&ptr[5 * page_size], 2 * page_size, MADV_GUARD_INSTALL), 0); /* Assert that it is indeed guarded. */ ASSERT_FALSE(try_read_write_buf(&ptr[5 * page_size])); ASSERT_FALSE(try_read_write_buf(&ptr[6 * page_size])); /* Now make these pages read-only. */ ASSERT_EQ(mprotect(&ptr[5 * page_size], 2 * page_size, PROT_READ), 0); /* Make sure the range is still guarded. */ ASSERT_FALSE(try_read_buf(&ptr[5 * page_size])); ASSERT_FALSE(try_read_buf(&ptr[6 * page_size])); /* Make sure we can guard again without issue.*/ ASSERT_EQ(madvise(&ptr[5 * page_size], 2 * page_size, MADV_GUARD_INSTALL), 0); /* Make sure the range is, yet again, still guarded. */ ASSERT_FALSE(try_read_buf(&ptr[5 * page_size])); ASSERT_FALSE(try_read_buf(&ptr[6 * page_size])); /* Now unguard the whole range. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0); /* Make sure the whole range is readable. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_TRUE(try_read_buf(curr)); } /* Cleanup. */ ASSERT_EQ(munmap(ptr, 10 * page_size), 0); } /* Split and merge VMAs and make sure guard pages still behave. */ TEST_F(guard_pages, split_merge) { const unsigned long page_size = self->page_size; char *ptr, *ptr_new; int i; ptr = mmap(NULL, 10 * page_size, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); ASSERT_NE(ptr, MAP_FAILED); /* Guard the whole range. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0); /* Make sure the whole range is guarded. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } /* Now unmap some pages in the range so we split. */ ASSERT_EQ(munmap(&ptr[2 * page_size], page_size), 0); ASSERT_EQ(munmap(&ptr[5 * page_size], page_size), 0); ASSERT_EQ(munmap(&ptr[8 * page_size], page_size), 0); /* Make sure the remaining ranges are guarded post-split. */ for (i = 0; i < 2; i++) { char *curr = &ptr[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } for (i = 2; i < 5; i++) { char *curr = &ptr[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } for (i = 6; i < 8; i++) { char *curr = &ptr[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } for (i = 9; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } /* Now map them again - the unmap will have cleared the guards. */ ptr_new = mmap(&ptr[2 * page_size], page_size, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0); ASSERT_NE(ptr_new, MAP_FAILED); ptr_new = mmap(&ptr[5 * page_size], page_size, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0); ASSERT_NE(ptr_new, MAP_FAILED); ptr_new = mmap(&ptr[8 * page_size], page_size, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0); ASSERT_NE(ptr_new, MAP_FAILED); /* Now make sure guard pages are established. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; bool result = try_read_write_buf(curr); bool expect_true = i == 2 || i == 5 || i == 8; ASSERT_TRUE(expect_true ? result : !result); } /* Now guard everything again. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0); /* Make sure the whole range is guarded. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } /* Now split the range into three. */ ASSERT_EQ(mprotect(ptr, 3 * page_size, PROT_READ), 0); ASSERT_EQ(mprotect(&ptr[7 * page_size], 3 * page_size, PROT_READ), 0); /* Make sure the whole range is guarded for read. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_FALSE(try_read_buf(curr)); } /* Now reset protection bits so we merge the whole thing. */ ASSERT_EQ(mprotect(ptr, 3 * page_size, PROT_READ | PROT_WRITE), 0); ASSERT_EQ(mprotect(&ptr[7 * page_size], 3 * page_size, PROT_READ | PROT_WRITE), 0); /* Make sure the whole range is still guarded. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } /* Split range into 3 again... */ ASSERT_EQ(mprotect(ptr, 3 * page_size, PROT_READ), 0); ASSERT_EQ(mprotect(&ptr[7 * page_size], 3 * page_size, PROT_READ), 0); /* ...and unguard the whole range. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0); /* Make sure the whole range is remedied for read. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_TRUE(try_read_buf(curr)); } /* Merge them again. */ ASSERT_EQ(mprotect(ptr, 3 * page_size, PROT_READ | PROT_WRITE), 0); ASSERT_EQ(mprotect(&ptr[7 * page_size], 3 * page_size, PROT_READ | PROT_WRITE), 0); /* Now ensure the merged range is remedied for read/write. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_TRUE(try_read_write_buf(curr)); } /* Cleanup. */ ASSERT_EQ(munmap(ptr, 10 * page_size), 0); } /* Assert that MADV_DONTNEED does not remove guard markers. */ TEST_F(guard_pages, dontneed) { const unsigned long page_size = self->page_size; char *ptr; int i; ptr = mmap(NULL, 10 * page_size, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); ASSERT_NE(ptr, MAP_FAILED); /* Back the whole range. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; *curr = 'y'; } /* Guard every other page. */ for (i = 0; i < 10; i += 2) { char *curr = &ptr[i * page_size]; int res = madvise(curr, page_size, MADV_GUARD_INSTALL); ASSERT_EQ(res, 0); } /* Indicate that we don't need any of the range. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_DONTNEED), 0); /* Check to ensure guard markers are still in place. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; bool result = try_read_buf(curr); if (i % 2 == 0) { ASSERT_FALSE(result); } else { ASSERT_TRUE(result); /* Make sure we really did get reset to zero page. */ ASSERT_EQ(*curr, '\0'); } /* Now write... */ result = try_write_buf(&ptr[i * page_size]); /* ...and make sure same result. */ ASSERT_TRUE(i % 2 != 0 ? result : !result); } /* Cleanup. */ ASSERT_EQ(munmap(ptr, 10 * page_size), 0); } /* Assert that mlock()'ed pages work correctly with guard markers. */ TEST_F(guard_pages, mlock) { const unsigned long page_size = self->page_size; char *ptr; int i; ptr = mmap(NULL, 10 * page_size, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); ASSERT_NE(ptr, MAP_FAILED); /* Populate. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; *curr = 'y'; } /* Lock. */ ASSERT_EQ(mlock(ptr, 10 * page_size), 0); /* Now try to guard, should fail with EINVAL. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), -1); ASSERT_EQ(errno, EINVAL); /* OK unlock. */ ASSERT_EQ(munlock(ptr, 10 * page_size), 0); /* Guard first half of range, should now succeed. */ ASSERT_EQ(madvise(ptr, 5 * page_size, MADV_GUARD_INSTALL), 0); /* Make sure guard works. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; bool result = try_read_write_buf(curr); if (i < 5) { ASSERT_FALSE(result); } else { ASSERT_TRUE(result); ASSERT_EQ(*curr, 'x'); } } /* * Now lock the latter part of the range. We can't lock the guard pages, * as this would result in the pages being populated and the guarding * would cause this to error out. */ ASSERT_EQ(mlock(&ptr[5 * page_size], 5 * page_size), 0); /* * Now remove guard pages, we permit mlock()'d ranges to have guard * pages removed as it is a non-destructive operation. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0); /* Now check that no guard pages remain. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_TRUE(try_read_write_buf(curr)); } /* Cleanup. */ ASSERT_EQ(munmap(ptr, 10 * page_size), 0); } /* * Assert that moving, extending and shrinking memory via mremap() retains * guard markers where possible. * * - Moving a mapping alone should retain markers as they are. */ TEST_F(guard_pages, mremap_move) { const unsigned long page_size = self->page_size; char *ptr, *ptr_new; /* Map 5 pages. */ ptr = mmap(NULL, 5 * page_size, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); ASSERT_NE(ptr, MAP_FAILED); /* Place guard markers at both ends of the 5 page span. */ ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0); ASSERT_EQ(madvise(&ptr[4 * page_size], page_size, MADV_GUARD_INSTALL), 0); /* Make sure the guard pages are in effect. */ ASSERT_FALSE(try_read_write_buf(ptr)); ASSERT_FALSE(try_read_write_buf(&ptr[4 * page_size])); /* Map a new region we will move this range into. Doing this ensures * that we have reserved a range to map into. */ ptr_new = mmap(NULL, 5 * page_size, PROT_NONE, MAP_ANON | MAP_PRIVATE, -1, 0); ASSERT_NE(ptr_new, MAP_FAILED); ASSERT_EQ(mremap(ptr, 5 * page_size, 5 * page_size, MREMAP_MAYMOVE | MREMAP_FIXED, ptr_new), ptr_new); /* Make sure the guard markers are retained. */ ASSERT_FALSE(try_read_write_buf(ptr_new)); ASSERT_FALSE(try_read_write_buf(&ptr_new[4 * page_size])); /* * Clean up - we only need reference the new pointer as we overwrote the * PROT_NONE range and moved the existing one. */ munmap(ptr_new, 5 * page_size); } /* * Assert that moving, extending and shrinking memory via mremap() retains * guard markers where possible. * * Expanding should retain guard pages, only now in different position. The user * will have to remove guard pages manually to fix up (they'd have to do the * same if it were a PROT_NONE mapping). */ TEST_F(guard_pages, mremap_expand) { const unsigned long page_size = self->page_size; char *ptr, *ptr_new; /* Map 10 pages... */ ptr = mmap(NULL, 10 * page_size, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); ASSERT_NE(ptr, MAP_FAILED); /* ...But unmap the last 5 so we can ensure we can expand into them. */ ASSERT_EQ(munmap(&ptr[5 * page_size], 5 * page_size), 0); /* Place guard markers at both ends of the 5 page span. */ ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0); ASSERT_EQ(madvise(&ptr[4 * page_size], page_size, MADV_GUARD_INSTALL), 0); /* Make sure the guarding is in effect. */ ASSERT_FALSE(try_read_write_buf(ptr)); ASSERT_FALSE(try_read_write_buf(&ptr[4 * page_size])); /* Now expand to 10 pages. */ ptr = mremap(ptr, 5 * page_size, 10 * page_size, 0); ASSERT_NE(ptr, MAP_FAILED); /* * Make sure the guard markers are retained in their original positions. */ ASSERT_FALSE(try_read_write_buf(ptr)); ASSERT_FALSE(try_read_write_buf(&ptr[4 * page_size])); /* Reserve a region which we can move to and expand into. */ ptr_new = mmap(NULL, 20 * page_size, PROT_NONE, MAP_ANON | MAP_PRIVATE, -1, 0); ASSERT_NE(ptr_new, MAP_FAILED); /* Now move and expand into it. */ ptr = mremap(ptr, 10 * page_size, 20 * page_size, MREMAP_MAYMOVE | MREMAP_FIXED, ptr_new); ASSERT_EQ(ptr, ptr_new); /* * Again, make sure the guard markers are retained in their original positions. */ ASSERT_FALSE(try_read_write_buf(ptr)); ASSERT_FALSE(try_read_write_buf(&ptr[4 * page_size])); /* * A real user would have to remove guard markers, but would reasonably * expect all characteristics of the mapping to be retained, including * guard markers. */ /* Cleanup. */ munmap(ptr, 20 * page_size); } /* * Assert that moving, extending and shrinking memory via mremap() retains * guard markers where possible. * * Shrinking will result in markers that are shrunk over being removed. Again, * if the user were using a PROT_NONE mapping they'd have to manually fix this * up also so this is OK. */ TEST_F(guard_pages, mremap_shrink) { const unsigned long page_size = self->page_size; char *ptr; int i; /* Map 5 pages. */ ptr = mmap(NULL, 5 * page_size, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); ASSERT_NE(ptr, MAP_FAILED); /* Place guard markers at both ends of the 5 page span. */ ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0); ASSERT_EQ(madvise(&ptr[4 * page_size], page_size, MADV_GUARD_INSTALL), 0); /* Make sure the guarding is in effect. */ ASSERT_FALSE(try_read_write_buf(ptr)); ASSERT_FALSE(try_read_write_buf(&ptr[4 * page_size])); /* Now shrink to 3 pages. */ ptr = mremap(ptr, 5 * page_size, 3 * page_size, MREMAP_MAYMOVE); ASSERT_NE(ptr, MAP_FAILED); /* We expect the guard marker at the start to be retained... */ ASSERT_FALSE(try_read_write_buf(ptr)); /* ...But remaining pages will not have guard markers. */ for (i = 1; i < 3; i++) { char *curr = &ptr[i * page_size]; ASSERT_TRUE(try_read_write_buf(curr)); } /* * As with expansion, a real user would have to remove guard pages and * fixup. But you'd have to do similar manual things with PROT_NONE * mappings too. */ /* * If we expand back to the original size, the end marker will, of * course, no longer be present. */ ptr = mremap(ptr, 3 * page_size, 5 * page_size, 0); ASSERT_NE(ptr, MAP_FAILED); /* Again, we expect the guard marker at the start to be retained... */ ASSERT_FALSE(try_read_write_buf(ptr)); /* ...But remaining pages will not have guard markers. */ for (i = 1; i < 5; i++) { char *curr = &ptr[i * page_size]; ASSERT_TRUE(try_read_write_buf(curr)); } /* Cleanup. */ munmap(ptr, 5 * page_size); } /* * Assert that forking a process with VMAs that do not have VM_WIPEONFORK set * retain guard pages. */ TEST_F(guard_pages, fork) { const unsigned long page_size = self->page_size; char *ptr; pid_t pid; int i; /* Map 10 pages. */ ptr = mmap(NULL, 10 * page_size, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); ASSERT_NE(ptr, MAP_FAILED); /* Establish guard apges in the first 5 pages. */ ASSERT_EQ(madvise(ptr, 5 * page_size, MADV_GUARD_INSTALL), 0); pid = fork(); ASSERT_NE(pid, -1); if (!pid) { /* This is the child process now. */ /* Assert that the guarding is in effect. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; bool result = try_read_write_buf(curr); ASSERT_TRUE(i >= 5 ? result : !result); } /* Now unguard the range.*/ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0); exit(0); } /* Parent process. */ /* Parent simply waits on child. */ waitpid(pid, NULL, 0); /* Child unguard does not impact parent page table state. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; bool result = try_read_write_buf(curr); ASSERT_TRUE(i >= 5 ? result : !result); } /* Cleanup. */ ASSERT_EQ(munmap(ptr, 10 * page_size), 0); } /* * Assert that forking a process with VMAs that do have VM_WIPEONFORK set * behave as expected. */ TEST_F(guard_pages, fork_wipeonfork) { const unsigned long page_size = self->page_size; char *ptr; pid_t pid; int i; /* Map 10 pages. */ ptr = mmap(NULL, 10 * page_size, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); ASSERT_NE(ptr, MAP_FAILED); /* Mark wipe on fork. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_WIPEONFORK), 0); /* Guard the first 5 pages. */ ASSERT_EQ(madvise(ptr, 5 * page_size, MADV_GUARD_INSTALL), 0); pid = fork(); ASSERT_NE(pid, -1); if (!pid) { /* This is the child process now. */ /* Guard will have been wiped. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_TRUE(try_read_write_buf(curr)); } exit(0); } /* Parent process. */ waitpid(pid, NULL, 0); /* Guard markers should be in effect.*/ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; bool result = try_read_write_buf(curr); ASSERT_TRUE(i >= 5 ? result : !result); } /* Cleanup. */ ASSERT_EQ(munmap(ptr, 10 * page_size), 0); } /* Ensure that MADV_FREE retains guard entries as expected. */ TEST_F(guard_pages, lazyfree) { const unsigned long page_size = self->page_size; char *ptr; int i; /* Map 10 pages. */ ptr = mmap(NULL, 10 * page_size, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); ASSERT_NE(ptr, MAP_FAILED); /* Guard range. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0); /* Ensure guarded. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } /* Lazyfree range. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_FREE), 0); /* This should leave the guard markers in place. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } /* Cleanup. */ ASSERT_EQ(munmap(ptr, 10 * page_size), 0); } /* Ensure that MADV_POPULATE_READ, MADV_POPULATE_WRITE behave as expected. */ TEST_F(guard_pages, populate) { const unsigned long page_size = self->page_size; char *ptr; /* Map 10 pages. */ ptr = mmap(NULL, 10 * page_size, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); ASSERT_NE(ptr, MAP_FAILED); /* Guard range. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0); /* Populate read should error out... */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_POPULATE_READ), -1); ASSERT_EQ(errno, EFAULT); /* ...as should populate write. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_POPULATE_WRITE), -1); ASSERT_EQ(errno, EFAULT); /* Cleanup. */ ASSERT_EQ(munmap(ptr, 10 * page_size), 0); } /* Ensure that MADV_COLD, MADV_PAGEOUT do not remove guard markers. */ TEST_F(guard_pages, cold_pageout) { const unsigned long page_size = self->page_size; char *ptr; int i; /* Map 10 pages. */ ptr = mmap(NULL, 10 * page_size, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); ASSERT_NE(ptr, MAP_FAILED); /* Guard range. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0); /* Ensured guarded. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } /* Now mark cold. This should have no impact on guard markers. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_COLD), 0); /* Should remain guarded. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } /* OK, now page out. This should equally, have no effect on markers. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_PAGEOUT), 0); /* Should remain guarded. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } /* Cleanup. */ ASSERT_EQ(munmap(ptr, 10 * page_size), 0); } /* Ensure that guard pages do not break userfaultd. */ TEST_F(guard_pages, uffd) { const unsigned long page_size = self->page_size; int uffd; char *ptr; int i; struct uffdio_api api = { .api = UFFD_API, .features = 0, }; struct uffdio_register reg; struct uffdio_range range; /* Set up uffd. */ uffd = userfaultfd(0); if (uffd == -1 && errno == EPERM) ksft_exit_skip("No userfaultfd permissions, try running as root.\n"); ASSERT_NE(uffd, -1); ASSERT_EQ(ioctl(uffd, UFFDIO_API, &api), 0); /* Map 10 pages. */ ptr = mmap(NULL, 10 * page_size, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0); ASSERT_NE(ptr, MAP_FAILED); /* Register the range with uffd. */ range.start = (unsigned long)ptr; range.len = 10 * page_size; reg.range = range; reg.mode = UFFDIO_REGISTER_MODE_MISSING; ASSERT_EQ(ioctl(uffd, UFFDIO_REGISTER, ®), 0); /* Guard the range. This should not trigger the uffd. */ ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0); /* The guarding should behave as usual with no uffd intervention. */ for (i = 0; i < 10; i++) { char *curr = &ptr[i * page_size]; ASSERT_FALSE(try_read_write_buf(curr)); } /* Cleanup. */ ASSERT_EQ(ioctl(uffd, UFFDIO_UNREGISTER, &range), 0); close(uffd); ASSERT_EQ(munmap(ptr, 10 * page_size), 0); } TEST_HARNESS_MAIN