// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2021, Red Hat, Inc. * * Tests for Hyper-V clocksources */ #include "test_util.h" #include "kvm_util.h" #include "processor.h" #include "hyperv.h" struct ms_hyperv_tsc_page { volatile u32 tsc_sequence; u32 reserved1; volatile u64 tsc_scale; volatile s64 tsc_offset; } __packed; /* Simplified mul_u64_u64_shr() */ static inline u64 mul_u64_u64_shr64(u64 a, u64 b) { union { u64 ll; struct { u32 low, high; } l; } rm, rn, rh, a0, b0; u64 c; a0.ll = a; b0.ll = b; rm.ll = (u64)a0.l.low * b0.l.high; rn.ll = (u64)a0.l.high * b0.l.low; rh.ll = (u64)a0.l.high * b0.l.high; rh.l.low = c = rm.l.high + rn.l.high + rh.l.low; rh.l.high = (c >> 32) + rh.l.high; return rh.ll; } static inline void nop_loop(void) { int i; for (i = 0; i < 100000000; i++) asm volatile("nop"); } static inline void check_tsc_msr_rdtsc(void) { u64 tsc_freq, r1, r2, t1, t2; s64 delta_ns; tsc_freq = rdmsr(HV_X64_MSR_TSC_FREQUENCY); GUEST_ASSERT(tsc_freq > 0); /* For increased accuracy, take mean rdtsc() before and afrer rdmsr() */ r1 = rdtsc(); t1 = rdmsr(HV_X64_MSR_TIME_REF_COUNT); r1 = (r1 + rdtsc()) / 2; nop_loop(); r2 = rdtsc(); t2 = rdmsr(HV_X64_MSR_TIME_REF_COUNT); r2 = (r2 + rdtsc()) / 2; GUEST_ASSERT(r2 > r1 && t2 > t1); /* HV_X64_MSR_TIME_REF_COUNT is in 100ns */ delta_ns = ((t2 - t1) * 100) - ((r2 - r1) * 1000000000 / tsc_freq); if (delta_ns < 0) delta_ns = -delta_ns; /* 1% tolerance */ GUEST_ASSERT(delta_ns * 100 < (t2 - t1) * 100); } static inline u64 get_tscpage_ts(struct ms_hyperv_tsc_page *tsc_page) { return mul_u64_u64_shr64(rdtsc(), tsc_page->tsc_scale) + tsc_page->tsc_offset; } static inline void check_tsc_msr_tsc_page(struct ms_hyperv_tsc_page *tsc_page) { u64 r1, r2, t1, t2; /* Compare TSC page clocksource with HV_X64_MSR_TIME_REF_COUNT */ t1 = get_tscpage_ts(tsc_page); r1 = rdmsr(HV_X64_MSR_TIME_REF_COUNT); /* 10 ms tolerance */ GUEST_ASSERT(r1 >= t1 && r1 - t1 < 100000); nop_loop(); t2 = get_tscpage_ts(tsc_page); r2 = rdmsr(HV_X64_MSR_TIME_REF_COUNT); GUEST_ASSERT(r2 >= t1 && r2 - t2 < 100000); } static void guest_main(struct ms_hyperv_tsc_page *tsc_page, vm_paddr_t tsc_page_gpa) { u64 tsc_scale, tsc_offset; /* Set Guest OS id to enable Hyper-V emulation */ GUEST_SYNC(1); wrmsr(HV_X64_MSR_GUEST_OS_ID, HYPERV_LINUX_OS_ID); GUEST_SYNC(2); check_tsc_msr_rdtsc(); GUEST_SYNC(3); /* Set up TSC page is disabled state, check that it's clean */ wrmsr(HV_X64_MSR_REFERENCE_TSC, tsc_page_gpa); GUEST_ASSERT(tsc_page->tsc_sequence == 0); GUEST_ASSERT(tsc_page->tsc_scale == 0); GUEST_ASSERT(tsc_page->tsc_offset == 0); GUEST_SYNC(4); /* Set up TSC page is enabled state */ wrmsr(HV_X64_MSR_REFERENCE_TSC, tsc_page_gpa | 0x1); GUEST_ASSERT(tsc_page->tsc_sequence != 0); GUEST_SYNC(5); check_tsc_msr_tsc_page(tsc_page); GUEST_SYNC(6); tsc_offset = tsc_page->tsc_offset; /* Call KVM_SET_CLOCK from userspace, check that TSC page was updated */ GUEST_SYNC(7); /* Sanity check TSC page timestamp, it should be close to 0 */ GUEST_ASSERT(get_tscpage_ts(tsc_page) < 100000); GUEST_ASSERT(tsc_page->tsc_offset != tsc_offset); nop_loop(); /* * Enable Re-enlightenment and check that TSC page stays constant across * KVM_SET_CLOCK. */ wrmsr(HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0x1 << 16 | 0xff); wrmsr(HV_X64_MSR_TSC_EMULATION_CONTROL, 0x1); tsc_offset = tsc_page->tsc_offset; tsc_scale = tsc_page->tsc_scale; GUEST_SYNC(8); GUEST_ASSERT(tsc_page->tsc_offset == tsc_offset); GUEST_ASSERT(tsc_page->tsc_scale == tsc_scale); GUEST_SYNC(9); check_tsc_msr_tsc_page(tsc_page); /* * Disable re-enlightenment and TSC page, check that KVM doesn't update * it anymore. */ wrmsr(HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0); wrmsr(HV_X64_MSR_TSC_EMULATION_CONTROL, 0); wrmsr(HV_X64_MSR_REFERENCE_TSC, 0); memset(tsc_page, 0, sizeof(*tsc_page)); GUEST_SYNC(10); GUEST_ASSERT(tsc_page->tsc_sequence == 0); GUEST_ASSERT(tsc_page->tsc_offset == 0); GUEST_ASSERT(tsc_page->tsc_scale == 0); GUEST_DONE(); } static void host_check_tsc_msr_rdtsc(struct kvm_vcpu *vcpu) { u64 tsc_freq, r1, r2, t1, t2; s64 delta_ns; tsc_freq = vcpu_get_msr(vcpu, HV_X64_MSR_TSC_FREQUENCY); TEST_ASSERT(tsc_freq > 0, "TSC frequency must be nonzero"); /* For increased accuracy, take mean rdtsc() before and afrer ioctl */ r1 = rdtsc(); t1 = vcpu_get_msr(vcpu, HV_X64_MSR_TIME_REF_COUNT); r1 = (r1 + rdtsc()) / 2; nop_loop(); r2 = rdtsc(); t2 = vcpu_get_msr(vcpu, HV_X64_MSR_TIME_REF_COUNT); r2 = (r2 + rdtsc()) / 2; TEST_ASSERT(t2 > t1, "Time reference MSR is not monotonic (%ld <= %ld)", t1, t2); /* HV_X64_MSR_TIME_REF_COUNT is in 100ns */ delta_ns = ((t2 - t1) * 100) - ((r2 - r1) * 1000000000 / tsc_freq); if (delta_ns < 0) delta_ns = -delta_ns; /* 1% tolerance */ TEST_ASSERT(delta_ns * 100 < (t2 - t1) * 100, "Elapsed time does not match (MSR=%ld, TSC=%ld)", (t2 - t1) * 100, (r2 - r1) * 1000000000 / tsc_freq); } int main(void) { struct kvm_vcpu *vcpu; struct kvm_vm *vm; struct ucall uc; vm_vaddr_t tsc_page_gva; int stage; TEST_REQUIRE(kvm_has_cap(KVM_CAP_HYPERV_TIME)); vm = vm_create_with_one_vcpu(&vcpu, guest_main); vcpu_set_hv_cpuid(vcpu); tsc_page_gva = vm_vaddr_alloc_page(vm); memset(addr_gva2hva(vm, tsc_page_gva), 0x0, getpagesize()); TEST_ASSERT((addr_gva2gpa(vm, tsc_page_gva) & (getpagesize() - 1)) == 0, "TSC page has to be page aligned\n"); vcpu_args_set(vcpu, 2, tsc_page_gva, addr_gva2gpa(vm, tsc_page_gva)); host_check_tsc_msr_rdtsc(vcpu); for (stage = 1;; stage++) { vcpu_run(vcpu); TEST_ASSERT_KVM_EXIT_REASON(vcpu, KVM_EXIT_IO); switch (get_ucall(vcpu, &uc)) { case UCALL_ABORT: REPORT_GUEST_ASSERT(uc); /* NOT REACHED */ case UCALL_SYNC: break; case UCALL_DONE: /* Keep in sync with guest_main() */ TEST_ASSERT(stage == 11, "Testing ended prematurely, stage %d\n", stage); goto out; default: TEST_FAIL("Unknown ucall %lu", uc.cmd); } TEST_ASSERT(!strcmp((const char *)uc.args[0], "hello") && uc.args[1] == stage, "Stage %d: Unexpected register values vmexit, got %lx", stage, (ulong)uc.args[1]); /* Reset kvmclock triggering TSC page update */ if (stage == 7 || stage == 8 || stage == 10) { struct kvm_clock_data clock = {0}; vm_ioctl(vm, KVM_SET_CLOCK, &clock); } } out: kvm_vm_free(vm); }