// SPDX-License-Identifier: GPL-2.0 #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * s390x needs at least 1MB alignment, and the x86_64 MOVE/DELETE tests need a * 2MB sized and aligned region so that the initial region corresponds to * exactly one large page. */ #define MEM_REGION_SIZE 0x200000 #ifdef __x86_64__ /* * Somewhat arbitrary location and slot, intended to not overlap anything. */ #define MEM_REGION_GPA 0xc0000000 #define MEM_REGION_SLOT 10 static const uint64_t MMIO_VAL = 0xbeefull; extern const uint64_t final_rip_start; extern const uint64_t final_rip_end; static sem_t vcpu_ready; static inline uint64_t guest_spin_on_val(uint64_t spin_val) { uint64_t val; do { val = READ_ONCE(*((uint64_t *)MEM_REGION_GPA)); } while (val == spin_val); GUEST_SYNC(0); return val; } static void *vcpu_worker(void *data) { struct kvm_vcpu *vcpu = data; struct kvm_run *run = vcpu->run; struct ucall uc; uint64_t cmd; /* * Loop until the guest is done. Re-enter the guest on all MMIO exits, * which will occur if the guest attempts to access a memslot after it * has been deleted or while it is being moved . */ while (1) { vcpu_run(vcpu); if (run->exit_reason == KVM_EXIT_IO) { cmd = get_ucall(vcpu, &uc); if (cmd != UCALL_SYNC) break; sem_post(&vcpu_ready); continue; } if (run->exit_reason != KVM_EXIT_MMIO) break; TEST_ASSERT(!run->mmio.is_write, "Unexpected exit mmio write"); TEST_ASSERT(run->mmio.len == 8, "Unexpected exit mmio size = %u", run->mmio.len); TEST_ASSERT(run->mmio.phys_addr == MEM_REGION_GPA, "Unexpected exit mmio address = 0x%llx", run->mmio.phys_addr); memcpy(run->mmio.data, &MMIO_VAL, 8); } if (run->exit_reason == KVM_EXIT_IO && cmd == UCALL_ABORT) REPORT_GUEST_ASSERT(uc); return NULL; } static void wait_for_vcpu(void) { struct timespec ts; TEST_ASSERT(!clock_gettime(CLOCK_REALTIME, &ts), "clock_gettime() failed: %d", errno); ts.tv_sec += 2; TEST_ASSERT(!sem_timedwait(&vcpu_ready, &ts), "sem_timedwait() failed: %d", errno); /* Wait for the vCPU thread to reenter the guest. */ usleep(100000); } static struct kvm_vm *spawn_vm(struct kvm_vcpu **vcpu, pthread_t *vcpu_thread, void *guest_code) { struct kvm_vm *vm; uint64_t *hva; uint64_t gpa; vm = vm_create_with_one_vcpu(vcpu, guest_code); vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS_THP, MEM_REGION_GPA, MEM_REGION_SLOT, MEM_REGION_SIZE / getpagesize(), 0); /* * Allocate and map two pages so that the GPA accessed by guest_code() * stays valid across the memslot move. */ gpa = vm_phy_pages_alloc(vm, 2, MEM_REGION_GPA, MEM_REGION_SLOT); TEST_ASSERT(gpa == MEM_REGION_GPA, "Failed vm_phy_pages_alloc\n"); virt_map(vm, MEM_REGION_GPA, MEM_REGION_GPA, 2); /* Ditto for the host mapping so that both pages can be zeroed. */ hva = addr_gpa2hva(vm, MEM_REGION_GPA); memset(hva, 0, 2 * 4096); pthread_create(vcpu_thread, NULL, vcpu_worker, *vcpu); /* Ensure the guest thread is spun up. */ wait_for_vcpu(); return vm; } static void guest_code_move_memory_region(void) { uint64_t val; GUEST_SYNC(0); /* * Spin until the memory region starts getting moved to a * misaligned address. * Every region move may or may not trigger MMIO, as the * window where the memslot is invalid is usually quite small. */ val = guest_spin_on_val(0); __GUEST_ASSERT(val == 1 || val == MMIO_VAL, "Expected '1' or MMIO ('%lx'), got '%lx'", MMIO_VAL, val); /* Spin until the misaligning memory region move completes. */ val = guest_spin_on_val(MMIO_VAL); __GUEST_ASSERT(val == 1 || val == 0, "Expected '0' or '1' (no MMIO), got '%lx'", val); /* Spin until the memory region starts to get re-aligned. */ val = guest_spin_on_val(0); __GUEST_ASSERT(val == 1 || val == MMIO_VAL, "Expected '1' or MMIO ('%lx'), got '%lx'", MMIO_VAL, val); /* Spin until the re-aligning memory region move completes. */ val = guest_spin_on_val(MMIO_VAL); GUEST_ASSERT_EQ(val, 1); GUEST_DONE(); } static void test_move_memory_region(bool disable_slot_zap_quirk) { pthread_t vcpu_thread; struct kvm_vcpu *vcpu; struct kvm_vm *vm; uint64_t *hva; vm = spawn_vm(&vcpu, &vcpu_thread, guest_code_move_memory_region); if (disable_slot_zap_quirk) vm_enable_cap(vm, KVM_CAP_DISABLE_QUIRKS2, KVM_X86_QUIRK_SLOT_ZAP_ALL); hva = addr_gpa2hva(vm, MEM_REGION_GPA); /* * Shift the region's base GPA. The guest should not see "2" as the * hva->gpa translation is misaligned, i.e. the guest is accessing a * different host pfn. */ vm_mem_region_move(vm, MEM_REGION_SLOT, MEM_REGION_GPA - 4096); WRITE_ONCE(*hva, 2); /* * The guest _might_ see an invalid memslot and trigger MMIO, but it's * a tiny window. Spin and defer the sync until the memslot is * restored and guest behavior is once again deterministic. */ usleep(100000); /* * Note, value in memory needs to be changed *before* restoring the * memslot, else the guest could race the update and see "2". */ WRITE_ONCE(*hva, 1); /* Restore the original base, the guest should see "1". */ vm_mem_region_move(vm, MEM_REGION_SLOT, MEM_REGION_GPA); wait_for_vcpu(); /* Defered sync from when the memslot was misaligned (above). */ wait_for_vcpu(); pthread_join(vcpu_thread, NULL); kvm_vm_free(vm); } static void guest_code_delete_memory_region(void) { struct desc_ptr idt; uint64_t val; /* * Clobber the IDT so that a #PF due to the memory region being deleted * escalates to triple-fault shutdown. Because the memory region is * deleted, there will be no valid mappings. As a result, KVM will * repeatedly intercepts the state-2 page fault that occurs when trying * to vector the guest's #PF. I.e. trying to actually handle the #PF * in the guest will never succeed, and so isn't an option. */ memset(&idt, 0, sizeof(idt)); __asm__ __volatile__("lidt %0" :: "m"(idt)); GUEST_SYNC(0); /* Spin until the memory region is deleted. */ val = guest_spin_on_val(0); GUEST_ASSERT_EQ(val, MMIO_VAL); /* Spin until the memory region is recreated. */ val = guest_spin_on_val(MMIO_VAL); GUEST_ASSERT_EQ(val, 0); /* Spin until the memory region is deleted. */ val = guest_spin_on_val(0); GUEST_ASSERT_EQ(val, MMIO_VAL); asm("1:\n\t" ".pushsection .rodata\n\t" ".global final_rip_start\n\t" "final_rip_start: .quad 1b\n\t" ".popsection"); /* Spin indefinitely (until the code memslot is deleted). */ guest_spin_on_val(MMIO_VAL); asm("1:\n\t" ".pushsection .rodata\n\t" ".global final_rip_end\n\t" "final_rip_end: .quad 1b\n\t" ".popsection"); GUEST_ASSERT(0); } static void test_delete_memory_region(bool disable_slot_zap_quirk) { pthread_t vcpu_thread; struct kvm_vcpu *vcpu; struct kvm_regs regs; struct kvm_run *run; struct kvm_vm *vm; vm = spawn_vm(&vcpu, &vcpu_thread, guest_code_delete_memory_region); if (disable_slot_zap_quirk) vm_enable_cap(vm, KVM_CAP_DISABLE_QUIRKS2, KVM_X86_QUIRK_SLOT_ZAP_ALL); /* Delete the memory region, the guest should not die. */ vm_mem_region_delete(vm, MEM_REGION_SLOT); wait_for_vcpu(); /* Recreate the memory region. The guest should see "0". */ vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS_THP, MEM_REGION_GPA, MEM_REGION_SLOT, MEM_REGION_SIZE / getpagesize(), 0); wait_for_vcpu(); /* Delete the region again so that there's only one memslot left. */ vm_mem_region_delete(vm, MEM_REGION_SLOT); wait_for_vcpu(); /* * Delete the primary memslot. This should cause an emulation error or * shutdown due to the page tables getting nuked. */ vm_mem_region_delete(vm, 0); pthread_join(vcpu_thread, NULL); run = vcpu->run; TEST_ASSERT(run->exit_reason == KVM_EXIT_SHUTDOWN || run->exit_reason == KVM_EXIT_INTERNAL_ERROR, "Unexpected exit reason = %d", run->exit_reason); vcpu_regs_get(vcpu, ®s); /* * On AMD, after KVM_EXIT_SHUTDOWN the VMCB has been reinitialized already, * so the instruction pointer would point to the reset vector. */ if (run->exit_reason == KVM_EXIT_INTERNAL_ERROR) TEST_ASSERT(regs.rip >= final_rip_start && regs.rip < final_rip_end, "Bad rip, expected 0x%lx - 0x%lx, got 0x%llx", final_rip_start, final_rip_end, regs.rip); kvm_vm_free(vm); } static void test_zero_memory_regions(void) { struct kvm_vcpu *vcpu; struct kvm_vm *vm; pr_info("Testing KVM_RUN with zero added memory regions\n"); vm = vm_create_barebones(); vcpu = __vm_vcpu_add(vm, 0); vm_ioctl(vm, KVM_SET_NR_MMU_PAGES, (void *)64ul); vcpu_run(vcpu); TEST_ASSERT_KVM_EXIT_REASON(vcpu, KVM_EXIT_INTERNAL_ERROR); kvm_vm_free(vm); } #endif /* __x86_64__ */ static void test_invalid_memory_region_flags(void) { uint32_t supported_flags = KVM_MEM_LOG_DIRTY_PAGES; const uint32_t v2_only_flags = KVM_MEM_GUEST_MEMFD; struct kvm_vm *vm; int r, i; #if defined __aarch64__ || defined __riscv || defined __x86_64__ supported_flags |= KVM_MEM_READONLY; #endif #ifdef __x86_64__ if (kvm_check_cap(KVM_CAP_VM_TYPES) & BIT(KVM_X86_SW_PROTECTED_VM)) vm = vm_create_barebones_type(KVM_X86_SW_PROTECTED_VM); else #endif vm = vm_create_barebones(); if (kvm_check_cap(KVM_CAP_MEMORY_ATTRIBUTES) & KVM_MEMORY_ATTRIBUTE_PRIVATE) supported_flags |= KVM_MEM_GUEST_MEMFD; for (i = 0; i < 32; i++) { if ((supported_flags & BIT(i)) && !(v2_only_flags & BIT(i))) continue; r = __vm_set_user_memory_region(vm, 0, BIT(i), 0, MEM_REGION_SIZE, NULL); TEST_ASSERT(r && errno == EINVAL, "KVM_SET_USER_MEMORY_REGION should have failed on v2 only flag 0x%lx", BIT(i)); if (supported_flags & BIT(i)) continue; r = __vm_set_user_memory_region2(vm, 0, BIT(i), 0, MEM_REGION_SIZE, NULL, 0, 0); TEST_ASSERT(r && errno == EINVAL, "KVM_SET_USER_MEMORY_REGION2 should have failed on unsupported flag 0x%lx", BIT(i)); } if (supported_flags & KVM_MEM_GUEST_MEMFD) { int guest_memfd = vm_create_guest_memfd(vm, MEM_REGION_SIZE, 0); r = __vm_set_user_memory_region2(vm, 0, KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_GUEST_MEMFD, 0, MEM_REGION_SIZE, NULL, guest_memfd, 0); TEST_ASSERT(r && errno == EINVAL, "KVM_SET_USER_MEMORY_REGION2 should have failed, dirty logging private memory is unsupported"); r = __vm_set_user_memory_region2(vm, 0, KVM_MEM_READONLY | KVM_MEM_GUEST_MEMFD, 0, MEM_REGION_SIZE, NULL, guest_memfd, 0); TEST_ASSERT(r && errno == EINVAL, "KVM_SET_USER_MEMORY_REGION2 should have failed, read-only GUEST_MEMFD memslots are unsupported"); close(guest_memfd); } } /* * Test it can be added memory slots up to KVM_CAP_NR_MEMSLOTS, then any * tentative to add further slots should fail. */ static void test_add_max_memory_regions(void) { int ret; struct kvm_vm *vm; uint32_t max_mem_slots; uint32_t slot; void *mem, *mem_aligned, *mem_extra; size_t alignment; #ifdef __s390x__ /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */ alignment = 0x100000; #else alignment = 1; #endif max_mem_slots = kvm_check_cap(KVM_CAP_NR_MEMSLOTS); TEST_ASSERT(max_mem_slots > 0, "KVM_CAP_NR_MEMSLOTS should be greater than 0"); pr_info("Allowed number of memory slots: %i\n", max_mem_slots); vm = vm_create_barebones(); /* Check it can be added memory slots up to the maximum allowed */ pr_info("Adding slots 0..%i, each memory region with %dK size\n", (max_mem_slots - 1), MEM_REGION_SIZE >> 10); mem = mmap(NULL, (size_t)max_mem_slots * MEM_REGION_SIZE + alignment, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE, -1, 0); TEST_ASSERT(mem != MAP_FAILED, "Failed to mmap() host"); mem_aligned = (void *)(((size_t) mem + alignment - 1) & ~(alignment - 1)); for (slot = 0; slot < max_mem_slots; slot++) vm_set_user_memory_region(vm, slot, 0, ((uint64_t)slot * MEM_REGION_SIZE), MEM_REGION_SIZE, mem_aligned + (uint64_t)slot * MEM_REGION_SIZE); /* Check it cannot be added memory slots beyond the limit */ mem_extra = mmap(NULL, MEM_REGION_SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); TEST_ASSERT(mem_extra != MAP_FAILED, "Failed to mmap() host"); ret = __vm_set_user_memory_region(vm, max_mem_slots, 0, (uint64_t)max_mem_slots * MEM_REGION_SIZE, MEM_REGION_SIZE, mem_extra); TEST_ASSERT(ret == -1 && errno == EINVAL, "Adding one more memory slot should fail with EINVAL"); munmap(mem, (size_t)max_mem_slots * MEM_REGION_SIZE + alignment); munmap(mem_extra, MEM_REGION_SIZE); kvm_vm_free(vm); } #ifdef __x86_64__ static void test_invalid_guest_memfd(struct kvm_vm *vm, int memfd, size_t offset, const char *msg) { int r = __vm_set_user_memory_region2(vm, MEM_REGION_SLOT, KVM_MEM_GUEST_MEMFD, MEM_REGION_GPA, MEM_REGION_SIZE, 0, memfd, offset); TEST_ASSERT(r == -1 && errno == EINVAL, "%s", msg); } static void test_add_private_memory_region(void) { struct kvm_vm *vm, *vm2; int memfd, i; pr_info("Testing ADD of KVM_MEM_GUEST_MEMFD memory regions\n"); vm = vm_create_barebones_type(KVM_X86_SW_PROTECTED_VM); test_invalid_guest_memfd(vm, vm->kvm_fd, 0, "KVM fd should fail"); test_invalid_guest_memfd(vm, vm->fd, 0, "VM's fd should fail"); memfd = kvm_memfd_alloc(MEM_REGION_SIZE, false); test_invalid_guest_memfd(vm, memfd, 0, "Regular memfd() should fail"); close(memfd); vm2 = vm_create_barebones_type(KVM_X86_SW_PROTECTED_VM); memfd = vm_create_guest_memfd(vm2, MEM_REGION_SIZE, 0); test_invalid_guest_memfd(vm, memfd, 0, "Other VM's guest_memfd() should fail"); vm_set_user_memory_region2(vm2, MEM_REGION_SLOT, KVM_MEM_GUEST_MEMFD, MEM_REGION_GPA, MEM_REGION_SIZE, 0, memfd, 0); close(memfd); kvm_vm_free(vm2); memfd = vm_create_guest_memfd(vm, MEM_REGION_SIZE, 0); for (i = 1; i < PAGE_SIZE; i++) test_invalid_guest_memfd(vm, memfd, i, "Unaligned offset should fail"); vm_set_user_memory_region2(vm, MEM_REGION_SLOT, KVM_MEM_GUEST_MEMFD, MEM_REGION_GPA, MEM_REGION_SIZE, 0, memfd, 0); close(memfd); kvm_vm_free(vm); } static void test_add_overlapping_private_memory_regions(void) { struct kvm_vm *vm; int memfd; int r; pr_info("Testing ADD of overlapping KVM_MEM_GUEST_MEMFD memory regions\n"); vm = vm_create_barebones_type(KVM_X86_SW_PROTECTED_VM); memfd = vm_create_guest_memfd(vm, MEM_REGION_SIZE * 4, 0); vm_set_user_memory_region2(vm, MEM_REGION_SLOT, KVM_MEM_GUEST_MEMFD, MEM_REGION_GPA, MEM_REGION_SIZE * 2, 0, memfd, 0); vm_set_user_memory_region2(vm, MEM_REGION_SLOT + 1, KVM_MEM_GUEST_MEMFD, MEM_REGION_GPA * 2, MEM_REGION_SIZE * 2, 0, memfd, MEM_REGION_SIZE * 2); /* * Delete the first memslot, and then attempt to recreate it except * with a "bad" offset that results in overlap in the guest_memfd(). */ vm_set_user_memory_region2(vm, MEM_REGION_SLOT, KVM_MEM_GUEST_MEMFD, MEM_REGION_GPA, 0, NULL, -1, 0); /* Overlap the front half of the other slot. */ r = __vm_set_user_memory_region2(vm, MEM_REGION_SLOT, KVM_MEM_GUEST_MEMFD, MEM_REGION_GPA * 2 - MEM_REGION_SIZE, MEM_REGION_SIZE * 2, 0, memfd, 0); TEST_ASSERT(r == -1 && errno == EEXIST, "%s", "Overlapping guest_memfd() bindings should fail with EEXIST"); /* And now the back half of the other slot. */ r = __vm_set_user_memory_region2(vm, MEM_REGION_SLOT, KVM_MEM_GUEST_MEMFD, MEM_REGION_GPA * 2 + MEM_REGION_SIZE, MEM_REGION_SIZE * 2, 0, memfd, 0); TEST_ASSERT(r == -1 && errno == EEXIST, "%s", "Overlapping guest_memfd() bindings should fail with EEXIST"); close(memfd); kvm_vm_free(vm); } #endif int main(int argc, char *argv[]) { #ifdef __x86_64__ int i, loops; int j, disable_slot_zap_quirk = 0; if (kvm_check_cap(KVM_CAP_DISABLE_QUIRKS2) & KVM_X86_QUIRK_SLOT_ZAP_ALL) disable_slot_zap_quirk = 1; /* * FIXME: the zero-memslot test fails on aarch64 and s390x because * KVM_RUN fails with ENOEXEC or EFAULT. */ test_zero_memory_regions(); #endif test_invalid_memory_region_flags(); test_add_max_memory_regions(); #ifdef __x86_64__ if (kvm_has_cap(KVM_CAP_GUEST_MEMFD) && (kvm_check_cap(KVM_CAP_VM_TYPES) & BIT(KVM_X86_SW_PROTECTED_VM))) { test_add_private_memory_region(); test_add_overlapping_private_memory_regions(); } else { pr_info("Skipping tests for KVM_MEM_GUEST_MEMFD memory regions\n"); } if (argc > 1) loops = atoi_positive("Number of iterations", argv[1]); else loops = 10; for (j = 0; j <= disable_slot_zap_quirk; j++) { pr_info("Testing MOVE of in-use region, %d loops, slot zap quirk %s\n", loops, j ? "disabled" : "enabled"); for (i = 0; i < loops; i++) test_move_memory_region(!!j); pr_info("Testing DELETE of in-use region, %d loops, slot zap quirk %s\n", loops, j ? "disabled" : "enabled"); for (i = 0; i < loops; i++) test_delete_memory_region(!!j); } #endif return 0; }