/* SPDX-License-Identifier: GPL-2.0-only */ /* * tools/testing/selftests/kvm/include/x86_64/processor.h * * Copyright (C) 2018, Google LLC. */ #ifndef SELFTEST_KVM_PROCESSOR_H #define SELFTEST_KVM_PROCESSOR_H #include #include #include #include #include #include #include #include "kvm_util.h" #include "ucall_common.h" extern bool host_cpu_is_intel; extern bool host_cpu_is_amd; extern uint64_t guest_tsc_khz; #ifndef MAX_NR_CPUID_ENTRIES #define MAX_NR_CPUID_ENTRIES 100 #endif /* Forced emulation prefix, used to invoke the emulator unconditionally. */ #define KVM_FEP "ud2; .byte 'k', 'v', 'm';" #define NMI_VECTOR 0x02 #define X86_EFLAGS_FIXED (1u << 1) #define X86_CR4_VME (1ul << 0) #define X86_CR4_PVI (1ul << 1) #define X86_CR4_TSD (1ul << 2) #define X86_CR4_DE (1ul << 3) #define X86_CR4_PSE (1ul << 4) #define X86_CR4_PAE (1ul << 5) #define X86_CR4_MCE (1ul << 6) #define X86_CR4_PGE (1ul << 7) #define X86_CR4_PCE (1ul << 8) #define X86_CR4_OSFXSR (1ul << 9) #define X86_CR4_OSXMMEXCPT (1ul << 10) #define X86_CR4_UMIP (1ul << 11) #define X86_CR4_LA57 (1ul << 12) #define X86_CR4_VMXE (1ul << 13) #define X86_CR4_SMXE (1ul << 14) #define X86_CR4_FSGSBASE (1ul << 16) #define X86_CR4_PCIDE (1ul << 17) #define X86_CR4_OSXSAVE (1ul << 18) #define X86_CR4_SMEP (1ul << 20) #define X86_CR4_SMAP (1ul << 21) #define X86_CR4_PKE (1ul << 22) struct xstate_header { u64 xstate_bv; u64 xcomp_bv; u64 reserved[6]; } __attribute__((packed)); struct xstate { u8 i387[512]; struct xstate_header header; u8 extended_state_area[0]; } __attribute__ ((packed, aligned (64))); #define XFEATURE_MASK_FP BIT_ULL(0) #define XFEATURE_MASK_SSE BIT_ULL(1) #define XFEATURE_MASK_YMM BIT_ULL(2) #define XFEATURE_MASK_BNDREGS BIT_ULL(3) #define XFEATURE_MASK_BNDCSR BIT_ULL(4) #define XFEATURE_MASK_OPMASK BIT_ULL(5) #define XFEATURE_MASK_ZMM_Hi256 BIT_ULL(6) #define XFEATURE_MASK_Hi16_ZMM BIT_ULL(7) #define XFEATURE_MASK_PT BIT_ULL(8) #define XFEATURE_MASK_PKRU BIT_ULL(9) #define XFEATURE_MASK_PASID BIT_ULL(10) #define XFEATURE_MASK_CET_USER BIT_ULL(11) #define XFEATURE_MASK_CET_KERNEL BIT_ULL(12) #define XFEATURE_MASK_LBR BIT_ULL(15) #define XFEATURE_MASK_XTILE_CFG BIT_ULL(17) #define XFEATURE_MASK_XTILE_DATA BIT_ULL(18) #define XFEATURE_MASK_AVX512 (XFEATURE_MASK_OPMASK | \ XFEATURE_MASK_ZMM_Hi256 | \ XFEATURE_MASK_Hi16_ZMM) #define XFEATURE_MASK_XTILE (XFEATURE_MASK_XTILE_DATA | \ XFEATURE_MASK_XTILE_CFG) /* Note, these are ordered alphabetically to match kvm_cpuid_entry2. Eww. */ enum cpuid_output_regs { KVM_CPUID_EAX, KVM_CPUID_EBX, KVM_CPUID_ECX, KVM_CPUID_EDX }; /* * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be * passed by value with no overhead. */ struct kvm_x86_cpu_feature { u32 function; u16 index; u8 reg; u8 bit; }; #define KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit) \ ({ \ struct kvm_x86_cpu_feature feature = { \ .function = fn, \ .index = idx, \ .reg = KVM_CPUID_##gpr, \ .bit = __bit, \ }; \ \ kvm_static_assert((fn & 0xc0000000) == 0 || \ (fn & 0xc0000000) == 0x40000000 || \ (fn & 0xc0000000) == 0x80000000 || \ (fn & 0xc0000000) == 0xc0000000); \ kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE)); \ feature; \ }) /* * Basic Leafs, a.k.a. Intel defined */ #define X86_FEATURE_MWAIT KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3) #define X86_FEATURE_VMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5) #define X86_FEATURE_SMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6) #define X86_FEATURE_PDCM KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15) #define X86_FEATURE_PCID KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17) #define X86_FEATURE_X2APIC KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21) #define X86_FEATURE_MOVBE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22) #define X86_FEATURE_TSC_DEADLINE_TIMER KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24) #define X86_FEATURE_XSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26) #define X86_FEATURE_OSXSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27) #define X86_FEATURE_RDRAND KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30) #define X86_FEATURE_HYPERVISOR KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31) #define X86_FEATURE_PAE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6) #define X86_FEATURE_MCE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7) #define X86_FEATURE_APIC KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9) #define X86_FEATURE_CLFLUSH KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19) #define X86_FEATURE_XMM KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25) #define X86_FEATURE_XMM2 KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26) #define X86_FEATURE_FSGSBASE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0) #define X86_FEATURE_TSC_ADJUST KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1) #define X86_FEATURE_SGX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2) #define X86_FEATURE_HLE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4) #define X86_FEATURE_SMEP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7) #define X86_FEATURE_INVPCID KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10) #define X86_FEATURE_RTM KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11) #define X86_FEATURE_MPX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14) #define X86_FEATURE_SMAP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20) #define X86_FEATURE_PCOMMIT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22) #define X86_FEATURE_CLFLUSHOPT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23) #define X86_FEATURE_CLWB KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24) #define X86_FEATURE_UMIP KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2) #define X86_FEATURE_PKU KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3) #define X86_FEATURE_OSPKE KVM_X86_CPU_FEATURE(0x7, 0, ECX, 4) #define X86_FEATURE_LA57 KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16) #define X86_FEATURE_RDPID KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22) #define X86_FEATURE_SGX_LC KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30) #define X86_FEATURE_SHSTK KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7) #define X86_FEATURE_IBT KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20) #define X86_FEATURE_AMX_TILE KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24) #define X86_FEATURE_SPEC_CTRL KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26) #define X86_FEATURE_ARCH_CAPABILITIES KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29) #define X86_FEATURE_PKS KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31) #define X86_FEATURE_XTILECFG KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17) #define X86_FEATURE_XTILEDATA KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18) #define X86_FEATURE_XSAVES KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3) #define X86_FEATURE_XFD KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4) #define X86_FEATURE_XTILEDATA_XFD KVM_X86_CPU_FEATURE(0xD, 18, ECX, 2) /* * Extended Leafs, a.k.a. AMD defined */ #define X86_FEATURE_SVM KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2) #define X86_FEATURE_NX KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20) #define X86_FEATURE_GBPAGES KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26) #define X86_FEATURE_RDTSCP KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27) #define X86_FEATURE_LM KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29) #define X86_FEATURE_INVTSC KVM_X86_CPU_FEATURE(0x80000007, 0, EDX, 8) #define X86_FEATURE_RDPRU KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4) #define X86_FEATURE_AMD_IBPB KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12) #define X86_FEATURE_NPT KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0) #define X86_FEATURE_LBRV KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1) #define X86_FEATURE_NRIPS KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3) #define X86_FEATURE_TSCRATEMSR KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4) #define X86_FEATURE_PAUSEFILTER KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10) #define X86_FEATURE_PFTHRESHOLD KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12) #define X86_FEATURE_VGIF KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16) #define X86_FEATURE_SEV KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1) #define X86_FEATURE_SEV_ES KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3) /* * KVM defined paravirt features. */ #define X86_FEATURE_KVM_CLOCKSOURCE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0) #define X86_FEATURE_KVM_NOP_IO_DELAY KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1) #define X86_FEATURE_KVM_MMU_OP KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2) #define X86_FEATURE_KVM_CLOCKSOURCE2 KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3) #define X86_FEATURE_KVM_ASYNC_PF KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4) #define X86_FEATURE_KVM_STEAL_TIME KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5) #define X86_FEATURE_KVM_PV_EOI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6) #define X86_FEATURE_KVM_PV_UNHALT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7) /* Bit 8 apparently isn't used?!?! */ #define X86_FEATURE_KVM_PV_TLB_FLUSH KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9) #define X86_FEATURE_KVM_ASYNC_PF_VMEXIT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10) #define X86_FEATURE_KVM_PV_SEND_IPI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11) #define X86_FEATURE_KVM_POLL_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12) #define X86_FEATURE_KVM_PV_SCHED_YIELD KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13) #define X86_FEATURE_KVM_ASYNC_PF_INT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14) #define X86_FEATURE_KVM_MSI_EXT_DEST_ID KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15) #define X86_FEATURE_KVM_HC_MAP_GPA_RANGE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16) #define X86_FEATURE_KVM_MIGRATION_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17) /* * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit * value/property as opposed to a single-bit feature. Again, pack the info * into a 64-bit value to pass by value with no overhead. */ struct kvm_x86_cpu_property { u32 function; u8 index; u8 reg; u8 lo_bit; u8 hi_bit; }; #define KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit) \ ({ \ struct kvm_x86_cpu_property property = { \ .function = fn, \ .index = idx, \ .reg = KVM_CPUID_##gpr, \ .lo_bit = low_bit, \ .hi_bit = high_bit, \ }; \ \ kvm_static_assert(low_bit < high_bit); \ kvm_static_assert((fn & 0xc0000000) == 0 || \ (fn & 0xc0000000) == 0x40000000 || \ (fn & 0xc0000000) == 0x80000000 || \ (fn & 0xc0000000) == 0xc0000000); \ kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE)); \ property; \ }) #define X86_PROPERTY_MAX_BASIC_LEAF KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31) #define X86_PROPERTY_PMU_VERSION KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7) #define X86_PROPERTY_PMU_NR_GP_COUNTERS KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15) #define X86_PROPERTY_PMU_GP_COUNTERS_BIT_WIDTH KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 16, 23) #define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31) #define X86_PROPERTY_PMU_EVENTS_MASK KVM_X86_CPU_PROPERTY(0xa, 0, EBX, 0, 7) #define X86_PROPERTY_PMU_FIXED_COUNTERS_BITMASK KVM_X86_CPU_PROPERTY(0xa, 0, ECX, 0, 31) #define X86_PROPERTY_PMU_NR_FIXED_COUNTERS KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 0, 4) #define X86_PROPERTY_PMU_FIXED_COUNTERS_BIT_WIDTH KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 5, 12) #define X86_PROPERTY_SUPPORTED_XCR0_LO KVM_X86_CPU_PROPERTY(0xd, 0, EAX, 0, 31) #define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0 KVM_X86_CPU_PROPERTY(0xd, 0, EBX, 0, 31) #define X86_PROPERTY_XSTATE_MAX_SIZE KVM_X86_CPU_PROPERTY(0xd, 0, ECX, 0, 31) #define X86_PROPERTY_SUPPORTED_XCR0_HI KVM_X86_CPU_PROPERTY(0xd, 0, EDX, 0, 31) #define X86_PROPERTY_XSTATE_TILE_SIZE KVM_X86_CPU_PROPERTY(0xd, 18, EAX, 0, 31) #define X86_PROPERTY_XSTATE_TILE_OFFSET KVM_X86_CPU_PROPERTY(0xd, 18, EBX, 0, 31) #define X86_PROPERTY_AMX_MAX_PALETTE_TABLES KVM_X86_CPU_PROPERTY(0x1d, 0, EAX, 0, 31) #define X86_PROPERTY_AMX_TOTAL_TILE_BYTES KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 0, 15) #define X86_PROPERTY_AMX_BYTES_PER_TILE KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31) #define X86_PROPERTY_AMX_BYTES_PER_ROW KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0, 15) #define X86_PROPERTY_AMX_NR_TILE_REGS KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31) #define X86_PROPERTY_AMX_MAX_ROWS KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0, 15) #define X86_PROPERTY_MAX_KVM_LEAF KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31) #define X86_PROPERTY_MAX_EXT_LEAF KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31) #define X86_PROPERTY_MAX_PHY_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7) #define X86_PROPERTY_MAX_VIRT_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15) #define X86_PROPERTY_GUEST_MAX_PHY_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 16, 23) #define X86_PROPERTY_SEV_C_BIT KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 0, 5) #define X86_PROPERTY_PHYS_ADDR_REDUCTION KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11) #define X86_PROPERTY_MAX_CENTAUR_LEAF KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31) /* * Intel's architectural PMU events are bizarre. They have a "feature" bit * that indicates the feature is _not_ supported, and a property that states * the length of the bit mask of unsupported features. A feature is supported * if the size of the bit mask is larger than the "unavailable" bit, and said * bit is not set. Fixed counters also bizarre enumeration, but inverted from * arch events for general purpose counters. Fixed counters are supported if a * feature flag is set **OR** the total number of fixed counters is greater * than index of the counter. * * Wrap the events for general purpose and fixed counters to simplify checking * whether or not a given architectural event is supported. */ struct kvm_x86_pmu_feature { struct kvm_x86_cpu_feature f; }; #define KVM_X86_PMU_FEATURE(__reg, __bit) \ ({ \ struct kvm_x86_pmu_feature feature = { \ .f = KVM_X86_CPU_FEATURE(0xa, 0, __reg, __bit), \ }; \ \ kvm_static_assert(KVM_CPUID_##__reg == KVM_CPUID_EBX || \ KVM_CPUID_##__reg == KVM_CPUID_ECX); \ feature; \ }) #define X86_PMU_FEATURE_CPU_CYCLES KVM_X86_PMU_FEATURE(EBX, 0) #define X86_PMU_FEATURE_INSNS_RETIRED KVM_X86_PMU_FEATURE(EBX, 1) #define X86_PMU_FEATURE_REFERENCE_CYCLES KVM_X86_PMU_FEATURE(EBX, 2) #define X86_PMU_FEATURE_LLC_REFERENCES KVM_X86_PMU_FEATURE(EBX, 3) #define X86_PMU_FEATURE_LLC_MISSES KVM_X86_PMU_FEATURE(EBX, 4) #define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED KVM_X86_PMU_FEATURE(EBX, 5) #define X86_PMU_FEATURE_BRANCHES_MISPREDICTED KVM_X86_PMU_FEATURE(EBX, 6) #define X86_PMU_FEATURE_TOPDOWN_SLOTS KVM_X86_PMU_FEATURE(EBX, 7) #define X86_PMU_FEATURE_INSNS_RETIRED_FIXED KVM_X86_PMU_FEATURE(ECX, 0) #define X86_PMU_FEATURE_CPU_CYCLES_FIXED KVM_X86_PMU_FEATURE(ECX, 1) #define X86_PMU_FEATURE_REFERENCE_TSC_CYCLES_FIXED KVM_X86_PMU_FEATURE(ECX, 2) #define X86_PMU_FEATURE_TOPDOWN_SLOTS_FIXED KVM_X86_PMU_FEATURE(ECX, 3) static inline unsigned int x86_family(unsigned int eax) { unsigned int x86; x86 = (eax >> 8) & 0xf; if (x86 == 0xf) x86 += (eax >> 20) & 0xff; return x86; } static inline unsigned int x86_model(unsigned int eax) { return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f); } /* Page table bitfield declarations */ #define PTE_PRESENT_MASK BIT_ULL(0) #define PTE_WRITABLE_MASK BIT_ULL(1) #define PTE_USER_MASK BIT_ULL(2) #define PTE_ACCESSED_MASK BIT_ULL(5) #define PTE_DIRTY_MASK BIT_ULL(6) #define PTE_LARGE_MASK BIT_ULL(7) #define PTE_GLOBAL_MASK BIT_ULL(8) #define PTE_NX_MASK BIT_ULL(63) #define PHYSICAL_PAGE_MASK GENMASK_ULL(51, 12) #define PAGE_SHIFT 12 #define PAGE_SIZE (1ULL << PAGE_SHIFT) #define PAGE_MASK (~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK) #define HUGEPAGE_SHIFT(x) (PAGE_SHIFT + (((x) - 1) * 9)) #define HUGEPAGE_SIZE(x) (1UL << HUGEPAGE_SHIFT(x)) #define HUGEPAGE_MASK(x) (~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK) #define PTE_GET_PA(pte) ((pte) & PHYSICAL_PAGE_MASK) #define PTE_GET_PFN(pte) (PTE_GET_PA(pte) >> PAGE_SHIFT) /* General Registers in 64-Bit Mode */ struct gpr64_regs { u64 rax; u64 rcx; u64 rdx; u64 rbx; u64 rsp; u64 rbp; u64 rsi; u64 rdi; u64 r8; u64 r9; u64 r10; u64 r11; u64 r12; u64 r13; u64 r14; u64 r15; }; struct desc64 { uint16_t limit0; uint16_t base0; unsigned base1:8, type:4, s:1, dpl:2, p:1; unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8; uint32_t base3; uint32_t zero1; } __attribute__((packed)); struct desc_ptr { uint16_t size; uint64_t address; } __attribute__((packed)); struct kvm_x86_state { struct kvm_xsave *xsave; struct kvm_vcpu_events events; struct kvm_mp_state mp_state; struct kvm_regs regs; struct kvm_xcrs xcrs; struct kvm_sregs sregs; struct kvm_debugregs debugregs; union { struct kvm_nested_state nested; char nested_[16384]; }; struct kvm_msrs msrs; }; static inline uint64_t get_desc64_base(const struct desc64 *desc) { return ((uint64_t)desc->base3 << 32) | (desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24)); } static inline uint64_t rdtsc(void) { uint32_t eax, edx; uint64_t tsc_val; /* * The lfence is to wait (on Intel CPUs) until all previous * instructions have been executed. If software requires RDTSC to be * executed prior to execution of any subsequent instruction, it can * execute LFENCE immediately after RDTSC */ __asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx)); tsc_val = ((uint64_t)edx) << 32 | eax; return tsc_val; } static inline uint64_t rdtscp(uint32_t *aux) { uint32_t eax, edx; __asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux)); return ((uint64_t)edx) << 32 | eax; } static inline uint64_t rdmsr(uint32_t msr) { uint32_t a, d; __asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory"); return a | ((uint64_t) d << 32); } static inline void wrmsr(uint32_t msr, uint64_t value) { uint32_t a = value; uint32_t d = value >> 32; __asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory"); } static inline uint16_t inw(uint16_t port) { uint16_t tmp; __asm__ __volatile__("in %%dx, %%ax" : /* output */ "=a" (tmp) : /* input */ "d" (port)); return tmp; } static inline uint16_t get_es(void) { uint16_t es; __asm__ __volatile__("mov %%es, %[es]" : /* output */ [es]"=rm"(es)); return es; } static inline uint16_t get_cs(void) { uint16_t cs; __asm__ __volatile__("mov %%cs, %[cs]" : /* output */ [cs]"=rm"(cs)); return cs; } static inline uint16_t get_ss(void) { uint16_t ss; __asm__ __volatile__("mov %%ss, %[ss]" : /* output */ [ss]"=rm"(ss)); return ss; } static inline uint16_t get_ds(void) { uint16_t ds; __asm__ __volatile__("mov %%ds, %[ds]" : /* output */ [ds]"=rm"(ds)); return ds; } static inline uint16_t get_fs(void) { uint16_t fs; __asm__ __volatile__("mov %%fs, %[fs]" : /* output */ [fs]"=rm"(fs)); return fs; } static inline uint16_t get_gs(void) { uint16_t gs; __asm__ __volatile__("mov %%gs, %[gs]" : /* output */ [gs]"=rm"(gs)); return gs; } static inline uint16_t get_tr(void) { uint16_t tr; __asm__ __volatile__("str %[tr]" : /* output */ [tr]"=rm"(tr)); return tr; } static inline uint64_t get_cr0(void) { uint64_t cr0; __asm__ __volatile__("mov %%cr0, %[cr0]" : /* output */ [cr0]"=r"(cr0)); return cr0; } static inline uint64_t get_cr3(void) { uint64_t cr3; __asm__ __volatile__("mov %%cr3, %[cr3]" : /* output */ [cr3]"=r"(cr3)); return cr3; } static inline uint64_t get_cr4(void) { uint64_t cr4; __asm__ __volatile__("mov %%cr4, %[cr4]" : /* output */ [cr4]"=r"(cr4)); return cr4; } static inline void set_cr4(uint64_t val) { __asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory"); } static inline u64 xgetbv(u32 index) { u32 eax, edx; __asm__ __volatile__("xgetbv;" : "=a" (eax), "=d" (edx) : "c" (index)); return eax | ((u64)edx << 32); } static inline void xsetbv(u32 index, u64 value) { u32 eax = value; u32 edx = value >> 32; __asm__ __volatile__("xsetbv" :: "a" (eax), "d" (edx), "c" (index)); } static inline void wrpkru(u32 pkru) { /* Note, ECX and EDX are architecturally required to be '0'. */ asm volatile(".byte 0x0f,0x01,0xef\n\t" : : "a" (pkru), "c"(0), "d"(0)); } static inline struct desc_ptr get_gdt(void) { struct desc_ptr gdt; __asm__ __volatile__("sgdt %[gdt]" : /* output */ [gdt]"=m"(gdt)); return gdt; } static inline struct desc_ptr get_idt(void) { struct desc_ptr idt; __asm__ __volatile__("sidt %[idt]" : /* output */ [idt]"=m"(idt)); return idt; } static inline void outl(uint16_t port, uint32_t value) { __asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value)); } static inline void __cpuid(uint32_t function, uint32_t index, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) { *eax = function; *ecx = index; asm volatile("cpuid" : "=a" (*eax), "=b" (*ebx), "=c" (*ecx), "=d" (*edx) : "0" (*eax), "2" (*ecx) : "memory"); } static inline void cpuid(uint32_t function, uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx) { return __cpuid(function, 0, eax, ebx, ecx, edx); } static inline uint32_t this_cpu_fms(void) { uint32_t eax, ebx, ecx, edx; cpuid(1, &eax, &ebx, &ecx, &edx); return eax; } static inline uint32_t this_cpu_family(void) { return x86_family(this_cpu_fms()); } static inline uint32_t this_cpu_model(void) { return x86_model(this_cpu_fms()); } static inline bool this_cpu_vendor_string_is(const char *vendor) { const uint32_t *chunk = (const uint32_t *)vendor; uint32_t eax, ebx, ecx, edx; cpuid(0, &eax, &ebx, &ecx, &edx); return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]); } static inline bool this_cpu_is_intel(void) { return this_cpu_vendor_string_is("GenuineIntel"); } /* * Exclude early K5 samples with a vendor string of "AMDisbetter!" */ static inline bool this_cpu_is_amd(void) { return this_cpu_vendor_string_is("AuthenticAMD"); } static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index, uint8_t reg, uint8_t lo, uint8_t hi) { uint32_t gprs[4]; __cpuid(function, index, &gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX], &gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]); return (gprs[reg] & GENMASK(hi, lo)) >> lo; } static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature) { return __this_cpu_has(feature.function, feature.index, feature.reg, feature.bit, feature.bit); } static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property) { return __this_cpu_has(property.function, property.index, property.reg, property.lo_bit, property.hi_bit); } static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property) { uint32_t max_leaf; switch (property.function & 0xc0000000) { case 0: max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF); break; case 0x40000000: max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF); break; case 0x80000000: max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF); break; case 0xc0000000: max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF); } return max_leaf >= property.function; } static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature) { uint32_t nr_bits; if (feature.f.reg == KVM_CPUID_EBX) { nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH); return nr_bits > feature.f.bit && !this_cpu_has(feature.f); } GUEST_ASSERT(feature.f.reg == KVM_CPUID_ECX); nr_bits = this_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS); return nr_bits > feature.f.bit || this_cpu_has(feature.f); } static __always_inline uint64_t this_cpu_supported_xcr0(void) { if (!this_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO)) return 0; return this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) | ((uint64_t)this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32); } typedef u32 __attribute__((vector_size(16))) sse128_t; #define __sse128_u union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; } #define sse128_lo(x) ({ __sse128_u t; t.vec = x; t.as_u64[0]; }) #define sse128_hi(x) ({ __sse128_u t; t.vec = x; t.as_u64[1]; }) static inline void read_sse_reg(int reg, sse128_t *data) { switch (reg) { case 0: asm("movdqa %%xmm0, %0" : "=m"(*data)); break; case 1: asm("movdqa %%xmm1, %0" : "=m"(*data)); break; case 2: asm("movdqa %%xmm2, %0" : "=m"(*data)); break; case 3: asm("movdqa %%xmm3, %0" : "=m"(*data)); break; case 4: asm("movdqa %%xmm4, %0" : "=m"(*data)); break; case 5: asm("movdqa %%xmm5, %0" : "=m"(*data)); break; case 6: asm("movdqa %%xmm6, %0" : "=m"(*data)); break; case 7: asm("movdqa %%xmm7, %0" : "=m"(*data)); break; default: BUG(); } } static inline void write_sse_reg(int reg, const sse128_t *data) { switch (reg) { case 0: asm("movdqa %0, %%xmm0" : : "m"(*data)); break; case 1: asm("movdqa %0, %%xmm1" : : "m"(*data)); break; case 2: asm("movdqa %0, %%xmm2" : : "m"(*data)); break; case 3: asm("movdqa %0, %%xmm3" : : "m"(*data)); break; case 4: asm("movdqa %0, %%xmm4" : : "m"(*data)); break; case 5: asm("movdqa %0, %%xmm5" : : "m"(*data)); break; case 6: asm("movdqa %0, %%xmm6" : : "m"(*data)); break; case 7: asm("movdqa %0, %%xmm7" : : "m"(*data)); break; default: BUG(); } } static inline void cpu_relax(void) { asm volatile("rep; nop" ::: "memory"); } static inline void udelay(unsigned long usec) { uint64_t start, now, cycles; GUEST_ASSERT(guest_tsc_khz); cycles = guest_tsc_khz / 1000 * usec; /* * Deliberately don't PAUSE, a.k.a. cpu_relax(), so that the delay is * as accurate as possible, e.g. doesn't trigger PAUSE-Loop VM-Exits. */ start = rdtsc(); do { now = rdtsc(); } while (now - start < cycles); } #define ud2() \ __asm__ __volatile__( \ "ud2\n" \ ) #define hlt() \ __asm__ __volatile__( \ "hlt\n" \ ) struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu); void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state); void kvm_x86_state_cleanup(struct kvm_x86_state *state); const struct kvm_msr_list *kvm_get_msr_index_list(void); const struct kvm_msr_list *kvm_get_feature_msr_index_list(void); bool kvm_msr_is_in_save_restore_list(uint32_t msr_index); uint64_t kvm_get_feature_msr(uint64_t msr_index); static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs) { int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs); TEST_ASSERT(r == msrs->nmsrs, "KVM_GET_MSRS failed, r: %i (failed on MSR %x)", r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index); } static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs) { int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs); TEST_ASSERT(r == msrs->nmsrs, "KVM_SET_MSRS failed, r: %i (failed on MSR %x)", r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index); } static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu, struct kvm_debugregs *debugregs) { vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs); } static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu, struct kvm_debugregs *debugregs) { vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs); } static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu, struct kvm_xsave *xsave) { vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave); } static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu, struct kvm_xsave *xsave) { vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave); } static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu, struct kvm_xsave *xsave) { vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave); } static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs) { vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs); } static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs) { vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs); } const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid, uint32_t function, uint32_t index); const struct kvm_cpuid2 *kvm_get_supported_cpuid(void); static inline uint32_t kvm_cpu_fms(void) { return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax; } static inline uint32_t kvm_cpu_family(void) { return x86_family(kvm_cpu_fms()); } static inline uint32_t kvm_cpu_model(void) { return x86_model(kvm_cpu_fms()); } bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid, struct kvm_x86_cpu_feature feature); static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature) { return kvm_cpuid_has(kvm_get_supported_cpuid(), feature); } uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid, struct kvm_x86_cpu_property property); static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property) { return kvm_cpuid_property(kvm_get_supported_cpuid(), property); } static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property) { uint32_t max_leaf; switch (property.function & 0xc0000000) { case 0: max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF); break; case 0x40000000: max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF); break; case 0x80000000: max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF); break; case 0xc0000000: max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF); } return max_leaf >= property.function; } static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature) { uint32_t nr_bits; if (feature.f.reg == KVM_CPUID_EBX) { nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH); return nr_bits > feature.f.bit && !kvm_cpu_has(feature.f); } TEST_ASSERT_EQ(feature.f.reg, KVM_CPUID_ECX); nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS); return nr_bits > feature.f.bit || kvm_cpu_has(feature.f); } static __always_inline uint64_t kvm_cpu_supported_xcr0(void) { if (!kvm_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO)) return 0; return kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) | ((uint64_t)kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32); } static inline size_t kvm_cpuid2_size(int nr_entries) { return sizeof(struct kvm_cpuid2) + sizeof(struct kvm_cpuid_entry2) * nr_entries; } /* * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of * entries sized to hold @nr_entries. The caller is responsible for freeing * the struct. */ static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries) { struct kvm_cpuid2 *cpuid; cpuid = malloc(kvm_cpuid2_size(nr_entries)); TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2"); cpuid->nent = nr_entries; return cpuid; } void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid); static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function, uint32_t index) { return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid, function, index); } static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function) { return __vcpu_get_cpuid_entry(vcpu, function, 0); } static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu) { int r; TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first"); r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid); if (r) return r; /* On success, refresh the cache to pick up adjustments made by KVM. */ vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid); return 0; } static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu) { TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first"); vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid); /* Refresh the cache to pick up adjustments made by KVM. */ vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid); } static inline void vcpu_get_cpuid(struct kvm_vcpu *vcpu) { vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid); } void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu, struct kvm_x86_cpu_property property, uint32_t value); void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr); void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function); static inline bool vcpu_cpuid_has(struct kvm_vcpu *vcpu, struct kvm_x86_cpu_feature feature) { struct kvm_cpuid_entry2 *entry; entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index); return *((&entry->eax) + feature.reg) & BIT(feature.bit); } void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu, struct kvm_x86_cpu_feature feature, bool set); static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu, struct kvm_x86_cpu_feature feature) { vcpu_set_or_clear_cpuid_feature(vcpu, feature, true); } static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu, struct kvm_x86_cpu_feature feature) { vcpu_set_or_clear_cpuid_feature(vcpu, feature, false); } uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index); int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value); /* * Assert on an MSR access(es) and pretty print the MSR name when possible. * Note, the caller provides the stringified name so that the name of macro is * printed, not the value the macro resolves to (due to macro expansion). */ #define TEST_ASSERT_MSR(cond, fmt, msr, str, args...) \ do { \ if (__builtin_constant_p(msr)) { \ TEST_ASSERT(cond, fmt, str, args); \ } else if (!(cond)) { \ char buf[16]; \ \ snprintf(buf, sizeof(buf), "MSR 0x%x", msr); \ TEST_ASSERT(cond, fmt, buf, args); \ } \ } while (0) /* * Returns true if KVM should return the last written value when reading an MSR * from userspace, e.g. the MSR isn't a command MSR, doesn't emulate state that * is changing, etc. This is NOT an exhaustive list! The intent is to filter * out MSRs that are not durable _and_ that a selftest wants to write. */ static inline bool is_durable_msr(uint32_t msr) { return msr != MSR_IA32_TSC; } #define vcpu_set_msr(vcpu, msr, val) \ do { \ uint64_t r, v = val; \ \ TEST_ASSERT_MSR(_vcpu_set_msr(vcpu, msr, v) == 1, \ "KVM_SET_MSRS failed on %s, value = 0x%lx", msr, #msr, v); \ if (!is_durable_msr(msr)) \ break; \ r = vcpu_get_msr(vcpu, msr); \ TEST_ASSERT_MSR(r == v, "Set %s to '0x%lx', got back '0x%lx'", msr, #msr, v, r);\ } while (0) void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits); void kvm_init_vm_address_properties(struct kvm_vm *vm); bool vm_is_unrestricted_guest(struct kvm_vm *vm); struct ex_regs { uint64_t rax, rcx, rdx, rbx; uint64_t rbp, rsi, rdi; uint64_t r8, r9, r10, r11; uint64_t r12, r13, r14, r15; uint64_t vector; uint64_t error_code; uint64_t rip; uint64_t cs; uint64_t rflags; }; struct idt_entry { uint16_t offset0; uint16_t selector; uint16_t ist : 3; uint16_t : 5; uint16_t type : 4; uint16_t : 1; uint16_t dpl : 2; uint16_t p : 1; uint16_t offset1; uint32_t offset2; uint32_t reserved; }; void vm_install_exception_handler(struct kvm_vm *vm, int vector, void (*handler)(struct ex_regs *)); /* If a toddler were to say "abracadabra". */ #define KVM_EXCEPTION_MAGIC 0xabacadabaULL /* * KVM selftest exception fixup uses registers to coordinate with the exception * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory * per-CPU data. Using only registers avoids having to map memory into the * guest, doesn't require a valid, stable GS.base, and reduces the risk of * for recursive faults when accessing memory in the handler. The downside to * using registers is that it restricts what registers can be used by the actual * instruction. But, selftests are 64-bit only, making register* pressure a * minor concern. Use r9-r11 as they are volatile, i.e. don't need to be saved * by the callee, and except for r11 are not implicit parameters to any * instructions. Ideally, fixup would use r8-r10 and thus avoid implicit * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V * is higher priority than testing non-faulting SYSCALL/SYSRET. * * Note, the fixup handler deliberately does not handle #DE, i.e. the vector * is guaranteed to be non-zero on fault. * * REGISTER INPUTS: * r9 = MAGIC * r10 = RIP * r11 = new RIP on fault * * REGISTER OUTPUTS: * r9 = exception vector (non-zero) * r10 = error code */ #define __KVM_ASM_SAFE(insn, fep) \ "mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t" \ "lea 1f(%%rip), %%r10\n\t" \ "lea 2f(%%rip), %%r11\n\t" \ fep "1: " insn "\n\t" \ "xor %%r9, %%r9\n\t" \ "2:\n\t" \ "mov %%r9b, %[vector]\n\t" \ "mov %%r10, %[error_code]\n\t" #define KVM_ASM_SAFE(insn) __KVM_ASM_SAFE(insn, "") #define KVM_ASM_SAFE_FEP(insn) __KVM_ASM_SAFE(insn, KVM_FEP) #define KVM_ASM_SAFE_OUTPUTS(v, ec) [vector] "=qm"(v), [error_code] "=rm"(ec) #define KVM_ASM_SAFE_CLOBBERS "r9", "r10", "r11" #define kvm_asm_safe(insn, inputs...) \ ({ \ uint64_t ign_error_code; \ uint8_t vector; \ \ asm volatile(KVM_ASM_SAFE(insn) \ : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code) \ : inputs \ : KVM_ASM_SAFE_CLOBBERS); \ vector; \ }) #define kvm_asm_safe_ec(insn, error_code, inputs...) \ ({ \ uint8_t vector; \ \ asm volatile(KVM_ASM_SAFE(insn) \ : KVM_ASM_SAFE_OUTPUTS(vector, error_code) \ : inputs \ : KVM_ASM_SAFE_CLOBBERS); \ vector; \ }) #define kvm_asm_safe_fep(insn, inputs...) \ ({ \ uint64_t ign_error_code; \ uint8_t vector; \ \ asm volatile(KVM_ASM_SAFE(insn) \ : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code) \ : inputs \ : KVM_ASM_SAFE_CLOBBERS); \ vector; \ }) #define kvm_asm_safe_ec_fep(insn, error_code, inputs...) \ ({ \ uint8_t vector; \ \ asm volatile(KVM_ASM_SAFE_FEP(insn) \ : KVM_ASM_SAFE_OUTPUTS(vector, error_code) \ : inputs \ : KVM_ASM_SAFE_CLOBBERS); \ vector; \ }) #define BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP) \ static inline uint8_t insn##_safe ##_fep(uint32_t idx, uint64_t *val) \ { \ uint64_t error_code; \ uint8_t vector; \ uint32_t a, d; \ \ asm volatile(KVM_ASM_SAFE##_FEP(#insn) \ : "=a"(a), "=d"(d), \ KVM_ASM_SAFE_OUTPUTS(vector, error_code) \ : "c"(idx) \ : KVM_ASM_SAFE_CLOBBERS); \ \ *val = (uint64_t)a | ((uint64_t)d << 32); \ return vector; \ } /* * Generate {insn}_safe() and {insn}_safe_fep() helpers for instructions that * use ECX as in input index, and EDX:EAX as a 64-bit output. */ #define BUILD_READ_U64_SAFE_HELPERS(insn) \ BUILD_READ_U64_SAFE_HELPER(insn, , ) \ BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP) \ BUILD_READ_U64_SAFE_HELPERS(rdmsr) BUILD_READ_U64_SAFE_HELPERS(rdpmc) BUILD_READ_U64_SAFE_HELPERS(xgetbv) static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val) { return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr)); } static inline uint8_t xsetbv_safe(uint32_t index, uint64_t value) { u32 eax = value; u32 edx = value >> 32; return kvm_asm_safe("xsetbv", "a" (eax), "d" (edx), "c" (index)); } bool kvm_is_tdp_enabled(void); static inline bool kvm_is_pmu_enabled(void) { return get_kvm_param_bool("enable_pmu"); } static inline bool kvm_is_forced_emulation_enabled(void) { return !!get_kvm_param_integer("force_emulation_prefix"); } uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr, int *level); uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr); uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2, uint64_t a3); uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1); void xen_hypercall(uint64_t nr, uint64_t a0, void *a1); static inline uint64_t __kvm_hypercall_map_gpa_range(uint64_t gpa, uint64_t size, uint64_t flags) { return kvm_hypercall(KVM_HC_MAP_GPA_RANGE, gpa, size >> PAGE_SHIFT, flags, 0); } static inline void kvm_hypercall_map_gpa_range(uint64_t gpa, uint64_t size, uint64_t flags) { uint64_t ret = __kvm_hypercall_map_gpa_range(gpa, size, flags); GUEST_ASSERT(!ret); } void __vm_xsave_require_permission(uint64_t xfeature, const char *name); #define vm_xsave_require_permission(xfeature) \ __vm_xsave_require_permission(xfeature, #xfeature) enum pg_level { PG_LEVEL_NONE, PG_LEVEL_4K, PG_LEVEL_2M, PG_LEVEL_1G, PG_LEVEL_512G, PG_LEVEL_NUM }; #define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12) #define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level)) #define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K) #define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M) #define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G) void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level); void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, uint64_t nr_bytes, int level); /* * Basic CPU control in CR0 */ #define X86_CR0_PE (1UL<<0) /* Protection Enable */ #define X86_CR0_MP (1UL<<1) /* Monitor Coprocessor */ #define X86_CR0_EM (1UL<<2) /* Emulation */ #define X86_CR0_TS (1UL<<3) /* Task Switched */ #define X86_CR0_ET (1UL<<4) /* Extension Type */ #define X86_CR0_NE (1UL<<5) /* Numeric Error */ #define X86_CR0_WP (1UL<<16) /* Write Protect */ #define X86_CR0_AM (1UL<<18) /* Alignment Mask */ #define X86_CR0_NW (1UL<<29) /* Not Write-through */ #define X86_CR0_CD (1UL<<30) /* Cache Disable */ #define X86_CR0_PG (1UL<<31) /* Paging */ #define PFERR_PRESENT_BIT 0 #define PFERR_WRITE_BIT 1 #define PFERR_USER_BIT 2 #define PFERR_RSVD_BIT 3 #define PFERR_FETCH_BIT 4 #define PFERR_PK_BIT 5 #define PFERR_SGX_BIT 15 #define PFERR_GUEST_FINAL_BIT 32 #define PFERR_GUEST_PAGE_BIT 33 #define PFERR_IMPLICIT_ACCESS_BIT 48 #define PFERR_PRESENT_MASK BIT(PFERR_PRESENT_BIT) #define PFERR_WRITE_MASK BIT(PFERR_WRITE_BIT) #define PFERR_USER_MASK BIT(PFERR_USER_BIT) #define PFERR_RSVD_MASK BIT(PFERR_RSVD_BIT) #define PFERR_FETCH_MASK BIT(PFERR_FETCH_BIT) #define PFERR_PK_MASK BIT(PFERR_PK_BIT) #define PFERR_SGX_MASK BIT(PFERR_SGX_BIT) #define PFERR_GUEST_FINAL_MASK BIT_ULL(PFERR_GUEST_FINAL_BIT) #define PFERR_GUEST_PAGE_MASK BIT_ULL(PFERR_GUEST_PAGE_BIT) #define PFERR_IMPLICIT_ACCESS BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT) bool sys_clocksource_is_based_on_tsc(void); #endif /* SELFTEST_KVM_PROCESSOR_H */