/* SPDX-License-Identifier: GPL-2.0-only */ /* * tools/testing/selftests/kvm/include/x86_64/processor.h * * Copyright (C) 2018, Google LLC. */ #ifndef SELFTEST_KVM_PROCESSOR_H #define SELFTEST_KVM_PROCESSOR_H #include #include #include #define X86_EFLAGS_FIXED (1u << 1) #define X86_CR4_VME (1ul << 0) #define X86_CR4_PVI (1ul << 1) #define X86_CR4_TSD (1ul << 2) #define X86_CR4_DE (1ul << 3) #define X86_CR4_PSE (1ul << 4) #define X86_CR4_PAE (1ul << 5) #define X86_CR4_MCE (1ul << 6) #define X86_CR4_PGE (1ul << 7) #define X86_CR4_PCE (1ul << 8) #define X86_CR4_OSFXSR (1ul << 9) #define X86_CR4_OSXMMEXCPT (1ul << 10) #define X86_CR4_UMIP (1ul << 11) #define X86_CR4_LA57 (1ul << 12) #define X86_CR4_VMXE (1ul << 13) #define X86_CR4_SMXE (1ul << 14) #define X86_CR4_FSGSBASE (1ul << 16) #define X86_CR4_PCIDE (1ul << 17) #define X86_CR4_OSXSAVE (1ul << 18) #define X86_CR4_SMEP (1ul << 20) #define X86_CR4_SMAP (1ul << 21) #define X86_CR4_PKE (1ul << 22) /* CPUID.1.ECX */ #define CPUID_VMX (1ul << 5) #define CPUID_SMX (1ul << 6) #define CPUID_PCID (1ul << 17) #define CPUID_XSAVE (1ul << 26) /* CPUID.7.EBX */ #define CPUID_FSGSBASE (1ul << 0) #define CPUID_SMEP (1ul << 7) #define CPUID_SMAP (1ul << 20) /* CPUID.7.ECX */ #define CPUID_UMIP (1ul << 2) #define CPUID_PKU (1ul << 3) #define CPUID_LA57 (1ul << 16) #define UNEXPECTED_VECTOR_PORT 0xfff0u /* General Registers in 64-Bit Mode */ struct gpr64_regs { u64 rax; u64 rcx; u64 rdx; u64 rbx; u64 rsp; u64 rbp; u64 rsi; u64 rdi; u64 r8; u64 r9; u64 r10; u64 r11; u64 r12; u64 r13; u64 r14; u64 r15; }; struct desc64 { uint16_t limit0; uint16_t base0; unsigned base1:8, type:4, s:1, dpl:2, p:1; unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8; uint32_t base3; uint32_t zero1; } __attribute__((packed)); struct desc_ptr { uint16_t size; uint64_t address; } __attribute__((packed)); static inline uint64_t get_desc64_base(const struct desc64 *desc) { return ((uint64_t)desc->base3 << 32) | (desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24)); } static inline uint64_t rdtsc(void) { uint32_t eax, edx; uint64_t tsc_val; /* * The lfence is to wait (on Intel CPUs) until all previous * instructions have been executed. If software requires RDTSC to be * executed prior to execution of any subsequent instruction, it can * execute LFENCE immediately after RDTSC */ __asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx)); tsc_val = ((uint64_t)edx) << 32 | eax; return tsc_val; } static inline uint64_t rdtscp(uint32_t *aux) { uint32_t eax, edx; __asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux)); return ((uint64_t)edx) << 32 | eax; } static inline uint64_t rdmsr(uint32_t msr) { uint32_t a, d; __asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory"); return a | ((uint64_t) d << 32); } static inline void wrmsr(uint32_t msr, uint64_t value) { uint32_t a = value; uint32_t d = value >> 32; __asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory"); } static inline uint16_t inw(uint16_t port) { uint16_t tmp; __asm__ __volatile__("in %%dx, %%ax" : /* output */ "=a" (tmp) : /* input */ "d" (port)); return tmp; } static inline uint16_t get_es(void) { uint16_t es; __asm__ __volatile__("mov %%es, %[es]" : /* output */ [es]"=rm"(es)); return es; } static inline uint16_t get_cs(void) { uint16_t cs; __asm__ __volatile__("mov %%cs, %[cs]" : /* output */ [cs]"=rm"(cs)); return cs; } static inline uint16_t get_ss(void) { uint16_t ss; __asm__ __volatile__("mov %%ss, %[ss]" : /* output */ [ss]"=rm"(ss)); return ss; } static inline uint16_t get_ds(void) { uint16_t ds; __asm__ __volatile__("mov %%ds, %[ds]" : /* output */ [ds]"=rm"(ds)); return ds; } static inline uint16_t get_fs(void) { uint16_t fs; __asm__ __volatile__("mov %%fs, %[fs]" : /* output */ [fs]"=rm"(fs)); return fs; } static inline uint16_t get_gs(void) { uint16_t gs; __asm__ __volatile__("mov %%gs, %[gs]" : /* output */ [gs]"=rm"(gs)); return gs; } static inline uint16_t get_tr(void) { uint16_t tr; __asm__ __volatile__("str %[tr]" : /* output */ [tr]"=rm"(tr)); return tr; } static inline uint64_t get_cr0(void) { uint64_t cr0; __asm__ __volatile__("mov %%cr0, %[cr0]" : /* output */ [cr0]"=r"(cr0)); return cr0; } static inline uint64_t get_cr3(void) { uint64_t cr3; __asm__ __volatile__("mov %%cr3, %[cr3]" : /* output */ [cr3]"=r"(cr3)); return cr3; } static inline uint64_t get_cr4(void) { uint64_t cr4; __asm__ __volatile__("mov %%cr4, %[cr4]" : /* output */ [cr4]"=r"(cr4)); return cr4; } static inline void set_cr4(uint64_t val) { __asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory"); } static inline struct desc_ptr get_gdt(void) { struct desc_ptr gdt; __asm__ __volatile__("sgdt %[gdt]" : /* output */ [gdt]"=m"(gdt)); return gdt; } static inline struct desc_ptr get_idt(void) { struct desc_ptr idt; __asm__ __volatile__("sidt %[idt]" : /* output */ [idt]"=m"(idt)); return idt; } static inline void outl(uint16_t port, uint32_t value) { __asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value)); } #define SET_XMM(__var, __xmm) \ asm volatile("movq %0, %%"#__xmm : : "r"(__var) : #__xmm) static inline void set_xmm(int n, unsigned long val) { switch (n) { case 0: SET_XMM(val, xmm0); break; case 1: SET_XMM(val, xmm1); break; case 2: SET_XMM(val, xmm2); break; case 3: SET_XMM(val, xmm3); break; case 4: SET_XMM(val, xmm4); break; case 5: SET_XMM(val, xmm5); break; case 6: SET_XMM(val, xmm6); break; case 7: SET_XMM(val, xmm7); break; } } typedef unsigned long v1di __attribute__ ((vector_size (8))); static inline unsigned long get_xmm(int n) { assert(n >= 0 && n <= 7); register v1di xmm0 __asm__("%xmm0"); register v1di xmm1 __asm__("%xmm1"); register v1di xmm2 __asm__("%xmm2"); register v1di xmm3 __asm__("%xmm3"); register v1di xmm4 __asm__("%xmm4"); register v1di xmm5 __asm__("%xmm5"); register v1di xmm6 __asm__("%xmm6"); register v1di xmm7 __asm__("%xmm7"); switch (n) { case 0: return (unsigned long)xmm0; case 1: return (unsigned long)xmm1; case 2: return (unsigned long)xmm2; case 3: return (unsigned long)xmm3; case 4: return (unsigned long)xmm4; case 5: return (unsigned long)xmm5; case 6: return (unsigned long)xmm6; case 7: return (unsigned long)xmm7; } return 0; } bool is_intel_cpu(void); struct kvm_x86_state; struct kvm_x86_state *vcpu_save_state(struct kvm_vm *vm, uint32_t vcpuid); void vcpu_load_state(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_x86_state *state); struct kvm_msr_list *kvm_get_msr_index_list(void); struct kvm_cpuid2 *kvm_get_supported_cpuid(void); void vcpu_set_cpuid(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_cpuid2 *cpuid); struct kvm_cpuid_entry2 * kvm_get_supported_cpuid_index(uint32_t function, uint32_t index); static inline struct kvm_cpuid_entry2 * kvm_get_supported_cpuid_entry(uint32_t function) { return kvm_get_supported_cpuid_index(function, 0); } uint64_t vcpu_get_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index); int _vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index, uint64_t msr_value); void vcpu_set_msr(struct kvm_vm *vm, uint32_t vcpuid, uint64_t msr_index, uint64_t msr_value); uint32_t kvm_get_cpuid_max_basic(void); uint32_t kvm_get_cpuid_max_extended(void); void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits); struct ex_regs { uint64_t rax, rcx, rdx, rbx; uint64_t rbp, rsi, rdi; uint64_t r8, r9, r10, r11; uint64_t r12, r13, r14, r15; uint64_t vector; uint64_t error_code; uint64_t rip; uint64_t cs; uint64_t rflags; }; void vm_init_descriptor_tables(struct kvm_vm *vm); void vcpu_init_descriptor_tables(struct kvm_vm *vm, uint32_t vcpuid); void vm_handle_exception(struct kvm_vm *vm, int vector, void (*handler)(struct ex_regs *)); /* * set_cpuid() - overwrites a matching cpuid entry with the provided value. * matches based on ent->function && ent->index. returns true * if a match was found and successfully overwritten. * @cpuid: the kvm cpuid list to modify. * @ent: cpuid entry to insert */ bool set_cpuid(struct kvm_cpuid2 *cpuid, struct kvm_cpuid_entry2 *ent); uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2, uint64_t a3); /* * Basic CPU control in CR0 */ #define X86_CR0_PE (1UL<<0) /* Protection Enable */ #define X86_CR0_MP (1UL<<1) /* Monitor Coprocessor */ #define X86_CR0_EM (1UL<<2) /* Emulation */ #define X86_CR0_TS (1UL<<3) /* Task Switched */ #define X86_CR0_ET (1UL<<4) /* Extension Type */ #define X86_CR0_NE (1UL<<5) /* Numeric Error */ #define X86_CR0_WP (1UL<<16) /* Write Protect */ #define X86_CR0_AM (1UL<<18) /* Alignment Mask */ #define X86_CR0_NW (1UL<<29) /* Not Write-through */ #define X86_CR0_CD (1UL<<30) /* Cache Disable */ #define X86_CR0_PG (1UL<<31) /* Paging */ #define APIC_BASE_MSR 0x800 #define X2APIC_ENABLE (1UL << 10) #define APIC_ICR 0x300 #define APIC_DEST_SELF 0x40000 #define APIC_DEST_ALLINC 0x80000 #define APIC_DEST_ALLBUT 0xC0000 #define APIC_ICR_RR_MASK 0x30000 #define APIC_ICR_RR_INVALID 0x00000 #define APIC_ICR_RR_INPROG 0x10000 #define APIC_ICR_RR_VALID 0x20000 #define APIC_INT_LEVELTRIG 0x08000 #define APIC_INT_ASSERT 0x04000 #define APIC_ICR_BUSY 0x01000 #define APIC_DEST_LOGICAL 0x00800 #define APIC_DEST_PHYSICAL 0x00000 #define APIC_DM_FIXED 0x00000 #define APIC_DM_FIXED_MASK 0x00700 #define APIC_DM_LOWEST 0x00100 #define APIC_DM_SMI 0x00200 #define APIC_DM_REMRD 0x00300 #define APIC_DM_NMI 0x00400 #define APIC_DM_INIT 0x00500 #define APIC_DM_STARTUP 0x00600 #define APIC_DM_EXTINT 0x00700 #define APIC_VECTOR_MASK 0x000FF #define APIC_ICR2 0x310 /* VMX_EPT_VPID_CAP bits */ #define VMX_EPT_VPID_CAP_AD_BITS (1ULL << 21) #endif /* SELFTEST_KVM_PROCESSOR_H */