// SPDX-License-Identifier: GPL-2.0 #include #include #include #include "uprobe_multi.skel.h" #include "uprobe_multi_bench.skel.h" #include "uprobe_multi_usdt.skel.h" #include "uprobe_multi_consumers.skel.h" #include "uprobe_multi_pid_filter.skel.h" #include "bpf/libbpf_internal.h" #include "testing_helpers.h" #include "../sdt.h" static char test_data[] = "test_data"; noinline void uprobe_multi_func_1(void) { asm volatile (""); } noinline void uprobe_multi_func_2(void) { asm volatile (""); } noinline void uprobe_multi_func_3(void) { asm volatile (""); } noinline void usdt_trigger(void) { STAP_PROBE(test, pid_filter_usdt); } struct child { int go[2]; int c2p[2]; /* child -> parent channel */ int pid; int tid; pthread_t thread; char stack[65536]; }; static void release_child(struct child *child) { int child_status; if (!child) return; close(child->go[1]); close(child->go[0]); if (child->thread) pthread_join(child->thread, NULL); close(child->c2p[0]); close(child->c2p[1]); if (child->pid > 0) waitpid(child->pid, &child_status, 0); } static void kick_child(struct child *child) { char c = 1; if (child) { write(child->go[1], &c, 1); release_child(child); } fflush(NULL); } static int child_func(void *arg) { struct child *child = arg; int err, c; close(child->go[1]); /* wait for parent's kick */ err = read(child->go[0], &c, 1); if (err != 1) exit(err); uprobe_multi_func_1(); uprobe_multi_func_2(); uprobe_multi_func_3(); usdt_trigger(); exit(errno); } static int spawn_child_flag(struct child *child, bool clone_vm) { /* pipe to notify child to execute the trigger functions */ if (pipe(child->go)) return -1; if (clone_vm) { child->pid = child->tid = clone(child_func, child->stack + sizeof(child->stack)/2, CLONE_VM|SIGCHLD, child); } else { child->pid = child->tid = fork(); } if (child->pid < 0) { release_child(child); errno = EINVAL; return -1; } /* fork-ed child */ if (!clone_vm && child->pid == 0) child_func(child); return 0; } static int spawn_child(struct child *child) { return spawn_child_flag(child, false); } static void *child_thread(void *ctx) { struct child *child = ctx; int c = 0, err; child->tid = syscall(SYS_gettid); /* let parent know we are ready */ err = write(child->c2p[1], &c, 1); if (err != 1) pthread_exit(&err); /* wait for parent's kick */ err = read(child->go[0], &c, 1); if (err != 1) pthread_exit(&err); uprobe_multi_func_1(); uprobe_multi_func_2(); uprobe_multi_func_3(); usdt_trigger(); err = 0; pthread_exit(&err); } static int spawn_thread(struct child *child) { int c, err; /* pipe to notify child to execute the trigger functions */ if (pipe(child->go)) return -1; /* pipe to notify parent that child thread is ready */ if (pipe(child->c2p)) { close(child->go[0]); close(child->go[1]); return -1; } child->pid = getpid(); err = pthread_create(&child->thread, NULL, child_thread, child); if (err) { err = -errno; close(child->go[0]); close(child->go[1]); close(child->c2p[0]); close(child->c2p[1]); errno = -err; return -1; } err = read(child->c2p[0], &c, 1); if (!ASSERT_EQ(err, 1, "child_thread_ready")) return -1; return 0; } static void uprobe_multi_test_run(struct uprobe_multi *skel, struct child *child) { skel->bss->uprobe_multi_func_1_addr = (__u64) uprobe_multi_func_1; skel->bss->uprobe_multi_func_2_addr = (__u64) uprobe_multi_func_2; skel->bss->uprobe_multi_func_3_addr = (__u64) uprobe_multi_func_3; skel->bss->user_ptr = test_data; /* * Disable pid check in bpf program if we are pid filter test, * because the probe should be executed only by child->pid * passed at the probe attach. */ skel->bss->pid = child ? 0 : getpid(); skel->bss->expect_pid = child ? child->pid : 0; /* trigger all probes, if we are testing child *process*, just to make * sure that PID filtering doesn't let through activations from wrong * PIDs; when we test child *thread*, we don't want to do this to * avoid double counting number of triggering events */ if (!child || !child->thread) { uprobe_multi_func_1(); uprobe_multi_func_2(); uprobe_multi_func_3(); usdt_trigger(); } if (child) kick_child(child); /* * There are 2 entry and 2 exit probe called for each uprobe_multi_func_[123] * function and each sleepable probe (6) increments uprobe_multi_sleep_result. */ ASSERT_EQ(skel->bss->uprobe_multi_func_1_result, 2, "uprobe_multi_func_1_result"); ASSERT_EQ(skel->bss->uprobe_multi_func_2_result, 2, "uprobe_multi_func_2_result"); ASSERT_EQ(skel->bss->uprobe_multi_func_3_result, 2, "uprobe_multi_func_3_result"); ASSERT_EQ(skel->bss->uretprobe_multi_func_1_result, 2, "uretprobe_multi_func_1_result"); ASSERT_EQ(skel->bss->uretprobe_multi_func_2_result, 2, "uretprobe_multi_func_2_result"); ASSERT_EQ(skel->bss->uretprobe_multi_func_3_result, 2, "uretprobe_multi_func_3_result"); ASSERT_EQ(skel->bss->uprobe_multi_sleep_result, 6, "uprobe_multi_sleep_result"); ASSERT_FALSE(skel->bss->bad_pid_seen, "bad_pid_seen"); if (child) { ASSERT_EQ(skel->bss->child_pid, child->pid, "uprobe_multi_child_pid"); ASSERT_EQ(skel->bss->child_tid, child->tid, "uprobe_multi_child_tid"); } } static void test_skel_api(void) { struct uprobe_multi *skel = NULL; int err; skel = uprobe_multi__open_and_load(); if (!ASSERT_OK_PTR(skel, "uprobe_multi__open_and_load")) goto cleanup; err = uprobe_multi__attach(skel); if (!ASSERT_OK(err, "uprobe_multi__attach")) goto cleanup; uprobe_multi_test_run(skel, NULL); cleanup: uprobe_multi__destroy(skel); } static void __test_attach_api(const char *binary, const char *pattern, struct bpf_uprobe_multi_opts *opts, struct child *child) { pid_t pid = child ? child->pid : -1; struct uprobe_multi *skel = NULL; skel = uprobe_multi__open_and_load(); if (!ASSERT_OK_PTR(skel, "uprobe_multi__open_and_load")) goto cleanup; opts->retprobe = false; skel->links.uprobe = bpf_program__attach_uprobe_multi(skel->progs.uprobe, pid, binary, pattern, opts); if (!ASSERT_OK_PTR(skel->links.uprobe, "bpf_program__attach_uprobe_multi")) goto cleanup; opts->retprobe = true; skel->links.uretprobe = bpf_program__attach_uprobe_multi(skel->progs.uretprobe, pid, binary, pattern, opts); if (!ASSERT_OK_PTR(skel->links.uretprobe, "bpf_program__attach_uprobe_multi")) goto cleanup; opts->retprobe = false; skel->links.uprobe_sleep = bpf_program__attach_uprobe_multi(skel->progs.uprobe_sleep, pid, binary, pattern, opts); if (!ASSERT_OK_PTR(skel->links.uprobe_sleep, "bpf_program__attach_uprobe_multi")) goto cleanup; opts->retprobe = true; skel->links.uretprobe_sleep = bpf_program__attach_uprobe_multi(skel->progs.uretprobe_sleep, pid, binary, pattern, opts); if (!ASSERT_OK_PTR(skel->links.uretprobe_sleep, "bpf_program__attach_uprobe_multi")) goto cleanup; opts->retprobe = false; skel->links.uprobe_extra = bpf_program__attach_uprobe_multi(skel->progs.uprobe_extra, -1, binary, pattern, opts); if (!ASSERT_OK_PTR(skel->links.uprobe_extra, "bpf_program__attach_uprobe_multi")) goto cleanup; /* Attach (uprobe-backed) USDTs */ skel->links.usdt_pid = bpf_program__attach_usdt(skel->progs.usdt_pid, pid, binary, "test", "pid_filter_usdt", NULL); if (!ASSERT_OK_PTR(skel->links.usdt_pid, "attach_usdt_pid")) goto cleanup; skel->links.usdt_extra = bpf_program__attach_usdt(skel->progs.usdt_extra, -1, binary, "test", "pid_filter_usdt", NULL); if (!ASSERT_OK_PTR(skel->links.usdt_extra, "attach_usdt_extra")) goto cleanup; uprobe_multi_test_run(skel, child); ASSERT_FALSE(skel->bss->bad_pid_seen_usdt, "bad_pid_seen_usdt"); if (child) { ASSERT_EQ(skel->bss->child_pid_usdt, child->pid, "usdt_multi_child_pid"); ASSERT_EQ(skel->bss->child_tid_usdt, child->tid, "usdt_multi_child_tid"); } cleanup: uprobe_multi__destroy(skel); } static void test_attach_api(const char *binary, const char *pattern, struct bpf_uprobe_multi_opts *opts) { static struct child child; /* no pid filter */ __test_attach_api(binary, pattern, opts, NULL); /* pid filter */ if (!ASSERT_OK(spawn_child(&child), "spawn_child")) return; __test_attach_api(binary, pattern, opts, &child); /* pid filter (thread) */ if (!ASSERT_OK(spawn_thread(&child), "spawn_thread")) return; __test_attach_api(binary, pattern, opts, &child); } static void test_attach_api_pattern(void) { LIBBPF_OPTS(bpf_uprobe_multi_opts, opts); test_attach_api("/proc/self/exe", "uprobe_multi_func_*", &opts); test_attach_api("/proc/self/exe", "uprobe_multi_func_?", &opts); } static void test_attach_api_syms(void) { LIBBPF_OPTS(bpf_uprobe_multi_opts, opts); const char *syms[3] = { "uprobe_multi_func_1", "uprobe_multi_func_2", "uprobe_multi_func_3", }; opts.syms = syms; opts.cnt = ARRAY_SIZE(syms); test_attach_api("/proc/self/exe", NULL, &opts); } static void test_attach_api_fails(void) { LIBBPF_OPTS(bpf_link_create_opts, opts); const char *path = "/proc/self/exe"; struct uprobe_multi *skel = NULL; int prog_fd, link_fd = -1; unsigned long offset = 0; skel = uprobe_multi__open_and_load(); if (!ASSERT_OK_PTR(skel, "uprobe_multi__open_and_load")) goto cleanup; prog_fd = bpf_program__fd(skel->progs.uprobe_extra); /* abnormal cnt */ opts.uprobe_multi.path = path; opts.uprobe_multi.offsets = &offset; opts.uprobe_multi.cnt = INT_MAX; link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &opts); if (!ASSERT_ERR(link_fd, "link_fd")) goto cleanup; if (!ASSERT_EQ(link_fd, -E2BIG, "big cnt")) goto cleanup; /* cnt is 0 */ LIBBPF_OPTS_RESET(opts, .uprobe_multi.path = path, .uprobe_multi.offsets = (unsigned long *) &offset, ); link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &opts); if (!ASSERT_ERR(link_fd, "link_fd")) goto cleanup; if (!ASSERT_EQ(link_fd, -EINVAL, "cnt_is_zero")) goto cleanup; /* negative offset */ offset = -1; opts.uprobe_multi.path = path; opts.uprobe_multi.offsets = (unsigned long *) &offset; opts.uprobe_multi.cnt = 1; link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &opts); if (!ASSERT_ERR(link_fd, "link_fd")) goto cleanup; if (!ASSERT_EQ(link_fd, -EINVAL, "offset_is_negative")) goto cleanup; /* offsets is NULL */ LIBBPF_OPTS_RESET(opts, .uprobe_multi.path = path, .uprobe_multi.cnt = 1, ); link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &opts); if (!ASSERT_ERR(link_fd, "link_fd")) goto cleanup; if (!ASSERT_EQ(link_fd, -EINVAL, "offsets_is_null")) goto cleanup; /* wrong offsets pointer */ LIBBPF_OPTS_RESET(opts, .uprobe_multi.path = path, .uprobe_multi.offsets = (unsigned long *) 1, .uprobe_multi.cnt = 1, ); link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &opts); if (!ASSERT_ERR(link_fd, "link_fd")) goto cleanup; if (!ASSERT_EQ(link_fd, -EFAULT, "offsets_is_wrong")) goto cleanup; /* path is NULL */ offset = 1; LIBBPF_OPTS_RESET(opts, .uprobe_multi.offsets = (unsigned long *) &offset, .uprobe_multi.cnt = 1, ); link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &opts); if (!ASSERT_ERR(link_fd, "link_fd")) goto cleanup; if (!ASSERT_EQ(link_fd, -EINVAL, "path_is_null")) goto cleanup; /* wrong path pointer */ LIBBPF_OPTS_RESET(opts, .uprobe_multi.path = (const char *) 1, .uprobe_multi.offsets = (unsigned long *) &offset, .uprobe_multi.cnt = 1, ); link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &opts); if (!ASSERT_ERR(link_fd, "link_fd")) goto cleanup; if (!ASSERT_EQ(link_fd, -EFAULT, "path_is_wrong")) goto cleanup; /* wrong path type */ LIBBPF_OPTS_RESET(opts, .uprobe_multi.path = "/", .uprobe_multi.offsets = (unsigned long *) &offset, .uprobe_multi.cnt = 1, ); link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &opts); if (!ASSERT_ERR(link_fd, "link_fd")) goto cleanup; if (!ASSERT_EQ(link_fd, -EBADF, "path_is_wrong_type")) goto cleanup; /* wrong cookies pointer */ LIBBPF_OPTS_RESET(opts, .uprobe_multi.path = path, .uprobe_multi.offsets = (unsigned long *) &offset, .uprobe_multi.cookies = (__u64 *) 1ULL, .uprobe_multi.cnt = 1, ); link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &opts); if (!ASSERT_ERR(link_fd, "link_fd")) goto cleanup; if (!ASSERT_EQ(link_fd, -EFAULT, "cookies_is_wrong")) goto cleanup; /* wrong ref_ctr_offsets pointer */ LIBBPF_OPTS_RESET(opts, .uprobe_multi.path = path, .uprobe_multi.offsets = (unsigned long *) &offset, .uprobe_multi.cookies = (__u64 *) &offset, .uprobe_multi.ref_ctr_offsets = (unsigned long *) 1, .uprobe_multi.cnt = 1, ); link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &opts); if (!ASSERT_ERR(link_fd, "link_fd")) goto cleanup; if (!ASSERT_EQ(link_fd, -EFAULT, "ref_ctr_offsets_is_wrong")) goto cleanup; /* wrong flags */ LIBBPF_OPTS_RESET(opts, .uprobe_multi.flags = 1 << 31, ); link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &opts); if (!ASSERT_ERR(link_fd, "link_fd")) goto cleanup; if (!ASSERT_EQ(link_fd, -EINVAL, "wrong_flags")) goto cleanup; /* wrong pid */ LIBBPF_OPTS_RESET(opts, .uprobe_multi.path = path, .uprobe_multi.offsets = (unsigned long *) &offset, .uprobe_multi.cnt = 1, .uprobe_multi.pid = -2, ); link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &opts); if (!ASSERT_ERR(link_fd, "link_fd")) goto cleanup; ASSERT_EQ(link_fd, -EINVAL, "pid_is_wrong"); cleanup: if (link_fd >= 0) close(link_fd); uprobe_multi__destroy(skel); } #ifdef __x86_64__ noinline void uprobe_multi_error_func(void) { /* * If --fcf-protection=branch is enabled the gcc generates endbr as * first instruction, so marking the exact address of int3 with the * symbol to be used in the attach_uprobe_fail_trap test below. */ asm volatile ( ".globl uprobe_multi_error_func_int3; \n" "uprobe_multi_error_func_int3: \n" "int3 \n" ); } /* * Attaching uprobe on uprobe_multi_error_func results in error * because it already starts with int3 instruction. */ static void attach_uprobe_fail_trap(struct uprobe_multi *skel) { LIBBPF_OPTS(bpf_uprobe_multi_opts, opts); const char *syms[4] = { "uprobe_multi_func_1", "uprobe_multi_func_2", "uprobe_multi_func_3", "uprobe_multi_error_func_int3", }; opts.syms = syms; opts.cnt = ARRAY_SIZE(syms); skel->links.uprobe = bpf_program__attach_uprobe_multi(skel->progs.uprobe, -1, "/proc/self/exe", NULL, &opts); if (!ASSERT_ERR_PTR(skel->links.uprobe, "bpf_program__attach_uprobe_multi")) { bpf_link__destroy(skel->links.uprobe); skel->links.uprobe = NULL; } } #else static void attach_uprobe_fail_trap(struct uprobe_multi *skel) { } #endif short sema_1 __used, sema_2 __used; static void attach_uprobe_fail_refctr(struct uprobe_multi *skel) { unsigned long *tmp_offsets = NULL, *tmp_ref_ctr_offsets = NULL; unsigned long offsets[3], ref_ctr_offsets[3]; LIBBPF_OPTS(bpf_link_create_opts, opts); const char *path = "/proc/self/exe"; const char *syms[3] = { "uprobe_multi_func_1", "uprobe_multi_func_2", }; const char *sema[3] = { "sema_1", "sema_2", }; int prog_fd, link_fd, err; prog_fd = bpf_program__fd(skel->progs.uprobe_extra); err = elf_resolve_syms_offsets("/proc/self/exe", 2, (const char **) &syms, &tmp_offsets, STT_FUNC); if (!ASSERT_OK(err, "elf_resolve_syms_offsets_func")) return; err = elf_resolve_syms_offsets("/proc/self/exe", 2, (const char **) &sema, &tmp_ref_ctr_offsets, STT_OBJECT); if (!ASSERT_OK(err, "elf_resolve_syms_offsets_sema")) goto cleanup; /* * We attach to 3 uprobes on 2 functions, so 2 uprobes share single function, * but with different ref_ctr_offset which is not allowed and results in fail. */ offsets[0] = tmp_offsets[0]; /* uprobe_multi_func_1 */ offsets[1] = tmp_offsets[1]; /* uprobe_multi_func_2 */ offsets[2] = tmp_offsets[1]; /* uprobe_multi_func_2 */ ref_ctr_offsets[0] = tmp_ref_ctr_offsets[0]; /* sema_1 */ ref_ctr_offsets[1] = tmp_ref_ctr_offsets[1]; /* sema_2 */ ref_ctr_offsets[2] = tmp_ref_ctr_offsets[0]; /* sema_1, error */ opts.uprobe_multi.path = path; opts.uprobe_multi.offsets = (const unsigned long *) &offsets; opts.uprobe_multi.ref_ctr_offsets = (const unsigned long *) &ref_ctr_offsets; opts.uprobe_multi.cnt = 3; link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &opts); if (!ASSERT_ERR(link_fd, "link_fd")) close(link_fd); cleanup: free(tmp_ref_ctr_offsets); free(tmp_offsets); } static void test_attach_uprobe_fails(void) { struct uprobe_multi *skel = NULL; skel = uprobe_multi__open_and_load(); if (!ASSERT_OK_PTR(skel, "uprobe_multi__open_and_load")) return; /* attach fails due to adding uprobe on trap instruction, x86_64 only */ attach_uprobe_fail_trap(skel); /* attach fail due to wrong ref_ctr_offs on one of the uprobes */ attach_uprobe_fail_refctr(skel); uprobe_multi__destroy(skel); } static void __test_link_api(struct child *child) { int prog_fd, link1_fd = -1, link2_fd = -1, link3_fd = -1, link4_fd = -1; LIBBPF_OPTS(bpf_link_create_opts, opts); const char *path = "/proc/self/exe"; struct uprobe_multi *skel = NULL; unsigned long *offsets = NULL; const char *syms[3] = { "uprobe_multi_func_1", "uprobe_multi_func_2", "uprobe_multi_func_3", }; int link_extra_fd = -1; int err; err = elf_resolve_syms_offsets(path, 3, syms, (unsigned long **) &offsets, STT_FUNC); if (!ASSERT_OK(err, "elf_resolve_syms_offsets")) return; opts.uprobe_multi.path = path; opts.uprobe_multi.offsets = offsets; opts.uprobe_multi.cnt = ARRAY_SIZE(syms); opts.uprobe_multi.pid = child ? child->pid : 0; skel = uprobe_multi__open_and_load(); if (!ASSERT_OK_PTR(skel, "uprobe_multi__open_and_load")) goto cleanup; opts.kprobe_multi.flags = 0; prog_fd = bpf_program__fd(skel->progs.uprobe); link1_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &opts); if (!ASSERT_GE(link1_fd, 0, "link1_fd")) goto cleanup; opts.kprobe_multi.flags = BPF_F_UPROBE_MULTI_RETURN; prog_fd = bpf_program__fd(skel->progs.uretprobe); link2_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &opts); if (!ASSERT_GE(link2_fd, 0, "link2_fd")) goto cleanup; opts.kprobe_multi.flags = 0; prog_fd = bpf_program__fd(skel->progs.uprobe_sleep); link3_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &opts); if (!ASSERT_GE(link3_fd, 0, "link3_fd")) goto cleanup; opts.kprobe_multi.flags = BPF_F_UPROBE_MULTI_RETURN; prog_fd = bpf_program__fd(skel->progs.uretprobe_sleep); link4_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &opts); if (!ASSERT_GE(link4_fd, 0, "link4_fd")) goto cleanup; opts.kprobe_multi.flags = 0; opts.uprobe_multi.pid = 0; prog_fd = bpf_program__fd(skel->progs.uprobe_extra); link_extra_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &opts); if (!ASSERT_GE(link_extra_fd, 0, "link_extra_fd")) goto cleanup; uprobe_multi_test_run(skel, child); cleanup: if (link1_fd >= 0) close(link1_fd); if (link2_fd >= 0) close(link2_fd); if (link3_fd >= 0) close(link3_fd); if (link4_fd >= 0) close(link4_fd); if (link_extra_fd >= 0) close(link_extra_fd); uprobe_multi__destroy(skel); free(offsets); } static void test_link_api(void) { static struct child child; /* no pid filter */ __test_link_api(NULL); /* pid filter */ if (!ASSERT_OK(spawn_child(&child), "spawn_child")) return; __test_link_api(&child); /* pid filter (thread) */ if (!ASSERT_OK(spawn_thread(&child), "spawn_thread")) return; __test_link_api(&child); } static struct bpf_program * get_program(struct uprobe_multi_consumers *skel, int prog) { switch (prog) { case 0: return skel->progs.uprobe_0; case 1: return skel->progs.uprobe_1; case 2: return skel->progs.uprobe_2; case 3: return skel->progs.uprobe_3; default: ASSERT_FAIL("get_program"); return NULL; } } static struct bpf_link ** get_link(struct uprobe_multi_consumers *skel, int link) { switch (link) { case 0: return &skel->links.uprobe_0; case 1: return &skel->links.uprobe_1; case 2: return &skel->links.uprobe_2; case 3: return &skel->links.uprobe_3; default: ASSERT_FAIL("get_link"); return NULL; } } static int uprobe_attach(struct uprobe_multi_consumers *skel, int idx) { struct bpf_program *prog = get_program(skel, idx); struct bpf_link **link = get_link(skel, idx); LIBBPF_OPTS(bpf_uprobe_multi_opts, opts); if (!prog || !link) return -1; /* * bit/prog: 0,1 uprobe entry * bit/prog: 2,3 uprobe return */ opts.retprobe = idx == 2 || idx == 3; *link = bpf_program__attach_uprobe_multi(prog, 0, "/proc/self/exe", "uprobe_consumer_test", &opts); if (!ASSERT_OK_PTR(*link, "bpf_program__attach_uprobe_multi")) return -1; return 0; } static void uprobe_detach(struct uprobe_multi_consumers *skel, int idx) { struct bpf_link **link = get_link(skel, idx); bpf_link__destroy(*link); *link = NULL; } static bool test_bit(int bit, unsigned long val) { return val & (1 << bit); } noinline int uprobe_consumer_test(struct uprobe_multi_consumers *skel, unsigned long before, unsigned long after) { int idx; /* detach uprobe for each unset programs in 'before' state ... */ for (idx = 0; idx < 4; idx++) { if (test_bit(idx, before) && !test_bit(idx, after)) uprobe_detach(skel, idx); } /* ... and attach all new programs in 'after' state */ for (idx = 0; idx < 4; idx++) { if (!test_bit(idx, before) && test_bit(idx, after)) { if (!ASSERT_OK(uprobe_attach(skel, idx), "uprobe_attach_after")) return -1; } } return 0; } static void consumer_test(struct uprobe_multi_consumers *skel, unsigned long before, unsigned long after) { int err, idx; printf("consumer_test before %lu after %lu\n", before, after); /* 'before' is each, we attach uprobe for every set idx */ for (idx = 0; idx < 4; idx++) { if (test_bit(idx, before)) { if (!ASSERT_OK(uprobe_attach(skel, idx), "uprobe_attach_before")) goto cleanup; } } err = uprobe_consumer_test(skel, before, after); if (!ASSERT_EQ(err, 0, "uprobe_consumer_test")) goto cleanup; for (idx = 0; idx < 4; idx++) { const char *fmt = "BUG"; __u64 val = 0; if (idx < 2) { /* * uprobe entry * +1 if define in 'before' */ if (test_bit(idx, before)) val++; fmt = "prog 0/1: uprobe"; } else { /* * uprobe return is tricky ;-) * * to trigger uretprobe consumer, the uretprobe needs to be installed, * which means one of the 'return' uprobes was alive when probe was hit: * * idxs: 2/3 uprobe return in 'installed' mask * * in addition if 'after' state removes everything that was installed in * 'before' state, then uprobe kernel object goes away and return uprobe * is not installed and we won't hit it even if it's in 'after' state. */ unsigned long had_uretprobes = before & 0b1100; /* is uretprobe installed */ unsigned long probe_preserved = before & after; /* did uprobe go away */ if (had_uretprobes && probe_preserved && test_bit(idx, after)) val++; fmt = "idx 2/3: uretprobe"; } ASSERT_EQ(skel->bss->uprobe_result[idx], val, fmt); skel->bss->uprobe_result[idx] = 0; } cleanup: for (idx = 0; idx < 4; idx++) uprobe_detach(skel, idx); } static void test_consumers(void) { struct uprobe_multi_consumers *skel; int before, after; skel = uprobe_multi_consumers__open_and_load(); if (!ASSERT_OK_PTR(skel, "uprobe_multi_consumers__open_and_load")) return; /* * The idea of this test is to try all possible combinations of * uprobes consumers attached on single function. * * - 2 uprobe entry consumer * - 2 uprobe exit consumers * * The test uses 4 uprobes attached on single function, but that * translates into single uprobe with 4 consumers in kernel. * * The before/after values present the state of attached consumers * before and after the probed function: * * bit/prog 0,1 : uprobe entry * bit/prog 2,3 : uprobe return * * For example for: * * before = 0b0101 * after = 0b0110 * * it means that before we call 'uprobe_consumer_test' we attach * uprobes defined in 'before' value: * * - bit/prog 0: uprobe entry * - bit/prog 2: uprobe return * * uprobe_consumer_test is called and inside it we attach and detach * uprobes based on 'after' value: * * - bit/prog 0: stays untouched * - bit/prog 2: uprobe return is detached * * uprobe_consumer_test returns and we check counters values increased * by bpf programs on each uprobe to match the expected count based on * before/after bits. */ for (before = 0; before < 16; before++) { for (after = 0; after < 16; after++) consumer_test(skel, before, after); } uprobe_multi_consumers__destroy(skel); } static struct bpf_program *uprobe_multi_program(struct uprobe_multi_pid_filter *skel, int idx) { switch (idx) { case 0: return skel->progs.uprobe_multi_0; case 1: return skel->progs.uprobe_multi_1; case 2: return skel->progs.uprobe_multi_2; } return NULL; } #define TASKS 3 static void run_pid_filter(struct uprobe_multi_pid_filter *skel, bool clone_vm, bool retprobe) { LIBBPF_OPTS(bpf_uprobe_multi_opts, opts, .retprobe = retprobe); struct bpf_link *link[TASKS] = {}; struct child child[TASKS] = {}; int i; memset(skel->bss->test, 0, sizeof(skel->bss->test)); for (i = 0; i < TASKS; i++) { if (!ASSERT_OK(spawn_child_flag(&child[i], clone_vm), "spawn_child")) goto cleanup; skel->bss->pids[i] = child[i].pid; } for (i = 0; i < TASKS; i++) { link[i] = bpf_program__attach_uprobe_multi(uprobe_multi_program(skel, i), child[i].pid, "/proc/self/exe", "uprobe_multi_func_1", &opts); if (!ASSERT_OK_PTR(link[i], "bpf_program__attach_uprobe_multi")) goto cleanup; } for (i = 0; i < TASKS; i++) kick_child(&child[i]); for (i = 0; i < TASKS; i++) { ASSERT_EQ(skel->bss->test[i][0], 1, "pid"); ASSERT_EQ(skel->bss->test[i][1], 0, "unknown"); } cleanup: for (i = 0; i < TASKS; i++) bpf_link__destroy(link[i]); for (i = 0; i < TASKS; i++) release_child(&child[i]); } static void test_pid_filter_process(bool clone_vm) { struct uprobe_multi_pid_filter *skel; skel = uprobe_multi_pid_filter__open_and_load(); if (!ASSERT_OK_PTR(skel, "uprobe_multi_pid_filter__open_and_load")) return; run_pid_filter(skel, clone_vm, false); run_pid_filter(skel, clone_vm, true); uprobe_multi_pid_filter__destroy(skel); } static void test_bench_attach_uprobe(void) { long attach_start_ns = 0, attach_end_ns = 0; struct uprobe_multi_bench *skel = NULL; long detach_start_ns, detach_end_ns; double attach_delta, detach_delta; int err; skel = uprobe_multi_bench__open_and_load(); if (!ASSERT_OK_PTR(skel, "uprobe_multi_bench__open_and_load")) goto cleanup; attach_start_ns = get_time_ns(); err = uprobe_multi_bench__attach(skel); if (!ASSERT_OK(err, "uprobe_multi_bench__attach")) goto cleanup; attach_end_ns = get_time_ns(); system("./uprobe_multi bench"); ASSERT_EQ(skel->bss->count, 50000, "uprobes_count"); cleanup: detach_start_ns = get_time_ns(); uprobe_multi_bench__destroy(skel); detach_end_ns = get_time_ns(); attach_delta = (attach_end_ns - attach_start_ns) / 1000000000.0; detach_delta = (detach_end_ns - detach_start_ns) / 1000000000.0; printf("%s: attached in %7.3lfs\n", __func__, attach_delta); printf("%s: detached in %7.3lfs\n", __func__, detach_delta); } static void test_bench_attach_usdt(void) { long attach_start_ns = 0, attach_end_ns = 0; struct uprobe_multi_usdt *skel = NULL; long detach_start_ns, detach_end_ns; double attach_delta, detach_delta; skel = uprobe_multi_usdt__open_and_load(); if (!ASSERT_OK_PTR(skel, "uprobe_multi__open")) goto cleanup; attach_start_ns = get_time_ns(); skel->links.usdt0 = bpf_program__attach_usdt(skel->progs.usdt0, -1, "./uprobe_multi", "test", "usdt", NULL); if (!ASSERT_OK_PTR(skel->links.usdt0, "bpf_program__attach_usdt")) goto cleanup; attach_end_ns = get_time_ns(); system("./uprobe_multi usdt"); ASSERT_EQ(skel->bss->count, 50000, "usdt_count"); cleanup: detach_start_ns = get_time_ns(); uprobe_multi_usdt__destroy(skel); detach_end_ns = get_time_ns(); attach_delta = (attach_end_ns - attach_start_ns) / 1000000000.0; detach_delta = (detach_end_ns - detach_start_ns) / 1000000000.0; printf("%s: attached in %7.3lfs\n", __func__, attach_delta); printf("%s: detached in %7.3lfs\n", __func__, detach_delta); } void test_uprobe_multi_test(void) { if (test__start_subtest("skel_api")) test_skel_api(); if (test__start_subtest("attach_api_pattern")) test_attach_api_pattern(); if (test__start_subtest("attach_api_syms")) test_attach_api_syms(); if (test__start_subtest("link_api")) test_link_api(); if (test__start_subtest("bench_uprobe")) test_bench_attach_uprobe(); if (test__start_subtest("bench_usdt")) test_bench_attach_usdt(); if (test__start_subtest("attach_api_fails")) test_attach_api_fails(); if (test__start_subtest("attach_uprobe_fails")) test_attach_uprobe_fails(); if (test__start_subtest("consumers")) test_consumers(); if (test__start_subtest("filter_fork")) test_pid_filter_process(false); if (test__start_subtest("filter_clone_vm")) test_pid_filter_process(true); }