// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2021 ARM Limited. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "../../kselftest.h" #include "syscall-abi.h" /* * The kernel defines a much larger SVE_VQ_MAX than is expressable in * the architecture, this creates a *lot* of overhead filling the * buffers (especially ZA) on emulated platforms so use the actual * architectural maximum instead. */ #define ARCH_SVE_VQ_MAX 16 static int default_sme_vl; static int sve_vl_count; static unsigned int sve_vls[ARCH_SVE_VQ_MAX]; static int sme_vl_count; static unsigned int sme_vls[ARCH_SVE_VQ_MAX]; extern void do_syscall(int sve_vl, int sme_vl); static void fill_random(void *buf, size_t size) { int i; uint32_t *lbuf = buf; /* random() returns a 32 bit number regardless of the size of long */ for (i = 0; i < size / sizeof(uint32_t); i++) lbuf[i] = random(); } /* * We also repeat the test for several syscalls to try to expose different * behaviour. */ static struct syscall_cfg { int syscall_nr; const char *name; } syscalls[] = { { __NR_getpid, "getpid()" }, { __NR_sched_yield, "sched_yield()" }, }; #define NUM_GPR 31 uint64_t gpr_in[NUM_GPR]; uint64_t gpr_out[NUM_GPR]; static void setup_gpr(struct syscall_cfg *cfg, int sve_vl, int sme_vl, uint64_t svcr) { fill_random(gpr_in, sizeof(gpr_in)); gpr_in[8] = cfg->syscall_nr; memset(gpr_out, 0, sizeof(gpr_out)); } static int check_gpr(struct syscall_cfg *cfg, int sve_vl, int sme_vl, uint64_t svcr) { int errors = 0; int i; /* * GPR x0-x7 may be clobbered, and all others should be preserved. */ for (i = 9; i < ARRAY_SIZE(gpr_in); i++) { if (gpr_in[i] != gpr_out[i]) { ksft_print_msg("%s SVE VL %d mismatch in GPR %d: %lx != %lx\n", cfg->name, sve_vl, i, gpr_in[i], gpr_out[i]); errors++; } } return errors; } #define NUM_FPR 32 uint64_t fpr_in[NUM_FPR * 2]; uint64_t fpr_out[NUM_FPR * 2]; uint64_t fpr_zero[NUM_FPR * 2]; static void setup_fpr(struct syscall_cfg *cfg, int sve_vl, int sme_vl, uint64_t svcr) { fill_random(fpr_in, sizeof(fpr_in)); memset(fpr_out, 0, sizeof(fpr_out)); } static int check_fpr(struct syscall_cfg *cfg, int sve_vl, int sme_vl, uint64_t svcr) { int errors = 0; int i; if (!sve_vl && !(svcr & SVCR_SM_MASK)) { for (i = 0; i < ARRAY_SIZE(fpr_in); i++) { if (fpr_in[i] != fpr_out[i]) { ksft_print_msg("%s Q%d/%d mismatch %lx != %lx\n", cfg->name, i / 2, i % 2, fpr_in[i], fpr_out[i]); errors++; } } } /* * In streaming mode the whole register set should be cleared * by the transition out of streaming mode. */ if (svcr & SVCR_SM_MASK) { if (memcmp(fpr_zero, fpr_out, sizeof(fpr_out)) != 0) { ksft_print_msg("%s FPSIMD registers non-zero exiting SM\n", cfg->name); errors++; } } return errors; } #define SVE_Z_SHARED_BYTES (128 / 8) static uint8_t z_zero[__SVE_ZREG_SIZE(ARCH_SVE_VQ_MAX)]; uint8_t z_in[SVE_NUM_ZREGS * __SVE_ZREG_SIZE(ARCH_SVE_VQ_MAX)]; uint8_t z_out[SVE_NUM_ZREGS * __SVE_ZREG_SIZE(ARCH_SVE_VQ_MAX)]; static void setup_z(struct syscall_cfg *cfg, int sve_vl, int sme_vl, uint64_t svcr) { fill_random(z_in, sizeof(z_in)); fill_random(z_out, sizeof(z_out)); } static int check_z(struct syscall_cfg *cfg, int sve_vl, int sme_vl, uint64_t svcr) { size_t reg_size = sve_vl; int errors = 0; int i; if (!sve_vl) return 0; for (i = 0; i < SVE_NUM_ZREGS; i++) { uint8_t *in = &z_in[reg_size * i]; uint8_t *out = &z_out[reg_size * i]; if (svcr & SVCR_SM_MASK) { /* * In streaming mode the whole register should * be cleared by the transition out of * streaming mode. */ if (memcmp(z_zero, out, reg_size) != 0) { ksft_print_msg("%s SVE VL %d Z%d non-zero\n", cfg->name, sve_vl, i); errors++; } } else { /* * For standard SVE the low 128 bits should be * preserved and any additional bits cleared. */ if (memcmp(in, out, SVE_Z_SHARED_BYTES) != 0) { ksft_print_msg("%s SVE VL %d Z%d low 128 bits changed\n", cfg->name, sve_vl, i); errors++; } if (reg_size > SVE_Z_SHARED_BYTES && (memcmp(z_zero, out + SVE_Z_SHARED_BYTES, reg_size - SVE_Z_SHARED_BYTES) != 0)) { ksft_print_msg("%s SVE VL %d Z%d high bits non-zero\n", cfg->name, sve_vl, i); errors++; } } } return errors; } uint8_t p_in[SVE_NUM_PREGS * __SVE_PREG_SIZE(ARCH_SVE_VQ_MAX)]; uint8_t p_out[SVE_NUM_PREGS * __SVE_PREG_SIZE(ARCH_SVE_VQ_MAX)]; static void setup_p(struct syscall_cfg *cfg, int sve_vl, int sme_vl, uint64_t svcr) { fill_random(p_in, sizeof(p_in)); fill_random(p_out, sizeof(p_out)); } static int check_p(struct syscall_cfg *cfg, int sve_vl, int sme_vl, uint64_t svcr) { size_t reg_size = sve_vq_from_vl(sve_vl) * 2; /* 1 bit per VL byte */ int errors = 0; int i; if (!sve_vl) return 0; /* After a syscall the P registers should be zeroed */ for (i = 0; i < SVE_NUM_PREGS * reg_size; i++) if (p_out[i]) errors++; if (errors) ksft_print_msg("%s SVE VL %d predicate registers non-zero\n", cfg->name, sve_vl); return errors; } uint8_t ffr_in[__SVE_PREG_SIZE(ARCH_SVE_VQ_MAX)]; uint8_t ffr_out[__SVE_PREG_SIZE(ARCH_SVE_VQ_MAX)]; static void setup_ffr(struct syscall_cfg *cfg, int sve_vl, int sme_vl, uint64_t svcr) { /* * If we are in streaming mode and do not have FA64 then FFR * is unavailable. */ if ((svcr & SVCR_SM_MASK) && !(getauxval(AT_HWCAP2) & HWCAP2_SME_FA64)) { memset(&ffr_in, 0, sizeof(ffr_in)); return; } /* * It is only valid to set a contiguous set of bits starting * at 0. For now since we're expecting this to be cleared by * a syscall just set all bits. */ memset(ffr_in, 0xff, sizeof(ffr_in)); fill_random(ffr_out, sizeof(ffr_out)); } static int check_ffr(struct syscall_cfg *cfg, int sve_vl, int sme_vl, uint64_t svcr) { size_t reg_size = sve_vq_from_vl(sve_vl) * 2; /* 1 bit per VL byte */ int errors = 0; int i; if (!sve_vl) return 0; if ((svcr & SVCR_SM_MASK) && !(getauxval(AT_HWCAP2) & HWCAP2_SME_FA64)) return 0; /* After a syscall FFR should be zeroed */ for (i = 0; i < reg_size; i++) if (ffr_out[i]) errors++; if (errors) ksft_print_msg("%s SVE VL %d FFR non-zero\n", cfg->name, sve_vl); return errors; } uint64_t svcr_in, svcr_out; static void setup_svcr(struct syscall_cfg *cfg, int sve_vl, int sme_vl, uint64_t svcr) { svcr_in = svcr; } static int check_svcr(struct syscall_cfg *cfg, int sve_vl, int sme_vl, uint64_t svcr) { int errors = 0; if (svcr_out & SVCR_SM_MASK) { ksft_print_msg("%s Still in SM, SVCR %lx\n", cfg->name, svcr_out); errors++; } if ((svcr_in & SVCR_ZA_MASK) != (svcr_out & SVCR_ZA_MASK)) { ksft_print_msg("%s PSTATE.ZA changed, SVCR %lx != %lx\n", cfg->name, svcr_in, svcr_out); errors++; } return errors; } uint8_t za_in[ZA_SIG_REGS_SIZE(ARCH_SVE_VQ_MAX)]; uint8_t za_out[ZA_SIG_REGS_SIZE(ARCH_SVE_VQ_MAX)]; static void setup_za(struct syscall_cfg *cfg, int sve_vl, int sme_vl, uint64_t svcr) { fill_random(za_in, sizeof(za_in)); memset(za_out, 0, sizeof(za_out)); } static int check_za(struct syscall_cfg *cfg, int sve_vl, int sme_vl, uint64_t svcr) { size_t reg_size = sme_vl * sme_vl; int errors = 0; if (!(svcr & SVCR_ZA_MASK)) return 0; if (memcmp(za_in, za_out, reg_size) != 0) { ksft_print_msg("SME VL %d ZA does not match\n", sme_vl); errors++; } return errors; } uint8_t zt_in[ZT_SIG_REG_BYTES] __attribute__((aligned(16))); uint8_t zt_out[ZT_SIG_REG_BYTES] __attribute__((aligned(16))); static void setup_zt(struct syscall_cfg *cfg, int sve_vl, int sme_vl, uint64_t svcr) { fill_random(zt_in, sizeof(zt_in)); memset(zt_out, 0, sizeof(zt_out)); } static int check_zt(struct syscall_cfg *cfg, int sve_vl, int sme_vl, uint64_t svcr) { int errors = 0; if (!(getauxval(AT_HWCAP2) & HWCAP2_SME2)) return 0; if (!(svcr & SVCR_ZA_MASK)) return 0; if (memcmp(zt_in, zt_out, sizeof(zt_in)) != 0) { ksft_print_msg("SME VL %d ZT does not match\n", sme_vl); errors++; } return errors; } typedef void (*setup_fn)(struct syscall_cfg *cfg, int sve_vl, int sme_vl, uint64_t svcr); typedef int (*check_fn)(struct syscall_cfg *cfg, int sve_vl, int sme_vl, uint64_t svcr); /* * Each set of registers has a setup function which is called before * the syscall to fill values in a global variable for loading by the * test code and a check function which validates that the results are * as expected. Vector lengths are passed everywhere, a vector length * of 0 should be treated as do not test. */ static struct { setup_fn setup; check_fn check; } regset[] = { { setup_gpr, check_gpr }, { setup_fpr, check_fpr }, { setup_z, check_z }, { setup_p, check_p }, { setup_ffr, check_ffr }, { setup_svcr, check_svcr }, { setup_za, check_za }, { setup_zt, check_zt }, }; static bool do_test(struct syscall_cfg *cfg, int sve_vl, int sme_vl, uint64_t svcr) { int errors = 0; int i; for (i = 0; i < ARRAY_SIZE(regset); i++) regset[i].setup(cfg, sve_vl, sme_vl, svcr); do_syscall(sve_vl, sme_vl); for (i = 0; i < ARRAY_SIZE(regset); i++) errors += regset[i].check(cfg, sve_vl, sme_vl, svcr); return errors == 0; } static void test_one_syscall(struct syscall_cfg *cfg) { int sve, sme; int ret; /* FPSIMD only case */ ksft_test_result(do_test(cfg, 0, default_sme_vl, 0), "%s FPSIMD\n", cfg->name); for (sve = 0; sve < sve_vl_count; sve++) { ret = prctl(PR_SVE_SET_VL, sve_vls[sve]); if (ret == -1) ksft_exit_fail_msg("PR_SVE_SET_VL failed: %s (%d)\n", strerror(errno), errno); ksft_test_result(do_test(cfg, sve_vls[sve], default_sme_vl, 0), "%s SVE VL %d\n", cfg->name, sve_vls[sve]); for (sme = 0; sme < sme_vl_count; sme++) { ret = prctl(PR_SME_SET_VL, sme_vls[sme]); if (ret == -1) ksft_exit_fail_msg("PR_SME_SET_VL failed: %s (%d)\n", strerror(errno), errno); ksft_test_result(do_test(cfg, sve_vls[sve], sme_vls[sme], SVCR_ZA_MASK | SVCR_SM_MASK), "%s SVE VL %d/SME VL %d SM+ZA\n", cfg->name, sve_vls[sve], sme_vls[sme]); ksft_test_result(do_test(cfg, sve_vls[sve], sme_vls[sme], SVCR_SM_MASK), "%s SVE VL %d/SME VL %d SM\n", cfg->name, sve_vls[sve], sme_vls[sme]); ksft_test_result(do_test(cfg, sve_vls[sve], sme_vls[sme], SVCR_ZA_MASK), "%s SVE VL %d/SME VL %d ZA\n", cfg->name, sve_vls[sve], sme_vls[sme]); } } for (sme = 0; sme < sme_vl_count; sme++) { ret = prctl(PR_SME_SET_VL, sme_vls[sme]); if (ret == -1) ksft_exit_fail_msg("PR_SME_SET_VL failed: %s (%d)\n", strerror(errno), errno); ksft_test_result(do_test(cfg, 0, sme_vls[sme], SVCR_ZA_MASK | SVCR_SM_MASK), "%s SME VL %d SM+ZA\n", cfg->name, sme_vls[sme]); ksft_test_result(do_test(cfg, 0, sme_vls[sme], SVCR_SM_MASK), "%s SME VL %d SM\n", cfg->name, sme_vls[sme]); ksft_test_result(do_test(cfg, 0, sme_vls[sme], SVCR_ZA_MASK), "%s SME VL %d ZA\n", cfg->name, sme_vls[sme]); } } void sve_count_vls(void) { unsigned int vq; int vl; if (!(getauxval(AT_HWCAP) & HWCAP_SVE)) return; /* * Enumerate up to ARCH_SVE_VQ_MAX vector lengths */ for (vq = ARCH_SVE_VQ_MAX; vq > 0; vq /= 2) { vl = prctl(PR_SVE_SET_VL, vq * 16); if (vl == -1) ksft_exit_fail_msg("PR_SVE_SET_VL failed: %s (%d)\n", strerror(errno), errno); vl &= PR_SVE_VL_LEN_MASK; if (vq != sve_vq_from_vl(vl)) vq = sve_vq_from_vl(vl); sve_vls[sve_vl_count++] = vl; } } void sme_count_vls(void) { unsigned int vq; int vl; if (!(getauxval(AT_HWCAP2) & HWCAP2_SME)) return; /* * Enumerate up to ARCH_SVE_VQ_MAX vector lengths */ for (vq = ARCH_SVE_VQ_MAX; vq > 0; vq /= 2) { vl = prctl(PR_SME_SET_VL, vq * 16); if (vl == -1) ksft_exit_fail_msg("PR_SME_SET_VL failed: %s (%d)\n", strerror(errno), errno); vl &= PR_SME_VL_LEN_MASK; /* Found lowest VL */ if (sve_vq_from_vl(vl) > vq) break; if (vq != sve_vq_from_vl(vl)) vq = sve_vq_from_vl(vl); sme_vls[sme_vl_count++] = vl; } /* Ensure we configure a SME VL, used to flag if SVCR is set */ default_sme_vl = sme_vls[0]; } int main(void) { int i; int tests = 1; /* FPSIMD */ int sme_ver; srandom(getpid()); ksft_print_header(); sve_count_vls(); sme_count_vls(); tests += sve_vl_count; tests += sme_vl_count * 3; tests += (sve_vl_count * sme_vl_count) * 3; ksft_set_plan(ARRAY_SIZE(syscalls) * tests); if (getauxval(AT_HWCAP2) & HWCAP2_SME2) sme_ver = 2; else sme_ver = 1; if (getauxval(AT_HWCAP2) & HWCAP2_SME_FA64) ksft_print_msg("SME%d with FA64\n", sme_ver); else if (getauxval(AT_HWCAP2) & HWCAP2_SME) ksft_print_msg("SME%d without FA64\n", sme_ver); for (i = 0; i < ARRAY_SIZE(syscalls); i++) test_one_syscall(&syscalls[i]); ksft_print_cnts(); return 0; }