// SPDX-License-Identifier: GPL-2.0-only /* * turbostat -- show CPU frequency and C-state residency * on modern Intel and AMD processors. * * Copyright (c) 2024 Intel Corporation. * Len Brown */ #define _GNU_SOURCE #include MSRHEADER // copied from arch/x86/include/asm/cpu_device_id.h #define VFM_MODEL_BIT 0 #define VFM_FAMILY_BIT 8 #define VFM_VENDOR_BIT 16 #define VFM_RSVD_BIT 24 #define VFM_MODEL_MASK GENMASK(VFM_FAMILY_BIT - 1, VFM_MODEL_BIT) #define VFM_FAMILY_MASK GENMASK(VFM_VENDOR_BIT - 1, VFM_FAMILY_BIT) #define VFM_VENDOR_MASK GENMASK(VFM_RSVD_BIT - 1, VFM_VENDOR_BIT) #define VFM_MODEL(vfm) (((vfm) & VFM_MODEL_MASK) >> VFM_MODEL_BIT) #define VFM_FAMILY(vfm) (((vfm) & VFM_FAMILY_MASK) >> VFM_FAMILY_BIT) #define VFM_VENDOR(vfm) (((vfm) & VFM_VENDOR_MASK) >> VFM_VENDOR_BIT) #define VFM_MAKE(_vendor, _family, _model) ( \ ((_model) << VFM_MODEL_BIT) | \ ((_family) << VFM_FAMILY_BIT) | \ ((_vendor) << VFM_VENDOR_BIT) \ ) // end copied section #define CPUID_LEAF_MODEL_ID 0x1A #define CPUID_LEAF_MODEL_ID_CORE_TYPE_SHIFT 24 #define X86_VENDOR_INTEL 0 #include INTEL_FAMILY_HEADER #include BUILD_BUG_HEADER #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define UNUSED(x) (void)(x) /* * This list matches the column headers, except * 1. built-in only, the sysfs counters are not here -- we learn of those at run-time * 2. Core and CPU are moved to the end, we can't have strings that contain them * matching on them for --show and --hide. */ /* * buffer size used by sscanf() for added column names * Usually truncated to 7 characters, but also handles 18 columns for raw 64-bit counters */ #define NAME_BYTES 20 #define PATH_BYTES 128 #define PERF_NAME_BYTES 128 #define MAX_NOFILE 0x8000 #define COUNTER_KIND_PERF_PREFIX "perf/" #define COUNTER_KIND_PERF_PREFIX_LEN strlen(COUNTER_KIND_PERF_PREFIX) #define PERF_DEV_NAME_BYTES 32 #define PERF_EVT_NAME_BYTES 32 #define INTEL_ECORE_TYPE 0x20 #define INTEL_PCORE_TYPE 0x40 enum counter_scope { SCOPE_CPU, SCOPE_CORE, SCOPE_PACKAGE }; enum counter_type { COUNTER_ITEMS, COUNTER_CYCLES, COUNTER_SECONDS, COUNTER_USEC, COUNTER_K2M }; enum counter_format { FORMAT_RAW, FORMAT_DELTA, FORMAT_PERCENT, FORMAT_AVERAGE }; enum counter_source { COUNTER_SOURCE_NONE, COUNTER_SOURCE_PERF, COUNTER_SOURCE_MSR }; struct perf_counter_info { struct perf_counter_info *next; /* How to open the counter / What counter it is. */ char device[PERF_DEV_NAME_BYTES]; char event[PERF_EVT_NAME_BYTES]; /* How to show/format the counter. */ char name[PERF_NAME_BYTES]; unsigned int width; enum counter_scope scope; enum counter_type type; enum counter_format format; double scale; /* For reading the counter. */ int *fd_perf_per_domain; size_t num_domains; }; struct sysfs_path { char path[PATH_BYTES]; int id; struct sysfs_path *next; }; struct msr_counter { unsigned int msr_num; char name[NAME_BYTES]; struct sysfs_path *sp; unsigned int width; enum counter_type type; enum counter_format format; struct msr_counter *next; unsigned int flags; #define FLAGS_HIDE (1 << 0) #define FLAGS_SHOW (1 << 1) #define SYSFS_PERCPU (1 << 1) }; struct msr_counter bic[] = { { 0x0, "usec", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "Time_Of_Day_Seconds", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "Package", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "Node", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "Avg_MHz", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "Busy%", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "Bzy_MHz", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "TSC_MHz", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "IRQ", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "SMI", NULL, 32, 0, FORMAT_DELTA, NULL, 0 }, { 0x0, "sysfs", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "CPU%c1", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "CPU%c3", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "CPU%c6", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "CPU%c7", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "ThreadC", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "CoreTmp", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "CoreCnt", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "PkgTmp", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "GFX%rc6", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "GFXMHz", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "Pkg%pc2", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "Pkg%pc3", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "Pkg%pc6", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "Pkg%pc7", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "Pkg%pc8", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "Pkg%pc9", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "Pk%pc10", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "CPU%LPI", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "SYS%LPI", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "PkgWatt", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "CorWatt", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "GFXWatt", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "PkgCnt", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "RAMWatt", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "PKG_%", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "RAM_%", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "Pkg_J", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "Cor_J", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "GFX_J", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "RAM_J", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "Mod%c6", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "Totl%C0", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "Any%C0", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "GFX%C0", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "CPUGFX%", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "Core", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "CPU", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "APIC", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "X2APIC", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "Die", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "GFXAMHz", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "IPC", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "CoreThr", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "UncMHz", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "SAM%mc6", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "SAMMHz", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "SAMAMHz", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "Die%c6", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "SysWatt", NULL, 0, 0, 0, NULL, 0 }, { 0x0, "Sys_J", NULL, 0, 0, 0, NULL, 0 }, }; #define MAX_BIC (sizeof(bic) / sizeof(struct msr_counter)) #define BIC_USEC (1ULL << 0) #define BIC_TOD (1ULL << 1) #define BIC_Package (1ULL << 2) #define BIC_Node (1ULL << 3) #define BIC_Avg_MHz (1ULL << 4) #define BIC_Busy (1ULL << 5) #define BIC_Bzy_MHz (1ULL << 6) #define BIC_TSC_MHz (1ULL << 7) #define BIC_IRQ (1ULL << 8) #define BIC_SMI (1ULL << 9) #define BIC_sysfs (1ULL << 10) #define BIC_CPU_c1 (1ULL << 11) #define BIC_CPU_c3 (1ULL << 12) #define BIC_CPU_c6 (1ULL << 13) #define BIC_CPU_c7 (1ULL << 14) #define BIC_ThreadC (1ULL << 15) #define BIC_CoreTmp (1ULL << 16) #define BIC_CoreCnt (1ULL << 17) #define BIC_PkgTmp (1ULL << 18) #define BIC_GFX_rc6 (1ULL << 19) #define BIC_GFXMHz (1ULL << 20) #define BIC_Pkgpc2 (1ULL << 21) #define BIC_Pkgpc3 (1ULL << 22) #define BIC_Pkgpc6 (1ULL << 23) #define BIC_Pkgpc7 (1ULL << 24) #define BIC_Pkgpc8 (1ULL << 25) #define BIC_Pkgpc9 (1ULL << 26) #define BIC_Pkgpc10 (1ULL << 27) #define BIC_CPU_LPI (1ULL << 28) #define BIC_SYS_LPI (1ULL << 29) #define BIC_PkgWatt (1ULL << 30) #define BIC_CorWatt (1ULL << 31) #define BIC_GFXWatt (1ULL << 32) #define BIC_PkgCnt (1ULL << 33) #define BIC_RAMWatt (1ULL << 34) #define BIC_PKG__ (1ULL << 35) #define BIC_RAM__ (1ULL << 36) #define BIC_Pkg_J (1ULL << 37) #define BIC_Cor_J (1ULL << 38) #define BIC_GFX_J (1ULL << 39) #define BIC_RAM_J (1ULL << 40) #define BIC_Mod_c6 (1ULL << 41) #define BIC_Totl_c0 (1ULL << 42) #define BIC_Any_c0 (1ULL << 43) #define BIC_GFX_c0 (1ULL << 44) #define BIC_CPUGFX (1ULL << 45) #define BIC_Core (1ULL << 46) #define BIC_CPU (1ULL << 47) #define BIC_APIC (1ULL << 48) #define BIC_X2APIC (1ULL << 49) #define BIC_Die (1ULL << 50) #define BIC_GFXACTMHz (1ULL << 51) #define BIC_IPC (1ULL << 52) #define BIC_CORE_THROT_CNT (1ULL << 53) #define BIC_UNCORE_MHZ (1ULL << 54) #define BIC_SAM_mc6 (1ULL << 55) #define BIC_SAMMHz (1ULL << 56) #define BIC_SAMACTMHz (1ULL << 57) #define BIC_Diec6 (1ULL << 58) #define BIC_SysWatt (1ULL << 59) #define BIC_Sys_J (1ULL << 60) #define BIC_TOPOLOGY (BIC_Package | BIC_Node | BIC_CoreCnt | BIC_PkgCnt | BIC_Core | BIC_CPU | BIC_Die ) #define BIC_THERMAL_PWR ( BIC_CoreTmp | BIC_PkgTmp | BIC_PkgWatt | BIC_CorWatt | BIC_GFXWatt | BIC_RAMWatt | BIC_PKG__ | BIC_RAM__) #define BIC_FREQUENCY (BIC_Avg_MHz | BIC_Busy | BIC_Bzy_MHz | BIC_TSC_MHz | BIC_GFXMHz | BIC_GFXACTMHz | BIC_SAMMHz | BIC_SAMACTMHz | BIC_UNCORE_MHZ) #define BIC_IDLE (BIC_sysfs | BIC_CPU_c1 | BIC_CPU_c3 | BIC_CPU_c6 | BIC_CPU_c7 | BIC_GFX_rc6 | BIC_Pkgpc2 | BIC_Pkgpc3 | BIC_Pkgpc6 | BIC_Pkgpc7 | BIC_Pkgpc8 | BIC_Pkgpc9 | BIC_Pkgpc10 | BIC_CPU_LPI | BIC_SYS_LPI | BIC_Mod_c6 | BIC_Totl_c0 | BIC_Any_c0 | BIC_GFX_c0 | BIC_CPUGFX | BIC_SAM_mc6 | BIC_Diec6) #define BIC_OTHER ( BIC_IRQ | BIC_SMI | BIC_ThreadC | BIC_CoreTmp | BIC_IPC) #define BIC_DISABLED_BY_DEFAULT (BIC_USEC | BIC_TOD | BIC_APIC | BIC_X2APIC | BIC_SysWatt | BIC_Sys_J) unsigned long long bic_enabled = (0xFFFFFFFFFFFFFFFFULL & ~BIC_DISABLED_BY_DEFAULT); unsigned long long bic_present = BIC_USEC | BIC_TOD | BIC_sysfs | BIC_APIC | BIC_X2APIC; #define DO_BIC(COUNTER_NAME) (bic_enabled & bic_present & COUNTER_NAME) #define DO_BIC_READ(COUNTER_NAME) (bic_present & COUNTER_NAME) #define ENABLE_BIC(COUNTER_NAME) (bic_enabled |= COUNTER_NAME) #define BIC_PRESENT(COUNTER_BIT) (bic_present |= COUNTER_BIT) #define BIC_NOT_PRESENT(COUNTER_BIT) (bic_present &= ~COUNTER_BIT) #define BIC_IS_ENABLED(COUNTER_BIT) (bic_enabled & COUNTER_BIT) /* * MSR_PKG_CST_CONFIG_CONTROL decoding for pkg_cstate_limit: * If you change the values, note they are used both in comparisons * (>= PCL__7) and to index pkg_cstate_limit_strings[]. */ #define PCLUKN 0 /* Unknown */ #define PCLRSV 1 /* Reserved */ #define PCL__0 2 /* PC0 */ #define PCL__1 3 /* PC1 */ #define PCL__2 4 /* PC2 */ #define PCL__3 5 /* PC3 */ #define PCL__4 6 /* PC4 */ #define PCL__6 7 /* PC6 */ #define PCL_6N 8 /* PC6 No Retention */ #define PCL_6R 9 /* PC6 Retention */ #define PCL__7 10 /* PC7 */ #define PCL_7S 11 /* PC7 Shrink */ #define PCL__8 12 /* PC8 */ #define PCL__9 13 /* PC9 */ #define PCL_10 14 /* PC10 */ #define PCLUNL 15 /* Unlimited */ struct amperf_group_fd; char *proc_stat = "/proc/stat"; FILE *outf; int *fd_percpu; int *fd_instr_count_percpu; struct timeval interval_tv = { 5, 0 }; struct timespec interval_ts = { 5, 0 }; unsigned int num_iterations; unsigned int header_iterations; unsigned int debug; unsigned int quiet; unsigned int shown; unsigned int sums_need_wide_columns; unsigned int rapl_joules; unsigned int summary_only; unsigned int list_header_only; unsigned int dump_only; unsigned int has_aperf; unsigned int has_aperf_access; unsigned int has_epb; unsigned int has_turbo; unsigned int is_hybrid; unsigned int units = 1000000; /* MHz etc */ unsigned int genuine_intel; unsigned int authentic_amd; unsigned int hygon_genuine; unsigned int max_level, max_extended_level; unsigned int has_invariant_tsc; unsigned int aperf_mperf_multiplier = 1; double bclk; double base_hz; unsigned int has_base_hz; double tsc_tweak = 1.0; unsigned int show_pkg_only; unsigned int show_core_only; char *output_buffer, *outp; unsigned int do_dts; unsigned int do_ptm; unsigned int do_ipc; unsigned long long cpuidle_cur_cpu_lpi_us; unsigned long long cpuidle_cur_sys_lpi_us; unsigned int tj_max; unsigned int tj_max_override; double rapl_power_units, rapl_time_units; double rapl_dram_energy_units, rapl_energy_units; double rapl_joule_counter_range; unsigned int crystal_hz; unsigned long long tsc_hz; int base_cpu; unsigned int has_hwp; /* IA32_PM_ENABLE, IA32_HWP_CAPABILITIES */ /* IA32_HWP_REQUEST, IA32_HWP_STATUS */ unsigned int has_hwp_notify; /* IA32_HWP_INTERRUPT */ unsigned int has_hwp_activity_window; /* IA32_HWP_REQUEST[bits 41:32] */ unsigned int has_hwp_epp; /* IA32_HWP_REQUEST[bits 31:24] */ unsigned int has_hwp_pkg; /* IA32_HWP_REQUEST_PKG */ unsigned int first_counter_read = 1; int ignore_stdin; bool no_msr; bool no_perf; enum gfx_sysfs_idx { GFX_rc6, GFX_MHz, GFX_ACTMHz, SAM_mc6, SAM_MHz, SAM_ACTMHz, GFX_MAX }; struct gfx_sysfs_info { FILE *fp; unsigned int val; unsigned long long val_ull; }; static struct gfx_sysfs_info gfx_info[GFX_MAX]; int get_msr(int cpu, off_t offset, unsigned long long *msr); int add_counter(unsigned int msr_num, char *path, char *name, unsigned int width, enum counter_scope scope, enum counter_type type, enum counter_format format, int flags, int package_num); /* Model specific support Start */ /* List of features that may diverge among different platforms */ struct platform_features { bool has_msr_misc_feature_control; /* MSR_MISC_FEATURE_CONTROL */ bool has_msr_misc_pwr_mgmt; /* MSR_MISC_PWR_MGMT */ bool has_nhm_msrs; /* MSR_PLATFORM_INFO, MSR_IA32_TEMPERATURE_TARGET, MSR_SMI_COUNT, MSR_PKG_CST_CONFIG_CONTROL, MSR_IA32_POWER_CTL, TRL MSRs */ bool has_config_tdp; /* MSR_CONFIG_TDP_NOMINAL/LEVEL_1/LEVEL_2/CONTROL, MSR_TURBO_ACTIVATION_RATIO */ int bclk_freq; /* CPU base clock */ int crystal_freq; /* Crystal clock to use when not available from CPUID.15 */ int supported_cstates; /* Core cstates and Package cstates supported */ int cst_limit; /* MSR_PKG_CST_CONFIG_CONTROL */ bool has_cst_auto_convension; /* AUTOMATIC_CSTATE_CONVERSION bit in MSR_PKG_CST_CONFIG_CONTROL */ bool has_irtl_msrs; /* MSR_PKGC3/PKGC6/PKGC7/PKGC8/PKGC9/PKGC10_IRTL */ bool has_msr_core_c1_res; /* MSR_CORE_C1_RES */ bool has_msr_module_c6_res_ms; /* MSR_MODULE_C6_RES_MS */ bool has_msr_c6_demotion_policy_config; /* MSR_CC6_DEMOTION_POLICY_CONFIG/MSR_MC6_DEMOTION_POLICY_CONFIG */ bool has_msr_atom_pkg_c6_residency; /* MSR_ATOM_PKG_C6_RESIDENCY */ bool has_msr_knl_core_c6_residency; /* MSR_KNL_CORE_C6_RESIDENCY */ bool has_ext_cst_msrs; /* MSR_PKG_WEIGHTED_CORE_C0_RES/MSR_PKG_ANY_CORE_C0_RES/MSR_PKG_ANY_GFXE_C0_RES/MSR_PKG_BOTH_CORE_GFXE_C0_RES */ bool has_cst_prewake_bit; /* Cstate prewake bit in MSR_IA32_POWER_CTL */ int trl_msrs; /* MSR_TURBO_RATIO_LIMIT/LIMIT1/LIMIT2/SECONDARY, Atom TRL MSRs */ int plr_msrs; /* MSR_CORE/GFX/RING_PERF_LIMIT_REASONS */ int rapl_msrs; /* RAPL PKG/DRAM/CORE/GFX MSRs, AMD RAPL MSRs */ bool has_per_core_rapl; /* Indicates cores energy collection is per-core, not per-package. AMD specific for now */ bool has_rapl_divisor; /* Divisor for Energy unit raw value from MSR_RAPL_POWER_UNIT */ bool has_fixed_rapl_unit; /* Fixed Energy Unit used for DRAM RAPL Domain */ int rapl_quirk_tdp; /* Hardcoded TDP value when cannot be retrieved from hardware */ int tcc_offset_bits; /* TCC Offset bits in MSR_IA32_TEMPERATURE_TARGET */ bool enable_tsc_tweak; /* Use CPU Base freq instead of TSC freq for aperf/mperf counter */ bool need_perf_multiplier; /* mperf/aperf multiplier */ }; struct platform_data { unsigned int vfm; const struct platform_features *features; }; /* For BCLK */ enum bclk_freq { BCLK_100MHZ = 1, BCLK_133MHZ, BCLK_SLV, }; #define SLM_BCLK_FREQS 5 double slm_freq_table[SLM_BCLK_FREQS] = { 83.3, 100.0, 133.3, 116.7, 80.0 }; double slm_bclk(void) { unsigned long long msr = 3; unsigned int i; double freq; if (get_msr(base_cpu, MSR_FSB_FREQ, &msr)) fprintf(outf, "SLM BCLK: unknown\n"); i = msr & 0xf; if (i >= SLM_BCLK_FREQS) { fprintf(outf, "SLM BCLK[%d] invalid\n", i); i = 3; } freq = slm_freq_table[i]; if (!quiet) fprintf(outf, "SLM BCLK: %.1f Mhz\n", freq); return freq; } /* For Package cstate limit */ enum package_cstate_limit { CST_LIMIT_NHM = 1, CST_LIMIT_SNB, CST_LIMIT_HSW, CST_LIMIT_SKX, CST_LIMIT_ICX, CST_LIMIT_SLV, CST_LIMIT_AMT, CST_LIMIT_KNL, CST_LIMIT_GMT, }; /* For Turbo Ratio Limit MSRs */ enum turbo_ratio_limit_msrs { TRL_BASE = BIT(0), TRL_LIMIT1 = BIT(1), TRL_LIMIT2 = BIT(2), TRL_ATOM = BIT(3), TRL_KNL = BIT(4), TRL_CORECOUNT = BIT(5), }; /* For Perf Limit Reason MSRs */ enum perf_limit_reason_msrs { PLR_CORE = BIT(0), PLR_GFX = BIT(1), PLR_RING = BIT(2), }; /* For RAPL MSRs */ enum rapl_msrs { RAPL_PKG_POWER_LIMIT = BIT(0), /* 0x610 MSR_PKG_POWER_LIMIT */ RAPL_PKG_ENERGY_STATUS = BIT(1), /* 0x611 MSR_PKG_ENERGY_STATUS */ RAPL_PKG_PERF_STATUS = BIT(2), /* 0x613 MSR_PKG_PERF_STATUS */ RAPL_PKG_POWER_INFO = BIT(3), /* 0x614 MSR_PKG_POWER_INFO */ RAPL_DRAM_POWER_LIMIT = BIT(4), /* 0x618 MSR_DRAM_POWER_LIMIT */ RAPL_DRAM_ENERGY_STATUS = BIT(5), /* 0x619 MSR_DRAM_ENERGY_STATUS */ RAPL_DRAM_PERF_STATUS = BIT(6), /* 0x61b MSR_DRAM_PERF_STATUS */ RAPL_DRAM_POWER_INFO = BIT(7), /* 0x61c MSR_DRAM_POWER_INFO */ RAPL_CORE_POWER_LIMIT = BIT(8), /* 0x638 MSR_PP0_POWER_LIMIT */ RAPL_CORE_ENERGY_STATUS = BIT(9), /* 0x639 MSR_PP0_ENERGY_STATUS */ RAPL_CORE_POLICY = BIT(10), /* 0x63a MSR_PP0_POLICY */ RAPL_GFX_POWER_LIMIT = BIT(11), /* 0x640 MSR_PP1_POWER_LIMIT */ RAPL_GFX_ENERGY_STATUS = BIT(12), /* 0x641 MSR_PP1_ENERGY_STATUS */ RAPL_GFX_POLICY = BIT(13), /* 0x642 MSR_PP1_POLICY */ RAPL_AMD_PWR_UNIT = BIT(14), /* 0xc0010299 MSR_AMD_RAPL_POWER_UNIT */ RAPL_AMD_CORE_ENERGY_STAT = BIT(15), /* 0xc001029a MSR_AMD_CORE_ENERGY_STATUS */ RAPL_AMD_PKG_ENERGY_STAT = BIT(16), /* 0xc001029b MSR_AMD_PKG_ENERGY_STATUS */ RAPL_PLATFORM_ENERGY_LIMIT = BIT(17), /* 0x64c MSR_PLATFORM_ENERGY_LIMIT */ RAPL_PLATFORM_ENERGY_STATUS = BIT(18), /* 0x64d MSR_PLATFORM_ENERGY_STATUS */ }; #define RAPL_PKG (RAPL_PKG_ENERGY_STATUS | RAPL_PKG_POWER_LIMIT) #define RAPL_DRAM (RAPL_DRAM_ENERGY_STATUS | RAPL_DRAM_POWER_LIMIT) #define RAPL_CORE (RAPL_CORE_ENERGY_STATUS | RAPL_CORE_POWER_LIMIT) #define RAPL_GFX (RAPL_GFX_POWER_LIMIT | RAPL_GFX_ENERGY_STATUS) #define RAPL_PSYS (RAPL_PLATFORM_ENERGY_STATUS | RAPL_PLATFORM_ENERGY_LIMIT) #define RAPL_PKG_ALL (RAPL_PKG | RAPL_PKG_PERF_STATUS | RAPL_PKG_POWER_INFO) #define RAPL_DRAM_ALL (RAPL_DRAM | RAPL_DRAM_PERF_STATUS | RAPL_DRAM_POWER_INFO) #define RAPL_CORE_ALL (RAPL_CORE | RAPL_CORE_POLICY) #define RAPL_GFX_ALL (RAPL_GFX | RAPL_GFX_POLIGY) #define RAPL_AMD_F17H (RAPL_AMD_PWR_UNIT | RAPL_AMD_CORE_ENERGY_STAT | RAPL_AMD_PKG_ENERGY_STAT) /* For Cstates */ enum cstates { CC1 = BIT(0), CC3 = BIT(1), CC6 = BIT(2), CC7 = BIT(3), PC2 = BIT(4), PC3 = BIT(5), PC6 = BIT(6), PC7 = BIT(7), PC8 = BIT(8), PC9 = BIT(9), PC10 = BIT(10), }; static const struct platform_features nhm_features = { .has_msr_misc_pwr_mgmt = 1, .has_nhm_msrs = 1, .bclk_freq = BCLK_133MHZ, .supported_cstates = CC1 | CC3 | CC6 | PC3 | PC6, .cst_limit = CST_LIMIT_NHM, .trl_msrs = TRL_BASE, }; static const struct platform_features nhx_features = { .has_msr_misc_pwr_mgmt = 1, .has_nhm_msrs = 1, .bclk_freq = BCLK_133MHZ, .supported_cstates = CC1 | CC3 | CC6 | PC3 | PC6, .cst_limit = CST_LIMIT_NHM, }; static const struct platform_features snb_features = { .has_msr_misc_feature_control = 1, .has_msr_misc_pwr_mgmt = 1, .has_nhm_msrs = 1, .bclk_freq = BCLK_100MHZ, .supported_cstates = CC1 | CC3 | CC6 | CC7 | PC2 | PC3 | PC6 | PC7, .cst_limit = CST_LIMIT_SNB, .has_irtl_msrs = 1, .trl_msrs = TRL_BASE, .rapl_msrs = RAPL_PKG | RAPL_CORE_ALL | RAPL_GFX | RAPL_PKG_POWER_INFO, }; static const struct platform_features snx_features = { .has_msr_misc_feature_control = 1, .has_msr_misc_pwr_mgmt = 1, .has_nhm_msrs = 1, .bclk_freq = BCLK_100MHZ, .supported_cstates = CC1 | CC3 | CC6 | CC7 | PC2 | PC3 | PC6 | PC7, .cst_limit = CST_LIMIT_SNB, .has_irtl_msrs = 1, .trl_msrs = TRL_BASE, .rapl_msrs = RAPL_PKG_ALL | RAPL_CORE_ALL | RAPL_DRAM_ALL, }; static const struct platform_features ivb_features = { .has_msr_misc_feature_control = 1, .has_msr_misc_pwr_mgmt = 1, .has_nhm_msrs = 1, .has_config_tdp = 1, .bclk_freq = BCLK_100MHZ, .supported_cstates = CC1 | CC3 | CC6 | CC7 | PC2 | PC3 | PC6 | PC7, .cst_limit = CST_LIMIT_SNB, .has_irtl_msrs = 1, .trl_msrs = TRL_BASE, .rapl_msrs = RAPL_PKG | RAPL_CORE_ALL | RAPL_GFX | RAPL_PKG_POWER_INFO, }; static const struct platform_features ivx_features = { .has_msr_misc_feature_control = 1, .has_msr_misc_pwr_mgmt = 1, .has_nhm_msrs = 1, .bclk_freq = BCLK_100MHZ, .supported_cstates = CC1 | CC3 | CC6 | CC7 | PC2 | PC3 | PC6 | PC7, .cst_limit = CST_LIMIT_SNB, .has_irtl_msrs = 1, .trl_msrs = TRL_BASE | TRL_LIMIT1, .rapl_msrs = RAPL_PKG_ALL | RAPL_CORE_ALL | RAPL_DRAM_ALL, }; static const struct platform_features hsw_features = { .has_msr_misc_feature_control = 1, .has_msr_misc_pwr_mgmt = 1, .has_nhm_msrs = 1, .has_config_tdp = 1, .bclk_freq = BCLK_100MHZ, .supported_cstates = CC1 | CC3 | CC6 | CC7 | PC2 | PC3 | PC6 | PC7, .cst_limit = CST_LIMIT_HSW, .has_irtl_msrs = 1, .trl_msrs = TRL_BASE, .plr_msrs = PLR_CORE | PLR_GFX | PLR_RING, .rapl_msrs = RAPL_PKG | RAPL_CORE_ALL | RAPL_GFX | RAPL_PKG_POWER_INFO, }; static const struct platform_features hsx_features = { .has_msr_misc_feature_control = 1, .has_msr_misc_pwr_mgmt = 1, .has_nhm_msrs = 1, .has_config_tdp = 1, .bclk_freq = BCLK_100MHZ, .supported_cstates = CC1 | CC3 | CC6 | CC7 | PC2 | PC3 | PC6 | PC7, .cst_limit = CST_LIMIT_HSW, .has_irtl_msrs = 1, .trl_msrs = TRL_BASE | TRL_LIMIT1 | TRL_LIMIT2, .plr_msrs = PLR_CORE | PLR_RING, .rapl_msrs = RAPL_PKG_ALL | RAPL_DRAM_ALL, .has_fixed_rapl_unit = 1, }; static const struct platform_features hswl_features = { .has_msr_misc_feature_control = 1, .has_msr_misc_pwr_mgmt = 1, .has_nhm_msrs = 1, .has_config_tdp = 1, .bclk_freq = BCLK_100MHZ, .supported_cstates = CC1 | CC3 | CC6 | CC7 | PC2 | PC3 | PC6 | PC7 | PC8 | PC9 | PC10, .cst_limit = CST_LIMIT_HSW, .has_irtl_msrs = 1, .trl_msrs = TRL_BASE, .plr_msrs = PLR_CORE | PLR_GFX | PLR_RING, .rapl_msrs = RAPL_PKG | RAPL_CORE_ALL | RAPL_GFX | RAPL_PKG_POWER_INFO, }; static const struct platform_features hswg_features = { .has_msr_misc_feature_control = 1, .has_msr_misc_pwr_mgmt = 1, .has_nhm_msrs = 1, .has_config_tdp = 1, .bclk_freq = BCLK_100MHZ, .supported_cstates = CC1 | CC3 | CC6 | CC7 | PC2 | PC3 | PC6 | PC7, .cst_limit = CST_LIMIT_HSW, .has_irtl_msrs = 1, .trl_msrs = TRL_BASE, .plr_msrs = PLR_CORE | PLR_GFX | PLR_RING, .rapl_msrs = RAPL_PKG | RAPL_CORE_ALL | RAPL_GFX | RAPL_PKG_POWER_INFO, }; static const struct platform_features bdw_features = { .has_msr_misc_feature_control = 1, .has_msr_misc_pwr_mgmt = 1, .has_nhm_msrs = 1, .has_config_tdp = 1, .bclk_freq = BCLK_100MHZ, .supported_cstates = CC1 | CC3 | CC6 | CC7 | PC2 | PC3 | PC6 | PC7 | PC8 | PC9 | PC10, .cst_limit = CST_LIMIT_HSW, .has_irtl_msrs = 1, .trl_msrs = TRL_BASE, .rapl_msrs = RAPL_PKG | RAPL_CORE_ALL | RAPL_GFX | RAPL_PKG_POWER_INFO, }; static const struct platform_features bdwg_features = { .has_msr_misc_feature_control = 1, .has_msr_misc_pwr_mgmt = 1, .has_nhm_msrs = 1, .has_config_tdp = 1, .bclk_freq = BCLK_100MHZ, .supported_cstates = CC1 | CC3 | CC6 | CC7 | PC2 | PC3 | PC6 | PC7, .cst_limit = CST_LIMIT_HSW, .has_irtl_msrs = 1, .trl_msrs = TRL_BASE, .rapl_msrs = RAPL_PKG | RAPL_CORE_ALL | RAPL_GFX | RAPL_PKG_POWER_INFO, }; static const struct platform_features bdx_features = { .has_msr_misc_feature_control = 1, .has_msr_misc_pwr_mgmt = 1, .has_nhm_msrs = 1, .has_config_tdp = 1, .bclk_freq = BCLK_100MHZ, .supported_cstates = CC1 | CC3 | CC6 | PC2 | PC3 | PC6, .cst_limit = CST_LIMIT_HSW, .has_irtl_msrs = 1, .has_cst_auto_convension = 1, .trl_msrs = TRL_BASE, .rapl_msrs = RAPL_PKG_ALL | RAPL_DRAM_ALL, .has_fixed_rapl_unit = 1, }; static const struct platform_features skl_features = { .has_msr_misc_feature_control = 1, .has_msr_misc_pwr_mgmt = 1, .has_nhm_msrs = 1, .has_config_tdp = 1, .bclk_freq = BCLK_100MHZ, .crystal_freq = 24000000, .supported_cstates = CC1 | CC3 | CC6 | CC7 | PC2 | PC3 | PC6 | PC7 | PC8 | PC9 | PC10, .cst_limit = CST_LIMIT_HSW, .has_irtl_msrs = 1, .has_ext_cst_msrs = 1, .trl_msrs = TRL_BASE, .tcc_offset_bits = 6, .rapl_msrs = RAPL_PKG_ALL | RAPL_CORE_ALL | RAPL_DRAM | RAPL_DRAM_PERF_STATUS | RAPL_GFX | RAPL_PSYS, .enable_tsc_tweak = 1, }; static const struct platform_features cnl_features = { .has_msr_misc_feature_control = 1, .has_msr_misc_pwr_mgmt = 1, .has_nhm_msrs = 1, .has_config_tdp = 1, .bclk_freq = BCLK_100MHZ, .supported_cstates = CC1 | CC6 | CC7 | PC2 | PC3 | PC6 | PC7 | PC8 | PC9 | PC10, .cst_limit = CST_LIMIT_HSW, .has_irtl_msrs = 1, .has_msr_core_c1_res = 1, .has_ext_cst_msrs = 1, .trl_msrs = TRL_BASE, .tcc_offset_bits = 6, .rapl_msrs = RAPL_PKG_ALL | RAPL_CORE_ALL | RAPL_DRAM | RAPL_DRAM_PERF_STATUS | RAPL_GFX | RAPL_PSYS, .enable_tsc_tweak = 1, }; /* Copied from cnl_features, with PC7/PC9 removed */ static const struct platform_features adl_features = { .has_msr_misc_feature_control = cnl_features.has_msr_misc_feature_control, .has_msr_misc_pwr_mgmt = cnl_features.has_msr_misc_pwr_mgmt, .has_nhm_msrs = cnl_features.has_nhm_msrs, .has_config_tdp = cnl_features.has_config_tdp, .bclk_freq = cnl_features.bclk_freq, .supported_cstates = CC1 | CC6 | CC7 | PC2 | PC3 | PC6 | PC8 | PC10, .cst_limit = cnl_features.cst_limit, .has_irtl_msrs = cnl_features.has_irtl_msrs, .has_msr_core_c1_res = cnl_features.has_msr_core_c1_res, .has_ext_cst_msrs = cnl_features.has_ext_cst_msrs, .trl_msrs = cnl_features.trl_msrs, .tcc_offset_bits = cnl_features.tcc_offset_bits, .rapl_msrs = cnl_features.rapl_msrs, .enable_tsc_tweak = cnl_features.enable_tsc_tweak, }; /* Copied from adl_features, with PC3/PC8 removed */ static const struct platform_features lnl_features = { .has_msr_misc_feature_control = adl_features.has_msr_misc_feature_control, .has_msr_misc_pwr_mgmt = adl_features.has_msr_misc_pwr_mgmt, .has_nhm_msrs = adl_features.has_nhm_msrs, .has_config_tdp = adl_features.has_config_tdp, .bclk_freq = adl_features.bclk_freq, .supported_cstates = CC1 | CC6 | CC7 | PC2 | PC6 | PC10, .cst_limit = adl_features.cst_limit, .has_irtl_msrs = adl_features.has_irtl_msrs, .has_msr_core_c1_res = adl_features.has_msr_core_c1_res, .has_ext_cst_msrs = adl_features.has_ext_cst_msrs, .trl_msrs = adl_features.trl_msrs, .tcc_offset_bits = adl_features.tcc_offset_bits, .rapl_msrs = adl_features.rapl_msrs, .enable_tsc_tweak = adl_features.enable_tsc_tweak, }; static const struct platform_features skx_features = { .has_msr_misc_feature_control = 1, .has_msr_misc_pwr_mgmt = 1, .has_nhm_msrs = 1, .has_config_tdp = 1, .bclk_freq = BCLK_100MHZ, .supported_cstates = CC1 | CC6 | PC2 | PC6, .cst_limit = CST_LIMIT_SKX, .has_irtl_msrs = 1, .has_cst_auto_convension = 1, .trl_msrs = TRL_BASE | TRL_CORECOUNT, .rapl_msrs = RAPL_PKG_ALL | RAPL_DRAM_ALL, .has_fixed_rapl_unit = 1, }; static const struct platform_features icx_features = { .has_msr_misc_feature_control = 1, .has_msr_misc_pwr_mgmt = 1, .has_nhm_msrs = 1, .has_config_tdp = 1, .bclk_freq = BCLK_100MHZ, .supported_cstates = CC1 | CC6 | PC2 | PC6, .cst_limit = CST_LIMIT_ICX, .has_msr_core_c1_res = 1, .has_irtl_msrs = 1, .has_cst_prewake_bit = 1, .trl_msrs = TRL_BASE | TRL_CORECOUNT, .rapl_msrs = RAPL_PKG_ALL | RAPL_DRAM_ALL | RAPL_PSYS, .has_fixed_rapl_unit = 1, }; static const struct platform_features spr_features = { .has_msr_misc_feature_control = 1, .has_msr_misc_pwr_mgmt = 1, .has_nhm_msrs = 1, .has_config_tdp = 1, .bclk_freq = BCLK_100MHZ, .supported_cstates = CC1 | CC6 | PC2 | PC6, .cst_limit = CST_LIMIT_SKX, .has_msr_core_c1_res = 1, .has_irtl_msrs = 1, .has_cst_prewake_bit = 1, .trl_msrs = TRL_BASE | TRL_CORECOUNT, .rapl_msrs = RAPL_PKG_ALL | RAPL_DRAM_ALL | RAPL_PSYS, }; static const struct platform_features srf_features = { .has_msr_misc_feature_control = 1, .has_msr_misc_pwr_mgmt = 1, .has_nhm_msrs = 1, .has_config_tdp = 1, .bclk_freq = BCLK_100MHZ, .supported_cstates = CC1 | CC6 | PC2 | PC6, .cst_limit = CST_LIMIT_SKX, .has_msr_core_c1_res = 1, .has_msr_module_c6_res_ms = 1, .has_irtl_msrs = 1, .has_cst_prewake_bit = 1, .trl_msrs = TRL_BASE | TRL_CORECOUNT, .rapl_msrs = RAPL_PKG_ALL | RAPL_DRAM_ALL | RAPL_PSYS, }; static const struct platform_features grr_features = { .has_msr_misc_feature_control = 1, .has_msr_misc_pwr_mgmt = 1, .has_nhm_msrs = 1, .has_config_tdp = 1, .bclk_freq = BCLK_100MHZ, .supported_cstates = CC1 | CC6, .cst_limit = CST_LIMIT_SKX, .has_msr_core_c1_res = 1, .has_msr_module_c6_res_ms = 1, .has_irtl_msrs = 1, .has_cst_prewake_bit = 1, .trl_msrs = TRL_BASE | TRL_CORECOUNT, .rapl_msrs = RAPL_PKG_ALL | RAPL_DRAM_ALL | RAPL_PSYS, }; static const struct platform_features slv_features = { .has_nhm_msrs = 1, .bclk_freq = BCLK_SLV, .supported_cstates = CC1 | CC6 | PC6, .cst_limit = CST_LIMIT_SLV, .has_msr_core_c1_res = 1, .has_msr_module_c6_res_ms = 1, .has_msr_c6_demotion_policy_config = 1, .has_msr_atom_pkg_c6_residency = 1, .trl_msrs = TRL_ATOM, .rapl_msrs = RAPL_PKG | RAPL_CORE, .has_rapl_divisor = 1, .rapl_quirk_tdp = 30, }; static const struct platform_features slvd_features = { .has_msr_misc_pwr_mgmt = 1, .has_nhm_msrs = 1, .bclk_freq = BCLK_SLV, .supported_cstates = CC1 | CC6 | PC3 | PC6, .cst_limit = CST_LIMIT_SLV, .has_msr_atom_pkg_c6_residency = 1, .trl_msrs = TRL_BASE, .rapl_msrs = RAPL_PKG | RAPL_CORE, .rapl_quirk_tdp = 30, }; static const struct platform_features amt_features = { .has_nhm_msrs = 1, .bclk_freq = BCLK_133MHZ, .supported_cstates = CC1 | CC3 | CC6 | PC3 | PC6, .cst_limit = CST_LIMIT_AMT, .trl_msrs = TRL_BASE, }; static const struct platform_features gmt_features = { .has_msr_misc_pwr_mgmt = 1, .has_nhm_msrs = 1, .bclk_freq = BCLK_100MHZ, .crystal_freq = 19200000, .supported_cstates = CC1 | CC3 | CC6 | CC7 | PC2 | PC3 | PC6 | PC7 | PC8 | PC9 | PC10, .cst_limit = CST_LIMIT_GMT, .has_irtl_msrs = 1, .trl_msrs = TRL_BASE | TRL_CORECOUNT, .rapl_msrs = RAPL_PKG | RAPL_PKG_POWER_INFO, }; static const struct platform_features gmtd_features = { .has_msr_misc_pwr_mgmt = 1, .has_nhm_msrs = 1, .bclk_freq = BCLK_100MHZ, .crystal_freq = 25000000, .supported_cstates = CC1 | CC6 | PC2 | PC6, .cst_limit = CST_LIMIT_GMT, .has_irtl_msrs = 1, .has_msr_core_c1_res = 1, .trl_msrs = TRL_BASE | TRL_CORECOUNT, .rapl_msrs = RAPL_PKG_ALL | RAPL_DRAM_ALL | RAPL_CORE_ENERGY_STATUS, }; static const struct platform_features gmtp_features = { .has_msr_misc_pwr_mgmt = 1, .has_nhm_msrs = 1, .bclk_freq = BCLK_100MHZ, .crystal_freq = 19200000, .supported_cstates = CC1 | CC3 | CC6 | CC7 | PC2 | PC3 | PC6 | PC7 | PC8 | PC9 | PC10, .cst_limit = CST_LIMIT_GMT, .has_irtl_msrs = 1, .trl_msrs = TRL_BASE, .rapl_msrs = RAPL_PKG | RAPL_PKG_POWER_INFO, }; static const struct platform_features tmt_features = { .has_msr_misc_pwr_mgmt = 1, .has_nhm_msrs = 1, .bclk_freq = BCLK_100MHZ, .supported_cstates = CC1 | CC6 | CC7 | PC2 | PC3 | PC6 | PC7 | PC8 | PC9 | PC10, .cst_limit = CST_LIMIT_GMT, .has_irtl_msrs = 1, .trl_msrs = TRL_BASE, .rapl_msrs = RAPL_PKG_ALL | RAPL_CORE_ALL | RAPL_DRAM | RAPL_DRAM_PERF_STATUS | RAPL_GFX, .enable_tsc_tweak = 1, }; static const struct platform_features tmtd_features = { .has_msr_misc_pwr_mgmt = 1, .has_nhm_msrs = 1, .bclk_freq = BCLK_100MHZ, .supported_cstates = CC1 | CC6, .cst_limit = CST_LIMIT_GMT, .has_irtl_msrs = 1, .trl_msrs = TRL_BASE | TRL_CORECOUNT, .rapl_msrs = RAPL_PKG_ALL, }; static const struct platform_features knl_features = { .has_msr_misc_pwr_mgmt = 1, .has_nhm_msrs = 1, .has_config_tdp = 1, .bclk_freq = BCLK_100MHZ, .supported_cstates = CC1 | CC6 | PC3 | PC6, .cst_limit = CST_LIMIT_KNL, .has_msr_knl_core_c6_residency = 1, .trl_msrs = TRL_KNL, .rapl_msrs = RAPL_PKG_ALL | RAPL_DRAM_ALL, .has_fixed_rapl_unit = 1, .need_perf_multiplier = 1, }; static const struct platform_features default_features = { }; static const struct platform_features amd_features_with_rapl = { .rapl_msrs = RAPL_AMD_F17H, .has_per_core_rapl = 1, .rapl_quirk_tdp = 280, /* This is the max stock TDP of HEDT/Server Fam17h+ chips */ }; static const struct platform_data turbostat_pdata[] = { { INTEL_NEHALEM, &nhm_features }, { INTEL_NEHALEM_G, &nhm_features }, { INTEL_NEHALEM_EP, &nhm_features }, { INTEL_NEHALEM_EX, &nhx_features }, { INTEL_WESTMERE, &nhm_features }, { INTEL_WESTMERE_EP, &nhm_features }, { INTEL_WESTMERE_EX, &nhx_features }, { INTEL_SANDYBRIDGE, &snb_features }, { INTEL_SANDYBRIDGE_X, &snx_features }, { INTEL_IVYBRIDGE, &ivb_features }, { INTEL_IVYBRIDGE_X, &ivx_features }, { INTEL_HASWELL, &hsw_features }, { INTEL_HASWELL_X, &hsx_features }, { INTEL_HASWELL_L, &hswl_features }, { INTEL_HASWELL_G, &hswg_features }, { INTEL_BROADWELL, &bdw_features }, { INTEL_BROADWELL_G, &bdwg_features }, { INTEL_BROADWELL_X, &bdx_features }, { INTEL_BROADWELL_D, &bdx_features }, { INTEL_SKYLAKE_L, &skl_features }, { INTEL_SKYLAKE, &skl_features }, { INTEL_SKYLAKE_X, &skx_features }, { INTEL_KABYLAKE_L, &skl_features }, { INTEL_KABYLAKE, &skl_features }, { INTEL_COMETLAKE, &skl_features }, { INTEL_COMETLAKE_L, &skl_features }, { INTEL_CANNONLAKE_L, &cnl_features }, { INTEL_ICELAKE_X, &icx_features }, { INTEL_ICELAKE_D, &icx_features }, { INTEL_ICELAKE_L, &cnl_features }, { INTEL_ICELAKE_NNPI, &cnl_features }, { INTEL_ROCKETLAKE, &cnl_features }, { INTEL_TIGERLAKE_L, &cnl_features }, { INTEL_TIGERLAKE, &cnl_features }, { INTEL_SAPPHIRERAPIDS_X, &spr_features }, { INTEL_EMERALDRAPIDS_X, &spr_features }, { INTEL_GRANITERAPIDS_X, &spr_features }, { INTEL_GRANITERAPIDS_D, &spr_features }, { INTEL_LAKEFIELD, &cnl_features }, { INTEL_ALDERLAKE, &adl_features }, { INTEL_ALDERLAKE_L, &adl_features }, { INTEL_RAPTORLAKE, &adl_features }, { INTEL_RAPTORLAKE_P, &adl_features }, { INTEL_RAPTORLAKE_S, &adl_features }, { INTEL_METEORLAKE, &adl_features }, { INTEL_METEORLAKE_L, &adl_features }, { INTEL_ARROWLAKE_H, &adl_features }, { INTEL_ARROWLAKE_U, &adl_features }, { INTEL_ARROWLAKE, &adl_features }, { INTEL_LUNARLAKE_M, &lnl_features }, { INTEL_ATOM_SILVERMONT, &slv_features }, { INTEL_ATOM_SILVERMONT_D, &slvd_features }, { INTEL_ATOM_AIRMONT, &amt_features }, { INTEL_ATOM_GOLDMONT, &gmt_features }, { INTEL_ATOM_GOLDMONT_D, &gmtd_features }, { INTEL_ATOM_GOLDMONT_PLUS, &gmtp_features }, { INTEL_ATOM_TREMONT_D, &tmtd_features }, { INTEL_ATOM_TREMONT, &tmt_features }, { INTEL_ATOM_TREMONT_L, &tmt_features }, { INTEL_ATOM_GRACEMONT, &adl_features }, { INTEL_ATOM_CRESTMONT_X, &srf_features }, { INTEL_ATOM_CRESTMONT, &grr_features }, { INTEL_XEON_PHI_KNL, &knl_features }, { INTEL_XEON_PHI_KNM, &knl_features }, /* * Missing support for * INTEL_ICELAKE * INTEL_ATOM_SILVERMONT_MID * INTEL_ATOM_AIRMONT_MID * INTEL_ATOM_AIRMONT_NP */ { 0, NULL }, }; static const struct platform_features *platform; void probe_platform_features(unsigned int family, unsigned int model) { int i; platform = &default_features; if (authentic_amd || hygon_genuine) { if (max_extended_level >= 0x80000007) { unsigned int eax, ebx, ecx, edx; __cpuid(0x80000007, eax, ebx, ecx, edx); /* RAPL (Fam 17h+) */ if ((edx & (1 << 14)) && family >= 0x17) platform = &amd_features_with_rapl; } return; } if (!genuine_intel) return; for (i = 0; turbostat_pdata[i].features; i++) { if (VFM_FAMILY(turbostat_pdata[i].vfm) == family && VFM_MODEL(turbostat_pdata[i].vfm) == model) { platform = turbostat_pdata[i].features; return; } } } /* Model specific support End */ #define TJMAX_DEFAULT 100 /* MSRs that are not yet in the kernel-provided header. */ #define MSR_RAPL_PWR_UNIT 0xc0010299 #define MSR_CORE_ENERGY_STAT 0xc001029a #define MSR_PKG_ENERGY_STAT 0xc001029b #define MAX(a, b) ((a) > (b) ? (a) : (b)) int backwards_count; char *progname; #define CPU_SUBSET_MAXCPUS 1024 /* need to use before probe... */ cpu_set_t *cpu_present_set, *cpu_effective_set, *cpu_allowed_set, *cpu_affinity_set, *cpu_subset; size_t cpu_present_setsize, cpu_effective_setsize, cpu_allowed_setsize, cpu_affinity_setsize, cpu_subset_size; #define MAX_ADDED_THREAD_COUNTERS 24 #define MAX_ADDED_CORE_COUNTERS 8 #define MAX_ADDED_PACKAGE_COUNTERS 16 #define PMT_MAX_ADDED_THREAD_COUNTERS 24 #define PMT_MAX_ADDED_CORE_COUNTERS 8 #define PMT_MAX_ADDED_PACKAGE_COUNTERS 16 #define BITMASK_SIZE 32 #define ZERO_ARRAY(arr) (memset(arr, 0, sizeof(arr)) + __must_be_array(arr)) /* Indexes used to map data read from perf and MSRs into global variables */ enum rapl_rci_index { RAPL_RCI_INDEX_ENERGY_PKG = 0, RAPL_RCI_INDEX_ENERGY_CORES = 1, RAPL_RCI_INDEX_DRAM = 2, RAPL_RCI_INDEX_GFX = 3, RAPL_RCI_INDEX_PKG_PERF_STATUS = 4, RAPL_RCI_INDEX_DRAM_PERF_STATUS = 5, RAPL_RCI_INDEX_CORE_ENERGY = 6, RAPL_RCI_INDEX_ENERGY_PLATFORM = 7, NUM_RAPL_COUNTERS, }; enum rapl_unit { RAPL_UNIT_INVALID, RAPL_UNIT_JOULES, RAPL_UNIT_WATTS, }; struct rapl_counter_info_t { unsigned long long data[NUM_RAPL_COUNTERS]; enum counter_source source[NUM_RAPL_COUNTERS]; unsigned long long flags[NUM_RAPL_COUNTERS]; double scale[NUM_RAPL_COUNTERS]; enum rapl_unit unit[NUM_RAPL_COUNTERS]; unsigned long long msr[NUM_RAPL_COUNTERS]; unsigned long long msr_mask[NUM_RAPL_COUNTERS]; int msr_shift[NUM_RAPL_COUNTERS]; int fd_perf; }; /* struct rapl_counter_info_t for each RAPL domain */ struct rapl_counter_info_t *rapl_counter_info_perdomain; unsigned int rapl_counter_info_perdomain_size; #define RAPL_COUNTER_FLAG_PLATFORM_COUNTER (1u << 0) #define RAPL_COUNTER_FLAG_USE_MSR_SUM (1u << 1) struct rapl_counter_arch_info { int feature_mask; /* Mask for testing if the counter is supported on host */ const char *perf_subsys; const char *perf_name; unsigned long long msr; unsigned long long msr_mask; int msr_shift; /* Positive mean shift right, negative mean shift left */ double *platform_rapl_msr_scale; /* Scale applied to values read by MSR (platform dependent, filled at runtime) */ unsigned int rci_index; /* Maps data from perf counters to global variables */ unsigned long long bic; double compat_scale; /* Some counters require constant scaling to be in the same range as other, similar ones */ unsigned long long flags; }; static const struct rapl_counter_arch_info rapl_counter_arch_infos[] = { { .feature_mask = RAPL_PKG, .perf_subsys = "power", .perf_name = "energy-pkg", .msr = MSR_PKG_ENERGY_STATUS, .msr_mask = 0xFFFFFFFFFFFFFFFF, .msr_shift = 0, .platform_rapl_msr_scale = &rapl_energy_units, .rci_index = RAPL_RCI_INDEX_ENERGY_PKG, .bic = BIC_PkgWatt | BIC_Pkg_J, .compat_scale = 1.0, .flags = RAPL_COUNTER_FLAG_USE_MSR_SUM, }, { .feature_mask = RAPL_AMD_F17H, .perf_subsys = "power", .perf_name = "energy-pkg", .msr = MSR_PKG_ENERGY_STAT, .msr_mask = 0xFFFFFFFFFFFFFFFF, .msr_shift = 0, .platform_rapl_msr_scale = &rapl_energy_units, .rci_index = RAPL_RCI_INDEX_ENERGY_PKG, .bic = BIC_PkgWatt | BIC_Pkg_J, .compat_scale = 1.0, .flags = RAPL_COUNTER_FLAG_USE_MSR_SUM, }, { .feature_mask = RAPL_CORE_ENERGY_STATUS, .perf_subsys = "power", .perf_name = "energy-cores", .msr = MSR_PP0_ENERGY_STATUS, .msr_mask = 0xFFFFFFFFFFFFFFFF, .msr_shift = 0, .platform_rapl_msr_scale = &rapl_energy_units, .rci_index = RAPL_RCI_INDEX_ENERGY_CORES, .bic = BIC_CorWatt | BIC_Cor_J, .compat_scale = 1.0, .flags = RAPL_COUNTER_FLAG_USE_MSR_SUM, }, { .feature_mask = RAPL_DRAM, .perf_subsys = "power", .perf_name = "energy-ram", .msr = MSR_DRAM_ENERGY_STATUS, .msr_mask = 0xFFFFFFFFFFFFFFFF, .msr_shift = 0, .platform_rapl_msr_scale = &rapl_dram_energy_units, .rci_index = RAPL_RCI_INDEX_DRAM, .bic = BIC_RAMWatt | BIC_RAM_J, .compat_scale = 1.0, .flags = RAPL_COUNTER_FLAG_USE_MSR_SUM, }, { .feature_mask = RAPL_GFX, .perf_subsys = "power", .perf_name = "energy-gpu", .msr = MSR_PP1_ENERGY_STATUS, .msr_mask = 0xFFFFFFFFFFFFFFFF, .msr_shift = 0, .platform_rapl_msr_scale = &rapl_energy_units, .rci_index = RAPL_RCI_INDEX_GFX, .bic = BIC_GFXWatt | BIC_GFX_J, .compat_scale = 1.0, .flags = RAPL_COUNTER_FLAG_USE_MSR_SUM, }, { .feature_mask = RAPL_PKG_PERF_STATUS, .perf_subsys = NULL, .perf_name = NULL, .msr = MSR_PKG_PERF_STATUS, .msr_mask = 0xFFFFFFFFFFFFFFFF, .msr_shift = 0, .platform_rapl_msr_scale = &rapl_time_units, .rci_index = RAPL_RCI_INDEX_PKG_PERF_STATUS, .bic = BIC_PKG__, .compat_scale = 100.0, .flags = RAPL_COUNTER_FLAG_USE_MSR_SUM, }, { .feature_mask = RAPL_DRAM_PERF_STATUS, .perf_subsys = NULL, .perf_name = NULL, .msr = MSR_DRAM_PERF_STATUS, .msr_mask = 0xFFFFFFFFFFFFFFFF, .msr_shift = 0, .platform_rapl_msr_scale = &rapl_time_units, .rci_index = RAPL_RCI_INDEX_DRAM_PERF_STATUS, .bic = BIC_RAM__, .compat_scale = 100.0, .flags = RAPL_COUNTER_FLAG_USE_MSR_SUM, }, { .feature_mask = RAPL_AMD_F17H, .perf_subsys = NULL, .perf_name = NULL, .msr = MSR_CORE_ENERGY_STAT, .msr_mask = 0xFFFFFFFF, .msr_shift = 0, .platform_rapl_msr_scale = &rapl_energy_units, .rci_index = RAPL_RCI_INDEX_CORE_ENERGY, .bic = BIC_CorWatt | BIC_Cor_J, .compat_scale = 1.0, .flags = 0, }, { .feature_mask = RAPL_PSYS, .perf_subsys = "power", .perf_name = "energy-psys", .msr = MSR_PLATFORM_ENERGY_STATUS, .msr_mask = 0x00000000FFFFFFFF, .msr_shift = 0, .platform_rapl_msr_scale = &rapl_energy_units, .rci_index = RAPL_RCI_INDEX_ENERGY_PLATFORM, .bic = BIC_SysWatt | BIC_Sys_J, .compat_scale = 1.0, .flags = RAPL_COUNTER_FLAG_PLATFORM_COUNTER | RAPL_COUNTER_FLAG_USE_MSR_SUM, }, }; struct rapl_counter { unsigned long long raw_value; enum rapl_unit unit; double scale; }; /* Indexes used to map data read from perf and MSRs into global variables */ enum ccstate_rci_index { CCSTATE_RCI_INDEX_C1_RESIDENCY = 0, CCSTATE_RCI_INDEX_C3_RESIDENCY = 1, CCSTATE_RCI_INDEX_C6_RESIDENCY = 2, CCSTATE_RCI_INDEX_C7_RESIDENCY = 3, PCSTATE_RCI_INDEX_C2_RESIDENCY = 4, PCSTATE_RCI_INDEX_C3_RESIDENCY = 5, PCSTATE_RCI_INDEX_C6_RESIDENCY = 6, PCSTATE_RCI_INDEX_C7_RESIDENCY = 7, PCSTATE_RCI_INDEX_C8_RESIDENCY = 8, PCSTATE_RCI_INDEX_C9_RESIDENCY = 9, PCSTATE_RCI_INDEX_C10_RESIDENCY = 10, NUM_CSTATE_COUNTERS, }; struct cstate_counter_info_t { unsigned long long data[NUM_CSTATE_COUNTERS]; enum counter_source source[NUM_CSTATE_COUNTERS]; unsigned long long msr[NUM_CSTATE_COUNTERS]; int fd_perf_core; int fd_perf_pkg; }; struct cstate_counter_info_t *ccstate_counter_info; unsigned int ccstate_counter_info_size; #define CSTATE_COUNTER_FLAG_COLLECT_PER_CORE (1u << 0) #define CSTATE_COUNTER_FLAG_COLLECT_PER_THREAD ((1u << 1) | CSTATE_COUNTER_FLAG_COLLECT_PER_CORE) #define CSTATE_COUNTER_FLAG_SOFT_C1_DEPENDENCY (1u << 2) struct cstate_counter_arch_info { int feature_mask; /* Mask for testing if the counter is supported on host */ const char *perf_subsys; const char *perf_name; unsigned long long msr; unsigned int rci_index; /* Maps data from perf counters to global variables */ unsigned long long bic; unsigned long long flags; int pkg_cstate_limit; }; static struct cstate_counter_arch_info ccstate_counter_arch_infos[] = { { .feature_mask = CC1, .perf_subsys = "cstate_core", .perf_name = "c1-residency", .msr = MSR_CORE_C1_RES, .rci_index = CCSTATE_RCI_INDEX_C1_RESIDENCY, .bic = BIC_CPU_c1, .flags = CSTATE_COUNTER_FLAG_COLLECT_PER_THREAD, .pkg_cstate_limit = 0, }, { .feature_mask = CC3, .perf_subsys = "cstate_core", .perf_name = "c3-residency", .msr = MSR_CORE_C3_RESIDENCY, .rci_index = CCSTATE_RCI_INDEX_C3_RESIDENCY, .bic = BIC_CPU_c3, .flags = CSTATE_COUNTER_FLAG_COLLECT_PER_CORE | CSTATE_COUNTER_FLAG_SOFT_C1_DEPENDENCY, .pkg_cstate_limit = 0, }, { .feature_mask = CC6, .perf_subsys = "cstate_core", .perf_name = "c6-residency", .msr = MSR_CORE_C6_RESIDENCY, .rci_index = CCSTATE_RCI_INDEX_C6_RESIDENCY, .bic = BIC_CPU_c6, .flags = CSTATE_COUNTER_FLAG_COLLECT_PER_CORE | CSTATE_COUNTER_FLAG_SOFT_C1_DEPENDENCY, .pkg_cstate_limit = 0, }, { .feature_mask = CC7, .perf_subsys = "cstate_core", .perf_name = "c7-residency", .msr = MSR_CORE_C7_RESIDENCY, .rci_index = CCSTATE_RCI_INDEX_C7_RESIDENCY, .bic = BIC_CPU_c7, .flags = CSTATE_COUNTER_FLAG_COLLECT_PER_CORE | CSTATE_COUNTER_FLAG_SOFT_C1_DEPENDENCY, .pkg_cstate_limit = 0, }, { .feature_mask = PC2, .perf_subsys = "cstate_pkg", .perf_name = "c2-residency", .msr = MSR_PKG_C2_RESIDENCY, .rci_index = PCSTATE_RCI_INDEX_C2_RESIDENCY, .bic = BIC_Pkgpc2, .flags = 0, .pkg_cstate_limit = PCL__2, }, { .feature_mask = PC3, .perf_subsys = "cstate_pkg", .perf_name = "c3-residency", .msr = MSR_PKG_C3_RESIDENCY, .rci_index = PCSTATE_RCI_INDEX_C3_RESIDENCY, .bic = BIC_Pkgpc3, .flags = 0, .pkg_cstate_limit = PCL__3, }, { .feature_mask = PC6, .perf_subsys = "cstate_pkg", .perf_name = "c6-residency", .msr = MSR_PKG_C6_RESIDENCY, .rci_index = PCSTATE_RCI_INDEX_C6_RESIDENCY, .bic = BIC_Pkgpc6, .flags = 0, .pkg_cstate_limit = PCL__6, }, { .feature_mask = PC7, .perf_subsys = "cstate_pkg", .perf_name = "c7-residency", .msr = MSR_PKG_C7_RESIDENCY, .rci_index = PCSTATE_RCI_INDEX_C7_RESIDENCY, .bic = BIC_Pkgpc7, .flags = 0, .pkg_cstate_limit = PCL__7, }, { .feature_mask = PC8, .perf_subsys = "cstate_pkg", .perf_name = "c8-residency", .msr = MSR_PKG_C8_RESIDENCY, .rci_index = PCSTATE_RCI_INDEX_C8_RESIDENCY, .bic = BIC_Pkgpc8, .flags = 0, .pkg_cstate_limit = PCL__8, }, { .feature_mask = PC9, .perf_subsys = "cstate_pkg", .perf_name = "c9-residency", .msr = MSR_PKG_C9_RESIDENCY, .rci_index = PCSTATE_RCI_INDEX_C9_RESIDENCY, .bic = BIC_Pkgpc9, .flags = 0, .pkg_cstate_limit = PCL__9, }, { .feature_mask = PC10, .perf_subsys = "cstate_pkg", .perf_name = "c10-residency", .msr = MSR_PKG_C10_RESIDENCY, .rci_index = PCSTATE_RCI_INDEX_C10_RESIDENCY, .bic = BIC_Pkgpc10, .flags = 0, .pkg_cstate_limit = PCL_10, }, }; /* Indexes used to map data read from perf and MSRs into global variables */ enum msr_rci_index { MSR_RCI_INDEX_APERF = 0, MSR_RCI_INDEX_MPERF = 1, MSR_RCI_INDEX_SMI = 2, NUM_MSR_COUNTERS, }; struct msr_counter_info_t { unsigned long long data[NUM_MSR_COUNTERS]; enum counter_source source[NUM_MSR_COUNTERS]; unsigned long long msr[NUM_MSR_COUNTERS]; unsigned long long msr_mask[NUM_MSR_COUNTERS]; int fd_perf; }; struct msr_counter_info_t *msr_counter_info; unsigned int msr_counter_info_size; struct msr_counter_arch_info { const char *perf_subsys; const char *perf_name; unsigned long long msr; unsigned long long msr_mask; unsigned int rci_index; /* Maps data from perf counters to global variables */ bool needed; bool present; }; enum msr_arch_info_index { MSR_ARCH_INFO_APERF_INDEX = 0, MSR_ARCH_INFO_MPERF_INDEX = 1, MSR_ARCH_INFO_SMI_INDEX = 2, }; static struct msr_counter_arch_info msr_counter_arch_infos[] = { [MSR_ARCH_INFO_APERF_INDEX] = { .perf_subsys = "msr", .perf_name = "aperf", .msr = MSR_IA32_APERF, .msr_mask = 0xFFFFFFFFFFFFFFFF, .rci_index = MSR_RCI_INDEX_APERF, }, [MSR_ARCH_INFO_MPERF_INDEX] = { .perf_subsys = "msr", .perf_name = "mperf", .msr = MSR_IA32_MPERF, .msr_mask = 0xFFFFFFFFFFFFFFFF, .rci_index = MSR_RCI_INDEX_MPERF, }, [MSR_ARCH_INFO_SMI_INDEX] = { .perf_subsys = "msr", .perf_name = "smi", .msr = MSR_SMI_COUNT, .msr_mask = 0xFFFFFFFF, .rci_index = MSR_RCI_INDEX_SMI, }, }; /* Can be redefined when compiling, useful for testing. */ #ifndef SYSFS_TELEM_PATH #define SYSFS_TELEM_PATH "/sys/class/intel_pmt" #endif #define PMT_COUNTER_MTL_DC6_OFFSET 120 #define PMT_COUNTER_MTL_DC6_LSB 0 #define PMT_COUNTER_MTL_DC6_MSB 63 #define PMT_MTL_DC6_GUID 0x1a067102 #define PMT_COUNTER_NAME_SIZE_BYTES 16 #define PMT_COUNTER_TYPE_NAME_SIZE_BYTES 32 struct pmt_mmio { struct pmt_mmio *next; unsigned int guid; unsigned int size; /* Base pointer to the mmaped memory. */ void *mmio_base; /* * Offset to be applied to the mmio_base * to get the beginning of the PMT counters for given GUID. */ unsigned long pmt_offset; } *pmt_mmios; enum pmt_datatype { PMT_TYPE_RAW, PMT_TYPE_XTAL_TIME, }; struct pmt_domain_info { /* * Pointer to the MMIO obtained by applying a counter offset * to the mmio_base of the mmaped region for the given GUID. * * This is where to read the raw value of the counter from. */ unsigned long *pcounter; }; struct pmt_counter { struct pmt_counter *next; /* PMT metadata */ char name[PMT_COUNTER_NAME_SIZE_BYTES]; enum pmt_datatype type; enum counter_scope scope; unsigned int lsb; unsigned int msb; /* BIC-like metadata */ enum counter_format format; unsigned int num_domains; struct pmt_domain_info *domains; }; unsigned int pmt_counter_get_width(const struct pmt_counter *p) { return (p->msb - p->lsb) + 1; } void pmt_counter_resize_(struct pmt_counter *pcounter, unsigned int new_size) { struct pmt_domain_info *new_mem; new_mem = (struct pmt_domain_info *)reallocarray(pcounter->domains, new_size, sizeof(*pcounter->domains)); if (!new_mem) { fprintf(stderr, "%s: failed to allocate memory for PMT counters\n", __func__); exit(1); } /* Zero initialize just allocated memory. */ const size_t num_new_domains = new_size - pcounter->num_domains; memset(&new_mem[pcounter->num_domains], 0, num_new_domains * sizeof(*pcounter->domains)); pcounter->num_domains = new_size; pcounter->domains = new_mem; } void pmt_counter_resize(struct pmt_counter *pcounter, unsigned int new_size) { /* * Allocate more memory ahead of time. * * Always allocate space for at least 8 elements * and double the size when growing. */ if (new_size < 8) new_size = 8; new_size = MAX(new_size, pcounter->num_domains * 2); pmt_counter_resize_(pcounter, new_size); } struct thread_data { struct timeval tv_begin; struct timeval tv_end; struct timeval tv_delta; unsigned long long tsc; unsigned long long aperf; unsigned long long mperf; unsigned long long c1; unsigned long long instr_count; unsigned long long irq_count; unsigned int smi_count; unsigned int cpu_id; unsigned int apic_id; unsigned int x2apic_id; unsigned int flags; bool is_atom; unsigned long long counter[MAX_ADDED_THREAD_COUNTERS]; unsigned long long perf_counter[MAX_ADDED_THREAD_COUNTERS]; unsigned long long pmt_counter[PMT_MAX_ADDED_THREAD_COUNTERS]; } *thread_even, *thread_odd; struct core_data { int base_cpu; unsigned long long c3; unsigned long long c6; unsigned long long c7; unsigned long long mc6_us; /* duplicate as per-core for now, even though per module */ unsigned int core_temp_c; struct rapl_counter core_energy; /* MSR_CORE_ENERGY_STAT */ unsigned int core_id; unsigned long long core_throt_cnt; unsigned long long counter[MAX_ADDED_CORE_COUNTERS]; unsigned long long perf_counter[MAX_ADDED_CORE_COUNTERS]; unsigned long long pmt_counter[PMT_MAX_ADDED_CORE_COUNTERS]; } *core_even, *core_odd; struct pkg_data { int base_cpu; unsigned long long pc2; unsigned long long pc3; unsigned long long pc6; unsigned long long pc7; unsigned long long pc8; unsigned long long pc9; unsigned long long pc10; long long cpu_lpi; long long sys_lpi; unsigned long long pkg_wtd_core_c0; unsigned long long pkg_any_core_c0; unsigned long long pkg_any_gfxe_c0; unsigned long long pkg_both_core_gfxe_c0; long long gfx_rc6_ms; unsigned int gfx_mhz; unsigned int gfx_act_mhz; long long sam_mc6_ms; unsigned int sam_mhz; unsigned int sam_act_mhz; unsigned int package_id; struct rapl_counter energy_pkg; /* MSR_PKG_ENERGY_STATUS */ struct rapl_counter energy_dram; /* MSR_DRAM_ENERGY_STATUS */ struct rapl_counter energy_cores; /* MSR_PP0_ENERGY_STATUS */ struct rapl_counter energy_gfx; /* MSR_PP1_ENERGY_STATUS */ struct rapl_counter rapl_pkg_perf_status; /* MSR_PKG_PERF_STATUS */ struct rapl_counter rapl_dram_perf_status; /* MSR_DRAM_PERF_STATUS */ unsigned int pkg_temp_c; unsigned int uncore_mhz; unsigned long long die_c6; unsigned long long counter[MAX_ADDED_PACKAGE_COUNTERS]; unsigned long long perf_counter[MAX_ADDED_PACKAGE_COUNTERS]; unsigned long long pmt_counter[PMT_MAX_ADDED_PACKAGE_COUNTERS]; } *package_even, *package_odd; #define ODD_COUNTERS thread_odd, core_odd, package_odd #define EVEN_COUNTERS thread_even, core_even, package_even #define GET_THREAD(thread_base, thread_no, core_no, node_no, pkg_no) \ ((thread_base) + \ ((pkg_no) * \ topo.nodes_per_pkg * topo.cores_per_node * topo.threads_per_core) + \ ((node_no) * topo.cores_per_node * topo.threads_per_core) + \ ((core_no) * topo.threads_per_core) + \ (thread_no)) #define GET_CORE(core_base, core_no, node_no, pkg_no) \ ((core_base) + \ ((pkg_no) * topo.nodes_per_pkg * topo.cores_per_node) + \ ((node_no) * topo.cores_per_node) + \ (core_no)) #define GET_PKG(pkg_base, pkg_no) (pkg_base + pkg_no) /* * The accumulated sum of MSR is defined as a monotonic * increasing MSR, it will be accumulated periodically, * despite its register's bit width. */ enum { IDX_PKG_ENERGY, IDX_DRAM_ENERGY, IDX_PP0_ENERGY, IDX_PP1_ENERGY, IDX_PKG_PERF, IDX_DRAM_PERF, IDX_PSYS_ENERGY, IDX_COUNT, }; int get_msr_sum(int cpu, off_t offset, unsigned long long *msr); struct msr_sum_array { /* get_msr_sum() = sum + (get_msr() - last) */ struct { /*The accumulated MSR value is updated by the timer */ unsigned long long sum; /*The MSR footprint recorded in last timer */ unsigned long long last; } entries[IDX_COUNT]; }; /* The percpu MSR sum array.*/ struct msr_sum_array *per_cpu_msr_sum; off_t idx_to_offset(int idx) { off_t offset; switch (idx) { case IDX_PKG_ENERGY: if (platform->rapl_msrs & RAPL_AMD_F17H) offset = MSR_PKG_ENERGY_STAT; else offset = MSR_PKG_ENERGY_STATUS; break; case IDX_DRAM_ENERGY: offset = MSR_DRAM_ENERGY_STATUS; break; case IDX_PP0_ENERGY: offset = MSR_PP0_ENERGY_STATUS; break; case IDX_PP1_ENERGY: offset = MSR_PP1_ENERGY_STATUS; break; case IDX_PKG_PERF: offset = MSR_PKG_PERF_STATUS; break; case IDX_DRAM_PERF: offset = MSR_DRAM_PERF_STATUS; break; case IDX_PSYS_ENERGY: offset = MSR_PLATFORM_ENERGY_STATUS; break; default: offset = -1; } return offset; } int offset_to_idx(off_t offset) { int idx; switch (offset) { case MSR_PKG_ENERGY_STATUS: case MSR_PKG_ENERGY_STAT: idx = IDX_PKG_ENERGY; break; case MSR_DRAM_ENERGY_STATUS: idx = IDX_DRAM_ENERGY; break; case MSR_PP0_ENERGY_STATUS: idx = IDX_PP0_ENERGY; break; case MSR_PP1_ENERGY_STATUS: idx = IDX_PP1_ENERGY; break; case MSR_PKG_PERF_STATUS: idx = IDX_PKG_PERF; break; case MSR_DRAM_PERF_STATUS: idx = IDX_DRAM_PERF; break; case MSR_PLATFORM_ENERGY_STATUS: idx = IDX_PSYS_ENERGY; break; default: idx = -1; } return idx; } int idx_valid(int idx) { switch (idx) { case IDX_PKG_ENERGY: return platform->rapl_msrs & (RAPL_PKG | RAPL_AMD_F17H); case IDX_DRAM_ENERGY: return platform->rapl_msrs & RAPL_DRAM; case IDX_PP0_ENERGY: return platform->rapl_msrs & RAPL_CORE_ENERGY_STATUS; case IDX_PP1_ENERGY: return platform->rapl_msrs & RAPL_GFX; case IDX_PKG_PERF: return platform->rapl_msrs & RAPL_PKG_PERF_STATUS; case IDX_DRAM_PERF: return platform->rapl_msrs & RAPL_DRAM_PERF_STATUS; case IDX_PSYS_ENERGY: return platform->rapl_msrs & RAPL_PSYS; default: return 0; } } struct sys_counters { /* MSR added counters */ unsigned int added_thread_counters; unsigned int added_core_counters; unsigned int added_package_counters; struct msr_counter *tp; struct msr_counter *cp; struct msr_counter *pp; /* perf added counters */ unsigned int added_thread_perf_counters; unsigned int added_core_perf_counters; unsigned int added_package_perf_counters; struct perf_counter_info *perf_tp; struct perf_counter_info *perf_cp; struct perf_counter_info *perf_pp; struct pmt_counter *pmt_tp; struct pmt_counter *pmt_cp; struct pmt_counter *pmt_pp; } sys; static size_t free_msr_counters_(struct msr_counter **pp) { struct msr_counter *p = NULL; size_t num_freed = 0; while (*pp) { p = *pp; if (p->msr_num != 0) { *pp = p->next; free(p); ++num_freed; continue; } pp = &p->next; } return num_freed; } /* * Free all added counters accessed via msr. */ static void free_sys_msr_counters(void) { /* Thread counters */ sys.added_thread_counters -= free_msr_counters_(&sys.tp); /* Core counters */ sys.added_core_counters -= free_msr_counters_(&sys.cp); /* Package counters */ sys.added_package_counters -= free_msr_counters_(&sys.pp); } struct system_summary { struct thread_data threads; struct core_data cores; struct pkg_data packages; } average; struct platform_counters { struct rapl_counter energy_psys; /* MSR_PLATFORM_ENERGY_STATUS */ } platform_counters_odd, platform_counters_even; struct cpu_topology { int physical_package_id; int die_id; int logical_cpu_id; int physical_node_id; int logical_node_id; /* 0-based count within the package */ int physical_core_id; int thread_id; int type; cpu_set_t *put_ids; /* Processing Unit/Thread IDs */ } *cpus; struct topo_params { int num_packages; int num_die; int num_cpus; int num_cores; int allowed_packages; int allowed_cpus; int allowed_cores; int max_cpu_num; int max_core_id; int max_package_id; int max_die_id; int max_node_num; int nodes_per_pkg; int cores_per_node; int threads_per_core; } topo; struct timeval tv_even, tv_odd, tv_delta; int *irq_column_2_cpu; /* /proc/interrupts column numbers */ int *irqs_per_cpu; /* indexed by cpu_num */ void setup_all_buffers(bool startup); char *sys_lpi_file; char *sys_lpi_file_sysfs = "/sys/devices/system/cpu/cpuidle/low_power_idle_system_residency_us"; char *sys_lpi_file_debugfs = "/sys/kernel/debug/pmc_core/slp_s0_residency_usec"; int cpu_is_not_present(int cpu) { return !CPU_ISSET_S(cpu, cpu_present_setsize, cpu_present_set); } int cpu_is_not_allowed(int cpu) { return !CPU_ISSET_S(cpu, cpu_allowed_setsize, cpu_allowed_set); } /* * run func(thread, core, package) in topology order * skip non-present cpus */ int for_all_cpus(int (func) (struct thread_data *, struct core_data *, struct pkg_data *), struct thread_data *thread_base, struct core_data *core_base, struct pkg_data *pkg_base) { int retval, pkg_no, core_no, thread_no, node_no; for (pkg_no = 0; pkg_no < topo.num_packages; ++pkg_no) { for (node_no = 0; node_no < topo.nodes_per_pkg; node_no++) { for (core_no = 0; core_no < topo.cores_per_node; ++core_no) { for (thread_no = 0; thread_no < topo.threads_per_core; ++thread_no) { struct thread_data *t; struct core_data *c; struct pkg_data *p; t = GET_THREAD(thread_base, thread_no, core_no, node_no, pkg_no); if (cpu_is_not_allowed(t->cpu_id)) continue; c = GET_CORE(core_base, core_no, node_no, pkg_no); p = GET_PKG(pkg_base, pkg_no); retval = func(t, c, p); if (retval) return retval; } } } } return 0; } int is_cpu_first_thread_in_core(struct thread_data *t, struct core_data *c, struct pkg_data *p) { UNUSED(p); return ((int)t->cpu_id == c->base_cpu || c->base_cpu < 0); } int is_cpu_first_core_in_package(struct thread_data *t, struct core_data *c, struct pkg_data *p) { UNUSED(c); return ((int)t->cpu_id == p->base_cpu || p->base_cpu < 0); } int is_cpu_first_thread_in_package(struct thread_data *t, struct core_data *c, struct pkg_data *p) { return is_cpu_first_thread_in_core(t, c, p) && is_cpu_first_core_in_package(t, c, p); } int cpu_migrate(int cpu) { CPU_ZERO_S(cpu_affinity_setsize, cpu_affinity_set); CPU_SET_S(cpu, cpu_affinity_setsize, cpu_affinity_set); if (sched_setaffinity(0, cpu_affinity_setsize, cpu_affinity_set) == -1) return -1; else return 0; } int get_msr_fd(int cpu) { char pathname[32]; int fd; fd = fd_percpu[cpu]; if (fd) return fd; sprintf(pathname, "/dev/cpu/%d/msr", cpu); fd = open(pathname, O_RDONLY); if (fd < 0) err(-1, "%s open failed, try chown or chmod +r /dev/cpu/*/msr, " "or run with --no-msr, or run as root", pathname); fd_percpu[cpu] = fd; return fd; } static void bic_disable_msr_access(void) { const unsigned long bic_msrs = BIC_Mod_c6 | BIC_CoreTmp | BIC_Totl_c0 | BIC_Any_c0 | BIC_GFX_c0 | BIC_CPUGFX | BIC_PkgTmp; bic_enabled &= ~bic_msrs; free_sys_msr_counters(); } static long perf_event_open(struct perf_event_attr *hw_event, pid_t pid, int cpu, int group_fd, unsigned long flags) { assert(!no_perf); return syscall(__NR_perf_event_open, hw_event, pid, cpu, group_fd, flags); } static long open_perf_counter(int cpu, unsigned int type, unsigned int config, int group_fd, __u64 read_format) { struct perf_event_attr attr; const pid_t pid = -1; const unsigned long flags = 0; assert(!no_perf); memset(&attr, 0, sizeof(struct perf_event_attr)); attr.type = type; attr.size = sizeof(struct perf_event_attr); attr.config = config; attr.disabled = 0; attr.sample_type = PERF_SAMPLE_IDENTIFIER; attr.read_format = read_format; const int fd = perf_event_open(&attr, pid, cpu, group_fd, flags); return fd; } int get_instr_count_fd(int cpu) { if (fd_instr_count_percpu[cpu]) return fd_instr_count_percpu[cpu]; fd_instr_count_percpu[cpu] = open_perf_counter(cpu, PERF_TYPE_HARDWARE, PERF_COUNT_HW_INSTRUCTIONS, -1, 0); return fd_instr_count_percpu[cpu]; } int get_msr(int cpu, off_t offset, unsigned long long *msr) { ssize_t retval; assert(!no_msr); retval = pread(get_msr_fd(cpu), msr, sizeof(*msr), offset); if (retval != sizeof *msr) err(-1, "cpu%d: msr offset 0x%llx read failed", cpu, (unsigned long long)offset); return 0; } int probe_msr(int cpu, off_t offset) { ssize_t retval; unsigned long long dummy; assert(!no_msr); retval = pread(get_msr_fd(cpu), &dummy, sizeof(dummy), offset); if (retval != sizeof(dummy)) return 1; return 0; } /* Convert CPU ID to domain ID for given added perf counter. */ unsigned int cpu_to_domain(const struct perf_counter_info *pc, int cpu) { switch (pc->scope) { case SCOPE_CPU: return cpu; case SCOPE_CORE: return cpus[cpu].physical_core_id; case SCOPE_PACKAGE: return cpus[cpu].physical_package_id; } __builtin_unreachable(); } #define MAX_DEFERRED 16 char *deferred_add_names[MAX_DEFERRED]; char *deferred_skip_names[MAX_DEFERRED]; int deferred_add_index; int deferred_skip_index; /* * HIDE_LIST - hide this list of counters, show the rest [default] * SHOW_LIST - show this list of counters, hide the rest */ enum show_hide_mode { SHOW_LIST, HIDE_LIST } global_show_hide_mode = HIDE_LIST; void help(void) { fprintf(outf, "Usage: turbostat [OPTIONS][(--interval seconds) | COMMAND ...]\n" "\n" "Turbostat forks the specified COMMAND and prints statistics\n" "when COMMAND completes.\n" "If no COMMAND is specified, turbostat wakes every 5-seconds\n" "to print statistics, until interrupted.\n" " -a, --add add a counter\n" " eg. --add msr0x10,u64,cpu,delta,MY_TSC\n" " eg. --add perf/cstate_pkg/c2-residency,package,delta,percent,perfPC2\n" " eg. --add pmt,name=XTAL,type=raw,domain=package0,offset=0,lsb=0,msb=63,guid=0x1a067102\n" " -c, --cpu cpu-set limit output to summary plus cpu-set:\n" " {core | package | j,k,l..m,n-p }\n" " -d, --debug displays usec, Time_Of_Day_Seconds and more debugging\n" " debug messages are printed to stderr\n" " -D, --Dump displays the raw counter values\n" " -e, --enable [all | column]\n" " shows all or the specified disabled column\n" " -H, --hide [column|column,column,...]\n" " hide the specified column(s)\n" " -i, --interval sec.subsec\n" " Override default 5-second measurement interval\n" " -J, --Joules displays energy in Joules instead of Watts\n" " -l, --list list column headers only\n" " -M, --no-msr Disable all uses of the MSR driver\n" " -P, --no-perf Disable all uses of the perf API\n" " -n, --num_iterations num\n" " number of the measurement iterations\n" " -N, --header_iterations num\n" " print header every num iterations\n" " -o, --out file\n" " create or truncate \"file\" for all output\n" " -q, --quiet skip decoding system configuration header\n" " -s, --show [column|column,column,...]\n" " show only the specified column(s)\n" " -S, --Summary\n" " limits output to 1-line system summary per interval\n" " -T, --TCC temperature\n" " sets the Thermal Control Circuit temperature in\n" " degrees Celsius\n" " -h, --help print this help message\n" " -v, --version print version information\n" "\n" "For more help, run \"man turbostat\"\n"); } /* * bic_lookup * for all the strings in comma separate name_list, * set the approprate bit in return value. */ unsigned long long bic_lookup(char *name_list, enum show_hide_mode mode) { unsigned int i; unsigned long long retval = 0; while (name_list) { char *comma; comma = strchr(name_list, ','); if (comma) *comma = '\0'; for (i = 0; i < MAX_BIC; ++i) { if (!strcmp(name_list, bic[i].name)) { retval |= (1ULL << i); break; } if (!strcmp(name_list, "all")) { retval |= ~0; break; } else if (!strcmp(name_list, "topology")) { retval |= BIC_TOPOLOGY; break; } else if (!strcmp(name_list, "power")) { retval |= BIC_THERMAL_PWR; break; } else if (!strcmp(name_list, "idle")) { retval |= BIC_IDLE; break; } else if (!strcmp(name_list, "frequency")) { retval |= BIC_FREQUENCY; break; } else if (!strcmp(name_list, "other")) { retval |= BIC_OTHER; break; } } if (i == MAX_BIC) { if (mode == SHOW_LIST) { deferred_add_names[deferred_add_index++] = name_list; if (deferred_add_index >= MAX_DEFERRED) { fprintf(stderr, "More than max %d un-recognized --add options '%s'\n", MAX_DEFERRED, name_list); help(); exit(1); } } else { deferred_skip_names[deferred_skip_index++] = name_list; if (debug) fprintf(stderr, "deferred \"%s\"\n", name_list); if (deferred_skip_index >= MAX_DEFERRED) { fprintf(stderr, "More than max %d un-recognized --skip options '%s'\n", MAX_DEFERRED, name_list); help(); exit(1); } } } name_list = comma; if (name_list) name_list++; } return retval; } void print_header(char *delim) { struct msr_counter *mp; struct perf_counter_info *pp; struct pmt_counter *ppmt; int printed = 0; if (DO_BIC(BIC_USEC)) outp += sprintf(outp, "%susec", (printed++ ? delim : "")); if (DO_BIC(BIC_TOD)) outp += sprintf(outp, "%sTime_Of_Day_Seconds", (printed++ ? delim : "")); if (DO_BIC(BIC_Package)) outp += sprintf(outp, "%sPackage", (printed++ ? delim : "")); if (DO_BIC(BIC_Die)) outp += sprintf(outp, "%sDie", (printed++ ? delim : "")); if (DO_BIC(BIC_Node)) outp += sprintf(outp, "%sNode", (printed++ ? delim : "")); if (DO_BIC(BIC_Core)) outp += sprintf(outp, "%sCore", (printed++ ? delim : "")); if (DO_BIC(BIC_CPU)) outp += sprintf(outp, "%sCPU", (printed++ ? delim : "")); if (DO_BIC(BIC_APIC)) outp += sprintf(outp, "%sAPIC", (printed++ ? delim : "")); if (DO_BIC(BIC_X2APIC)) outp += sprintf(outp, "%sX2APIC", (printed++ ? delim : "")); if (DO_BIC(BIC_Avg_MHz)) outp += sprintf(outp, "%sAvg_MHz", (printed++ ? delim : "")); if (DO_BIC(BIC_Busy)) outp += sprintf(outp, "%sBusy%%", (printed++ ? delim : "")); if (DO_BIC(BIC_Bzy_MHz)) outp += sprintf(outp, "%sBzy_MHz", (printed++ ? delim : "")); if (DO_BIC(BIC_TSC_MHz)) outp += sprintf(outp, "%sTSC_MHz", (printed++ ? delim : "")); if (DO_BIC(BIC_IPC)) outp += sprintf(outp, "%sIPC", (printed++ ? delim : "")); if (DO_BIC(BIC_IRQ)) { if (sums_need_wide_columns) outp += sprintf(outp, "%s IRQ", (printed++ ? delim : "")); else outp += sprintf(outp, "%sIRQ", (printed++ ? delim : "")); } if (DO_BIC(BIC_SMI)) outp += sprintf(outp, "%sSMI", (printed++ ? delim : "")); for (mp = sys.tp; mp; mp = mp->next) { if (mp->format == FORMAT_RAW) { if (mp->width == 64) outp += sprintf(outp, "%s%18.18s", (printed++ ? delim : ""), mp->name); else outp += sprintf(outp, "%s%10.10s", (printed++ ? delim : ""), mp->name); } else { if ((mp->type == COUNTER_ITEMS) && sums_need_wide_columns) outp += sprintf(outp, "%s%8s", (printed++ ? delim : ""), mp->name); else outp += sprintf(outp, "%s%s", (printed++ ? delim : ""), mp->name); } } for (pp = sys.perf_tp; pp; pp = pp->next) { if (pp->format == FORMAT_RAW) { if (pp->width == 64) outp += sprintf(outp, "%s%18.18s", (printed++ ? delim : ""), pp->name); else outp += sprintf(outp, "%s%10.10s", (printed++ ? delim : ""), pp->name); } else { if ((pp->type == COUNTER_ITEMS) && sums_need_wide_columns) outp += sprintf(outp, "%s%8s", (printed++ ? delim : ""), pp->name); else outp += sprintf(outp, "%s%s", (printed++ ? delim : ""), pp->name); } } ppmt = sys.pmt_tp; while (ppmt) { switch (ppmt->type) { case PMT_TYPE_RAW: if (pmt_counter_get_width(ppmt) <= 32) outp += sprintf(outp, "%s%10.10s", (printed++ ? delim : ""), ppmt->name); else outp += sprintf(outp, "%s%18.18s", (printed++ ? delim : ""), ppmt->name); break; case PMT_TYPE_XTAL_TIME: outp += sprintf(outp, "%s%s", (printed++ ? delim : ""), ppmt->name); break; } ppmt = ppmt->next; } if (DO_BIC(BIC_CPU_c1)) outp += sprintf(outp, "%sCPU%%c1", (printed++ ? delim : "")); if (DO_BIC(BIC_CPU_c3)) outp += sprintf(outp, "%sCPU%%c3", (printed++ ? delim : "")); if (DO_BIC(BIC_CPU_c6)) outp += sprintf(outp, "%sCPU%%c6", (printed++ ? delim : "")); if (DO_BIC(BIC_CPU_c7)) outp += sprintf(outp, "%sCPU%%c7", (printed++ ? delim : "")); if (DO_BIC(BIC_Mod_c6)) outp += sprintf(outp, "%sMod%%c6", (printed++ ? delim : "")); if (DO_BIC(BIC_CoreTmp)) outp += sprintf(outp, "%sCoreTmp", (printed++ ? delim : "")); if (DO_BIC(BIC_CORE_THROT_CNT)) outp += sprintf(outp, "%sCoreThr", (printed++ ? delim : "")); if (platform->rapl_msrs && !rapl_joules) { if (DO_BIC(BIC_CorWatt) && platform->has_per_core_rapl) outp += sprintf(outp, "%sCorWatt", (printed++ ? delim : "")); } else if (platform->rapl_msrs && rapl_joules) { if (DO_BIC(BIC_Cor_J) && platform->has_per_core_rapl) outp += sprintf(outp, "%sCor_J", (printed++ ? delim : "")); } for (mp = sys.cp; mp; mp = mp->next) { if (mp->format == FORMAT_RAW) { if (mp->width == 64) outp += sprintf(outp, "%s%18.18s", delim, mp->name); else outp += sprintf(outp, "%s%10.10s", delim, mp->name); } else { if ((mp->type == COUNTER_ITEMS) && sums_need_wide_columns) outp += sprintf(outp, "%s%8s", delim, mp->name); else outp += sprintf(outp, "%s%s", delim, mp->name); } } for (pp = sys.perf_cp; pp; pp = pp->next) { if (pp->format == FORMAT_RAW) { if (pp->width == 64) outp += sprintf(outp, "%s%18.18s", (printed++ ? delim : ""), pp->name); else outp += sprintf(outp, "%s%10.10s", (printed++ ? delim : ""), pp->name); } else { if ((pp->type == COUNTER_ITEMS) && sums_need_wide_columns) outp += sprintf(outp, "%s%8s", (printed++ ? delim : ""), pp->name); else outp += sprintf(outp, "%s%s", (printed++ ? delim : ""), pp->name); } } ppmt = sys.pmt_cp; while (ppmt) { switch (ppmt->type) { case PMT_TYPE_RAW: if (pmt_counter_get_width(ppmt) <= 32) outp += sprintf(outp, "%s%10.10s", (printed++ ? delim : ""), ppmt->name); else outp += sprintf(outp, "%s%18.18s", (printed++ ? delim : ""), ppmt->name); break; case PMT_TYPE_XTAL_TIME: outp += sprintf(outp, "%s%s", (printed++ ? delim : ""), ppmt->name); break; } ppmt = ppmt->next; } if (DO_BIC(BIC_PkgTmp)) outp += sprintf(outp, "%sPkgTmp", (printed++ ? delim : "")); if (DO_BIC(BIC_GFX_rc6)) outp += sprintf(outp, "%sGFX%%rc6", (printed++ ? delim : "")); if (DO_BIC(BIC_GFXMHz)) outp += sprintf(outp, "%sGFXMHz", (printed++ ? delim : "")); if (DO_BIC(BIC_GFXACTMHz)) outp += sprintf(outp, "%sGFXAMHz", (printed++ ? delim : "")); if (DO_BIC(BIC_SAM_mc6)) outp += sprintf(outp, "%sSAM%%mc6", (printed++ ? delim : "")); if (DO_BIC(BIC_SAMMHz)) outp += sprintf(outp, "%sSAMMHz", (printed++ ? delim : "")); if (DO_BIC(BIC_SAMACTMHz)) outp += sprintf(outp, "%sSAMAMHz", (printed++ ? delim : "")); if (DO_BIC(BIC_Totl_c0)) outp += sprintf(outp, "%sTotl%%C0", (printed++ ? delim : "")); if (DO_BIC(BIC_Any_c0)) outp += sprintf(outp, "%sAny%%C0", (printed++ ? delim : "")); if (DO_BIC(BIC_GFX_c0)) outp += sprintf(outp, "%sGFX%%C0", (printed++ ? delim : "")); if (DO_BIC(BIC_CPUGFX)) outp += sprintf(outp, "%sCPUGFX%%", (printed++ ? delim : "")); if (DO_BIC(BIC_Pkgpc2)) outp += sprintf(outp, "%sPkg%%pc2", (printed++ ? delim : "")); if (DO_BIC(BIC_Pkgpc3)) outp += sprintf(outp, "%sPkg%%pc3", (printed++ ? delim : "")); if (DO_BIC(BIC_Pkgpc6)) outp += sprintf(outp, "%sPkg%%pc6", (printed++ ? delim : "")); if (DO_BIC(BIC_Pkgpc7)) outp += sprintf(outp, "%sPkg%%pc7", (printed++ ? delim : "")); if (DO_BIC(BIC_Pkgpc8)) outp += sprintf(outp, "%sPkg%%pc8", (printed++ ? delim : "")); if (DO_BIC(BIC_Pkgpc9)) outp += sprintf(outp, "%sPkg%%pc9", (printed++ ? delim : "")); if (DO_BIC(BIC_Pkgpc10)) outp += sprintf(outp, "%sPk%%pc10", (printed++ ? delim : "")); if (DO_BIC(BIC_Diec6)) outp += sprintf(outp, "%sDie%%c6", (printed++ ? delim : "")); if (DO_BIC(BIC_CPU_LPI)) outp += sprintf(outp, "%sCPU%%LPI", (printed++ ? delim : "")); if (DO_BIC(BIC_SYS_LPI)) outp += sprintf(outp, "%sSYS%%LPI", (printed++ ? delim : "")); if (platform->rapl_msrs && !rapl_joules) { if (DO_BIC(BIC_PkgWatt)) outp += sprintf(outp, "%sPkgWatt", (printed++ ? delim : "")); if (DO_BIC(BIC_CorWatt) && !platform->has_per_core_rapl) outp += sprintf(outp, "%sCorWatt", (printed++ ? delim : "")); if (DO_BIC(BIC_GFXWatt)) outp += sprintf(outp, "%sGFXWatt", (printed++ ? delim : "")); if (DO_BIC(BIC_RAMWatt)) outp += sprintf(outp, "%sRAMWatt", (printed++ ? delim : "")); if (DO_BIC(BIC_PKG__)) outp += sprintf(outp, "%sPKG_%%", (printed++ ? delim : "")); if (DO_BIC(BIC_RAM__)) outp += sprintf(outp, "%sRAM_%%", (printed++ ? delim : "")); } else if (platform->rapl_msrs && rapl_joules) { if (DO_BIC(BIC_Pkg_J)) outp += sprintf(outp, "%sPkg_J", (printed++ ? delim : "")); if (DO_BIC(BIC_Cor_J) && !platform->has_per_core_rapl) outp += sprintf(outp, "%sCor_J", (printed++ ? delim : "")); if (DO_BIC(BIC_GFX_J)) outp += sprintf(outp, "%sGFX_J", (printed++ ? delim : "")); if (DO_BIC(BIC_RAM_J)) outp += sprintf(outp, "%sRAM_J", (printed++ ? delim : "")); if (DO_BIC(BIC_PKG__)) outp += sprintf(outp, "%sPKG_%%", (printed++ ? delim : "")); if (DO_BIC(BIC_RAM__)) outp += sprintf(outp, "%sRAM_%%", (printed++ ? delim : "")); } if (DO_BIC(BIC_UNCORE_MHZ)) outp += sprintf(outp, "%sUncMHz", (printed++ ? delim : "")); for (mp = sys.pp; mp; mp = mp->next) { if (mp->format == FORMAT_RAW) { if (mp->width == 64) outp += sprintf(outp, "%s%18.18s", delim, mp->name); else if (mp->width == 32) outp += sprintf(outp, "%s%10.10s", delim, mp->name); else outp += sprintf(outp, "%s%7.7s", delim, mp->name); } else { if ((mp->type == COUNTER_ITEMS) && sums_need_wide_columns) outp += sprintf(outp, "%s%8s", delim, mp->name); else outp += sprintf(outp, "%s%7.7s", delim, mp->name); } } for (pp = sys.perf_pp; pp; pp = pp->next) { if (pp->format == FORMAT_RAW) { if (pp->width == 64) outp += sprintf(outp, "%s%18.18s", (printed++ ? delim : ""), pp->name); else outp += sprintf(outp, "%s%10.10s", (printed++ ? delim : ""), pp->name); } else { if ((pp->type == COUNTER_ITEMS) && sums_need_wide_columns) outp += sprintf(outp, "%s%8s", (printed++ ? delim : ""), pp->name); else outp += sprintf(outp, "%s%s", (printed++ ? delim : ""), pp->name); } } ppmt = sys.pmt_pp; while (ppmt) { switch (ppmt->type) { case PMT_TYPE_RAW: if (pmt_counter_get_width(ppmt) <= 32) outp += sprintf(outp, "%s%10.10s", (printed++ ? delim : ""), ppmt->name); else outp += sprintf(outp, "%s%18.18s", (printed++ ? delim : ""), ppmt->name); break; case PMT_TYPE_XTAL_TIME: outp += sprintf(outp, "%s%s", (printed++ ? delim : ""), ppmt->name); break; } ppmt = ppmt->next; } if (DO_BIC(BIC_SysWatt)) outp += sprintf(outp, "%sSysWatt", (printed++ ? delim : "")); if (DO_BIC(BIC_Sys_J)) outp += sprintf(outp, "%sSys_J", (printed++ ? delim : "")); outp += sprintf(outp, "\n"); } int dump_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p) { int i; struct msr_counter *mp; struct platform_counters *pplat_cnt = p == package_odd ? &platform_counters_odd : &platform_counters_even; outp += sprintf(outp, "t %p, c %p, p %p\n", t, c, p); if (t) { outp += sprintf(outp, "CPU: %d flags 0x%x\n", t->cpu_id, t->flags); outp += sprintf(outp, "TSC: %016llX\n", t->tsc); outp += sprintf(outp, "aperf: %016llX\n", t->aperf); outp += sprintf(outp, "mperf: %016llX\n", t->mperf); outp += sprintf(outp, "c1: %016llX\n", t->c1); if (DO_BIC(BIC_IPC)) outp += sprintf(outp, "IPC: %lld\n", t->instr_count); if (DO_BIC(BIC_IRQ)) outp += sprintf(outp, "IRQ: %lld\n", t->irq_count); if (DO_BIC(BIC_SMI)) outp += sprintf(outp, "SMI: %d\n", t->smi_count); for (i = 0, mp = sys.tp; mp; i++, mp = mp->next) { outp += sprintf(outp, "tADDED [%d] %8s msr0x%x: %08llX %s\n", i, mp->name, mp->msr_num, t->counter[i], mp->sp->path); } } if (c && is_cpu_first_thread_in_core(t, c, p)) { outp += sprintf(outp, "core: %d\n", c->core_id); outp += sprintf(outp, "c3: %016llX\n", c->c3); outp += sprintf(outp, "c6: %016llX\n", c->c6); outp += sprintf(outp, "c7: %016llX\n", c->c7); outp += sprintf(outp, "DTS: %dC\n", c->core_temp_c); outp += sprintf(outp, "cpu_throt_count: %016llX\n", c->core_throt_cnt); const unsigned long long energy_value = c->core_energy.raw_value * c->core_energy.scale; const double energy_scale = c->core_energy.scale; if (c->core_energy.unit == RAPL_UNIT_JOULES) outp += sprintf(outp, "Joules: %0llX (scale: %lf)\n", energy_value, energy_scale); for (i = 0, mp = sys.cp; mp; i++, mp = mp->next) { outp += sprintf(outp, "cADDED [%d] %8s msr0x%x: %08llX %s\n", i, mp->name, mp->msr_num, c->counter[i], mp->sp->path); } outp += sprintf(outp, "mc6_us: %016llX\n", c->mc6_us); } if (p && is_cpu_first_core_in_package(t, c, p)) { outp += sprintf(outp, "package: %d\n", p->package_id); outp += sprintf(outp, "Weighted cores: %016llX\n", p->pkg_wtd_core_c0); outp += sprintf(outp, "Any cores: %016llX\n", p->pkg_any_core_c0); outp += sprintf(outp, "Any GFX: %016llX\n", p->pkg_any_gfxe_c0); outp += sprintf(outp, "CPU + GFX: %016llX\n", p->pkg_both_core_gfxe_c0); outp += sprintf(outp, "pc2: %016llX\n", p->pc2); if (DO_BIC(BIC_Pkgpc3)) outp += sprintf(outp, "pc3: %016llX\n", p->pc3); if (DO_BIC(BIC_Pkgpc6)) outp += sprintf(outp, "pc6: %016llX\n", p->pc6); if (DO_BIC(BIC_Pkgpc7)) outp += sprintf(outp, "pc7: %016llX\n", p->pc7); outp += sprintf(outp, "pc8: %016llX\n", p->pc8); outp += sprintf(outp, "pc9: %016llX\n", p->pc9); outp += sprintf(outp, "pc10: %016llX\n", p->pc10); outp += sprintf(outp, "cpu_lpi: %016llX\n", p->cpu_lpi); outp += sprintf(outp, "sys_lpi: %016llX\n", p->sys_lpi); outp += sprintf(outp, "Joules PKG: %0llX\n", p->energy_pkg.raw_value); outp += sprintf(outp, "Joules COR: %0llX\n", p->energy_cores.raw_value); outp += sprintf(outp, "Joules GFX: %0llX\n", p->energy_gfx.raw_value); outp += sprintf(outp, "Joules RAM: %0llX\n", p->energy_dram.raw_value); outp += sprintf(outp, "Joules PSYS: %0llX\n", pplat_cnt->energy_psys.raw_value); outp += sprintf(outp, "Throttle PKG: %0llX\n", p->rapl_pkg_perf_status.raw_value); outp += sprintf(outp, "Throttle RAM: %0llX\n", p->rapl_dram_perf_status.raw_value); outp += sprintf(outp, "PTM: %dC\n", p->pkg_temp_c); for (i = 0, mp = sys.pp; mp; i++, mp = mp->next) { outp += sprintf(outp, "pADDED [%d] %8s msr0x%x: %08llX %s\n", i, mp->name, mp->msr_num, p->counter[i], mp->sp->path); } } outp += sprintf(outp, "\n"); return 0; } double rapl_counter_get_value(const struct rapl_counter *c, enum rapl_unit desired_unit, double interval) { assert(desired_unit != RAPL_UNIT_INVALID); /* * For now we don't expect anything other than joules, * so just simplify the logic. */ assert(c->unit == RAPL_UNIT_JOULES); const double scaled = c->raw_value * c->scale; if (desired_unit == RAPL_UNIT_WATTS) return scaled / interval; return scaled; } /* * column formatting convention & formats */ int format_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p) { static int count; struct platform_counters *pplat_cnt = NULL; double interval_float, tsc; char *fmt8; int i; struct msr_counter *mp; struct perf_counter_info *pp; struct pmt_counter *ppmt; char *delim = "\t"; int printed = 0; if (t == &average.threads) { pplat_cnt = count & 1 ? &platform_counters_odd : &platform_counters_even; ++count; } /* if showing only 1st thread in core and this isn't one, bail out */ if (show_core_only && !is_cpu_first_thread_in_core(t, c, p)) return 0; /* if showing only 1st thread in pkg and this isn't one, bail out */ if (show_pkg_only && !is_cpu_first_core_in_package(t, c, p)) return 0; /*if not summary line and --cpu is used */ if ((t != &average.threads) && (cpu_subset && !CPU_ISSET_S(t->cpu_id, cpu_subset_size, cpu_subset))) return 0; if (DO_BIC(BIC_USEC)) { /* on each row, print how many usec each timestamp took to gather */ struct timeval tv; timersub(&t->tv_end, &t->tv_begin, &tv); outp += sprintf(outp, "%5ld\t", tv.tv_sec * 1000000 + tv.tv_usec); } /* Time_Of_Day_Seconds: on each row, print sec.usec last timestamp taken */ if (DO_BIC(BIC_TOD)) outp += sprintf(outp, "%10ld.%06ld\t", t->tv_end.tv_sec, t->tv_end.tv_usec); interval_float = t->tv_delta.tv_sec + t->tv_delta.tv_usec / 1000000.0; tsc = t->tsc * tsc_tweak; /* topo columns, print blanks on 1st (average) line */ if (t == &average.threads) { if (DO_BIC(BIC_Package)) outp += sprintf(outp, "%s-", (printed++ ? delim : "")); if (DO_BIC(BIC_Die)) outp += sprintf(outp, "%s-", (printed++ ? delim : "")); if (DO_BIC(BIC_Node)) outp += sprintf(outp, "%s-", (printed++ ? delim : "")); if (DO_BIC(BIC_Core)) outp += sprintf(outp, "%s-", (printed++ ? delim : "")); if (DO_BIC(BIC_CPU)) outp += sprintf(outp, "%s-", (printed++ ? delim : "")); if (DO_BIC(BIC_APIC)) outp += sprintf(outp, "%s-", (printed++ ? delim : "")); if (DO_BIC(BIC_X2APIC)) outp += sprintf(outp, "%s-", (printed++ ? delim : "")); } else { if (DO_BIC(BIC_Package)) { if (p) outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), p->package_id); else outp += sprintf(outp, "%s-", (printed++ ? delim : "")); } if (DO_BIC(BIC_Die)) { if (c) outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), cpus[t->cpu_id].die_id); else outp += sprintf(outp, "%s-", (printed++ ? delim : "")); } if (DO_BIC(BIC_Node)) { if (t) outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), cpus[t->cpu_id].physical_node_id); else outp += sprintf(outp, "%s-", (printed++ ? delim : "")); } if (DO_BIC(BIC_Core)) { if (c) outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), c->core_id); else outp += sprintf(outp, "%s-", (printed++ ? delim : "")); } if (DO_BIC(BIC_CPU)) outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), t->cpu_id); if (DO_BIC(BIC_APIC)) outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), t->apic_id); if (DO_BIC(BIC_X2APIC)) outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), t->x2apic_id); } if (DO_BIC(BIC_Avg_MHz)) outp += sprintf(outp, "%s%.0f", (printed++ ? delim : ""), 1.0 / units * t->aperf / interval_float); if (DO_BIC(BIC_Busy)) outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * t->mperf / tsc); if (DO_BIC(BIC_Bzy_MHz)) { if (has_base_hz) outp += sprintf(outp, "%s%.0f", (printed++ ? delim : ""), base_hz / units * t->aperf / t->mperf); else outp += sprintf(outp, "%s%.0f", (printed++ ? delim : ""), tsc / units * t->aperf / t->mperf / interval_float); } if (DO_BIC(BIC_TSC_MHz)) outp += sprintf(outp, "%s%.0f", (printed++ ? delim : ""), 1.0 * t->tsc / units / interval_float); if (DO_BIC(BIC_IPC)) outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 1.0 * t->instr_count / t->aperf); /* IRQ */ if (DO_BIC(BIC_IRQ)) { if (sums_need_wide_columns) outp += sprintf(outp, "%s%8lld", (printed++ ? delim : ""), t->irq_count); else outp += sprintf(outp, "%s%lld", (printed++ ? delim : ""), t->irq_count); } /* SMI */ if (DO_BIC(BIC_SMI)) outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), t->smi_count); /* Added counters */ for (i = 0, mp = sys.tp; mp; i++, mp = mp->next) { if (mp->format == FORMAT_RAW) { if (mp->width == 32) outp += sprintf(outp, "%s0x%08x", (printed++ ? delim : ""), (unsigned int)t->counter[i]); else outp += sprintf(outp, "%s0x%016llx", (printed++ ? delim : ""), t->counter[i]); } else if (mp->format == FORMAT_DELTA) { if ((mp->type == COUNTER_ITEMS) && sums_need_wide_columns) outp += sprintf(outp, "%s%8lld", (printed++ ? delim : ""), t->counter[i]); else outp += sprintf(outp, "%s%lld", (printed++ ? delim : ""), t->counter[i]); } else if (mp->format == FORMAT_PERCENT) { if (mp->type == COUNTER_USEC) outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), t->counter[i] / interval_float / 10000); else outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * t->counter[i] / tsc); } } /* Added perf counters */ for (i = 0, pp = sys.perf_tp; pp; ++i, pp = pp->next) { if (pp->format == FORMAT_RAW) { if (pp->width == 32) outp += sprintf(outp, "%s0x%08x", (printed++ ? delim : ""), (unsigned int)t->perf_counter[i]); else outp += sprintf(outp, "%s0x%016llx", (printed++ ? delim : ""), t->perf_counter[i]); } else if (pp->format == FORMAT_DELTA) { if ((pp->type == COUNTER_ITEMS) && sums_need_wide_columns) outp += sprintf(outp, "%s%8lld", (printed++ ? delim : ""), t->perf_counter[i]); else outp += sprintf(outp, "%s%lld", (printed++ ? delim : ""), t->perf_counter[i]); } else if (pp->format == FORMAT_PERCENT) { if (pp->type == COUNTER_USEC) outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), t->perf_counter[i] / interval_float / 10000); else outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * t->perf_counter[i] / tsc); } } for (i = 0, ppmt = sys.pmt_tp; ppmt; i++, ppmt = ppmt->next) { const unsigned long value_raw = t->pmt_counter[i]; const double value_converted = 100.0 * value_raw / crystal_hz / interval_float; switch (ppmt->type) { case PMT_TYPE_RAW: if (pmt_counter_get_width(ppmt) <= 32) outp += sprintf(outp, "%s0x%08x", (printed++ ? delim : ""), (unsigned int)t->pmt_counter[i]); else outp += sprintf(outp, "%s0x%016llx", (printed++ ? delim : ""), t->pmt_counter[i]); break; case PMT_TYPE_XTAL_TIME: outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), value_converted); break; } } /* C1 */ if (DO_BIC(BIC_CPU_c1)) outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * t->c1 / tsc); /* print per-core data only for 1st thread in core */ if (!is_cpu_first_thread_in_core(t, c, p)) goto done; if (DO_BIC(BIC_CPU_c3)) outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * c->c3 / tsc); if (DO_BIC(BIC_CPU_c6)) outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * c->c6 / tsc); if (DO_BIC(BIC_CPU_c7)) outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * c->c7 / tsc); /* Mod%c6 */ if (DO_BIC(BIC_Mod_c6)) outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * c->mc6_us / tsc); if (DO_BIC(BIC_CoreTmp)) outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), c->core_temp_c); /* Core throttle count */ if (DO_BIC(BIC_CORE_THROT_CNT)) outp += sprintf(outp, "%s%lld", (printed++ ? delim : ""), c->core_throt_cnt); for (i = 0, mp = sys.cp; mp; i++, mp = mp->next) { if (mp->format == FORMAT_RAW) { if (mp->width == 32) outp += sprintf(outp, "%s0x%08x", (printed++ ? delim : ""), (unsigned int)c->counter[i]); else outp += sprintf(outp, "%s0x%016llx", (printed++ ? delim : ""), c->counter[i]); } else if (mp->format == FORMAT_DELTA) { if ((mp->type == COUNTER_ITEMS) && sums_need_wide_columns) outp += sprintf(outp, "%s%8lld", (printed++ ? delim : ""), c->counter[i]); else outp += sprintf(outp, "%s%lld", (printed++ ? delim : ""), c->counter[i]); } else if (mp->format == FORMAT_PERCENT) { outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * c->counter[i] / tsc); } } for (i = 0, pp = sys.perf_cp; pp; i++, pp = pp->next) { if (pp->format == FORMAT_RAW) { if (pp->width == 32) outp += sprintf(outp, "%s0x%08x", (printed++ ? delim : ""), (unsigned int)c->perf_counter[i]); else outp += sprintf(outp, "%s0x%016llx", (printed++ ? delim : ""), c->perf_counter[i]); } else if (pp->format == FORMAT_DELTA) { if ((pp->type == COUNTER_ITEMS) && sums_need_wide_columns) outp += sprintf(outp, "%s%8lld", (printed++ ? delim : ""), c->perf_counter[i]); else outp += sprintf(outp, "%s%lld", (printed++ ? delim : ""), c->perf_counter[i]); } else if (pp->format == FORMAT_PERCENT) { outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * c->perf_counter[i] / tsc); } } for (i = 0, ppmt = sys.pmt_cp; ppmt; i++, ppmt = ppmt->next) { const unsigned long value_raw = c->pmt_counter[i]; const double value_converted = 100.0 * value_raw / crystal_hz / interval_float; switch (ppmt->type) { case PMT_TYPE_RAW: if (pmt_counter_get_width(ppmt) <= 32) outp += sprintf(outp, "%s0x%08x", (printed++ ? delim : ""), (unsigned int)c->pmt_counter[i]); else outp += sprintf(outp, "%s0x%016llx", (printed++ ? delim : ""), c->pmt_counter[i]); break; case PMT_TYPE_XTAL_TIME: outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), value_converted); break; } } fmt8 = "%s%.2f"; if (DO_BIC(BIC_CorWatt) && platform->has_per_core_rapl) outp += sprintf(outp, fmt8, (printed++ ? delim : ""), rapl_counter_get_value(&c->core_energy, RAPL_UNIT_WATTS, interval_float)); if (DO_BIC(BIC_Cor_J) && platform->has_per_core_rapl) outp += sprintf(outp, fmt8, (printed++ ? delim : ""), rapl_counter_get_value(&c->core_energy, RAPL_UNIT_JOULES, interval_float)); /* print per-package data only for 1st core in package */ if (!is_cpu_first_core_in_package(t, c, p)) goto done; /* PkgTmp */ if (DO_BIC(BIC_PkgTmp)) outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), p->pkg_temp_c); /* GFXrc6 */ if (DO_BIC(BIC_GFX_rc6)) { if (p->gfx_rc6_ms == -1) { /* detect GFX counter reset */ outp += sprintf(outp, "%s**.**", (printed++ ? delim : "")); } else { outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), p->gfx_rc6_ms / 10.0 / interval_float); } } /* GFXMHz */ if (DO_BIC(BIC_GFXMHz)) outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), p->gfx_mhz); /* GFXACTMHz */ if (DO_BIC(BIC_GFXACTMHz)) outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), p->gfx_act_mhz); /* SAMmc6 */ if (DO_BIC(BIC_SAM_mc6)) { if (p->sam_mc6_ms == -1) { /* detect GFX counter reset */ outp += sprintf(outp, "%s**.**", (printed++ ? delim : "")); } else { outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), p->sam_mc6_ms / 10.0 / interval_float); } } /* SAMMHz */ if (DO_BIC(BIC_SAMMHz)) outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), p->sam_mhz); /* SAMACTMHz */ if (DO_BIC(BIC_SAMACTMHz)) outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), p->sam_act_mhz); /* Totl%C0, Any%C0 GFX%C0 CPUGFX% */ if (DO_BIC(BIC_Totl_c0)) outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pkg_wtd_core_c0 / tsc); if (DO_BIC(BIC_Any_c0)) outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pkg_any_core_c0 / tsc); if (DO_BIC(BIC_GFX_c0)) outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pkg_any_gfxe_c0 / tsc); if (DO_BIC(BIC_CPUGFX)) outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pkg_both_core_gfxe_c0 / tsc); if (DO_BIC(BIC_Pkgpc2)) outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pc2 / tsc); if (DO_BIC(BIC_Pkgpc3)) outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pc3 / tsc); if (DO_BIC(BIC_Pkgpc6)) outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pc6 / tsc); if (DO_BIC(BIC_Pkgpc7)) outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pc7 / tsc); if (DO_BIC(BIC_Pkgpc8)) outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pc8 / tsc); if (DO_BIC(BIC_Pkgpc9)) outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pc9 / tsc); if (DO_BIC(BIC_Pkgpc10)) outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->pc10 / tsc); if (DO_BIC(BIC_Diec6)) outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->die_c6 / crystal_hz / interval_float); if (DO_BIC(BIC_CPU_LPI)) { if (p->cpu_lpi >= 0) outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->cpu_lpi / 1000000.0 / interval_float); else outp += sprintf(outp, "%s(neg)", (printed++ ? delim : "")); } if (DO_BIC(BIC_SYS_LPI)) { if (p->sys_lpi >= 0) outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->sys_lpi / 1000000.0 / interval_float); else outp += sprintf(outp, "%s(neg)", (printed++ ? delim : "")); } if (DO_BIC(BIC_PkgWatt)) outp += sprintf(outp, fmt8, (printed++ ? delim : ""), rapl_counter_get_value(&p->energy_pkg, RAPL_UNIT_WATTS, interval_float)); if (DO_BIC(BIC_CorWatt) && !platform->has_per_core_rapl) outp += sprintf(outp, fmt8, (printed++ ? delim : ""), rapl_counter_get_value(&p->energy_cores, RAPL_UNIT_WATTS, interval_float)); if (DO_BIC(BIC_GFXWatt)) outp += sprintf(outp, fmt8, (printed++ ? delim : ""), rapl_counter_get_value(&p->energy_gfx, RAPL_UNIT_WATTS, interval_float)); if (DO_BIC(BIC_RAMWatt)) outp += sprintf(outp, fmt8, (printed++ ? delim : ""), rapl_counter_get_value(&p->energy_dram, RAPL_UNIT_WATTS, interval_float)); if (DO_BIC(BIC_Pkg_J)) outp += sprintf(outp, fmt8, (printed++ ? delim : ""), rapl_counter_get_value(&p->energy_pkg, RAPL_UNIT_JOULES, interval_float)); if (DO_BIC(BIC_Cor_J) && !platform->has_per_core_rapl) outp += sprintf(outp, fmt8, (printed++ ? delim : ""), rapl_counter_get_value(&p->energy_cores, RAPL_UNIT_JOULES, interval_float)); if (DO_BIC(BIC_GFX_J)) outp += sprintf(outp, fmt8, (printed++ ? delim : ""), rapl_counter_get_value(&p->energy_gfx, RAPL_UNIT_JOULES, interval_float)); if (DO_BIC(BIC_RAM_J)) outp += sprintf(outp, fmt8, (printed++ ? delim : ""), rapl_counter_get_value(&p->energy_dram, RAPL_UNIT_JOULES, interval_float)); if (DO_BIC(BIC_PKG__)) outp += sprintf(outp, fmt8, (printed++ ? delim : ""), rapl_counter_get_value(&p->rapl_pkg_perf_status, RAPL_UNIT_WATTS, interval_float)); if (DO_BIC(BIC_RAM__)) outp += sprintf(outp, fmt8, (printed++ ? delim : ""), rapl_counter_get_value(&p->rapl_dram_perf_status, RAPL_UNIT_WATTS, interval_float)); /* UncMHz */ if (DO_BIC(BIC_UNCORE_MHZ)) outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), p->uncore_mhz); for (i = 0, mp = sys.pp; mp; i++, mp = mp->next) { if (mp->format == FORMAT_RAW) { if (mp->width == 32) outp += sprintf(outp, "%s0x%08x", (printed++ ? delim : ""), (unsigned int)p->counter[i]); else outp += sprintf(outp, "%s0x%016llx", (printed++ ? delim : ""), p->counter[i]); } else if (mp->format == FORMAT_DELTA) { if ((mp->type == COUNTER_ITEMS) && sums_need_wide_columns) outp += sprintf(outp, "%s%8lld", (printed++ ? delim : ""), p->counter[i]); else outp += sprintf(outp, "%s%lld", (printed++ ? delim : ""), p->counter[i]); } else if (mp->format == FORMAT_PERCENT) { outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->counter[i] / tsc); } else if (mp->type == COUNTER_K2M) outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), (unsigned int)p->counter[i] / 1000); } for (i = 0, pp = sys.perf_pp; pp; i++, pp = pp->next) { if (pp->format == FORMAT_RAW) { if (pp->width == 32) outp += sprintf(outp, "%s0x%08x", (printed++ ? delim : ""), (unsigned int)p->perf_counter[i]); else outp += sprintf(outp, "%s0x%016llx", (printed++ ? delim : ""), p->perf_counter[i]); } else if (pp->format == FORMAT_DELTA) { if ((pp->type == COUNTER_ITEMS) && sums_need_wide_columns) outp += sprintf(outp, "%s%8lld", (printed++ ? delim : ""), p->perf_counter[i]); else outp += sprintf(outp, "%s%lld", (printed++ ? delim : ""), p->perf_counter[i]); } else if (pp->format == FORMAT_PERCENT) { outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), 100.0 * p->perf_counter[i] / tsc); } else if (pp->type == COUNTER_K2M) { outp += sprintf(outp, "%s%d", (printed++ ? delim : ""), (unsigned int)p->perf_counter[i] / 1000); } } for (i = 0, ppmt = sys.pmt_pp; ppmt; i++, ppmt = ppmt->next) { const unsigned long value_raw = p->pmt_counter[i]; const double value_converted = 100.0 * value_raw / crystal_hz / interval_float; switch (ppmt->type) { case PMT_TYPE_RAW: if (pmt_counter_get_width(ppmt) <= 32) outp += sprintf(outp, "%s0x%08x", (printed++ ? delim : ""), (unsigned int)p->pmt_counter[i]); else outp += sprintf(outp, "%s0x%016llx", (printed++ ? delim : ""), p->pmt_counter[i]); break; case PMT_TYPE_XTAL_TIME: outp += sprintf(outp, "%s%.2f", (printed++ ? delim : ""), value_converted); break; } } if (DO_BIC(BIC_SysWatt) && (t == &average.threads)) outp += sprintf(outp, fmt8, (printed++ ? delim : ""), rapl_counter_get_value(&pplat_cnt->energy_psys, RAPL_UNIT_WATTS, interval_float)); if (DO_BIC(BIC_Sys_J) && (t == &average.threads)) outp += sprintf(outp, fmt8, (printed++ ? delim : ""), rapl_counter_get_value(&pplat_cnt->energy_psys, RAPL_UNIT_JOULES, interval_float)); done: if (*(outp - 1) != '\n') outp += sprintf(outp, "\n"); return 0; } void flush_output_stdout(void) { FILE *filep; if (outf == stderr) filep = stdout; else filep = outf; fputs(output_buffer, filep); fflush(filep); outp = output_buffer; } void flush_output_stderr(void) { fputs(output_buffer, outf); fflush(outf); outp = output_buffer; } void format_all_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p) { static int count; if ((!count || (header_iterations && !(count % header_iterations))) || !summary_only) print_header("\t"); format_counters(&average.threads, &average.cores, &average.packages); count++; if (summary_only) return; for_all_cpus(format_counters, t, c, p); } #define DELTA_WRAP32(new, old) \ old = ((((unsigned long long)new << 32) - ((unsigned long long)old << 32)) >> 32); int delta_package(struct pkg_data *new, struct pkg_data *old) { int i; struct msr_counter *mp; struct perf_counter_info *pp; struct pmt_counter *ppmt; if (DO_BIC(BIC_Totl_c0)) old->pkg_wtd_core_c0 = new->pkg_wtd_core_c0 - old->pkg_wtd_core_c0; if (DO_BIC(BIC_Any_c0)) old->pkg_any_core_c0 = new->pkg_any_core_c0 - old->pkg_any_core_c0; if (DO_BIC(BIC_GFX_c0)) old->pkg_any_gfxe_c0 = new->pkg_any_gfxe_c0 - old->pkg_any_gfxe_c0; if (DO_BIC(BIC_CPUGFX)) old->pkg_both_core_gfxe_c0 = new->pkg_both_core_gfxe_c0 - old->pkg_both_core_gfxe_c0; old->pc2 = new->pc2 - old->pc2; if (DO_BIC(BIC_Pkgpc3)) old->pc3 = new->pc3 - old->pc3; if (DO_BIC(BIC_Pkgpc6)) old->pc6 = new->pc6 - old->pc6; if (DO_BIC(BIC_Pkgpc7)) old->pc7 = new->pc7 - old->pc7; old->pc8 = new->pc8 - old->pc8; old->pc9 = new->pc9 - old->pc9; old->pc10 = new->pc10 - old->pc10; old->die_c6 = new->die_c6 - old->die_c6; old->cpu_lpi = new->cpu_lpi - old->cpu_lpi; old->sys_lpi = new->sys_lpi - old->sys_lpi; old->pkg_temp_c = new->pkg_temp_c; /* flag an error when rc6 counter resets/wraps */ if (old->gfx_rc6_ms > new->gfx_rc6_ms) old->gfx_rc6_ms = -1; else old->gfx_rc6_ms = new->gfx_rc6_ms - old->gfx_rc6_ms; old->uncore_mhz = new->uncore_mhz; old->gfx_mhz = new->gfx_mhz; old->gfx_act_mhz = new->gfx_act_mhz; /* flag an error when mc6 counter resets/wraps */ if (old->sam_mc6_ms > new->sam_mc6_ms) old->sam_mc6_ms = -1; else old->sam_mc6_ms = new->sam_mc6_ms - old->sam_mc6_ms; old->sam_mhz = new->sam_mhz; old->sam_act_mhz = new->sam_act_mhz; old->energy_pkg.raw_value = new->energy_pkg.raw_value - old->energy_pkg.raw_value; old->energy_cores.raw_value = new->energy_cores.raw_value - old->energy_cores.raw_value; old->energy_gfx.raw_value = new->energy_gfx.raw_value - old->energy_gfx.raw_value; old->energy_dram.raw_value = new->energy_dram.raw_value - old->energy_dram.raw_value; old->rapl_pkg_perf_status.raw_value = new->rapl_pkg_perf_status.raw_value - old->rapl_pkg_perf_status.raw_value; old->rapl_dram_perf_status.raw_value = new->rapl_dram_perf_status.raw_value - old->rapl_dram_perf_status.raw_value; for (i = 0, mp = sys.pp; mp; i++, mp = mp->next) { if (mp->format == FORMAT_RAW) old->counter[i] = new->counter[i]; else if (mp->format == FORMAT_AVERAGE) old->counter[i] = new->counter[i]; else old->counter[i] = new->counter[i] - old->counter[i]; } for (i = 0, pp = sys.perf_pp; pp; i++, pp = pp->next) { if (pp->format == FORMAT_RAW) old->perf_counter[i] = new->perf_counter[i]; else if (pp->format == FORMAT_AVERAGE) old->perf_counter[i] = new->perf_counter[i]; else old->perf_counter[i] = new->perf_counter[i] - old->perf_counter[i]; } for (i = 0, ppmt = sys.pmt_pp; ppmt; i++, ppmt = ppmt->next) { if (ppmt->format == FORMAT_RAW) old->pmt_counter[i] = new->pmt_counter[i]; else old->pmt_counter[i] = new->pmt_counter[i] - old->pmt_counter[i]; } return 0; } void delta_core(struct core_data *new, struct core_data *old) { int i; struct msr_counter *mp; struct perf_counter_info *pp; struct pmt_counter *ppmt; old->c3 = new->c3 - old->c3; old->c6 = new->c6 - old->c6; old->c7 = new->c7 - old->c7; old->core_temp_c = new->core_temp_c; old->core_throt_cnt = new->core_throt_cnt; old->mc6_us = new->mc6_us - old->mc6_us; DELTA_WRAP32(new->core_energy.raw_value, old->core_energy.raw_value); for (i = 0, mp = sys.cp; mp; i++, mp = mp->next) { if (mp->format == FORMAT_RAW) old->counter[i] = new->counter[i]; else old->counter[i] = new->counter[i] - old->counter[i]; } for (i = 0, pp = sys.perf_cp; pp; i++, pp = pp->next) { if (pp->format == FORMAT_RAW) old->perf_counter[i] = new->perf_counter[i]; else old->perf_counter[i] = new->perf_counter[i] - old->perf_counter[i]; } for (i = 0, ppmt = sys.pmt_cp; ppmt; i++, ppmt = ppmt->next) { if (ppmt->format == FORMAT_RAW) old->pmt_counter[i] = new->pmt_counter[i]; else old->pmt_counter[i] = new->pmt_counter[i] - old->pmt_counter[i]; } } int soft_c1_residency_display(int bic) { if (!DO_BIC(BIC_CPU_c1) || platform->has_msr_core_c1_res) return 0; return DO_BIC_READ(bic); } /* * old = new - old */ int delta_thread(struct thread_data *new, struct thread_data *old, struct core_data *core_delta) { int i; struct msr_counter *mp; struct perf_counter_info *pp; struct pmt_counter *ppmt; /* we run cpuid just the 1st time, copy the results */ if (DO_BIC(BIC_APIC)) new->apic_id = old->apic_id; if (DO_BIC(BIC_X2APIC)) new->x2apic_id = old->x2apic_id; /* * the timestamps from start of measurement interval are in "old" * the timestamp from end of measurement interval are in "new" * over-write old w/ new so we can print end of interval values */ timersub(&new->tv_begin, &old->tv_begin, &old->tv_delta); old->tv_begin = new->tv_begin; old->tv_end = new->tv_end; old->tsc = new->tsc - old->tsc; /* check for TSC < 1 Mcycles over interval */ if (old->tsc < (1000 * 1000)) errx(-3, "Insanely slow TSC rate, TSC stops in idle?\n" "You can disable all c-states by booting with \"idle=poll\"\n" "or just the deep ones with \"processor.max_cstate=1\""); old->c1 = new->c1 - old->c1; if (DO_BIC(BIC_Avg_MHz) || DO_BIC(BIC_Busy) || DO_BIC(BIC_Bzy_MHz) || DO_BIC(BIC_IPC) || soft_c1_residency_display(BIC_Avg_MHz)) { if ((new->aperf > old->aperf) && (new->mperf > old->mperf)) { old->aperf = new->aperf - old->aperf; old->mperf = new->mperf - old->mperf; } else { return -1; } } if (platform->has_msr_core_c1_res) { /* * Some models have a dedicated C1 residency MSR, * which should be more accurate than the derivation below. */ } else { /* * As counter collection is not atomic, * it is possible for mperf's non-halted cycles + idle states * to exceed TSC's all cycles: show c1 = 0% in that case. */ if ((old->mperf + core_delta->c3 + core_delta->c6 + core_delta->c7) > (old->tsc * tsc_tweak)) old->c1 = 0; else { /* normal case, derive c1 */ old->c1 = (old->tsc * tsc_tweak) - old->mperf - core_delta->c3 - core_delta->c6 - core_delta->c7; } } if (old->mperf == 0) { if (debug > 1) fprintf(outf, "cpu%d MPERF 0!\n", old->cpu_id); old->mperf = 1; /* divide by 0 protection */ } if (DO_BIC(BIC_IPC)) old->instr_count = new->instr_count - old->instr_count; if (DO_BIC(BIC_IRQ)) old->irq_count = new->irq_count - old->irq_count; if (DO_BIC(BIC_SMI)) old->smi_count = new->smi_count - old->smi_count; for (i = 0, mp = sys.tp; mp; i++, mp = mp->next) { if (mp->format == FORMAT_RAW) old->counter[i] = new->counter[i]; else old->counter[i] = new->counter[i] - old->counter[i]; } for (i = 0, pp = sys.perf_tp; pp; i++, pp = pp->next) { if (pp->format == FORMAT_RAW) old->perf_counter[i] = new->perf_counter[i]; else old->perf_counter[i] = new->perf_counter[i] - old->perf_counter[i]; } for (i = 0, ppmt = sys.pmt_tp; ppmt; i++, ppmt = ppmt->next) { if (ppmt->format == FORMAT_RAW) old->pmt_counter[i] = new->pmt_counter[i]; else old->pmt_counter[i] = new->pmt_counter[i] - old->pmt_counter[i]; } return 0; } int delta_cpu(struct thread_data *t, struct core_data *c, struct pkg_data *p, struct thread_data *t2, struct core_data *c2, struct pkg_data *p2) { int retval = 0; /* calculate core delta only for 1st thread in core */ if (is_cpu_first_thread_in_core(t, c, p)) delta_core(c, c2); /* always calculate thread delta */ retval = delta_thread(t, t2, c2); /* c2 is core delta */ if (retval) return retval; /* calculate package delta only for 1st core in package */ if (is_cpu_first_core_in_package(t, c, p)) retval = delta_package(p, p2); return retval; } void delta_platform(struct platform_counters *new, struct platform_counters *old) { old->energy_psys.raw_value = new->energy_psys.raw_value - old->energy_psys.raw_value; } void rapl_counter_clear(struct rapl_counter *c) { c->raw_value = 0; c->scale = 0.0; c->unit = RAPL_UNIT_INVALID; } void clear_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p) { int i; struct msr_counter *mp; t->tv_begin.tv_sec = 0; t->tv_begin.tv_usec = 0; t->tv_end.tv_sec = 0; t->tv_end.tv_usec = 0; t->tv_delta.tv_sec = 0; t->tv_delta.tv_usec = 0; t->tsc = 0; t->aperf = 0; t->mperf = 0; t->c1 = 0; t->instr_count = 0; t->irq_count = 0; t->smi_count = 0; c->c3 = 0; c->c6 = 0; c->c7 = 0; c->mc6_us = 0; c->core_temp_c = 0; rapl_counter_clear(&c->core_energy); c->core_throt_cnt = 0; p->pkg_wtd_core_c0 = 0; p->pkg_any_core_c0 = 0; p->pkg_any_gfxe_c0 = 0; p->pkg_both_core_gfxe_c0 = 0; p->pc2 = 0; if (DO_BIC(BIC_Pkgpc3)) p->pc3 = 0; if (DO_BIC(BIC_Pkgpc6)) p->pc6 = 0; if (DO_BIC(BIC_Pkgpc7)) p->pc7 = 0; p->pc8 = 0; p->pc9 = 0; p->pc10 = 0; p->die_c6 = 0; p->cpu_lpi = 0; p->sys_lpi = 0; rapl_counter_clear(&p->energy_pkg); rapl_counter_clear(&p->energy_dram); rapl_counter_clear(&p->energy_cores); rapl_counter_clear(&p->energy_gfx); rapl_counter_clear(&p->rapl_pkg_perf_status); rapl_counter_clear(&p->rapl_dram_perf_status); p->pkg_temp_c = 0; p->gfx_rc6_ms = 0; p->uncore_mhz = 0; p->gfx_mhz = 0; p->gfx_act_mhz = 0; p->sam_mc6_ms = 0; p->sam_mhz = 0; p->sam_act_mhz = 0; for (i = 0, mp = sys.tp; mp; i++, mp = mp->next) t->counter[i] = 0; for (i = 0, mp = sys.cp; mp; i++, mp = mp->next) c->counter[i] = 0; for (i = 0, mp = sys.pp; mp; i++, mp = mp->next) p->counter[i] = 0; memset(&t->perf_counter[0], 0, sizeof(t->perf_counter)); memset(&c->perf_counter[0], 0, sizeof(c->perf_counter)); memset(&p->perf_counter[0], 0, sizeof(p->perf_counter)); memset(&t->pmt_counter[0], 0, ARRAY_SIZE(t->pmt_counter)); memset(&c->pmt_counter[0], 0, ARRAY_SIZE(c->pmt_counter)); memset(&p->pmt_counter[0], 0, ARRAY_SIZE(p->pmt_counter)); } void rapl_counter_accumulate(struct rapl_counter *dst, const struct rapl_counter *src) { /* Copy unit and scale from src if dst is not initialized */ if (dst->unit == RAPL_UNIT_INVALID) { dst->unit = src->unit; dst->scale = src->scale; } assert(dst->unit == src->unit); assert(dst->scale == src->scale); dst->raw_value += src->raw_value; } int sum_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p) { int i; struct msr_counter *mp; struct perf_counter_info *pp; struct pmt_counter *ppmt; /* copy un-changing apic_id's */ if (DO_BIC(BIC_APIC)) average.threads.apic_id = t->apic_id; if (DO_BIC(BIC_X2APIC)) average.threads.x2apic_id = t->x2apic_id; /* remember first tv_begin */ if (average.threads.tv_begin.tv_sec == 0) average.threads.tv_begin = t->tv_begin; /* remember last tv_end */ average.threads.tv_end = t->tv_end; average.threads.tsc += t->tsc; average.threads.aperf += t->aperf; average.threads.mperf += t->mperf; average.threads.c1 += t->c1; average.threads.instr_count += t->instr_count; average.threads.irq_count += t->irq_count; average.threads.smi_count += t->smi_count; for (i = 0, mp = sys.tp; mp; i++, mp = mp->next) { if (mp->format == FORMAT_RAW) continue; average.threads.counter[i] += t->counter[i]; } for (i = 0, pp = sys.perf_tp; pp; i++, pp = pp->next) { if (pp->format == FORMAT_RAW) continue; average.threads.perf_counter[i] += t->perf_counter[i]; } for (i = 0, ppmt = sys.pmt_tp; ppmt; i++, ppmt = ppmt->next) { average.threads.pmt_counter[i] += t->pmt_counter[i]; } /* sum per-core values only for 1st thread in core */ if (!is_cpu_first_thread_in_core(t, c, p)) return 0; average.cores.c3 += c->c3; average.cores.c6 += c->c6; average.cores.c7 += c->c7; average.cores.mc6_us += c->mc6_us; average.cores.core_temp_c = MAX(average.cores.core_temp_c, c->core_temp_c); average.cores.core_throt_cnt = MAX(average.cores.core_throt_cnt, c->core_throt_cnt); rapl_counter_accumulate(&average.cores.core_energy, &c->core_energy); for (i = 0, mp = sys.cp; mp; i++, mp = mp->next) { if (mp->format == FORMAT_RAW) continue; average.cores.counter[i] += c->counter[i]; } for (i = 0, pp = sys.perf_cp; pp; i++, pp = pp->next) { if (pp->format == FORMAT_RAW) continue; average.cores.perf_counter[i] += c->perf_counter[i]; } for (i = 0, ppmt = sys.pmt_cp; ppmt; i++, ppmt = ppmt->next) { average.cores.pmt_counter[i] += c->pmt_counter[i]; } /* sum per-pkg values only for 1st core in pkg */ if (!is_cpu_first_core_in_package(t, c, p)) return 0; if (DO_BIC(BIC_Totl_c0)) average.packages.pkg_wtd_core_c0 += p->pkg_wtd_core_c0; if (DO_BIC(BIC_Any_c0)) average.packages.pkg_any_core_c0 += p->pkg_any_core_c0; if (DO_BIC(BIC_GFX_c0)) average.packages.pkg_any_gfxe_c0 += p->pkg_any_gfxe_c0; if (DO_BIC(BIC_CPUGFX)) average.packages.pkg_both_core_gfxe_c0 += p->pkg_both_core_gfxe_c0; average.packages.pc2 += p->pc2; if (DO_BIC(BIC_Pkgpc3)) average.packages.pc3 += p->pc3; if (DO_BIC(BIC_Pkgpc6)) average.packages.pc6 += p->pc6; if (DO_BIC(BIC_Pkgpc7)) average.packages.pc7 += p->pc7; average.packages.pc8 += p->pc8; average.packages.pc9 += p->pc9; average.packages.pc10 += p->pc10; average.packages.die_c6 += p->die_c6; average.packages.cpu_lpi = p->cpu_lpi; average.packages.sys_lpi = p->sys_lpi; rapl_counter_accumulate(&average.packages.energy_pkg, &p->energy_pkg); rapl_counter_accumulate(&average.packages.energy_dram, &p->energy_dram); rapl_counter_accumulate(&average.packages.energy_cores, &p->energy_cores); rapl_counter_accumulate(&average.packages.energy_gfx, &p->energy_gfx); average.packages.gfx_rc6_ms = p->gfx_rc6_ms; average.packages.uncore_mhz = p->uncore_mhz; average.packages.gfx_mhz = p->gfx_mhz; average.packages.gfx_act_mhz = p->gfx_act_mhz; average.packages.sam_mc6_ms = p->sam_mc6_ms; average.packages.sam_mhz = p->sam_mhz; average.packages.sam_act_mhz = p->sam_act_mhz; average.packages.pkg_temp_c = MAX(average.packages.pkg_temp_c, p->pkg_temp_c); rapl_counter_accumulate(&average.packages.rapl_pkg_perf_status, &p->rapl_pkg_perf_status); rapl_counter_accumulate(&average.packages.rapl_dram_perf_status, &p->rapl_dram_perf_status); for (i = 0, mp = sys.pp; mp; i++, mp = mp->next) { if ((mp->format == FORMAT_RAW) && (topo.num_packages == 0)) average.packages.counter[i] = p->counter[i]; else average.packages.counter[i] += p->counter[i]; } for (i = 0, pp = sys.perf_pp; pp; i++, pp = pp->next) { if ((pp->format == FORMAT_RAW) && (topo.num_packages == 0)) average.packages.perf_counter[i] = p->perf_counter[i]; else average.packages.perf_counter[i] += p->perf_counter[i]; } for (i = 0, ppmt = sys.pmt_pp; ppmt; i++, ppmt = ppmt->next) { average.packages.pmt_counter[i] += p->pmt_counter[i]; } return 0; } /* * sum the counters for all cpus in the system * compute the weighted average */ void compute_average(struct thread_data *t, struct core_data *c, struct pkg_data *p) { int i; struct msr_counter *mp; struct perf_counter_info *pp; struct pmt_counter *ppmt; clear_counters(&average.threads, &average.cores, &average.packages); for_all_cpus(sum_counters, t, c, p); /* Use the global time delta for the average. */ average.threads.tv_delta = tv_delta; average.threads.tsc /= topo.allowed_cpus; average.threads.aperf /= topo.allowed_cpus; average.threads.mperf /= topo.allowed_cpus; average.threads.instr_count /= topo.allowed_cpus; average.threads.c1 /= topo.allowed_cpus; if (average.threads.irq_count > 9999999) sums_need_wide_columns = 1; average.cores.c3 /= topo.allowed_cores; average.cores.c6 /= topo.allowed_cores; average.cores.c7 /= topo.allowed_cores; average.cores.mc6_us /= topo.allowed_cores; if (DO_BIC(BIC_Totl_c0)) average.packages.pkg_wtd_core_c0 /= topo.allowed_packages; if (DO_BIC(BIC_Any_c0)) average.packages.pkg_any_core_c0 /= topo.allowed_packages; if (DO_BIC(BIC_GFX_c0)) average.packages.pkg_any_gfxe_c0 /= topo.allowed_packages; if (DO_BIC(BIC_CPUGFX)) average.packages.pkg_both_core_gfxe_c0 /= topo.allowed_packages; average.packages.pc2 /= topo.allowed_packages; if (DO_BIC(BIC_Pkgpc3)) average.packages.pc3 /= topo.allowed_packages; if (DO_BIC(BIC_Pkgpc6)) average.packages.pc6 /= topo.allowed_packages; if (DO_BIC(BIC_Pkgpc7)) average.packages.pc7 /= topo.allowed_packages; average.packages.pc8 /= topo.allowed_packages; average.packages.pc9 /= topo.allowed_packages; average.packages.pc10 /= topo.allowed_packages; average.packages.die_c6 /= topo.allowed_packages; for (i = 0, mp = sys.tp; mp; i++, mp = mp->next) { if (mp->format == FORMAT_RAW) continue; if (mp->type == COUNTER_ITEMS) { if (average.threads.counter[i] > 9999999) sums_need_wide_columns = 1; continue; } average.threads.counter[i] /= topo.allowed_cpus; } for (i = 0, mp = sys.cp; mp; i++, mp = mp->next) { if (mp->format == FORMAT_RAW) continue; if (mp->type == COUNTER_ITEMS) { if (average.cores.counter[i] > 9999999) sums_need_wide_columns = 1; } average.cores.counter[i] /= topo.allowed_cores; } for (i = 0, mp = sys.pp; mp; i++, mp = mp->next) { if (mp->format == FORMAT_RAW) continue; if (mp->type == COUNTER_ITEMS) { if (average.packages.counter[i] > 9999999) sums_need_wide_columns = 1; } average.packages.counter[i] /= topo.allowed_packages; } for (i = 0, pp = sys.perf_tp; pp; i++, pp = pp->next) { if (pp->format == FORMAT_RAW) continue; if (pp->type == COUNTER_ITEMS) { if (average.threads.perf_counter[i] > 9999999) sums_need_wide_columns = 1; continue; } average.threads.perf_counter[i] /= topo.allowed_cpus; } for (i = 0, pp = sys.perf_cp; pp; i++, pp = pp->next) { if (pp->format == FORMAT_RAW) continue; if (pp->type == COUNTER_ITEMS) { if (average.cores.perf_counter[i] > 9999999) sums_need_wide_columns = 1; } average.cores.perf_counter[i] /= topo.allowed_cores; } for (i = 0, pp = sys.perf_pp; pp; i++, pp = pp->next) { if (pp->format == FORMAT_RAW) continue; if (pp->type == COUNTER_ITEMS) { if (average.packages.perf_counter[i] > 9999999) sums_need_wide_columns = 1; } average.packages.perf_counter[i] /= topo.allowed_packages; } for (i = 0, ppmt = sys.pmt_tp; ppmt; i++, ppmt = ppmt->next) { average.threads.pmt_counter[i] /= topo.allowed_cpus; } for (i = 0, ppmt = sys.pmt_cp; ppmt; i++, ppmt = ppmt->next) { average.cores.pmt_counter[i] /= topo.allowed_cores; } for (i = 0, ppmt = sys.pmt_pp; ppmt; i++, ppmt = ppmt->next) { average.packages.pmt_counter[i] /= topo.allowed_packages; } } static unsigned long long rdtsc(void) { unsigned int low, high; asm volatile ("rdtsc":"=a" (low), "=d"(high)); return low | ((unsigned long long)high) << 32; } /* * Open a file, and exit on failure */ FILE *fopen_or_die(const char *path, const char *mode) { FILE *filep = fopen(path, mode); if (!filep) err(1, "%s: open failed", path); return filep; } /* * snapshot_sysfs_counter() * * return snapshot of given counter */ unsigned long long snapshot_sysfs_counter(char *path) { FILE *fp; int retval; unsigned long long counter; fp = fopen_or_die(path, "r"); retval = fscanf(fp, "%lld", &counter); if (retval != 1) err(1, "snapshot_sysfs_counter(%s)", path); fclose(fp); return counter; } int get_mp(int cpu, struct msr_counter *mp, unsigned long long *counterp, char *counter_path) { if (mp->msr_num != 0) { assert(!no_msr); if (get_msr(cpu, mp->msr_num, counterp)) return -1; } else { char path[128 + PATH_BYTES]; if (mp->flags & SYSFS_PERCPU) { sprintf(path, "/sys/devices/system/cpu/cpu%d/%s", cpu, mp->sp->path); *counterp = snapshot_sysfs_counter(path); } else { *counterp = snapshot_sysfs_counter(counter_path); } } return 0; } unsigned long long get_legacy_uncore_mhz(int package) { char path[128]; int die; static int warn_once; /* * for this package, use the first die_id that exists */ for (die = 0; die <= topo.max_die_id; ++die) { sprintf(path, "/sys/devices/system/cpu/intel_uncore_frequency/package_%02d_die_%02d/current_freq_khz", package, die); if (access(path, R_OK) == 0) return (snapshot_sysfs_counter(path) / 1000); } if (!warn_once) { warnx("BUG: %s: No %s", __func__, path); warn_once = 1; } return 0; } int get_epb(int cpu) { char path[128 + PATH_BYTES]; unsigned long long msr; int ret, epb = -1; FILE *fp; sprintf(path, "/sys/devices/system/cpu/cpu%d/power/energy_perf_bias", cpu); fp = fopen(path, "r"); if (!fp) goto msr_fallback; ret = fscanf(fp, "%d", &epb); if (ret != 1) err(1, "%s(%s)", __func__, path); fclose(fp); return epb; msr_fallback: if (no_msr) return -1; get_msr(cpu, MSR_IA32_ENERGY_PERF_BIAS, &msr); return msr & 0xf; } void get_apic_id(struct thread_data *t) { unsigned int eax, ebx, ecx, edx; if (DO_BIC(BIC_APIC)) { eax = ebx = ecx = edx = 0; __cpuid(1, eax, ebx, ecx, edx); t->apic_id = (ebx >> 24) & 0xff; } if (!DO_BIC(BIC_X2APIC)) return; if (authentic_amd || hygon_genuine) { unsigned int topology_extensions; if (max_extended_level < 0x8000001e) return; eax = ebx = ecx = edx = 0; __cpuid(0x80000001, eax, ebx, ecx, edx); topology_extensions = ecx & (1 << 22); if (topology_extensions == 0) return; eax = ebx = ecx = edx = 0; __cpuid(0x8000001e, eax, ebx, ecx, edx); t->x2apic_id = eax; return; } if (!genuine_intel) return; if (max_level < 0xb) return; ecx = 0; __cpuid(0xb, eax, ebx, ecx, edx); t->x2apic_id = edx; if (debug && (t->apic_id != (t->x2apic_id & 0xff))) fprintf(outf, "cpu%d: BIOS BUG: apic 0x%x x2apic 0x%x\n", t->cpu_id, t->apic_id, t->x2apic_id); } int get_core_throt_cnt(int cpu, unsigned long long *cnt) { char path[128 + PATH_BYTES]; unsigned long long tmp; FILE *fp; int ret; sprintf(path, "/sys/devices/system/cpu/cpu%d/thermal_throttle/core_throttle_count", cpu); fp = fopen(path, "r"); if (!fp) return -1; ret = fscanf(fp, "%lld", &tmp); fclose(fp); if (ret != 1) return -1; *cnt = tmp; return 0; } struct amperf_group_fd { int aperf; /* Also the group descriptor */ int mperf; }; static int read_perf_counter_info(const char *const path, const char *const parse_format, void *value_ptr) { int fdmt; int bytes_read; char buf[64]; int ret = -1; fdmt = open(path, O_RDONLY, 0); if (fdmt == -1) { if (debug) fprintf(stderr, "Failed to parse perf counter info %s\n", path); ret = -1; goto cleanup_and_exit; } bytes_read = read(fdmt, buf, sizeof(buf) - 1); if (bytes_read <= 0 || bytes_read >= (int)sizeof(buf)) { if (debug) fprintf(stderr, "Failed to parse perf counter info %s\n", path); ret = -1; goto cleanup_and_exit; } buf[bytes_read] = '\0'; if (sscanf(buf, parse_format, value_ptr) != 1) { if (debug) fprintf(stderr, "Failed to parse perf counter info %s\n", path); ret = -1; goto cleanup_and_exit; } ret = 0; cleanup_and_exit: close(fdmt); return ret; } static unsigned int read_perf_counter_info_n(const char *const path, const char *const parse_format) { unsigned int v; int status; status = read_perf_counter_info(path, parse_format, &v); if (status) v = -1; return v; } static unsigned int read_perf_type(const char *subsys) { const char *const path_format = "/sys/bus/event_source/devices/%s/type"; const char *const format = "%u"; char path[128]; snprintf(path, sizeof(path), path_format, subsys); return read_perf_counter_info_n(path, format); } static unsigned int read_perf_config(const char *subsys, const char *event_name) { const char *const path_format = "/sys/bus/event_source/devices/%s/events/%s"; FILE *fconfig = NULL; char path[128]; char config_str[64]; unsigned int config; unsigned int umask; bool has_config = false; bool has_umask = false; unsigned int ret = -1; snprintf(path, sizeof(path), path_format, subsys, event_name); fconfig = fopen(path, "r"); if (!fconfig) return -1; if (fgets(config_str, ARRAY_SIZE(config_str), fconfig) != config_str) goto cleanup_and_exit; for (char *pconfig_str = &config_str[0]; pconfig_str;) { if (sscanf(pconfig_str, "event=%x", &config) == 1) { has_config = true; goto next; } if (sscanf(pconfig_str, "umask=%x", &umask) == 1) { has_umask = true; goto next; } next: pconfig_str = strchr(pconfig_str, ','); if (pconfig_str) { *pconfig_str = '\0'; ++pconfig_str; } } if (!has_umask) umask = 0; if (has_config) ret = (umask << 8) | config; cleanup_and_exit: fclose(fconfig); return ret; } static unsigned int read_perf_rapl_unit(const char *subsys, const char *event_name) { const char *const path_format = "/sys/bus/event_source/devices/%s/events/%s.unit"; const char *const format = "%s"; char path[128]; char unit_buffer[16]; snprintf(path, sizeof(path), path_format, subsys, event_name); read_perf_counter_info(path, format, &unit_buffer); if (strcmp("Joules", unit_buffer) == 0) return RAPL_UNIT_JOULES; return RAPL_UNIT_INVALID; } static double read_perf_scale(const char *subsys, const char *event_name) { const char *const path_format = "/sys/bus/event_source/devices/%s/events/%s.scale"; const char *const format = "%lf"; char path[128]; double scale; snprintf(path, sizeof(path), path_format, subsys, event_name); if (read_perf_counter_info(path, format, &scale)) return 0.0; return scale; } size_t rapl_counter_info_count_perf(const struct rapl_counter_info_t *rci) { size_t ret = 0; for (int i = 0; i < NUM_RAPL_COUNTERS; ++i) if (rci->source[i] == COUNTER_SOURCE_PERF) ++ret; return ret; } static size_t cstate_counter_info_count_perf(const struct cstate_counter_info_t *cci) { size_t ret = 0; for (int i = 0; i < NUM_CSTATE_COUNTERS; ++i) if (cci->source[i] == COUNTER_SOURCE_PERF) ++ret; return ret; } void write_rapl_counter(struct rapl_counter *rc, struct rapl_counter_info_t *rci, unsigned int idx) { if (rci->source[idx] == COUNTER_SOURCE_NONE) return; rc->raw_value = rci->data[idx]; rc->unit = rci->unit[idx]; rc->scale = rci->scale[idx]; } int get_rapl_counters(int cpu, unsigned int domain, struct core_data *c, struct pkg_data *p) { struct platform_counters *pplat_cnt = p == package_odd ? &platform_counters_odd : &platform_counters_even; unsigned long long perf_data[NUM_RAPL_COUNTERS + 1]; struct rapl_counter_info_t *rci; if (debug >= 2) fprintf(stderr, "%s: cpu%d domain%d\n", __func__, cpu, domain); assert(rapl_counter_info_perdomain); assert(domain < rapl_counter_info_perdomain_size); rci = &rapl_counter_info_perdomain[domain]; /* * If we have any perf counters to read, read them all now, in bulk */ if (rci->fd_perf != -1) { size_t num_perf_counters = rapl_counter_info_count_perf(rci); const ssize_t expected_read_size = (num_perf_counters + 1) * sizeof(unsigned long long); const ssize_t actual_read_size = read(rci->fd_perf, &perf_data[0], sizeof(perf_data)); if (actual_read_size != expected_read_size) err(-1, "%s: failed to read perf_data (%zu %zu)", __func__, expected_read_size, actual_read_size); } for (unsigned int i = 0, pi = 1; i < NUM_RAPL_COUNTERS; ++i) { switch (rci->source[i]) { case COUNTER_SOURCE_NONE: rci->data[i] = 0; break; case COUNTER_SOURCE_PERF: assert(pi < ARRAY_SIZE(perf_data)); assert(rci->fd_perf != -1); if (debug >= 2) fprintf(stderr, "Reading rapl counter via perf at %u (%llu %e %lf)\n", i, perf_data[pi], rci->scale[i], perf_data[pi] * rci->scale[i]); rci->data[i] = perf_data[pi]; ++pi; break; case COUNTER_SOURCE_MSR: if (debug >= 2) fprintf(stderr, "Reading rapl counter via msr at %u\n", i); assert(!no_msr); if (rci->flags[i] & RAPL_COUNTER_FLAG_USE_MSR_SUM) { if (get_msr_sum(cpu, rci->msr[i], &rci->data[i])) return -13 - i; } else { if (get_msr(cpu, rci->msr[i], &rci->data[i])) return -13 - i; } rci->data[i] &= rci->msr_mask[i]; if (rci->msr_shift[i] >= 0) rci->data[i] >>= abs(rci->msr_shift[i]); else rci->data[i] <<= abs(rci->msr_shift[i]); break; } } BUILD_BUG_ON(NUM_RAPL_COUNTERS != 8); write_rapl_counter(&p->energy_pkg, rci, RAPL_RCI_INDEX_ENERGY_PKG); write_rapl_counter(&p->energy_cores, rci, RAPL_RCI_INDEX_ENERGY_CORES); write_rapl_counter(&p->energy_dram, rci, RAPL_RCI_INDEX_DRAM); write_rapl_counter(&p->energy_gfx, rci, RAPL_RCI_INDEX_GFX); write_rapl_counter(&p->rapl_pkg_perf_status, rci, RAPL_RCI_INDEX_PKG_PERF_STATUS); write_rapl_counter(&p->rapl_dram_perf_status, rci, RAPL_RCI_INDEX_DRAM_PERF_STATUS); write_rapl_counter(&c->core_energy, rci, RAPL_RCI_INDEX_CORE_ENERGY); write_rapl_counter(&pplat_cnt->energy_psys, rci, RAPL_RCI_INDEX_ENERGY_PLATFORM); return 0; } char *find_sysfs_path_by_id(struct sysfs_path *sp, int id) { while (sp) { if (sp->id == id) return (sp->path); sp = sp->next; } if (debug) warnx("%s: id%d not found", __func__, id); return NULL; } int get_cstate_counters(unsigned int cpu, struct thread_data *t, struct core_data *c, struct pkg_data *p) { /* * Overcommit memory a little bit here, * but skip calculating exact sizes for the buffers. */ unsigned long long perf_data[NUM_CSTATE_COUNTERS]; unsigned long long perf_data_core[NUM_CSTATE_COUNTERS + 1]; unsigned long long perf_data_pkg[NUM_CSTATE_COUNTERS + 1]; struct cstate_counter_info_t *cci; if (debug >= 2) fprintf(stderr, "%s: cpu%d\n", __func__, cpu); assert(ccstate_counter_info); assert(cpu <= ccstate_counter_info_size); ZERO_ARRAY(perf_data); ZERO_ARRAY(perf_data_core); ZERO_ARRAY(perf_data_pkg); cci = &ccstate_counter_info[cpu]; /* * If we have any perf counters to read, read them all now, in bulk */ const size_t num_perf_counters = cstate_counter_info_count_perf(cci); ssize_t expected_read_size = num_perf_counters * sizeof(unsigned long long); ssize_t actual_read_size_core = 0, actual_read_size_pkg = 0; if (cci->fd_perf_core != -1) { /* Each descriptor read begins with number of counters read. */ expected_read_size += sizeof(unsigned long long); actual_read_size_core = read(cci->fd_perf_core, &perf_data_core[0], sizeof(perf_data_core)); if (actual_read_size_core <= 0) err(-1, "%s: read perf %s: %ld", __func__, "core", actual_read_size_core); } if (cci->fd_perf_pkg != -1) { /* Each descriptor read begins with number of counters read. */ expected_read_size += sizeof(unsigned long long); actual_read_size_pkg = read(cci->fd_perf_pkg, &perf_data_pkg[0], sizeof(perf_data_pkg)); if (actual_read_size_pkg <= 0) err(-1, "%s: read perf %s: %ld", __func__, "pkg", actual_read_size_pkg); } const ssize_t actual_read_size_total = actual_read_size_core + actual_read_size_pkg; if (actual_read_size_total != expected_read_size) err(-1, "%s: failed to read perf_data (%zu %zu)", __func__, expected_read_size, actual_read_size_total); /* * Copy ccstate and pcstate data into unified buffer. * * Skip first element from core and pkg buffers. * Kernel puts there how many counters were read. */ const size_t num_core_counters = perf_data_core[0]; const size_t num_pkg_counters = perf_data_pkg[0]; assert(num_perf_counters == num_core_counters + num_pkg_counters); /* Copy ccstate perf data */ memcpy(&perf_data[0], &perf_data_core[1], num_core_counters * sizeof(unsigned long long)); /* Copy pcstate perf data */ memcpy(&perf_data[num_core_counters], &perf_data_pkg[1], num_pkg_counters * sizeof(unsigned long long)); for (unsigned int i = 0, pi = 0; i < NUM_CSTATE_COUNTERS; ++i) { switch (cci->source[i]) { case COUNTER_SOURCE_NONE: break; case COUNTER_SOURCE_PERF: assert(pi < ARRAY_SIZE(perf_data)); assert(cci->fd_perf_core != -1 || cci->fd_perf_pkg != -1); if (debug >= 2) fprintf(stderr, "cstate via %s %u: %llu\n", "perf", i, perf_data[pi]); cci->data[i] = perf_data[pi]; ++pi; break; case COUNTER_SOURCE_MSR: assert(!no_msr); if (get_msr(cpu, cci->msr[i], &cci->data[i])) return -13 - i; if (debug >= 2) fprintf(stderr, "cstate via %s0x%llx %u: %llu\n", "msr", cci->msr[i], i, cci->data[i]); break; } } /* * Helper to write the data only if the source of * the counter for the current cpu is not none. * * Otherwise we would overwrite core data with 0 (default value), * when invoked for the thread sibling. */ #define PERF_COUNTER_WRITE_DATA(out_counter, index) do { \ if (cci->source[index] != COUNTER_SOURCE_NONE) \ out_counter = cci->data[index]; \ } while (0) BUILD_BUG_ON(NUM_CSTATE_COUNTERS != 11); PERF_COUNTER_WRITE_DATA(t->c1, CCSTATE_RCI_INDEX_C1_RESIDENCY); PERF_COUNTER_WRITE_DATA(c->c3, CCSTATE_RCI_INDEX_C3_RESIDENCY); PERF_COUNTER_WRITE_DATA(c->c6, CCSTATE_RCI_INDEX_C6_RESIDENCY); PERF_COUNTER_WRITE_DATA(c->c7, CCSTATE_RCI_INDEX_C7_RESIDENCY); PERF_COUNTER_WRITE_DATA(p->pc2, PCSTATE_RCI_INDEX_C2_RESIDENCY); PERF_COUNTER_WRITE_DATA(p->pc3, PCSTATE_RCI_INDEX_C3_RESIDENCY); PERF_COUNTER_WRITE_DATA(p->pc6, PCSTATE_RCI_INDEX_C6_RESIDENCY); PERF_COUNTER_WRITE_DATA(p->pc7, PCSTATE_RCI_INDEX_C7_RESIDENCY); PERF_COUNTER_WRITE_DATA(p->pc8, PCSTATE_RCI_INDEX_C8_RESIDENCY); PERF_COUNTER_WRITE_DATA(p->pc9, PCSTATE_RCI_INDEX_C9_RESIDENCY); PERF_COUNTER_WRITE_DATA(p->pc10, PCSTATE_RCI_INDEX_C10_RESIDENCY); #undef PERF_COUNTER_WRITE_DATA return 0; } size_t msr_counter_info_count_perf(const struct msr_counter_info_t *mci) { size_t ret = 0; for (int i = 0; i < NUM_MSR_COUNTERS; ++i) if (mci->source[i] == COUNTER_SOURCE_PERF) ++ret; return ret; } int get_smi_aperf_mperf(unsigned int cpu, struct thread_data *t) { unsigned long long perf_data[NUM_MSR_COUNTERS + 1]; struct msr_counter_info_t *mci; if (debug >= 2) fprintf(stderr, "%s: cpu%d\n", __func__, cpu); assert(msr_counter_info); assert(cpu <= msr_counter_info_size); mci = &msr_counter_info[cpu]; ZERO_ARRAY(perf_data); ZERO_ARRAY(mci->data); if (mci->fd_perf != -1) { const size_t num_perf_counters = msr_counter_info_count_perf(mci); const ssize_t expected_read_size = (num_perf_counters + 1) * sizeof(unsigned long long); const ssize_t actual_read_size = read(mci->fd_perf, &perf_data[0], sizeof(perf_data)); if (actual_read_size != expected_read_size) err(-1, "%s: failed to read perf_data (%zu %zu)", __func__, expected_read_size, actual_read_size); } for (unsigned int i = 0, pi = 1; i < NUM_MSR_COUNTERS; ++i) { switch (mci->source[i]) { case COUNTER_SOURCE_NONE: break; case COUNTER_SOURCE_PERF: assert(pi < ARRAY_SIZE(perf_data)); assert(mci->fd_perf != -1); if (debug >= 2) fprintf(stderr, "Reading msr counter via perf at %u: %llu\n", i, perf_data[pi]); mci->data[i] = perf_data[pi]; ++pi; break; case COUNTER_SOURCE_MSR: assert(!no_msr); if (get_msr(cpu, mci->msr[i], &mci->data[i])) return -2 - i; mci->data[i] &= mci->msr_mask[i]; if (debug >= 2) fprintf(stderr, "Reading msr counter via msr at %u: %llu\n", i, mci->data[i]); break; } } BUILD_BUG_ON(NUM_MSR_COUNTERS != 3); t->aperf = mci->data[MSR_RCI_INDEX_APERF]; t->mperf = mci->data[MSR_RCI_INDEX_MPERF]; t->smi_count = mci->data[MSR_RCI_INDEX_SMI]; return 0; } int perf_counter_info_read_values(struct perf_counter_info *pp, int cpu, unsigned long long *out, size_t out_size) { unsigned int domain; unsigned long long value; int fd_counter; for (size_t i = 0; pp; ++i, pp = pp->next) { domain = cpu_to_domain(pp, cpu); assert(domain < pp->num_domains); fd_counter = pp->fd_perf_per_domain[domain]; if (fd_counter == -1) continue; if (read(fd_counter, &value, sizeof(value)) != sizeof(value)) return 1; assert(i < out_size); out[i] = value * pp->scale; } return 0; } unsigned long pmt_gen_value_mask(unsigned int lsb, unsigned int msb) { unsigned long mask; if (msb == 63) mask = 0xffffffffffffffff; else mask = ((1 << (msb + 1)) - 1); mask -= (1 << lsb) - 1; return mask; } unsigned long pmt_read_counter(struct pmt_counter *ppmt, unsigned int domain_id) { assert(domain_id < ppmt->num_domains); const unsigned long *pmmio = ppmt->domains[domain_id].pcounter; const unsigned long value = pmmio ? *pmmio : 0; const unsigned long value_mask = pmt_gen_value_mask(ppmt->lsb, ppmt->msb); const unsigned long value_shift = ppmt->lsb; return (value & value_mask) >> value_shift; } /* * get_counters(...) * migrate to cpu * acquire and record local counters for that cpu */ int get_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p) { int cpu = t->cpu_id; unsigned long long msr; struct msr_counter *mp; struct pmt_counter *pp; int i; int status; if (cpu_migrate(cpu)) { fprintf(outf, "%s: Could not migrate to CPU %d\n", __func__, cpu); return -1; } gettimeofday(&t->tv_begin, (struct timezone *)NULL); if (first_counter_read) get_apic_id(t); t->tsc = rdtsc(); /* we are running on local CPU of interest */ get_smi_aperf_mperf(cpu, t); if (DO_BIC(BIC_IPC)) if (read(get_instr_count_fd(cpu), &t->instr_count, sizeof(long long)) != sizeof(long long)) return -4; if (DO_BIC(BIC_IRQ)) t->irq_count = irqs_per_cpu[cpu]; get_cstate_counters(cpu, t, c, p); for (i = 0, mp = sys.tp; mp; i++, mp = mp->next) { if (get_mp(cpu, mp, &t->counter[i], mp->sp->path)) return -10; } if (perf_counter_info_read_values(sys.perf_tp, cpu, t->perf_counter, MAX_ADDED_THREAD_COUNTERS)) return -10; for (i = 0, pp = sys.pmt_tp; pp; i++, pp = pp->next) t->pmt_counter[i] = pmt_read_counter(pp, t->cpu_id); /* collect core counters only for 1st thread in core */ if (!is_cpu_first_thread_in_core(t, c, p)) goto done; if (platform->has_per_core_rapl) { status = get_rapl_counters(cpu, c->core_id, c, p); if (status != 0) return status; } if (DO_BIC(BIC_CPU_c7) && t->is_atom) { /* * For Atom CPUs that has core cstate deeper than c6, * MSR_CORE_C6_RESIDENCY returns residency of cc6 and deeper. * Minus CC7 (and deeper cstates) residency to get * accturate cc6 residency. */ c->c6 -= c->c7; } if (DO_BIC(BIC_Mod_c6)) if (get_msr(cpu, MSR_MODULE_C6_RES_MS, &c->mc6_us)) return -8; if (DO_BIC(BIC_CoreTmp)) { if (get_msr(cpu, MSR_IA32_THERM_STATUS, &msr)) return -9; c->core_temp_c = tj_max - ((msr >> 16) & 0x7F); } if (DO_BIC(BIC_CORE_THROT_CNT)) get_core_throt_cnt(cpu, &c->core_throt_cnt); for (i = 0, mp = sys.cp; mp; i++, mp = mp->next) { if (get_mp(cpu, mp, &c->counter[i], mp->sp->path)) return -10; } if (perf_counter_info_read_values(sys.perf_cp, cpu, c->perf_counter, MAX_ADDED_CORE_COUNTERS)) return -10; for (i = 0, pp = sys.pmt_cp; pp; i++, pp = pp->next) c->pmt_counter[i] = pmt_read_counter(pp, c->core_id); /* collect package counters only for 1st core in package */ if (!is_cpu_first_core_in_package(t, c, p)) goto done; if (DO_BIC(BIC_Totl_c0)) { if (get_msr(cpu, MSR_PKG_WEIGHTED_CORE_C0_RES, &p->pkg_wtd_core_c0)) return -10; } if (DO_BIC(BIC_Any_c0)) { if (get_msr(cpu, MSR_PKG_ANY_CORE_C0_RES, &p->pkg_any_core_c0)) return -11; } if (DO_BIC(BIC_GFX_c0)) { if (get_msr(cpu, MSR_PKG_ANY_GFXE_C0_RES, &p->pkg_any_gfxe_c0)) return -12; } if (DO_BIC(BIC_CPUGFX)) { if (get_msr(cpu, MSR_PKG_BOTH_CORE_GFXE_C0_RES, &p->pkg_both_core_gfxe_c0)) return -13; } if (DO_BIC(BIC_CPU_LPI)) p->cpu_lpi = cpuidle_cur_cpu_lpi_us; if (DO_BIC(BIC_SYS_LPI)) p->sys_lpi = cpuidle_cur_sys_lpi_us; if (!platform->has_per_core_rapl) { status = get_rapl_counters(cpu, p->package_id, c, p); if (status != 0) return status; } if (DO_BIC(BIC_PkgTmp)) { if (get_msr(cpu, MSR_IA32_PACKAGE_THERM_STATUS, &msr)) return -17; p->pkg_temp_c = tj_max - ((msr >> 16) & 0x7F); } if (DO_BIC(BIC_UNCORE_MHZ)) p->uncore_mhz = get_legacy_uncore_mhz(p->package_id); if (DO_BIC(BIC_GFX_rc6)) p->gfx_rc6_ms = gfx_info[GFX_rc6].val_ull; if (DO_BIC(BIC_GFXMHz)) p->gfx_mhz = gfx_info[GFX_MHz].val; if (DO_BIC(BIC_GFXACTMHz)) p->gfx_act_mhz = gfx_info[GFX_ACTMHz].val; if (DO_BIC(BIC_SAM_mc6)) p->sam_mc6_ms = gfx_info[SAM_mc6].val_ull; if (DO_BIC(BIC_SAMMHz)) p->sam_mhz = gfx_info[SAM_MHz].val; if (DO_BIC(BIC_SAMACTMHz)) p->sam_act_mhz = gfx_info[SAM_ACTMHz].val; for (i = 0, mp = sys.pp; mp; i++, mp = mp->next) { char *path = NULL; if (mp->msr_num == 0) { path = find_sysfs_path_by_id(mp->sp, p->package_id); if (path == NULL) { warnx("%s: package_id %d not found", __func__, p->package_id); return -10; } } if (get_mp(cpu, mp, &p->counter[i], path)) return -10; } if (perf_counter_info_read_values(sys.perf_pp, cpu, p->perf_counter, MAX_ADDED_PACKAGE_COUNTERS)) return -10; for (i = 0, pp = sys.pmt_pp; pp; i++, pp = pp->next) p->pmt_counter[i] = pmt_read_counter(pp, p->package_id); done: gettimeofday(&t->tv_end, (struct timezone *)NULL); return 0; } int pkg_cstate_limit = PCLUKN; char *pkg_cstate_limit_strings[] = { "unknown", "reserved", "pc0", "pc1", "pc2", "pc3", "pc4", "pc6", "pc6n", "pc6r", "pc7", "pc7s", "pc8", "pc9", "pc10", "unlimited" }; int nhm_pkg_cstate_limits[16] = { PCL__0, PCL__1, PCL__3, PCL__6, PCL__7, PCLRSV, PCLRSV, PCLUNL, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV }; int snb_pkg_cstate_limits[16] = { PCL__0, PCL__2, PCL_6N, PCL_6R, PCL__7, PCL_7S, PCLRSV, PCLUNL, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV }; int hsw_pkg_cstate_limits[16] = { PCL__0, PCL__2, PCL__3, PCL__6, PCL__7, PCL_7S, PCL__8, PCL__9, PCLUNL, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV }; int slv_pkg_cstate_limits[16] = { PCL__0, PCL__1, PCLRSV, PCLRSV, PCL__4, PCLRSV, PCL__6, PCL__7, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCL__6, PCL__7 }; int amt_pkg_cstate_limits[16] = { PCLUNL, PCL__1, PCL__2, PCLRSV, PCLRSV, PCLRSV, PCL__6, PCL__7, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV }; int phi_pkg_cstate_limits[16] = { PCL__0, PCL__2, PCL_6N, PCL_6R, PCLRSV, PCLRSV, PCLRSV, PCLUNL, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV }; int glm_pkg_cstate_limits[16] = { PCLUNL, PCL__1, PCL__3, PCL__6, PCL__7, PCL_7S, PCL__8, PCL__9, PCL_10, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV }; int skx_pkg_cstate_limits[16] = { PCL__0, PCL__2, PCL_6N, PCL_6R, PCLRSV, PCLRSV, PCLRSV, PCLUNL, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV }; int icx_pkg_cstate_limits[16] = { PCL__0, PCL__2, PCL__6, PCL__6, PCLRSV, PCLRSV, PCLRSV, PCLUNL, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV, PCLRSV }; void probe_cst_limit(void) { unsigned long long msr; int *pkg_cstate_limits; if (!platform->has_nhm_msrs || no_msr) return; switch (platform->cst_limit) { case CST_LIMIT_NHM: pkg_cstate_limits = nhm_pkg_cstate_limits; break; case CST_LIMIT_SNB: pkg_cstate_limits = snb_pkg_cstate_limits; break; case CST_LIMIT_HSW: pkg_cstate_limits = hsw_pkg_cstate_limits; break; case CST_LIMIT_SKX: pkg_cstate_limits = skx_pkg_cstate_limits; break; case CST_LIMIT_ICX: pkg_cstate_limits = icx_pkg_cstate_limits; break; case CST_LIMIT_SLV: pkg_cstate_limits = slv_pkg_cstate_limits; break; case CST_LIMIT_AMT: pkg_cstate_limits = amt_pkg_cstate_limits; break; case CST_LIMIT_KNL: pkg_cstate_limits = phi_pkg_cstate_limits; break; case CST_LIMIT_GMT: pkg_cstate_limits = glm_pkg_cstate_limits; break; default: return; } get_msr(base_cpu, MSR_PKG_CST_CONFIG_CONTROL, &msr); pkg_cstate_limit = pkg_cstate_limits[msr & 0xF]; } static void dump_platform_info(void) { unsigned long long msr; unsigned int ratio; if (!platform->has_nhm_msrs || no_msr) return; get_msr(base_cpu, MSR_PLATFORM_INFO, &msr); fprintf(outf, "cpu%d: MSR_PLATFORM_INFO: 0x%08llx\n", base_cpu, msr); ratio = (msr >> 40) & 0xFF; fprintf(outf, "%d * %.1f = %.1f MHz max efficiency frequency\n", ratio, bclk, ratio * bclk); ratio = (msr >> 8) & 0xFF; fprintf(outf, "%d * %.1f = %.1f MHz base frequency\n", ratio, bclk, ratio * bclk); } static void dump_power_ctl(void) { unsigned long long msr; if (!platform->has_nhm_msrs || no_msr) return; get_msr(base_cpu, MSR_IA32_POWER_CTL, &msr); fprintf(outf, "cpu%d: MSR_IA32_POWER_CTL: 0x%08llx (C1E auto-promotion: %sabled)\n", base_cpu, msr, msr & 0x2 ? "EN" : "DIS"); /* C-state Pre-wake Disable (CSTATE_PREWAKE_DISABLE) */ if (platform->has_cst_prewake_bit) fprintf(outf, "C-state Pre-wake: %sabled\n", msr & 0x40000000 ? "DIS" : "EN"); return; } static void dump_turbo_ratio_limit2(void) { unsigned long long msr; unsigned int ratio; get_msr(base_cpu, MSR_TURBO_RATIO_LIMIT2, &msr); fprintf(outf, "cpu%d: MSR_TURBO_RATIO_LIMIT2: 0x%08llx\n", base_cpu, msr); ratio = (msr >> 8) & 0xFF; if (ratio) fprintf(outf, "%d * %.1f = %.1f MHz max turbo 18 active cores\n", ratio, bclk, ratio * bclk); ratio = (msr >> 0) & 0xFF; if (ratio) fprintf(outf, "%d * %.1f = %.1f MHz max turbo 17 active cores\n", ratio, bclk, ratio * bclk); return; } static void dump_turbo_ratio_limit1(void) { unsigned long long msr; unsigned int ratio; get_msr(base_cpu, MSR_TURBO_RATIO_LIMIT1, &msr); fprintf(outf, "cpu%d: MSR_TURBO_RATIO_LIMIT1: 0x%08llx\n", base_cpu, msr); ratio = (msr >> 56) & 0xFF; if (ratio) fprintf(outf, "%d * %.1f = %.1f MHz max turbo 16 active cores\n", ratio, bclk, ratio * bclk); ratio = (msr >> 48) & 0xFF; if (ratio) fprintf(outf, "%d * %.1f = %.1f MHz max turbo 15 active cores\n", ratio, bclk, ratio * bclk); ratio = (msr >> 40) & 0xFF; if (ratio) fprintf(outf, "%d * %.1f = %.1f MHz max turbo 14 active cores\n", ratio, bclk, ratio * bclk); ratio = (msr >> 32) & 0xFF; if (ratio) fprintf(outf, "%d * %.1f = %.1f MHz max turbo 13 active cores\n", ratio, bclk, ratio * bclk); ratio = (msr >> 24) & 0xFF; if (ratio) fprintf(outf, "%d * %.1f = %.1f MHz max turbo 12 active cores\n", ratio, bclk, ratio * bclk); ratio = (msr >> 16) & 0xFF; if (ratio) fprintf(outf, "%d * %.1f = %.1f MHz max turbo 11 active cores\n", ratio, bclk, ratio * bclk); ratio = (msr >> 8) & 0xFF; if (ratio) fprintf(outf, "%d * %.1f = %.1f MHz max turbo 10 active cores\n", ratio, bclk, ratio * bclk); ratio = (msr >> 0) & 0xFF; if (ratio) fprintf(outf, "%d * %.1f = %.1f MHz max turbo 9 active cores\n", ratio, bclk, ratio * bclk); return; } static void dump_turbo_ratio_limits(int trl_msr_offset) { unsigned long long msr, core_counts; int shift; get_msr(base_cpu, trl_msr_offset, &msr); fprintf(outf, "cpu%d: MSR_%sTURBO_RATIO_LIMIT: 0x%08llx\n", base_cpu, trl_msr_offset == MSR_SECONDARY_TURBO_RATIO_LIMIT ? "SECONDARY_" : "", msr); if (platform->trl_msrs & TRL_CORECOUNT) { get_msr(base_cpu, MSR_TURBO_RATIO_LIMIT1, &core_counts); fprintf(outf, "cpu%d: MSR_TURBO_RATIO_LIMIT1: 0x%08llx\n", base_cpu, core_counts); } else { core_counts = 0x0807060504030201; } for (shift = 56; shift >= 0; shift -= 8) { unsigned int ratio, group_size; ratio = (msr >> shift) & 0xFF; group_size = (core_counts >> shift) & 0xFF; if (ratio) fprintf(outf, "%d * %.1f = %.1f MHz max turbo %d active cores\n", ratio, bclk, ratio * bclk, group_size); } return; } static void dump_atom_turbo_ratio_limits(void) { unsigned long long msr; unsigned int ratio; get_msr(base_cpu, MSR_ATOM_CORE_RATIOS, &msr); fprintf(outf, "cpu%d: MSR_ATOM_CORE_RATIOS: 0x%08llx\n", base_cpu, msr & 0xFFFFFFFF); ratio = (msr >> 0) & 0x3F; if (ratio) fprintf(outf, "%d * %.1f = %.1f MHz minimum operating frequency\n", ratio, bclk, ratio * bclk); ratio = (msr >> 8) & 0x3F; if (ratio) fprintf(outf, "%d * %.1f = %.1f MHz low frequency mode (LFM)\n", ratio, bclk, ratio * bclk); ratio = (msr >> 16) & 0x3F; if (ratio) fprintf(outf, "%d * %.1f = %.1f MHz base frequency\n", ratio, bclk, ratio * bclk); get_msr(base_cpu, MSR_ATOM_CORE_TURBO_RATIOS, &msr); fprintf(outf, "cpu%d: MSR_ATOM_CORE_TURBO_RATIOS: 0x%08llx\n", base_cpu, msr & 0xFFFFFFFF); ratio = (msr >> 24) & 0x3F; if (ratio) fprintf(outf, "%d * %.1f = %.1f MHz max turbo 4 active cores\n", ratio, bclk, ratio * bclk); ratio = (msr >> 16) & 0x3F; if (ratio) fprintf(outf, "%d * %.1f = %.1f MHz max turbo 3 active cores\n", ratio, bclk, ratio * bclk); ratio = (msr >> 8) & 0x3F; if (ratio) fprintf(outf, "%d * %.1f = %.1f MHz max turbo 2 active cores\n", ratio, bclk, ratio * bclk); ratio = (msr >> 0) & 0x3F; if (ratio) fprintf(outf, "%d * %.1f = %.1f MHz max turbo 1 active core\n", ratio, bclk, ratio * bclk); } static void dump_knl_turbo_ratio_limits(void) { const unsigned int buckets_no = 7; unsigned long long msr; int delta_cores, delta_ratio; int i, b_nr; unsigned int cores[buckets_no]; unsigned int ratio[buckets_no]; get_msr(base_cpu, MSR_TURBO_RATIO_LIMIT, &msr); fprintf(outf, "cpu%d: MSR_TURBO_RATIO_LIMIT: 0x%08llx\n", base_cpu, msr); /* * Turbo encoding in KNL is as follows: * [0] -- Reserved * [7:1] -- Base value of number of active cores of bucket 1. * [15:8] -- Base value of freq ratio of bucket 1. * [20:16] -- +ve delta of number of active cores of bucket 2. * i.e. active cores of bucket 2 = * active cores of bucket 1 + delta * [23:21] -- Negative delta of freq ratio of bucket 2. * i.e. freq ratio of bucket 2 = * freq ratio of bucket 1 - delta * [28:24]-- +ve delta of number of active cores of bucket 3. * [31:29]-- -ve delta of freq ratio of bucket 3. * [36:32]-- +ve delta of number of active cores of bucket 4. * [39:37]-- -ve delta of freq ratio of bucket 4. * [44:40]-- +ve delta of number of active cores of bucket 5. * [47:45]-- -ve delta of freq ratio of bucket 5. * [52:48]-- +ve delta of number of active cores of bucket 6. * [55:53]-- -ve delta of freq ratio of bucket 6. * [60:56]-- +ve delta of number of active cores of bucket 7. * [63:61]-- -ve delta of freq ratio of bucket 7. */ b_nr = 0; cores[b_nr] = (msr & 0xFF) >> 1; ratio[b_nr] = (msr >> 8) & 0xFF; for (i = 16; i < 64; i += 8) { delta_cores = (msr >> i) & 0x1F; delta_ratio = (msr >> (i + 5)) & 0x7; cores[b_nr + 1] = cores[b_nr] + delta_cores; ratio[b_nr + 1] = ratio[b_nr] - delta_ratio; b_nr++; } for (i = buckets_no - 1; i >= 0; i--) if (i > 0 ? ratio[i] != ratio[i - 1] : 1) fprintf(outf, "%d * %.1f = %.1f MHz max turbo %d active cores\n", ratio[i], bclk, ratio[i] * bclk, cores[i]); } static void dump_cst_cfg(void) { unsigned long long msr; if (!platform->has_nhm_msrs || no_msr) return; get_msr(base_cpu, MSR_PKG_CST_CONFIG_CONTROL, &msr); fprintf(outf, "cpu%d: MSR_PKG_CST_CONFIG_CONTROL: 0x%08llx", base_cpu, msr); fprintf(outf, " (%s%s%s%s%slocked, pkg-cstate-limit=%d (%s)", (msr & SNB_C3_AUTO_UNDEMOTE) ? "UNdemote-C3, " : "", (msr & SNB_C1_AUTO_UNDEMOTE) ? "UNdemote-C1, " : "", (msr & NHM_C3_AUTO_DEMOTE) ? "demote-C3, " : "", (msr & NHM_C1_AUTO_DEMOTE) ? "demote-C1, " : "", (msr & (1 << 15)) ? "" : "UN", (unsigned int)msr & 0xF, pkg_cstate_limit_strings[pkg_cstate_limit]); #define AUTOMATIC_CSTATE_CONVERSION (1UL << 16) if (platform->has_cst_auto_convension) { fprintf(outf, ", automatic c-state conversion=%s", (msr & AUTOMATIC_CSTATE_CONVERSION) ? "on" : "off"); } fprintf(outf, ")\n"); return; } static void dump_config_tdp(void) { unsigned long long msr; get_msr(base_cpu, MSR_CONFIG_TDP_NOMINAL, &msr); fprintf(outf, "cpu%d: MSR_CONFIG_TDP_NOMINAL: 0x%08llx", base_cpu, msr); fprintf(outf, " (base_ratio=%d)\n", (unsigned int)msr & 0xFF); get_msr(base_cpu, MSR_CONFIG_TDP_LEVEL_1, &msr); fprintf(outf, "cpu%d: MSR_CONFIG_TDP_LEVEL_1: 0x%08llx (", base_cpu, msr); if (msr) { fprintf(outf, "PKG_MIN_PWR_LVL1=%d ", (unsigned int)(msr >> 48) & 0x7FFF); fprintf(outf, "PKG_MAX_PWR_LVL1=%d ", (unsigned int)(msr >> 32) & 0x7FFF); fprintf(outf, "LVL1_RATIO=%d ", (unsigned int)(msr >> 16) & 0xFF); fprintf(outf, "PKG_TDP_LVL1=%d", (unsigned int)(msr) & 0x7FFF); } fprintf(outf, ")\n"); get_msr(base_cpu, MSR_CONFIG_TDP_LEVEL_2, &msr); fprintf(outf, "cpu%d: MSR_CONFIG_TDP_LEVEL_2: 0x%08llx (", base_cpu, msr); if (msr) { fprintf(outf, "PKG_MIN_PWR_LVL2=%d ", (unsigned int)(msr >> 48) & 0x7FFF); fprintf(outf, "PKG_MAX_PWR_LVL2=%d ", (unsigned int)(msr >> 32) & 0x7FFF); fprintf(outf, "LVL2_RATIO=%d ", (unsigned int)(msr >> 16) & 0xFF); fprintf(outf, "PKG_TDP_LVL2=%d", (unsigned int)(msr) & 0x7FFF); } fprintf(outf, ")\n"); get_msr(base_cpu, MSR_CONFIG_TDP_CONTROL, &msr); fprintf(outf, "cpu%d: MSR_CONFIG_TDP_CONTROL: 0x%08llx (", base_cpu, msr); if ((msr) & 0x3) fprintf(outf, "TDP_LEVEL=%d ", (unsigned int)(msr) & 0x3); fprintf(outf, " lock=%d", (unsigned int)(msr >> 31) & 1); fprintf(outf, ")\n"); get_msr(base_cpu, MSR_TURBO_ACTIVATION_RATIO, &msr); fprintf(outf, "cpu%d: MSR_TURBO_ACTIVATION_RATIO: 0x%08llx (", base_cpu, msr); fprintf(outf, "MAX_NON_TURBO_RATIO=%d", (unsigned int)(msr) & 0xFF); fprintf(outf, " lock=%d", (unsigned int)(msr >> 31) & 1); fprintf(outf, ")\n"); } unsigned int irtl_time_units[] = { 1, 32, 1024, 32768, 1048576, 33554432, 0, 0 }; void print_irtl(void) { unsigned long long msr; if (!platform->has_irtl_msrs || no_msr) return; if (platform->supported_cstates & PC3) { get_msr(base_cpu, MSR_PKGC3_IRTL, &msr); fprintf(outf, "cpu%d: MSR_PKGC3_IRTL: 0x%08llx (", base_cpu, msr); fprintf(outf, "%svalid, %lld ns)\n", msr & (1 << 15) ? "" : "NOT", (msr & 0x3FF) * irtl_time_units[(msr >> 10) & 0x3]); } if (platform->supported_cstates & PC6) { get_msr(base_cpu, MSR_PKGC6_IRTL, &msr); fprintf(outf, "cpu%d: MSR_PKGC6_IRTL: 0x%08llx (", base_cpu, msr); fprintf(outf, "%svalid, %lld ns)\n", msr & (1 << 15) ? "" : "NOT", (msr & 0x3FF) * irtl_time_units[(msr >> 10) & 0x3]); } if (platform->supported_cstates & PC7) { get_msr(base_cpu, MSR_PKGC7_IRTL, &msr); fprintf(outf, "cpu%d: MSR_PKGC7_IRTL: 0x%08llx (", base_cpu, msr); fprintf(outf, "%svalid, %lld ns)\n", msr & (1 << 15) ? "" : "NOT", (msr & 0x3FF) * irtl_time_units[(msr >> 10) & 0x3]); } if (platform->supported_cstates & PC8) { get_msr(base_cpu, MSR_PKGC8_IRTL, &msr); fprintf(outf, "cpu%d: MSR_PKGC8_IRTL: 0x%08llx (", base_cpu, msr); fprintf(outf, "%svalid, %lld ns)\n", msr & (1 << 15) ? "" : "NOT", (msr & 0x3FF) * irtl_time_units[(msr >> 10) & 0x3]); } if (platform->supported_cstates & PC9) { get_msr(base_cpu, MSR_PKGC9_IRTL, &msr); fprintf(outf, "cpu%d: MSR_PKGC9_IRTL: 0x%08llx (", base_cpu, msr); fprintf(outf, "%svalid, %lld ns)\n", msr & (1 << 15) ? "" : "NOT", (msr & 0x3FF) * irtl_time_units[(msr >> 10) & 0x3]); } if (platform->supported_cstates & PC10) { get_msr(base_cpu, MSR_PKGC10_IRTL, &msr); fprintf(outf, "cpu%d: MSR_PKGC10_IRTL: 0x%08llx (", base_cpu, msr); fprintf(outf, "%svalid, %lld ns)\n", msr & (1 << 15) ? "" : "NOT", (msr & 0x3FF) * irtl_time_units[(msr >> 10) & 0x3]); } } void free_fd_percpu(void) { int i; if (!fd_percpu) return; for (i = 0; i < topo.max_cpu_num + 1; ++i) { if (fd_percpu[i] != 0) close(fd_percpu[i]); } free(fd_percpu); fd_percpu = NULL; } void free_fd_instr_count_percpu(void) { if (!fd_instr_count_percpu) return; for (int i = 0; i < topo.max_cpu_num + 1; ++i) { if (fd_instr_count_percpu[i] != 0) close(fd_instr_count_percpu[i]); } free(fd_instr_count_percpu); fd_instr_count_percpu = NULL; } void free_fd_cstate(void) { if (!ccstate_counter_info) return; const int counter_info_num = ccstate_counter_info_size; for (int counter_id = 0; counter_id < counter_info_num; ++counter_id) { if (ccstate_counter_info[counter_id].fd_perf_core != -1) close(ccstate_counter_info[counter_id].fd_perf_core); if (ccstate_counter_info[counter_id].fd_perf_pkg != -1) close(ccstate_counter_info[counter_id].fd_perf_pkg); } free(ccstate_counter_info); ccstate_counter_info = NULL; ccstate_counter_info_size = 0; } void free_fd_msr(void) { if (!msr_counter_info) return; for (int cpu = 0; cpu < topo.max_cpu_num; ++cpu) { if (msr_counter_info[cpu].fd_perf != -1) close(msr_counter_info[cpu].fd_perf); } free(msr_counter_info); msr_counter_info = NULL; msr_counter_info_size = 0; } void free_fd_rapl_percpu(void) { if (!rapl_counter_info_perdomain) return; const int num_domains = rapl_counter_info_perdomain_size; for (int domain_id = 0; domain_id < num_domains; ++domain_id) { if (rapl_counter_info_perdomain[domain_id].fd_perf != -1) close(rapl_counter_info_perdomain[domain_id].fd_perf); } free(rapl_counter_info_perdomain); rapl_counter_info_perdomain = NULL; rapl_counter_info_perdomain_size = 0; } void free_fd_added_perf_counters_(struct perf_counter_info *pp) { if (!pp) return; if (!pp->fd_perf_per_domain) return; while (pp) { for (size_t domain = 0; domain < pp->num_domains; ++domain) { if (pp->fd_perf_per_domain[domain] != -1) { close(pp->fd_perf_per_domain[domain]); pp->fd_perf_per_domain[domain] = -1; } } free(pp->fd_perf_per_domain); pp->fd_perf_per_domain = NULL; pp = pp->next; } } void free_fd_added_perf_counters(void) { free_fd_added_perf_counters_(sys.perf_tp); free_fd_added_perf_counters_(sys.perf_cp); free_fd_added_perf_counters_(sys.perf_pp); } void free_all_buffers(void) { int i; CPU_FREE(cpu_present_set); cpu_present_set = NULL; cpu_present_setsize = 0; CPU_FREE(cpu_effective_set); cpu_effective_set = NULL; cpu_effective_setsize = 0; CPU_FREE(cpu_allowed_set); cpu_allowed_set = NULL; cpu_allowed_setsize = 0; CPU_FREE(cpu_affinity_set); cpu_affinity_set = NULL; cpu_affinity_setsize = 0; free(thread_even); free(core_even); free(package_even); thread_even = NULL; core_even = NULL; package_even = NULL; free(thread_odd); free(core_odd); free(package_odd); thread_odd = NULL; core_odd = NULL; package_odd = NULL; free(output_buffer); output_buffer = NULL; outp = NULL; free_fd_percpu(); free_fd_instr_count_percpu(); free_fd_msr(); free_fd_rapl_percpu(); free_fd_cstate(); free_fd_added_perf_counters(); free(irq_column_2_cpu); free(irqs_per_cpu); for (i = 0; i <= topo.max_cpu_num; ++i) { if (cpus[i].put_ids) CPU_FREE(cpus[i].put_ids); } free(cpus); } /* * Parse a file containing a single int. * Return 0 if file can not be opened * Exit if file can be opened, but can not be parsed */ int parse_int_file(const char *fmt, ...) { va_list args; char path[PATH_MAX]; FILE *filep; int value; va_start(args, fmt); vsnprintf(path, sizeof(path), fmt, args); va_end(args); filep = fopen(path, "r"); if (!filep) return 0; if (fscanf(filep, "%d", &value) != 1) err(1, "%s: failed to parse number from file", path); fclose(filep); return value; } /* * cpu_is_first_core_in_package(cpu) * return 1 if given CPU is 1st core in package */ int cpu_is_first_core_in_package(int cpu) { return cpu == parse_int_file("/sys/devices/system/cpu/cpu%d/topology/core_siblings_list", cpu); } int get_physical_package_id(int cpu) { return parse_int_file("/sys/devices/system/cpu/cpu%d/topology/physical_package_id", cpu); } int get_die_id(int cpu) { return parse_int_file("/sys/devices/system/cpu/cpu%d/topology/die_id", cpu); } int get_core_id(int cpu) { return parse_int_file("/sys/devices/system/cpu/cpu%d/topology/core_id", cpu); } void set_node_data(void) { int pkg, node, lnode, cpu, cpux; int cpu_count; /* initialize logical_node_id */ for (cpu = 0; cpu <= topo.max_cpu_num; ++cpu) cpus[cpu].logical_node_id = -1; cpu_count = 0; for (pkg = 0; pkg < topo.num_packages; pkg++) { lnode = 0; for (cpu = 0; cpu <= topo.max_cpu_num; ++cpu) { if (cpus[cpu].physical_package_id != pkg) continue; /* find a cpu with an unset logical_node_id */ if (cpus[cpu].logical_node_id != -1) continue; cpus[cpu].logical_node_id = lnode; node = cpus[cpu].physical_node_id; cpu_count++; /* * find all matching cpus on this pkg and set * the logical_node_id */ for (cpux = cpu; cpux <= topo.max_cpu_num; cpux++) { if ((cpus[cpux].physical_package_id == pkg) && (cpus[cpux].physical_node_id == node)) { cpus[cpux].logical_node_id = lnode; cpu_count++; } } lnode++; if (lnode > topo.nodes_per_pkg) topo.nodes_per_pkg = lnode; } if (cpu_count >= topo.max_cpu_num) break; } } int get_physical_node_id(struct cpu_topology *thiscpu) { char path[80]; FILE *filep; int i; int cpu = thiscpu->logical_cpu_id; for (i = 0; i <= topo.max_cpu_num; i++) { sprintf(path, "/sys/devices/system/cpu/cpu%d/node%i/cpulist", cpu, i); filep = fopen(path, "r"); if (!filep) continue; fclose(filep); return i; } return -1; } static int parse_cpu_str(char *cpu_str, cpu_set_t *cpu_set, int cpu_set_size) { unsigned int start, end; char *next = cpu_str; while (next && *next) { if (*next == '-') /* no negative cpu numbers */ return 1; if (*next == '\0' || *next == '\n') break; start = strtoul(next, &next, 10); if (start >= CPU_SUBSET_MAXCPUS) return 1; CPU_SET_S(start, cpu_set_size, cpu_set); if (*next == '\0' || *next == '\n') break; if (*next == ',') { next += 1; continue; } if (*next == '-') { next += 1; /* start range */ } else if (*next == '.') { next += 1; if (*next == '.') next += 1; /* start range */ else return 1; } end = strtoul(next, &next, 10); if (end <= start) return 1; while (++start <= end) { if (start >= CPU_SUBSET_MAXCPUS) return 1; CPU_SET_S(start, cpu_set_size, cpu_set); } if (*next == ',') next += 1; else if (*next != '\0' && *next != '\n') return 1; } return 0; } int get_thread_siblings(struct cpu_topology *thiscpu) { char path[80], character; FILE *filep; unsigned long map; int so, shift, sib_core; int cpu = thiscpu->logical_cpu_id; int offset = topo.max_cpu_num + 1; size_t size; int thread_id = 0; thiscpu->put_ids = CPU_ALLOC((topo.max_cpu_num + 1)); if (thiscpu->thread_id < 0) thiscpu->thread_id = thread_id++; if (!thiscpu->put_ids) return -1; size = CPU_ALLOC_SIZE((topo.max_cpu_num + 1)); CPU_ZERO_S(size, thiscpu->put_ids); sprintf(path, "/sys/devices/system/cpu/cpu%d/topology/thread_siblings", cpu); filep = fopen(path, "r"); if (!filep) { warnx("%s: open failed", path); return -1; } do { offset -= BITMASK_SIZE; if (fscanf(filep, "%lx%c", &map, &character) != 2) err(1, "%s: failed to parse file", path); for (shift = 0; shift < BITMASK_SIZE; shift++) { if ((map >> shift) & 0x1) { so = shift + offset; sib_core = get_core_id(so); if (sib_core == thiscpu->physical_core_id) { CPU_SET_S(so, size, thiscpu->put_ids); if ((so != cpu) && (cpus[so].thread_id < 0)) cpus[so].thread_id = thread_id++; } } } } while (character == ','); fclose(filep); return CPU_COUNT_S(size, thiscpu->put_ids); } /* * run func(thread, core, package) in topology order * skip non-present cpus */ int for_all_cpus_2(int (func) (struct thread_data *, struct core_data *, struct pkg_data *, struct thread_data *, struct core_data *, struct pkg_data *), struct thread_data *thread_base, struct core_data *core_base, struct pkg_data *pkg_base, struct thread_data *thread_base2, struct core_data *core_base2, struct pkg_data *pkg_base2) { int retval, pkg_no, node_no, core_no, thread_no; for (pkg_no = 0; pkg_no < topo.num_packages; ++pkg_no) { for (node_no = 0; node_no < topo.nodes_per_pkg; ++node_no) { for (core_no = 0; core_no < topo.cores_per_node; ++core_no) { for (thread_no = 0; thread_no < topo.threads_per_core; ++thread_no) { struct thread_data *t, *t2; struct core_data *c, *c2; struct pkg_data *p, *p2; t = GET_THREAD(thread_base, thread_no, core_no, node_no, pkg_no); if (cpu_is_not_allowed(t->cpu_id)) continue; t2 = GET_THREAD(thread_base2, thread_no, core_no, node_no, pkg_no); c = GET_CORE(core_base, core_no, node_no, pkg_no); c2 = GET_CORE(core_base2, core_no, node_no, pkg_no); p = GET_PKG(pkg_base, pkg_no); p2 = GET_PKG(pkg_base2, pkg_no); retval = func(t, c, p, t2, c2, p2); if (retval) return retval; } } } } return 0; } /* * run func(cpu) on every cpu in /proc/stat * return max_cpu number */ int for_all_proc_cpus(int (func) (int)) { FILE *fp; int cpu_num; int retval; fp = fopen_or_die(proc_stat, "r"); retval = fscanf(fp, "cpu %*d %*d %*d %*d %*d %*d %*d %*d %*d %*d\n"); if (retval != 0) err(1, "%s: failed to parse format", proc_stat); while (1) { retval = fscanf(fp, "cpu%u %*d %*d %*d %*d %*d %*d %*d %*d %*d %*d\n", &cpu_num); if (retval != 1) break; retval = func(cpu_num); if (retval) { fclose(fp); return (retval); } } fclose(fp); return 0; } #define PATH_EFFECTIVE_CPUS "/sys/fs/cgroup/cpuset.cpus.effective" static char cpu_effective_str[1024]; static int update_effective_str(bool startup) { FILE *fp; char *pos; char buf[1024]; int ret; if (cpu_effective_str[0] == '\0' && !startup) return 0; fp = fopen(PATH_EFFECTIVE_CPUS, "r"); if (!fp) return 0; pos = fgets(buf, 1024, fp); if (!pos) err(1, "%s: file read failed\n", PATH_EFFECTIVE_CPUS); fclose(fp); ret = strncmp(cpu_effective_str, buf, 1024); if (!ret) return 0; strncpy(cpu_effective_str, buf, 1024); return 1; } static void update_effective_set(bool startup) { update_effective_str(startup); if (parse_cpu_str(cpu_effective_str, cpu_effective_set, cpu_effective_setsize)) err(1, "%s: cpu str malformat %s\n", PATH_EFFECTIVE_CPUS, cpu_effective_str); } void linux_perf_init(void); void msr_perf_init(void); void rapl_perf_init(void); void cstate_perf_init(void); void added_perf_counters_init(void); void pmt_init(void); void re_initialize(void) { free_all_buffers(); setup_all_buffers(false); linux_perf_init(); msr_perf_init(); rapl_perf_init(); cstate_perf_init(); added_perf_counters_init(); pmt_init(); fprintf(outf, "turbostat: re-initialized with num_cpus %d, allowed_cpus %d\n", topo.num_cpus, topo.allowed_cpus); } void set_max_cpu_num(void) { FILE *filep; int base_cpu; unsigned long dummy; char pathname[64]; base_cpu = sched_getcpu(); if (base_cpu < 0) err(1, "cannot find calling cpu ID"); sprintf(pathname, "/sys/devices/system/cpu/cpu%d/topology/thread_siblings", base_cpu); filep = fopen_or_die(pathname, "r"); topo.max_cpu_num = 0; while (fscanf(filep, "%lx,", &dummy) == 1) topo.max_cpu_num += BITMASK_SIZE; fclose(filep); topo.max_cpu_num--; /* 0 based */ } /* * count_cpus() * remember the last one seen, it will be the max */ int count_cpus(int cpu) { UNUSED(cpu); topo.num_cpus++; return 0; } int mark_cpu_present(int cpu) { CPU_SET_S(cpu, cpu_present_setsize, cpu_present_set); return 0; } int init_thread_id(int cpu) { cpus[cpu].thread_id = -1; return 0; } int set_my_cpu_type(void) { unsigned int eax, ebx, ecx, edx; unsigned int max_level; __cpuid(0, max_level, ebx, ecx, edx); if (max_level < CPUID_LEAF_MODEL_ID) return 0; __cpuid(CPUID_LEAF_MODEL_ID, eax, ebx, ecx, edx); return (eax >> CPUID_LEAF_MODEL_ID_CORE_TYPE_SHIFT); } int set_cpu_hybrid_type(int cpu) { if (cpu_migrate(cpu)) return -1; int type = set_my_cpu_type(); cpus[cpu].type = type; return 0; } /* * snapshot_proc_interrupts() * * read and record summary of /proc/interrupts * * return 1 if config change requires a restart, else return 0 */ int snapshot_proc_interrupts(void) { static FILE *fp; int column, retval; if (fp == NULL) fp = fopen_or_die("/proc/interrupts", "r"); else rewind(fp); /* read 1st line of /proc/interrupts to get cpu* name for each column */ for (column = 0; column < topo.num_cpus; ++column) { int cpu_number; retval = fscanf(fp, " CPU%d", &cpu_number); if (retval != 1) break; if (cpu_number > topo.max_cpu_num) { warn("/proc/interrupts: cpu%d: > %d", cpu_number, topo.max_cpu_num); return 1; } irq_column_2_cpu[column] = cpu_number; irqs_per_cpu[cpu_number] = 0; } /* read /proc/interrupt count lines and sum up irqs per cpu */ while (1) { int column; char buf[64]; retval = fscanf(fp, " %s:", buf); /* flush irq# "N:" */ if (retval != 1) break; /* read the count per cpu */ for (column = 0; column < topo.num_cpus; ++column) { int cpu_number, irq_count; retval = fscanf(fp, " %d", &irq_count); if (retval != 1) break; cpu_number = irq_column_2_cpu[column]; irqs_per_cpu[cpu_number] += irq_count; } while (getc(fp) != '\n') ; /* flush interrupt description */ } return 0; } /* * snapshot_graphics() * * record snapshot of specified graphics sysfs knob * * return 1 if config change requires a restart, else return 0 */ int snapshot_graphics(int idx) { int retval; rewind(gfx_info[idx].fp); switch (idx) { case GFX_rc6: case SAM_mc6: retval = fscanf(gfx_info[idx].fp, "%lld", &gfx_info[idx].val_ull); if (retval != 1) err(1, "rc6"); return 0; case GFX_MHz: case GFX_ACTMHz: case SAM_MHz: case SAM_ACTMHz: retval = fscanf(gfx_info[idx].fp, "%d", &gfx_info[idx].val); if (retval != 1) err(1, "MHz"); return 0; default: return -EINVAL; } } /* * snapshot_cpu_lpi() * * record snapshot of * /sys/devices/system/cpu/cpuidle/low_power_idle_cpu_residency_us */ int snapshot_cpu_lpi_us(void) { FILE *fp; int retval; fp = fopen_or_die("/sys/devices/system/cpu/cpuidle/low_power_idle_cpu_residency_us", "r"); retval = fscanf(fp, "%lld", &cpuidle_cur_cpu_lpi_us); if (retval != 1) { fprintf(stderr, "Disabling Low Power Idle CPU output\n"); BIC_NOT_PRESENT(BIC_CPU_LPI); fclose(fp); return -1; } fclose(fp); return 0; } /* * snapshot_sys_lpi() * * record snapshot of sys_lpi_file */ int snapshot_sys_lpi_us(void) { FILE *fp; int retval; fp = fopen_or_die(sys_lpi_file, "r"); retval = fscanf(fp, "%lld", &cpuidle_cur_sys_lpi_us); if (retval != 1) { fprintf(stderr, "Disabling Low Power Idle System output\n"); BIC_NOT_PRESENT(BIC_SYS_LPI); fclose(fp); return -1; } fclose(fp); return 0; } /* * snapshot /proc and /sys files * * return 1 if configuration restart needed, else return 0 */ int snapshot_proc_sysfs_files(void) { if (DO_BIC(BIC_IRQ)) if (snapshot_proc_interrupts()) return 1; if (DO_BIC(BIC_GFX_rc6)) snapshot_graphics(GFX_rc6); if (DO_BIC(BIC_GFXMHz)) snapshot_graphics(GFX_MHz); if (DO_BIC(BIC_GFXACTMHz)) snapshot_graphics(GFX_ACTMHz); if (DO_BIC(BIC_SAM_mc6)) snapshot_graphics(SAM_mc6); if (DO_BIC(BIC_SAMMHz)) snapshot_graphics(SAM_MHz); if (DO_BIC(BIC_SAMACTMHz)) snapshot_graphics(SAM_ACTMHz); if (DO_BIC(BIC_CPU_LPI)) snapshot_cpu_lpi_us(); if (DO_BIC(BIC_SYS_LPI)) snapshot_sys_lpi_us(); return 0; } int exit_requested; static void signal_handler(int signal) { switch (signal) { case SIGINT: exit_requested = 1; if (debug) fprintf(stderr, " SIGINT\n"); break; case SIGUSR1: if (debug > 1) fprintf(stderr, "SIGUSR1\n"); break; } } void setup_signal_handler(void) { struct sigaction sa; memset(&sa, 0, sizeof(sa)); sa.sa_handler = &signal_handler; if (sigaction(SIGINT, &sa, NULL) < 0) err(1, "sigaction SIGINT"); if (sigaction(SIGUSR1, &sa, NULL) < 0) err(1, "sigaction SIGUSR1"); } void do_sleep(void) { struct timeval tout; struct timespec rest; fd_set readfds; int retval; FD_ZERO(&readfds); FD_SET(0, &readfds); if (ignore_stdin) { nanosleep(&interval_ts, NULL); return; } tout = interval_tv; retval = select(1, &readfds, NULL, NULL, &tout); if (retval == 1) { switch (getc(stdin)) { case 'q': exit_requested = 1; break; case EOF: /* * 'stdin' is a pipe closed on the other end. There * won't be any further input. */ ignore_stdin = 1; /* Sleep the rest of the time */ rest.tv_sec = (tout.tv_sec + tout.tv_usec / 1000000); rest.tv_nsec = (tout.tv_usec % 1000000) * 1000; nanosleep(&rest, NULL); } } } int get_msr_sum(int cpu, off_t offset, unsigned long long *msr) { int ret, idx; unsigned long long msr_cur, msr_last; assert(!no_msr); if (!per_cpu_msr_sum) return 1; idx = offset_to_idx(offset); if (idx < 0) return idx; /* get_msr_sum() = sum + (get_msr() - last) */ ret = get_msr(cpu, offset, &msr_cur); if (ret) return ret; msr_last = per_cpu_msr_sum[cpu].entries[idx].last; DELTA_WRAP32(msr_cur, msr_last); *msr = msr_last + per_cpu_msr_sum[cpu].entries[idx].sum; return 0; } timer_t timerid; /* Timer callback, update the sum of MSRs periodically. */ static int update_msr_sum(struct thread_data *t, struct core_data *c, struct pkg_data *p) { int i, ret; int cpu = t->cpu_id; UNUSED(c); UNUSED(p); assert(!no_msr); for (i = IDX_PKG_ENERGY; i < IDX_COUNT; i++) { unsigned long long msr_cur, msr_last; off_t offset; if (!idx_valid(i)) continue; offset = idx_to_offset(i); if (offset < 0) continue; ret = get_msr(cpu, offset, &msr_cur); if (ret) { fprintf(outf, "Can not update msr(0x%llx)\n", (unsigned long long)offset); continue; } msr_last = per_cpu_msr_sum[cpu].entries[i].last; per_cpu_msr_sum[cpu].entries[i].last = msr_cur & 0xffffffff; DELTA_WRAP32(msr_cur, msr_last); per_cpu_msr_sum[cpu].entries[i].sum += msr_last; } return 0; } static void msr_record_handler(union sigval v) { UNUSED(v); for_all_cpus(update_msr_sum, EVEN_COUNTERS); } void msr_sum_record(void) { struct itimerspec its; struct sigevent sev; per_cpu_msr_sum = calloc(topo.max_cpu_num + 1, sizeof(struct msr_sum_array)); if (!per_cpu_msr_sum) { fprintf(outf, "Can not allocate memory for long time MSR.\n"); return; } /* * Signal handler might be restricted, so use thread notifier instead. */ memset(&sev, 0, sizeof(struct sigevent)); sev.sigev_notify = SIGEV_THREAD; sev.sigev_notify_function = msr_record_handler; sev.sigev_value.sival_ptr = &timerid; if (timer_create(CLOCK_REALTIME, &sev, &timerid) == -1) { fprintf(outf, "Can not create timer.\n"); goto release_msr; } its.it_value.tv_sec = 0; its.it_value.tv_nsec = 1; /* * A wraparound time has been calculated early. * Some sources state that the peak power for a * microprocessor is usually 1.5 times the TDP rating, * use 2 * TDP for safety. */ its.it_interval.tv_sec = rapl_joule_counter_range / 2; its.it_interval.tv_nsec = 0; if (timer_settime(timerid, 0, &its, NULL) == -1) { fprintf(outf, "Can not set timer.\n"); goto release_timer; } return; release_timer: timer_delete(timerid); release_msr: free(per_cpu_msr_sum); } /* * set_my_sched_priority(pri) * return previous priority on success * return value < -20 on failure */ int set_my_sched_priority(int priority) { int retval; int original_priority; errno = 0; original_priority = getpriority(PRIO_PROCESS, 0); if (errno && (original_priority == -1)) return -21; retval = setpriority(PRIO_PROCESS, 0, priority); if (retval) return -21; errno = 0; retval = getpriority(PRIO_PROCESS, 0); if (retval != priority) return -21; return original_priority; } void turbostat_loop() { int retval; int restarted = 0; unsigned int done_iters = 0; setup_signal_handler(); /* * elevate own priority for interval mode * * ignore on error - we probably don't have permission to set it, but * it's not a big deal */ set_my_sched_priority(-20); restart: restarted++; snapshot_proc_sysfs_files(); retval = for_all_cpus(get_counters, EVEN_COUNTERS); first_counter_read = 0; if (retval < -1) { exit(retval); } else if (retval == -1) { if (restarted > 10) { exit(retval); } re_initialize(); goto restart; } restarted = 0; done_iters = 0; gettimeofday(&tv_even, (struct timezone *)NULL); while (1) { if (for_all_proc_cpus(cpu_is_not_present)) { re_initialize(); goto restart; } if (update_effective_str(false)) { re_initialize(); goto restart; } do_sleep(); if (snapshot_proc_sysfs_files()) goto restart; retval = for_all_cpus(get_counters, ODD_COUNTERS); if (retval < -1) { exit(retval); } else if (retval == -1) { re_initialize(); goto restart; } gettimeofday(&tv_odd, (struct timezone *)NULL); timersub(&tv_odd, &tv_even, &tv_delta); if (for_all_cpus_2(delta_cpu, ODD_COUNTERS, EVEN_COUNTERS)) { re_initialize(); goto restart; } delta_platform(&platform_counters_odd, &platform_counters_even); compute_average(EVEN_COUNTERS); format_all_counters(EVEN_COUNTERS); flush_output_stdout(); if (exit_requested) break; if (num_iterations && ++done_iters >= num_iterations) break; do_sleep(); if (snapshot_proc_sysfs_files()) goto restart; retval = for_all_cpus(get_counters, EVEN_COUNTERS); if (retval < -1) { exit(retval); } else if (retval == -1) { re_initialize(); goto restart; } gettimeofday(&tv_even, (struct timezone *)NULL); timersub(&tv_even, &tv_odd, &tv_delta); if (for_all_cpus_2(delta_cpu, EVEN_COUNTERS, ODD_COUNTERS)) { re_initialize(); goto restart; } delta_platform(&platform_counters_even, &platform_counters_odd); compute_average(ODD_COUNTERS); format_all_counters(ODD_COUNTERS); flush_output_stdout(); if (exit_requested) break; if (num_iterations && ++done_iters >= num_iterations) break; } } void check_dev_msr() { struct stat sb; char pathname[32]; if (no_msr) return; sprintf(pathname, "/dev/cpu/%d/msr", base_cpu); if (stat(pathname, &sb)) if (system("/sbin/modprobe msr > /dev/null 2>&1")) no_msr = 1; } /* * check for CAP_SYS_RAWIO * return 0 on success * return 1 on fail */ int check_for_cap_sys_rawio(void) { cap_t caps; cap_flag_value_t cap_flag_value; int ret = 0; caps = cap_get_proc(); if (caps == NULL) return 1; if (cap_get_flag(caps, CAP_SYS_RAWIO, CAP_EFFECTIVE, &cap_flag_value)) { ret = 1; goto free_and_exit; } if (cap_flag_value != CAP_SET) { ret = 1; goto free_and_exit; } free_and_exit: if (cap_free(caps) == -1) err(-6, "cap_free\n"); return ret; } void check_msr_permission(void) { int failed = 0; char pathname[32]; if (no_msr) return; /* check for CAP_SYS_RAWIO */ failed += check_for_cap_sys_rawio(); /* test file permissions */ sprintf(pathname, "/dev/cpu/%d/msr", base_cpu); if (euidaccess(pathname, R_OK)) { failed++; } if (failed) { warnx("Failed to access %s. Some of the counters may not be available\n" "\tRun as root to enable them or use %s to disable the access explicitly", pathname, "--no-msr"); no_msr = 1; } } void probe_bclk(void) { unsigned long long msr; unsigned int base_ratio; if (!platform->has_nhm_msrs || no_msr) return; if (platform->bclk_freq == BCLK_100MHZ) bclk = 100.00; else if (platform->bclk_freq == BCLK_133MHZ) bclk = 133.33; else if (platform->bclk_freq == BCLK_SLV) bclk = slm_bclk(); else return; get_msr(base_cpu, MSR_PLATFORM_INFO, &msr); base_ratio = (msr >> 8) & 0xFF; base_hz = base_ratio * bclk * 1000000; has_base_hz = 1; if (platform->enable_tsc_tweak) tsc_tweak = base_hz / tsc_hz; } static void remove_underbar(char *s) { char *to = s; while (*s) { if (*s != '_') *to++ = *s; s++; } *to = 0; } static void dump_turbo_ratio_info(void) { if (!has_turbo) return; if (!platform->has_nhm_msrs || no_msr) return; if (platform->trl_msrs & TRL_LIMIT2) dump_turbo_ratio_limit2(); if (platform->trl_msrs & TRL_LIMIT1) dump_turbo_ratio_limit1(); if (platform->trl_msrs & TRL_BASE) { dump_turbo_ratio_limits(MSR_TURBO_RATIO_LIMIT); if (is_hybrid) dump_turbo_ratio_limits(MSR_SECONDARY_TURBO_RATIO_LIMIT); } if (platform->trl_msrs & TRL_ATOM) dump_atom_turbo_ratio_limits(); if (platform->trl_msrs & TRL_KNL) dump_knl_turbo_ratio_limits(); if (platform->has_config_tdp) dump_config_tdp(); } static int read_sysfs_int(char *path) { FILE *input; int retval = -1; input = fopen(path, "r"); if (input == NULL) { if (debug) fprintf(outf, "NSFOD %s\n", path); return (-1); } if (fscanf(input, "%d", &retval) != 1) err(1, "%s: failed to read int from file", path); fclose(input); return (retval); } static void dump_sysfs_file(char *path) { FILE *input; char cpuidle_buf[64]; input = fopen(path, "r"); if (input == NULL) { if (debug) fprintf(outf, "NSFOD %s\n", path); return; } if (!fgets(cpuidle_buf, sizeof(cpuidle_buf), input)) err(1, "%s: failed to read file", path); fclose(input); fprintf(outf, "%s: %s", strrchr(path, '/') + 1, cpuidle_buf); } static void probe_intel_uncore_frequency_legacy(void) { int i, j; char path[256]; for (i = 0; i < topo.num_packages; ++i) { for (j = 0; j <= topo.max_die_id; ++j) { int k, l; char path_base[128]; sprintf(path_base, "/sys/devices/system/cpu/intel_uncore_frequency/package_%02d_die_%02d", i, j); if (access(path_base, R_OK)) continue; BIC_PRESENT(BIC_UNCORE_MHZ); if (quiet) return; sprintf(path, "%s/min_freq_khz", path_base); k = read_sysfs_int(path); sprintf(path, "%s/max_freq_khz", path_base); l = read_sysfs_int(path); fprintf(outf, "Uncore Frequency package%d die%d: %d - %d MHz ", i, j, k / 1000, l / 1000); sprintf(path, "%s/initial_min_freq_khz", path_base); k = read_sysfs_int(path); sprintf(path, "%s/initial_max_freq_khz", path_base); l = read_sysfs_int(path); fprintf(outf, "(%d - %d MHz)", k / 1000, l / 1000); sprintf(path, "%s/current_freq_khz", path_base); k = read_sysfs_int(path); fprintf(outf, " %d MHz\n", k / 1000); } } } static void probe_intel_uncore_frequency_cluster(void) { int i, uncore_max_id; char path[256]; char path_base[128]; if (access("/sys/devices/system/cpu/intel_uncore_frequency/uncore00/current_freq_khz", R_OK)) return; for (uncore_max_id = 0;; ++uncore_max_id) { sprintf(path_base, "/sys/devices/system/cpu/intel_uncore_frequency/uncore%02d", uncore_max_id); /* uncore## start at 00 and skips no numbers, so stop upon first missing */ if (access(path_base, R_OK)) { uncore_max_id -= 1; break; } } for (i = uncore_max_id; i >= 0; --i) { int k, l; int package_id, domain_id, cluster_id; char name_buf[16]; sprintf(path_base, "/sys/devices/system/cpu/intel_uncore_frequency/uncore%02d", i); if (access(path_base, R_OK)) err(1, "%s: %s\n", __func__, path_base); sprintf(path, "%s/package_id", path_base); package_id = read_sysfs_int(path); sprintf(path, "%s/domain_id", path_base); domain_id = read_sysfs_int(path); sprintf(path, "%s/fabric_cluster_id", path_base); cluster_id = read_sysfs_int(path); sprintf(path, "%s/current_freq_khz", path_base); sprintf(name_buf, "UMHz%d.%d", domain_id, cluster_id); add_counter(0, path, name_buf, 0, SCOPE_PACKAGE, COUNTER_K2M, FORMAT_AVERAGE, 0, package_id); if (quiet) continue; sprintf(path, "%s/min_freq_khz", path_base); k = read_sysfs_int(path); sprintf(path, "%s/max_freq_khz", path_base); l = read_sysfs_int(path); fprintf(outf, "Uncore Frequency package%d domain%d cluster%d: %d - %d MHz ", package_id, domain_id, cluster_id, k / 1000, l / 1000); sprintf(path, "%s/initial_min_freq_khz", path_base); k = read_sysfs_int(path); sprintf(path, "%s/initial_max_freq_khz", path_base); l = read_sysfs_int(path); fprintf(outf, "(%d - %d MHz)", k / 1000, l / 1000); sprintf(path, "%s/current_freq_khz", path_base); k = read_sysfs_int(path); fprintf(outf, " %d MHz\n", k / 1000); } } static void probe_intel_uncore_frequency(void) { if (!genuine_intel) return; if (access("/sys/devices/system/cpu/intel_uncore_frequency/uncore00", R_OK) == 0) probe_intel_uncore_frequency_cluster(); else probe_intel_uncore_frequency_legacy(); } static void set_graphics_fp(char *path, int idx) { if (!access(path, R_OK)) gfx_info[idx].fp = fopen_or_die(path, "r"); } /* Enlarge this if there are /sys/class/drm/card2 ... */ #define GFX_MAX_CARDS 2 static void probe_graphics(void) { char path[PATH_MAX]; int i; /* Xe graphics sysfs knobs */ if (!access("/sys/class/drm/card0/device/tile0/gt0/gtidle/idle_residency_ms", R_OK)) { FILE *fp; char buf[8]; bool gt0_is_gt; fp = fopen("/sys/class/drm/card0/device/tile0/gt0/gtidle/name", "r"); if (!fp) goto next; if (!fread(buf, sizeof(char), 7, fp)) { fclose(fp); goto next; } fclose(fp); if (!strncmp(buf, "gt0-rc", strlen("gt0-rc"))) gt0_is_gt = true; else if (!strncmp(buf, "gt0-mc", strlen("gt0-mc"))) gt0_is_gt = false; else goto next; set_graphics_fp("/sys/class/drm/card0/device/tile0/gt0/gtidle/idle_residency_ms", gt0_is_gt ? GFX_rc6 : SAM_mc6); set_graphics_fp("/sys/class/drm/card0/device/tile0/gt0/freq0/cur_freq", gt0_is_gt ? GFX_MHz : SAM_MHz); set_graphics_fp("/sys/class/drm/card0/device/tile0/gt0/freq0/act_freq", gt0_is_gt ? GFX_ACTMHz : SAM_ACTMHz); set_graphics_fp("/sys/class/drm/card0/device/tile0/gt1/gtidle/idle_residency_ms", gt0_is_gt ? SAM_mc6 : GFX_rc6); set_graphics_fp("/sys/class/drm/card0/device/tile0/gt1/freq0/cur_freq", gt0_is_gt ? SAM_MHz : GFX_MHz); set_graphics_fp("/sys/class/drm/card0/device/tile0/gt1/freq0/act_freq", gt0_is_gt ? SAM_ACTMHz : GFX_ACTMHz); goto end; } next: /* New i915 graphics sysfs knobs */ for (i = 0; i < GFX_MAX_CARDS; i++) { snprintf(path, PATH_MAX, "/sys/class/drm/card%d/gt/gt0/rc6_residency_ms", i); if (!access(path, R_OK)) break; } if (i == GFX_MAX_CARDS) goto legacy_i915; snprintf(path, PATH_MAX, "/sys/class/drm/card%d/gt/gt0/rc6_residency_ms", i); set_graphics_fp(path, GFX_rc6); snprintf(path, PATH_MAX, "/sys/class/drm/card%d/gt/gt0/rps_cur_freq_mhz", i); set_graphics_fp(path, GFX_MHz); snprintf(path, PATH_MAX, "/sys/class/drm/card%d/gt/gt0/rps_act_freq_mhz", i); set_graphics_fp(path, GFX_ACTMHz); snprintf(path, PATH_MAX, "/sys/class/drm/card%d/gt/gt1/rc6_residency_ms", i); set_graphics_fp(path, SAM_mc6); snprintf(path, PATH_MAX, "/sys/class/drm/card%d/gt/gt1/rps_cur_freq_mhz", i); set_graphics_fp(path, SAM_MHz); snprintf(path, PATH_MAX, "/sys/class/drm/card%d/gt/gt1/rps_act_freq_mhz", i); set_graphics_fp(path, SAM_ACTMHz); goto end; legacy_i915: /* Fall back to traditional i915 graphics sysfs knobs */ set_graphics_fp("/sys/class/drm/card0/power/rc6_residency_ms", GFX_rc6); set_graphics_fp("/sys/class/drm/card0/gt_cur_freq_mhz", GFX_MHz); if (!gfx_info[GFX_MHz].fp) set_graphics_fp("/sys/class/graphics/fb0/device/drm/card0/gt_cur_freq_mhz", GFX_MHz); set_graphics_fp("/sys/class/drm/card0/gt_act_freq_mhz", GFX_ACTMHz); if (!gfx_info[GFX_ACTMHz].fp) set_graphics_fp("/sys/class/graphics/fb0/device/drm/card0/gt_act_freq_mhz", GFX_ACTMHz); end: if (gfx_info[GFX_rc6].fp) BIC_PRESENT(BIC_GFX_rc6); if (gfx_info[GFX_MHz].fp) BIC_PRESENT(BIC_GFXMHz); if (gfx_info[GFX_ACTMHz].fp) BIC_PRESENT(BIC_GFXACTMHz); if (gfx_info[SAM_mc6].fp) BIC_PRESENT(BIC_SAM_mc6); if (gfx_info[SAM_MHz].fp) BIC_PRESENT(BIC_SAMMHz); if (gfx_info[SAM_ACTMHz].fp) BIC_PRESENT(BIC_SAMACTMHz); } static void dump_sysfs_cstate_config(void) { char path[64]; char name_buf[16]; char desc[64]; FILE *input; int state; char *sp; if (access("/sys/devices/system/cpu/cpuidle", R_OK)) { fprintf(outf, "cpuidle not loaded\n"); return; } dump_sysfs_file("/sys/devices/system/cpu/cpuidle/current_driver"); dump_sysfs_file("/sys/devices/system/cpu/cpuidle/current_governor"); dump_sysfs_file("/sys/devices/system/cpu/cpuidle/current_governor_ro"); for (state = 0; state < 10; ++state) { sprintf(path, "/sys/devices/system/cpu/cpu%d/cpuidle/state%d/name", base_cpu, state); input = fopen(path, "r"); if (input == NULL) continue; if (!fgets(name_buf, sizeof(name_buf), input)) err(1, "%s: failed to read file", path); /* truncate "C1-HSW\n" to "C1", or truncate "C1\n" to "C1" */ sp = strchr(name_buf, '-'); if (!sp) sp = strchrnul(name_buf, '\n'); *sp = '\0'; fclose(input); remove_underbar(name_buf); sprintf(path, "/sys/devices/system/cpu/cpu%d/cpuidle/state%d/desc", base_cpu, state); input = fopen(path, "r"); if (input == NULL) continue; if (!fgets(desc, sizeof(desc), input)) err(1, "%s: failed to read file", path); fprintf(outf, "cpu%d: %s: %s", base_cpu, name_buf, desc); fclose(input); } } static void dump_sysfs_pstate_config(void) { char path[64]; char driver_buf[64]; char governor_buf[64]; FILE *input; int turbo; sprintf(path, "/sys/devices/system/cpu/cpu%d/cpufreq/scaling_driver", base_cpu); input = fopen(path, "r"); if (input == NULL) { fprintf(outf, "NSFOD %s\n", path); return; } if (!fgets(driver_buf, sizeof(driver_buf), input)) err(1, "%s: failed to read file", path); fclose(input); sprintf(path, "/sys/devices/system/cpu/cpu%d/cpufreq/scaling_governor", base_cpu); input = fopen(path, "r"); if (input == NULL) { fprintf(outf, "NSFOD %s\n", path); return; } if (!fgets(governor_buf, sizeof(governor_buf), input)) err(1, "%s: failed to read file", path); fclose(input); fprintf(outf, "cpu%d: cpufreq driver: %s", base_cpu, driver_buf); fprintf(outf, "cpu%d: cpufreq governor: %s", base_cpu, governor_buf); sprintf(path, "/sys/devices/system/cpu/cpufreq/boost"); input = fopen(path, "r"); if (input != NULL) { if (fscanf(input, "%d", &turbo) != 1) err(1, "%s: failed to parse number from file", path); fprintf(outf, "cpufreq boost: %d\n", turbo); fclose(input); } sprintf(path, "/sys/devices/system/cpu/intel_pstate/no_turbo"); input = fopen(path, "r"); if (input != NULL) { if (fscanf(input, "%d", &turbo) != 1) err(1, "%s: failed to parse number from file", path); fprintf(outf, "cpufreq intel_pstate no_turbo: %d\n", turbo); fclose(input); } } /* * print_epb() * Decode the ENERGY_PERF_BIAS MSR */ int print_epb(struct thread_data *t, struct core_data *c, struct pkg_data *p) { char *epb_string; int cpu, epb; UNUSED(c); UNUSED(p); if (!has_epb) return 0; cpu = t->cpu_id; /* EPB is per-package */ if (!is_cpu_first_thread_in_package(t, c, p)) return 0; if (cpu_migrate(cpu)) { fprintf(outf, "print_epb: Could not migrate to CPU %d\n", cpu); return -1; } epb = get_epb(cpu); if (epb < 0) return 0; switch (epb) { case ENERGY_PERF_BIAS_PERFORMANCE: epb_string = "performance"; break; case ENERGY_PERF_BIAS_NORMAL: epb_string = "balanced"; break; case ENERGY_PERF_BIAS_POWERSAVE: epb_string = "powersave"; break; default: epb_string = "custom"; break; } fprintf(outf, "cpu%d: EPB: %d (%s)\n", cpu, epb, epb_string); return 0; } /* * print_hwp() * Decode the MSR_HWP_CAPABILITIES */ int print_hwp(struct thread_data *t, struct core_data *c, struct pkg_data *p) { unsigned long long msr; int cpu; UNUSED(c); UNUSED(p); if (no_msr) return 0; if (!has_hwp) return 0; cpu = t->cpu_id; /* MSR_HWP_CAPABILITIES is per-package */ if (!is_cpu_first_thread_in_package(t, c, p)) return 0; if (cpu_migrate(cpu)) { fprintf(outf, "print_hwp: Could not migrate to CPU %d\n", cpu); return -1; } if (get_msr(cpu, MSR_PM_ENABLE, &msr)) return 0; fprintf(outf, "cpu%d: MSR_PM_ENABLE: 0x%08llx (%sHWP)\n", cpu, msr, (msr & (1 << 0)) ? "" : "No-"); /* MSR_PM_ENABLE[1] == 1 if HWP is enabled and MSRs visible */ if ((msr & (1 << 0)) == 0) return 0; if (get_msr(cpu, MSR_HWP_CAPABILITIES, &msr)) return 0; fprintf(outf, "cpu%d: MSR_HWP_CAPABILITIES: 0x%08llx " "(high %d guar %d eff %d low %d)\n", cpu, msr, (unsigned int)HWP_HIGHEST_PERF(msr), (unsigned int)HWP_GUARANTEED_PERF(msr), (unsigned int)HWP_MOSTEFFICIENT_PERF(msr), (unsigned int)HWP_LOWEST_PERF(msr)); if (get_msr(cpu, MSR_HWP_REQUEST, &msr)) return 0; fprintf(outf, "cpu%d: MSR_HWP_REQUEST: 0x%08llx " "(min %d max %d des %d epp 0x%x window 0x%x pkg 0x%x)\n", cpu, msr, (unsigned int)(((msr) >> 0) & 0xff), (unsigned int)(((msr) >> 8) & 0xff), (unsigned int)(((msr) >> 16) & 0xff), (unsigned int)(((msr) >> 24) & 0xff), (unsigned int)(((msr) >> 32) & 0xff3), (unsigned int)(((msr) >> 42) & 0x1)); if (has_hwp_pkg) { if (get_msr(cpu, MSR_HWP_REQUEST_PKG, &msr)) return 0; fprintf(outf, "cpu%d: MSR_HWP_REQUEST_PKG: 0x%08llx " "(min %d max %d des %d epp 0x%x window 0x%x)\n", cpu, msr, (unsigned int)(((msr) >> 0) & 0xff), (unsigned int)(((msr) >> 8) & 0xff), (unsigned int)(((msr) >> 16) & 0xff), (unsigned int)(((msr) >> 24) & 0xff), (unsigned int)(((msr) >> 32) & 0xff3)); } if (has_hwp_notify) { if (get_msr(cpu, MSR_HWP_INTERRUPT, &msr)) return 0; fprintf(outf, "cpu%d: MSR_HWP_INTERRUPT: 0x%08llx " "(%s_Guaranteed_Perf_Change, %s_Excursion_Min)\n", cpu, msr, ((msr) & 0x1) ? "EN" : "Dis", ((msr) & 0x2) ? "EN" : "Dis"); } if (get_msr(cpu, MSR_HWP_STATUS, &msr)) return 0; fprintf(outf, "cpu%d: MSR_HWP_STATUS: 0x%08llx " "(%sGuaranteed_Perf_Change, %sExcursion_Min)\n", cpu, msr, ((msr) & 0x1) ? "" : "No-", ((msr) & 0x4) ? "" : "No-"); return 0; } /* * print_perf_limit() */ int print_perf_limit(struct thread_data *t, struct core_data *c, struct pkg_data *p) { unsigned long long msr; int cpu; UNUSED(c); UNUSED(p); if (no_msr) return 0; cpu = t->cpu_id; /* per-package */ if (!is_cpu_first_thread_in_package(t, c, p)) return 0; if (cpu_migrate(cpu)) { fprintf(outf, "print_perf_limit: Could not migrate to CPU %d\n", cpu); return -1; } if (platform->plr_msrs & PLR_CORE) { get_msr(cpu, MSR_CORE_PERF_LIMIT_REASONS, &msr); fprintf(outf, "cpu%d: MSR_CORE_PERF_LIMIT_REASONS, 0x%08llx", cpu, msr); fprintf(outf, " (Active: %s%s%s%s%s%s%s%s%s%s%s%s%s%s)", (msr & 1 << 15) ? "bit15, " : "", (msr & 1 << 14) ? "bit14, " : "", (msr & 1 << 13) ? "Transitions, " : "", (msr & 1 << 12) ? "MultiCoreTurbo, " : "", (msr & 1 << 11) ? "PkgPwrL2, " : "", (msr & 1 << 10) ? "PkgPwrL1, " : "", (msr & 1 << 9) ? "CorePwr, " : "", (msr & 1 << 8) ? "Amps, " : "", (msr & 1 << 6) ? "VR-Therm, " : "", (msr & 1 << 5) ? "Auto-HWP, " : "", (msr & 1 << 4) ? "Graphics, " : "", (msr & 1 << 2) ? "bit2, " : "", (msr & 1 << 1) ? "ThermStatus, " : "", (msr & 1 << 0) ? "PROCHOT, " : ""); fprintf(outf, " (Logged: %s%s%s%s%s%s%s%s%s%s%s%s%s%s)\n", (msr & 1 << 31) ? "bit31, " : "", (msr & 1 << 30) ? "bit30, " : "", (msr & 1 << 29) ? "Transitions, " : "", (msr & 1 << 28) ? "MultiCoreTurbo, " : "", (msr & 1 << 27) ? "PkgPwrL2, " : "", (msr & 1 << 26) ? "PkgPwrL1, " : "", (msr & 1 << 25) ? "CorePwr, " : "", (msr & 1 << 24) ? "Amps, " : "", (msr & 1 << 22) ? "VR-Therm, " : "", (msr & 1 << 21) ? "Auto-HWP, " : "", (msr & 1 << 20) ? "Graphics, " : "", (msr & 1 << 18) ? "bit18, " : "", (msr & 1 << 17) ? "ThermStatus, " : "", (msr & 1 << 16) ? "PROCHOT, " : ""); } if (platform->plr_msrs & PLR_GFX) { get_msr(cpu, MSR_GFX_PERF_LIMIT_REASONS, &msr); fprintf(outf, "cpu%d: MSR_GFX_PERF_LIMIT_REASONS, 0x%08llx", cpu, msr); fprintf(outf, " (Active: %s%s%s%s%s%s%s%s)", (msr & 1 << 0) ? "PROCHOT, " : "", (msr & 1 << 1) ? "ThermStatus, " : "", (msr & 1 << 4) ? "Graphics, " : "", (msr & 1 << 6) ? "VR-Therm, " : "", (msr & 1 << 8) ? "Amps, " : "", (msr & 1 << 9) ? "GFXPwr, " : "", (msr & 1 << 10) ? "PkgPwrL1, " : "", (msr & 1 << 11) ? "PkgPwrL2, " : ""); fprintf(outf, " (Logged: %s%s%s%s%s%s%s%s)\n", (msr & 1 << 16) ? "PROCHOT, " : "", (msr & 1 << 17) ? "ThermStatus, " : "", (msr & 1 << 20) ? "Graphics, " : "", (msr & 1 << 22) ? "VR-Therm, " : "", (msr & 1 << 24) ? "Amps, " : "", (msr & 1 << 25) ? "GFXPwr, " : "", (msr & 1 << 26) ? "PkgPwrL1, " : "", (msr & 1 << 27) ? "PkgPwrL2, " : ""); } if (platform->plr_msrs & PLR_RING) { get_msr(cpu, MSR_RING_PERF_LIMIT_REASONS, &msr); fprintf(outf, "cpu%d: MSR_RING_PERF_LIMIT_REASONS, 0x%08llx", cpu, msr); fprintf(outf, " (Active: %s%s%s%s%s%s)", (msr & 1 << 0) ? "PROCHOT, " : "", (msr & 1 << 1) ? "ThermStatus, " : "", (msr & 1 << 6) ? "VR-Therm, " : "", (msr & 1 << 8) ? "Amps, " : "", (msr & 1 << 10) ? "PkgPwrL1, " : "", (msr & 1 << 11) ? "PkgPwrL2, " : ""); fprintf(outf, " (Logged: %s%s%s%s%s%s)\n", (msr & 1 << 16) ? "PROCHOT, " : "", (msr & 1 << 17) ? "ThermStatus, " : "", (msr & 1 << 22) ? "VR-Therm, " : "", (msr & 1 << 24) ? "Amps, " : "", (msr & 1 << 26) ? "PkgPwrL1, " : "", (msr & 1 << 27) ? "PkgPwrL2, " : ""); } return 0; } #define RAPL_POWER_GRANULARITY 0x7FFF /* 15 bit power granularity */ #define RAPL_TIME_GRANULARITY 0x3F /* 6 bit time granularity */ double get_quirk_tdp(void) { if (platform->rapl_quirk_tdp) return platform->rapl_quirk_tdp; return 135.0; } double get_tdp_intel(void) { unsigned long long msr; if (platform->rapl_msrs & RAPL_PKG_POWER_INFO) if (!get_msr(base_cpu, MSR_PKG_POWER_INFO, &msr)) return ((msr >> 0) & RAPL_POWER_GRANULARITY) * rapl_power_units; return get_quirk_tdp(); } double get_tdp_amd(void) { return get_quirk_tdp(); } void rapl_probe_intel(void) { unsigned long long msr; unsigned int time_unit; double tdp; const unsigned long long bic_watt_bits = BIC_SysWatt | BIC_PkgWatt | BIC_CorWatt | BIC_RAMWatt | BIC_GFXWatt; const unsigned long long bic_joules_bits = BIC_Sys_J | BIC_Pkg_J | BIC_Cor_J | BIC_RAM_J | BIC_GFX_J; if (rapl_joules) bic_enabled &= ~bic_watt_bits; else bic_enabled &= ~bic_joules_bits; if (!(platform->rapl_msrs & RAPL_PKG_PERF_STATUS)) bic_enabled &= ~BIC_PKG__; if (!(platform->rapl_msrs & RAPL_DRAM_PERF_STATUS)) bic_enabled &= ~BIC_RAM__; /* units on package 0, verify later other packages match */ if (get_msr(base_cpu, MSR_RAPL_POWER_UNIT, &msr)) return; rapl_power_units = 1.0 / (1 << (msr & 0xF)); if (platform->has_rapl_divisor) rapl_energy_units = 1.0 * (1 << (msr >> 8 & 0x1F)) / 1000000; else rapl_energy_units = 1.0 / (1 << (msr >> 8 & 0x1F)); if (platform->has_fixed_rapl_unit) rapl_dram_energy_units = (15.3 / 1000000); else rapl_dram_energy_units = rapl_energy_units; time_unit = msr >> 16 & 0xF; if (time_unit == 0) time_unit = 0xA; rapl_time_units = 1.0 / (1 << (time_unit)); tdp = get_tdp_intel(); rapl_joule_counter_range = 0xFFFFFFFF * rapl_energy_units / tdp; if (!quiet) fprintf(outf, "RAPL: %.0f sec. Joule Counter Range, at %.0f Watts\n", rapl_joule_counter_range, tdp); } void rapl_probe_amd(void) { unsigned long long msr; double tdp; const unsigned long long bic_watt_bits = BIC_PkgWatt | BIC_CorWatt; const unsigned long long bic_joules_bits = BIC_Pkg_J | BIC_Cor_J; if (rapl_joules) bic_enabled &= ~bic_watt_bits; else bic_enabled &= ~bic_joules_bits; if (get_msr(base_cpu, MSR_RAPL_PWR_UNIT, &msr)) return; rapl_time_units = ldexp(1.0, -(msr >> 16 & 0xf)); rapl_energy_units = ldexp(1.0, -(msr >> 8 & 0x1f)); rapl_power_units = ldexp(1.0, -(msr & 0xf)); tdp = get_tdp_amd(); rapl_joule_counter_range = 0xFFFFFFFF * rapl_energy_units / tdp; if (!quiet) fprintf(outf, "RAPL: %.0f sec. Joule Counter Range, at %.0f Watts\n", rapl_joule_counter_range, tdp); } void print_power_limit_msr(int cpu, unsigned long long msr, char *label) { fprintf(outf, "cpu%d: %s: %sabled (%0.3f Watts, %f sec, clamp %sabled)\n", cpu, label, ((msr >> 15) & 1) ? "EN" : "DIS", ((msr >> 0) & 0x7FFF) * rapl_power_units, (1.0 + (((msr >> 22) & 0x3) / 4.0)) * (1 << ((msr >> 17) & 0x1F)) * rapl_time_units, (((msr >> 16) & 1) ? "EN" : "DIS")); return; } int print_rapl(struct thread_data *t, struct core_data *c, struct pkg_data *p) { unsigned long long msr; const char *msr_name; int cpu; UNUSED(c); UNUSED(p); if (!platform->rapl_msrs) return 0; /* RAPL counters are per package, so print only for 1st thread/package */ if (!is_cpu_first_thread_in_package(t, c, p)) return 0; cpu = t->cpu_id; if (cpu_migrate(cpu)) { fprintf(outf, "print_rapl: Could not migrate to CPU %d\n", cpu); return -1; } if (platform->rapl_msrs & RAPL_AMD_F17H) { msr_name = "MSR_RAPL_PWR_UNIT"; if (get_msr(cpu, MSR_RAPL_PWR_UNIT, &msr)) return -1; } else { msr_name = "MSR_RAPL_POWER_UNIT"; if (get_msr(cpu, MSR_RAPL_POWER_UNIT, &msr)) return -1; } fprintf(outf, "cpu%d: %s: 0x%08llx (%f Watts, %f Joules, %f sec.)\n", cpu, msr_name, msr, rapl_power_units, rapl_energy_units, rapl_time_units); if (platform->rapl_msrs & RAPL_PKG_POWER_INFO) { if (get_msr(cpu, MSR_PKG_POWER_INFO, &msr)) return -5; fprintf(outf, "cpu%d: MSR_PKG_POWER_INFO: 0x%08llx (%.0f W TDP, RAPL %.0f - %.0f W, %f sec.)\n", cpu, msr, ((msr >> 0) & RAPL_POWER_GRANULARITY) * rapl_power_units, ((msr >> 16) & RAPL_POWER_GRANULARITY) * rapl_power_units, ((msr >> 32) & RAPL_POWER_GRANULARITY) * rapl_power_units, ((msr >> 48) & RAPL_TIME_GRANULARITY) * rapl_time_units); } if (platform->rapl_msrs & RAPL_PKG) { if (get_msr(cpu, MSR_PKG_POWER_LIMIT, &msr)) return -9; fprintf(outf, "cpu%d: MSR_PKG_POWER_LIMIT: 0x%08llx (%slocked)\n", cpu, msr, (msr >> 63) & 1 ? "" : "UN"); print_power_limit_msr(cpu, msr, "PKG Limit #1"); fprintf(outf, "cpu%d: PKG Limit #2: %sabled (%0.3f Watts, %f* sec, clamp %sabled)\n", cpu, ((msr >> 47) & 1) ? "EN" : "DIS", ((msr >> 32) & 0x7FFF) * rapl_power_units, (1.0 + (((msr >> 54) & 0x3) / 4.0)) * (1 << ((msr >> 49) & 0x1F)) * rapl_time_units, ((msr >> 48) & 1) ? "EN" : "DIS"); if (get_msr(cpu, MSR_VR_CURRENT_CONFIG, &msr)) return -9; fprintf(outf, "cpu%d: MSR_VR_CURRENT_CONFIG: 0x%08llx\n", cpu, msr); fprintf(outf, "cpu%d: PKG Limit #4: %f Watts (%slocked)\n", cpu, ((msr >> 0) & 0x1FFF) * rapl_power_units, (msr >> 31) & 1 ? "" : "UN"); } if (platform->rapl_msrs & RAPL_DRAM_POWER_INFO) { if (get_msr(cpu, MSR_DRAM_POWER_INFO, &msr)) return -6; fprintf(outf, "cpu%d: MSR_DRAM_POWER_INFO,: 0x%08llx (%.0f W TDP, RAPL %.0f - %.0f W, %f sec.)\n", cpu, msr, ((msr >> 0) & RAPL_POWER_GRANULARITY) * rapl_power_units, ((msr >> 16) & RAPL_POWER_GRANULARITY) * rapl_power_units, ((msr >> 32) & RAPL_POWER_GRANULARITY) * rapl_power_units, ((msr >> 48) & RAPL_TIME_GRANULARITY) * rapl_time_units); } if (platform->rapl_msrs & RAPL_DRAM) { if (get_msr(cpu, MSR_DRAM_POWER_LIMIT, &msr)) return -9; fprintf(outf, "cpu%d: MSR_DRAM_POWER_LIMIT: 0x%08llx (%slocked)\n", cpu, msr, (msr >> 31) & 1 ? "" : "UN"); print_power_limit_msr(cpu, msr, "DRAM Limit"); } if (platform->rapl_msrs & RAPL_CORE_POLICY) { if (get_msr(cpu, MSR_PP0_POLICY, &msr)) return -7; fprintf(outf, "cpu%d: MSR_PP0_POLICY: %lld\n", cpu, msr & 0xF); } if (platform->rapl_msrs & RAPL_CORE_POWER_LIMIT) { if (get_msr(cpu, MSR_PP0_POWER_LIMIT, &msr)) return -9; fprintf(outf, "cpu%d: MSR_PP0_POWER_LIMIT: 0x%08llx (%slocked)\n", cpu, msr, (msr >> 31) & 1 ? "" : "UN"); print_power_limit_msr(cpu, msr, "Cores Limit"); } if (platform->rapl_msrs & RAPL_GFX) { if (get_msr(cpu, MSR_PP1_POLICY, &msr)) return -8; fprintf(outf, "cpu%d: MSR_PP1_POLICY: %lld\n", cpu, msr & 0xF); if (get_msr(cpu, MSR_PP1_POWER_LIMIT, &msr)) return -9; fprintf(outf, "cpu%d: MSR_PP1_POWER_LIMIT: 0x%08llx (%slocked)\n", cpu, msr, (msr >> 31) & 1 ? "" : "UN"); print_power_limit_msr(cpu, msr, "GFX Limit"); } return 0; } /* * probe_rapl() * * sets rapl_power_units, rapl_energy_units, rapl_time_units */ void probe_rapl(void) { if (!platform->rapl_msrs || no_msr) return; if (genuine_intel) rapl_probe_intel(); if (authentic_amd || hygon_genuine) rapl_probe_amd(); if (quiet) return; for_all_cpus(print_rapl, ODD_COUNTERS); } /* * MSR_IA32_TEMPERATURE_TARGET indicates the temperature where * the Thermal Control Circuit (TCC) activates. * This is usually equal to tjMax. * * Older processors do not have this MSR, so there we guess, * but also allow cmdline over-ride with -T. * * Several MSR temperature values are in units of degrees-C * below this value, including the Digital Thermal Sensor (DTS), * Package Thermal Management Sensor (PTM), and thermal event thresholds. */ int set_temperature_target(struct thread_data *t, struct core_data *c, struct pkg_data *p) { unsigned long long msr; unsigned int tcc_default, tcc_offset; int cpu; UNUSED(c); UNUSED(p); /* tj_max is used only for dts or ptm */ if (!(do_dts || do_ptm)) return 0; /* this is a per-package concept */ if (!is_cpu_first_thread_in_package(t, c, p)) return 0; cpu = t->cpu_id; if (cpu_migrate(cpu)) { fprintf(outf, "Could not migrate to CPU %d\n", cpu); return -1; } if (tj_max_override != 0) { tj_max = tj_max_override; fprintf(outf, "cpu%d: Using cmdline TCC Target (%d C)\n", cpu, tj_max); return 0; } /* Temperature Target MSR is Nehalem and newer only */ if (!platform->has_nhm_msrs || no_msr) goto guess; if (get_msr(base_cpu, MSR_IA32_TEMPERATURE_TARGET, &msr)) goto guess; tcc_default = (msr >> 16) & 0xFF; if (!quiet) { int bits = platform->tcc_offset_bits; unsigned long long enabled = 0; if (bits && !get_msr(base_cpu, MSR_PLATFORM_INFO, &enabled)) enabled = (enabled >> 30) & 1; if (bits && enabled) { tcc_offset = (msr >> 24) & GENMASK(bits - 1, 0); fprintf(outf, "cpu%d: MSR_IA32_TEMPERATURE_TARGET: 0x%08llx (%d C) (%d default - %d offset)\n", cpu, msr, tcc_default - tcc_offset, tcc_default, tcc_offset); } else { fprintf(outf, "cpu%d: MSR_IA32_TEMPERATURE_TARGET: 0x%08llx (%d C)\n", cpu, msr, tcc_default); } } if (!tcc_default) goto guess; tj_max = tcc_default; return 0; guess: tj_max = TJMAX_DEFAULT; fprintf(outf, "cpu%d: Guessing tjMax %d C, Please use -T to specify\n", cpu, tj_max); return 0; } int print_thermal(struct thread_data *t, struct core_data *c, struct pkg_data *p) { unsigned long long msr; unsigned int dts, dts2; int cpu; UNUSED(c); UNUSED(p); if (no_msr) return 0; if (!(do_dts || do_ptm)) return 0; cpu = t->cpu_id; /* DTS is per-core, no need to print for each thread */ if (!is_cpu_first_thread_in_core(t, c, p)) return 0; if (cpu_migrate(cpu)) { fprintf(outf, "print_thermal: Could not migrate to CPU %d\n", cpu); return -1; } if (do_ptm && is_cpu_first_core_in_package(t, c, p)) { if (get_msr(cpu, MSR_IA32_PACKAGE_THERM_STATUS, &msr)) return 0; dts = (msr >> 16) & 0x7F; fprintf(outf, "cpu%d: MSR_IA32_PACKAGE_THERM_STATUS: 0x%08llx (%d C)\n", cpu, msr, tj_max - dts); if (get_msr(cpu, MSR_IA32_PACKAGE_THERM_INTERRUPT, &msr)) return 0; dts = (msr >> 16) & 0x7F; dts2 = (msr >> 8) & 0x7F; fprintf(outf, "cpu%d: MSR_IA32_PACKAGE_THERM_INTERRUPT: 0x%08llx (%d C, %d C)\n", cpu, msr, tj_max - dts, tj_max - dts2); } if (do_dts && debug) { unsigned int resolution; if (get_msr(cpu, MSR_IA32_THERM_STATUS, &msr)) return 0; dts = (msr >> 16) & 0x7F; resolution = (msr >> 27) & 0xF; fprintf(outf, "cpu%d: MSR_IA32_THERM_STATUS: 0x%08llx (%d C +/- %d)\n", cpu, msr, tj_max - dts, resolution); if (get_msr(cpu, MSR_IA32_THERM_INTERRUPT, &msr)) return 0; dts = (msr >> 16) & 0x7F; dts2 = (msr >> 8) & 0x7F; fprintf(outf, "cpu%d: MSR_IA32_THERM_INTERRUPT: 0x%08llx (%d C, %d C)\n", cpu, msr, tj_max - dts, tj_max - dts2); } return 0; } void probe_thermal(void) { if (!access("/sys/devices/system/cpu/cpu0/thermal_throttle/core_throttle_count", R_OK)) BIC_PRESENT(BIC_CORE_THROT_CNT); else BIC_NOT_PRESENT(BIC_CORE_THROT_CNT); for_all_cpus(set_temperature_target, ODD_COUNTERS); if (quiet) return; for_all_cpus(print_thermal, ODD_COUNTERS); } int get_cpu_type(struct thread_data *t, struct core_data *c, struct pkg_data *p) { unsigned int eax, ebx, ecx, edx; UNUSED(c); UNUSED(p); if (!genuine_intel) return 0; if (cpu_migrate(t->cpu_id)) { fprintf(outf, "Could not migrate to CPU %d\n", t->cpu_id); return -1; } if (max_level < 0x1a) return 0; __cpuid(0x1a, eax, ebx, ecx, edx); eax = (eax >> 24) & 0xFF; if (eax == 0x20) t->is_atom = true; return 0; } void decode_feature_control_msr(void) { unsigned long long msr; if (no_msr) return; if (!get_msr(base_cpu, MSR_IA32_FEAT_CTL, &msr)) fprintf(outf, "cpu%d: MSR_IA32_FEATURE_CONTROL: 0x%08llx (%sLocked %s)\n", base_cpu, msr, msr & FEAT_CTL_LOCKED ? "" : "UN-", msr & (1 << 18) ? "SGX" : ""); } void decode_misc_enable_msr(void) { unsigned long long msr; if (no_msr) return; if (!genuine_intel) return; if (!get_msr(base_cpu, MSR_IA32_MISC_ENABLE, &msr)) fprintf(outf, "cpu%d: MSR_IA32_MISC_ENABLE: 0x%08llx (%sTCC %sEIST %sMWAIT %sPREFETCH %sTURBO)\n", base_cpu, msr, msr & MSR_IA32_MISC_ENABLE_TM1 ? "" : "No-", msr & MSR_IA32_MISC_ENABLE_ENHANCED_SPEEDSTEP ? "" : "No-", msr & MSR_IA32_MISC_ENABLE_MWAIT ? "" : "No-", msr & MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE ? "No-" : "", msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ? "No-" : ""); } void decode_misc_feature_control(void) { unsigned long long msr; if (no_msr) return; if (!platform->has_msr_misc_feature_control) return; if (!get_msr(base_cpu, MSR_MISC_FEATURE_CONTROL, &msr)) fprintf(outf, "cpu%d: MSR_MISC_FEATURE_CONTROL: 0x%08llx (%sL2-Prefetch %sL2-Prefetch-pair %sL1-Prefetch %sL1-IP-Prefetch)\n", base_cpu, msr, msr & (0 << 0) ? "No-" : "", msr & (1 << 0) ? "No-" : "", msr & (2 << 0) ? "No-" : "", msr & (3 << 0) ? "No-" : ""); } /* * Decode MSR_MISC_PWR_MGMT * * Decode the bits according to the Nehalem documentation * bit[0] seems to continue to have same meaning going forward * bit[1] less so... */ void decode_misc_pwr_mgmt_msr(void) { unsigned long long msr; if (no_msr) return; if (!platform->has_msr_misc_pwr_mgmt) return; if (!get_msr(base_cpu, MSR_MISC_PWR_MGMT, &msr)) fprintf(outf, "cpu%d: MSR_MISC_PWR_MGMT: 0x%08llx (%sable-EIST_Coordination %sable-EPB %sable-OOB)\n", base_cpu, msr, msr & (1 << 0) ? "DIS" : "EN", msr & (1 << 1) ? "EN" : "DIS", msr & (1 << 8) ? "EN" : "DIS"); } /* * Decode MSR_CC6_DEMOTION_POLICY_CONFIG, MSR_MC6_DEMOTION_POLICY_CONFIG * * This MSRs are present on Silvermont processors, * Intel Atom processor E3000 series (Baytrail), and friends. */ void decode_c6_demotion_policy_msr(void) { unsigned long long msr; if (no_msr) return; if (!platform->has_msr_c6_demotion_policy_config) return; if (!get_msr(base_cpu, MSR_CC6_DEMOTION_POLICY_CONFIG, &msr)) fprintf(outf, "cpu%d: MSR_CC6_DEMOTION_POLICY_CONFIG: 0x%08llx (%sable-CC6-Demotion)\n", base_cpu, msr, msr & (1 << 0) ? "EN" : "DIS"); if (!get_msr(base_cpu, MSR_MC6_DEMOTION_POLICY_CONFIG, &msr)) fprintf(outf, "cpu%d: MSR_MC6_DEMOTION_POLICY_CONFIG: 0x%08llx (%sable-MC6-Demotion)\n", base_cpu, msr, msr & (1 << 0) ? "EN" : "DIS"); } void print_dev_latency(void) { char *path = "/dev/cpu_dma_latency"; int fd; int value; int retval; fd = open(path, O_RDONLY); if (fd < 0) { if (debug) warnx("Read %s failed", path); return; } retval = read(fd, (void *)&value, sizeof(int)); if (retval != sizeof(int)) { warn("read failed %s", path); close(fd); return; } fprintf(outf, "/dev/cpu_dma_latency: %d usec (%s)\n", value, value == 2000000000 ? "default" : "constrained"); close(fd); } static int has_instr_count_access(void) { int fd; int has_access; if (no_perf) return 0; fd = open_perf_counter(base_cpu, PERF_TYPE_HARDWARE, PERF_COUNT_HW_INSTRUCTIONS, -1, 0); has_access = fd != -1; if (fd != -1) close(fd); if (!has_access) warnx("Failed to access %s. Some of the counters may not be available\n" "\tRun as root to enable them or use %s to disable the access explicitly", "instructions retired perf counter", "--no-perf"); return has_access; } int add_rapl_perf_counter_(int cpu, struct rapl_counter_info_t *rci, const struct rapl_counter_arch_info *cai, double *scale_, enum rapl_unit *unit_) { if (no_perf) return -1; const double scale = read_perf_scale(cai->perf_subsys, cai->perf_name); if (scale == 0.0) return -1; const enum rapl_unit unit = read_perf_rapl_unit(cai->perf_subsys, cai->perf_name); if (unit == RAPL_UNIT_INVALID) return -1; const unsigned int rapl_type = read_perf_type(cai->perf_subsys); const unsigned int rapl_energy_pkg_config = read_perf_config(cai->perf_subsys, cai->perf_name); const int fd_counter = open_perf_counter(cpu, rapl_type, rapl_energy_pkg_config, rci->fd_perf, PERF_FORMAT_GROUP); if (fd_counter == -1) return -1; /* If it's the first counter opened, make it a group descriptor */ if (rci->fd_perf == -1) rci->fd_perf = fd_counter; *scale_ = scale; *unit_ = unit; return fd_counter; } int add_rapl_perf_counter(int cpu, struct rapl_counter_info_t *rci, const struct rapl_counter_arch_info *cai, double *scale, enum rapl_unit *unit) { int ret = add_rapl_perf_counter_(cpu, rci, cai, scale, unit); if (debug >= 2) fprintf(stderr, "%s: %d (cpu: %d)\n", __func__, ret, cpu); return ret; } /* * Linux-perf manages the HW instructions-retired counter * by enabling when requested, and hiding rollover */ void linux_perf_init(void) { if (access("/proc/sys/kernel/perf_event_paranoid", F_OK)) return; if (BIC_IS_ENABLED(BIC_IPC) && has_aperf) { fd_instr_count_percpu = calloc(topo.max_cpu_num + 1, sizeof(int)); if (fd_instr_count_percpu == NULL) err(-1, "calloc fd_instr_count_percpu"); } } void rapl_perf_init(void) { const unsigned int num_domains = (platform->has_per_core_rapl ? topo.max_core_id : topo.max_package_id) + 1; bool *domain_visited = calloc(num_domains, sizeof(bool)); rapl_counter_info_perdomain = calloc(num_domains, sizeof(*rapl_counter_info_perdomain)); if (rapl_counter_info_perdomain == NULL) err(-1, "calloc rapl_counter_info_percpu"); rapl_counter_info_perdomain_size = num_domains; /* * Initialize rapl_counter_info_percpu */ for (unsigned int domain_id = 0; domain_id < num_domains; ++domain_id) { struct rapl_counter_info_t *rci = &rapl_counter_info_perdomain[domain_id]; rci->fd_perf = -1; for (size_t i = 0; i < NUM_RAPL_COUNTERS; ++i) { rci->data[i] = 0; rci->source[i] = COUNTER_SOURCE_NONE; } } /* * Open/probe the counters * If can't get it via perf, fallback to MSR */ for (size_t i = 0; i < ARRAY_SIZE(rapl_counter_arch_infos); ++i) { const struct rapl_counter_arch_info *const cai = &rapl_counter_arch_infos[i]; bool has_counter = 0; double scale; enum rapl_unit unit; unsigned int next_domain; memset(domain_visited, 0, num_domains * sizeof(*domain_visited)); for (int cpu = 0; cpu < topo.max_cpu_num + 1; ++cpu) { if (cpu_is_not_allowed(cpu)) continue; /* Skip already seen and handled RAPL domains */ next_domain = platform->has_per_core_rapl ? cpus[cpu].physical_core_id : cpus[cpu].physical_package_id; assert(next_domain < num_domains); if (domain_visited[next_domain]) continue; domain_visited[next_domain] = 1; if ((cai->flags & RAPL_COUNTER_FLAG_PLATFORM_COUNTER) && (cpu != base_cpu)) continue; struct rapl_counter_info_t *rci = &rapl_counter_info_perdomain[next_domain]; /* Check if the counter is enabled and accessible */ if (BIC_IS_ENABLED(cai->bic) && (platform->rapl_msrs & cai->feature_mask)) { /* Use perf API for this counter */ if (!no_perf && cai->perf_name && add_rapl_perf_counter(cpu, rci, cai, &scale, &unit) != -1) { rci->source[cai->rci_index] = COUNTER_SOURCE_PERF; rci->scale[cai->rci_index] = scale * cai->compat_scale; rci->unit[cai->rci_index] = unit; rci->flags[cai->rci_index] = cai->flags; /* Use MSR for this counter */ } else if (!no_msr && cai->msr && probe_msr(cpu, cai->msr) == 0) { rci->source[cai->rci_index] = COUNTER_SOURCE_MSR; rci->msr[cai->rci_index] = cai->msr; rci->msr_mask[cai->rci_index] = cai->msr_mask; rci->msr_shift[cai->rci_index] = cai->msr_shift; rci->unit[cai->rci_index] = RAPL_UNIT_JOULES; rci->scale[cai->rci_index] = *cai->platform_rapl_msr_scale * cai->compat_scale; rci->flags[cai->rci_index] = cai->flags; } } if (rci->source[cai->rci_index] != COUNTER_SOURCE_NONE) has_counter = 1; } /* If any CPU has access to the counter, make it present */ if (has_counter) BIC_PRESENT(cai->bic); } free(domain_visited); } /* Assumes msr_counter_info is populated */ static int has_amperf_access(void) { return msr_counter_arch_infos[MSR_ARCH_INFO_APERF_INDEX].present && msr_counter_arch_infos[MSR_ARCH_INFO_MPERF_INDEX].present; } int *get_cstate_perf_group_fd(struct cstate_counter_info_t *cci, const char *group_name) { if (strcmp(group_name, "cstate_core") == 0) return &cci->fd_perf_core; if (strcmp(group_name, "cstate_pkg") == 0) return &cci->fd_perf_pkg; return NULL; } int add_cstate_perf_counter_(int cpu, struct cstate_counter_info_t *cci, const struct cstate_counter_arch_info *cai) { if (no_perf) return -1; int *pfd_group = get_cstate_perf_group_fd(cci, cai->perf_subsys); if (pfd_group == NULL) return -1; const unsigned int type = read_perf_type(cai->perf_subsys); const unsigned int config = read_perf_config(cai->perf_subsys, cai->perf_name); const int fd_counter = open_perf_counter(cpu, type, config, *pfd_group, PERF_FORMAT_GROUP); if (fd_counter == -1) return -1; /* If it's the first counter opened, make it a group descriptor */ if (*pfd_group == -1) *pfd_group = fd_counter; return fd_counter; } int add_cstate_perf_counter(int cpu, struct cstate_counter_info_t *cci, const struct cstate_counter_arch_info *cai) { int ret = add_cstate_perf_counter_(cpu, cci, cai); if (debug >= 2) fprintf(stderr, "%s: %d (cpu: %d)\n", __func__, ret, cpu); return ret; } int add_msr_perf_counter_(int cpu, struct msr_counter_info_t *cci, const struct msr_counter_arch_info *cai) { if (no_perf) return -1; const unsigned int type = read_perf_type(cai->perf_subsys); const unsigned int config = read_perf_config(cai->perf_subsys, cai->perf_name); const int fd_counter = open_perf_counter(cpu, type, config, cci->fd_perf, PERF_FORMAT_GROUP); if (fd_counter == -1) return -1; /* If it's the first counter opened, make it a group descriptor */ if (cci->fd_perf == -1) cci->fd_perf = fd_counter; return fd_counter; } int add_msr_perf_counter(int cpu, struct msr_counter_info_t *cci, const struct msr_counter_arch_info *cai) { int ret = add_msr_perf_counter_(cpu, cci, cai); if (debug) fprintf(stderr, "%s: %s/%s: %d (cpu: %d)\n", __func__, cai->perf_subsys, cai->perf_name, ret, cpu); return ret; } void msr_perf_init_(void) { const int mci_num = topo.max_cpu_num + 1; msr_counter_info = calloc(mci_num, sizeof(*msr_counter_info)); if (!msr_counter_info) err(1, "calloc msr_counter_info"); msr_counter_info_size = mci_num; for (int cpu = 0; cpu < mci_num; ++cpu) msr_counter_info[cpu].fd_perf = -1; for (int cidx = 0; cidx < NUM_MSR_COUNTERS; ++cidx) { struct msr_counter_arch_info *cai = &msr_counter_arch_infos[cidx]; cai->present = false; for (int cpu = 0; cpu < mci_num; ++cpu) { struct msr_counter_info_t *const cci = &msr_counter_info[cpu]; if (cpu_is_not_allowed(cpu)) continue; if (cai->needed) { /* Use perf API for this counter */ if (!no_perf && cai->perf_name && add_msr_perf_counter(cpu, cci, cai) != -1) { cci->source[cai->rci_index] = COUNTER_SOURCE_PERF; cai->present = true; /* User MSR for this counter */ } else if (!no_msr && cai->msr && probe_msr(cpu, cai->msr) == 0) { cci->source[cai->rci_index] = COUNTER_SOURCE_MSR; cci->msr[cai->rci_index] = cai->msr; cci->msr_mask[cai->rci_index] = cai->msr_mask; cai->present = true; } } } } } /* Initialize data for reading perf counters from the MSR group. */ void msr_perf_init(void) { bool need_amperf = false, need_smi = false; const bool need_soft_c1 = (!platform->has_msr_core_c1_res) && (platform->supported_cstates & CC1); need_amperf = BIC_IS_ENABLED(BIC_Avg_MHz) || BIC_IS_ENABLED(BIC_Busy) || BIC_IS_ENABLED(BIC_Bzy_MHz) || BIC_IS_ENABLED(BIC_IPC) || need_soft_c1; if (BIC_IS_ENABLED(BIC_SMI)) need_smi = true; /* Enable needed counters */ msr_counter_arch_infos[MSR_ARCH_INFO_APERF_INDEX].needed = need_amperf; msr_counter_arch_infos[MSR_ARCH_INFO_MPERF_INDEX].needed = need_amperf; msr_counter_arch_infos[MSR_ARCH_INFO_SMI_INDEX].needed = need_smi; msr_perf_init_(); const bool has_amperf = has_amperf_access(); const bool has_smi = msr_counter_arch_infos[MSR_ARCH_INFO_SMI_INDEX].present; has_aperf_access = has_amperf; if (has_amperf) { BIC_PRESENT(BIC_Avg_MHz); BIC_PRESENT(BIC_Busy); BIC_PRESENT(BIC_Bzy_MHz); BIC_PRESENT(BIC_SMI); } if (has_smi) BIC_PRESENT(BIC_SMI); } void cstate_perf_init_(bool soft_c1) { bool has_counter; bool *cores_visited = NULL, *pkg_visited = NULL; const int cores_visited_elems = topo.max_core_id + 1; const int pkg_visited_elems = topo.max_package_id + 1; const int cci_num = topo.max_cpu_num + 1; ccstate_counter_info = calloc(cci_num, sizeof(*ccstate_counter_info)); if (!ccstate_counter_info) err(1, "calloc ccstate_counter_arch_info"); ccstate_counter_info_size = cci_num; cores_visited = calloc(cores_visited_elems, sizeof(*cores_visited)); if (!cores_visited) err(1, "calloc cores_visited"); pkg_visited = calloc(pkg_visited_elems, sizeof(*pkg_visited)); if (!pkg_visited) err(1, "calloc pkg_visited"); /* Initialize cstate_counter_info_percpu */ for (int cpu = 0; cpu < cci_num; ++cpu) { ccstate_counter_info[cpu].fd_perf_core = -1; ccstate_counter_info[cpu].fd_perf_pkg = -1; } for (int cidx = 0; cidx < NUM_CSTATE_COUNTERS; ++cidx) { has_counter = false; memset(cores_visited, 0, cores_visited_elems * sizeof(*cores_visited)); memset(pkg_visited, 0, pkg_visited_elems * sizeof(*pkg_visited)); const struct cstate_counter_arch_info *cai = &ccstate_counter_arch_infos[cidx]; for (int cpu = 0; cpu < cci_num; ++cpu) { struct cstate_counter_info_t *const cci = &ccstate_counter_info[cpu]; if (cpu_is_not_allowed(cpu)) continue; const int core_id = cpus[cpu].physical_core_id; const int pkg_id = cpus[cpu].physical_package_id; assert(core_id < cores_visited_elems); assert(pkg_id < pkg_visited_elems); const bool per_thread = cai->flags & CSTATE_COUNTER_FLAG_COLLECT_PER_THREAD; const bool per_core = cai->flags & CSTATE_COUNTER_FLAG_COLLECT_PER_CORE; if (!per_thread && cores_visited[core_id]) continue; if (!per_core && pkg_visited[pkg_id]) continue; const bool counter_needed = BIC_IS_ENABLED(cai->bic) || (soft_c1 && (cai->flags & CSTATE_COUNTER_FLAG_SOFT_C1_DEPENDENCY)); const bool counter_supported = (platform->supported_cstates & cai->feature_mask); if (counter_needed && counter_supported) { /* Use perf API for this counter */ if (!no_perf && cai->perf_name && add_cstate_perf_counter(cpu, cci, cai) != -1) { cci->source[cai->rci_index] = COUNTER_SOURCE_PERF; /* User MSR for this counter */ } else if (!no_msr && cai->msr && pkg_cstate_limit >= cai->pkg_cstate_limit && probe_msr(cpu, cai->msr) == 0) { cci->source[cai->rci_index] = COUNTER_SOURCE_MSR; cci->msr[cai->rci_index] = cai->msr; } } if (cci->source[cai->rci_index] != COUNTER_SOURCE_NONE) { has_counter = true; cores_visited[core_id] = true; pkg_visited[pkg_id] = true; } } /* If any CPU has access to the counter, make it present */ if (has_counter) BIC_PRESENT(cai->bic); } free(cores_visited); free(pkg_visited); } void cstate_perf_init(void) { /* * If we don't have a C1 residency MSR, we calculate it "in software", * but we need APERF, MPERF too. */ const bool soft_c1 = !platform->has_msr_core_c1_res && has_amperf_access() && platform->supported_cstates & CC1; if (soft_c1) BIC_PRESENT(BIC_CPU_c1); cstate_perf_init_(soft_c1); } void probe_cstates(void) { probe_cst_limit(); if (platform->has_msr_module_c6_res_ms) BIC_PRESENT(BIC_Mod_c6); if (platform->has_ext_cst_msrs && !no_msr) { BIC_PRESENT(BIC_Totl_c0); BIC_PRESENT(BIC_Any_c0); BIC_PRESENT(BIC_GFX_c0); BIC_PRESENT(BIC_CPUGFX); } if (quiet) return; dump_power_ctl(); dump_cst_cfg(); decode_c6_demotion_policy_msr(); print_dev_latency(); dump_sysfs_cstate_config(); print_irtl(); } void probe_lpi(void) { if (!access("/sys/devices/system/cpu/cpuidle/low_power_idle_cpu_residency_us", R_OK)) BIC_PRESENT(BIC_CPU_LPI); else BIC_NOT_PRESENT(BIC_CPU_LPI); if (!access(sys_lpi_file_sysfs, R_OK)) { sys_lpi_file = sys_lpi_file_sysfs; BIC_PRESENT(BIC_SYS_LPI); } else if (!access(sys_lpi_file_debugfs, R_OK)) { sys_lpi_file = sys_lpi_file_debugfs; BIC_PRESENT(BIC_SYS_LPI); } else { sys_lpi_file_sysfs = NULL; BIC_NOT_PRESENT(BIC_SYS_LPI); } } void probe_pstates(void) { probe_bclk(); if (quiet) return; dump_platform_info(); dump_turbo_ratio_info(); dump_sysfs_pstate_config(); decode_misc_pwr_mgmt_msr(); for_all_cpus(print_hwp, ODD_COUNTERS); for_all_cpus(print_epb, ODD_COUNTERS); for_all_cpus(print_perf_limit, ODD_COUNTERS); } void process_cpuid() { unsigned int eax, ebx, ecx, edx; unsigned int fms, family, model, stepping, ecx_flags, edx_flags; unsigned long long ucode_patch = 0; bool ucode_patch_valid = false; eax = ebx = ecx = edx = 0; __cpuid(0, max_level, ebx, ecx, edx); if (ebx == 0x756e6547 && ecx == 0x6c65746e && edx == 0x49656e69) genuine_intel = 1; else if (ebx == 0x68747541 && ecx == 0x444d4163 && edx == 0x69746e65) authentic_amd = 1; else if (ebx == 0x6f677948 && ecx == 0x656e6975 && edx == 0x6e65476e) hygon_genuine = 1; if (!quiet) fprintf(outf, "CPUID(0): %.4s%.4s%.4s 0x%x CPUID levels\n", (char *)&ebx, (char *)&edx, (char *)&ecx, max_level); __cpuid(1, fms, ebx, ecx, edx); family = (fms >> 8) & 0xf; model = (fms >> 4) & 0xf; stepping = fms & 0xf; if (family == 0xf) family += (fms >> 20) & 0xff; if (family >= 6) model += ((fms >> 16) & 0xf) << 4; ecx_flags = ecx; edx_flags = edx; if (!no_msr) { if (get_msr(sched_getcpu(), MSR_IA32_UCODE_REV, &ucode_patch)) warnx("get_msr(UCODE)"); else ucode_patch_valid = true; } /* * check max extended function levels of CPUID. * This is needed to check for invariant TSC. * This check is valid for both Intel and AMD. */ ebx = ecx = edx = 0; __cpuid(0x80000000, max_extended_level, ebx, ecx, edx); if (!quiet) { fprintf(outf, "CPUID(1): family:model:stepping 0x%x:%x:%x (%d:%d:%d)", family, model, stepping, family, model, stepping); if (ucode_patch_valid) fprintf(outf, " microcode 0x%x", (unsigned int)((ucode_patch >> 32) & 0xFFFFFFFF)); fputc('\n', outf); fprintf(outf, "CPUID(0x80000000): max_extended_levels: 0x%x\n", max_extended_level); fprintf(outf, "CPUID(1): %s %s %s %s %s %s %s %s %s %s\n", ecx_flags & (1 << 0) ? "SSE3" : "-", ecx_flags & (1 << 3) ? "MONITOR" : "-", ecx_flags & (1 << 6) ? "SMX" : "-", ecx_flags & (1 << 7) ? "EIST" : "-", ecx_flags & (1 << 8) ? "TM2" : "-", edx_flags & (1 << 4) ? "TSC" : "-", edx_flags & (1 << 5) ? "MSR" : "-", edx_flags & (1 << 22) ? "ACPI-TM" : "-", edx_flags & (1 << 28) ? "HT" : "-", edx_flags & (1 << 29) ? "TM" : "-"); } probe_platform_features(family, model); if (!(edx_flags & (1 << 5))) errx(1, "CPUID: no MSR"); if (max_extended_level >= 0x80000007) { /* * Non-Stop TSC is advertised by CPUID.EAX=0x80000007: EDX.bit8 * this check is valid for both Intel and AMD */ __cpuid(0x80000007, eax, ebx, ecx, edx); has_invariant_tsc = edx & (1 << 8); } /* * APERF/MPERF is advertised by CPUID.EAX=0x6: ECX.bit0 * this check is valid for both Intel and AMD */ __cpuid(0x6, eax, ebx, ecx, edx); has_aperf = ecx & (1 << 0); do_dts = eax & (1 << 0); if (do_dts) BIC_PRESENT(BIC_CoreTmp); has_turbo = eax & (1 << 1); do_ptm = eax & (1 << 6); if (do_ptm) BIC_PRESENT(BIC_PkgTmp); has_hwp = eax & (1 << 7); has_hwp_notify = eax & (1 << 8); has_hwp_activity_window = eax & (1 << 9); has_hwp_epp = eax & (1 << 10); has_hwp_pkg = eax & (1 << 11); has_epb = ecx & (1 << 3); if (!quiet) fprintf(outf, "CPUID(6): %sAPERF, %sTURBO, %sDTS, %sPTM, %sHWP, " "%sHWPnotify, %sHWPwindow, %sHWPepp, %sHWPpkg, %sEPB\n", has_aperf ? "" : "No-", has_turbo ? "" : "No-", do_dts ? "" : "No-", do_ptm ? "" : "No-", has_hwp ? "" : "No-", has_hwp_notify ? "" : "No-", has_hwp_activity_window ? "" : "No-", has_hwp_epp ? "" : "No-", has_hwp_pkg ? "" : "No-", has_epb ? "" : "No-"); if (!quiet) decode_misc_enable_msr(); if (max_level >= 0x7 && !quiet) { int has_sgx; ecx = 0; __cpuid_count(0x7, 0, eax, ebx, ecx, edx); has_sgx = ebx & (1 << 2); is_hybrid = edx & (1 << 15); fprintf(outf, "CPUID(7): %sSGX %sHybrid\n", has_sgx ? "" : "No-", is_hybrid ? "" : "No-"); if (has_sgx) decode_feature_control_msr(); } if (max_level >= 0x15) { unsigned int eax_crystal; unsigned int ebx_tsc; /* * CPUID 15H TSC/Crystal ratio, possibly Crystal Hz */ eax_crystal = ebx_tsc = crystal_hz = edx = 0; __cpuid(0x15, eax_crystal, ebx_tsc, crystal_hz, edx); if (ebx_tsc != 0) { if (!quiet && (ebx != 0)) fprintf(outf, "CPUID(0x15): eax_crystal: %d ebx_tsc: %d ecx_crystal_hz: %d\n", eax_crystal, ebx_tsc, crystal_hz); if (crystal_hz == 0) crystal_hz = platform->crystal_freq; if (crystal_hz) { tsc_hz = (unsigned long long)crystal_hz *ebx_tsc / eax_crystal; if (!quiet) fprintf(outf, "TSC: %lld MHz (%d Hz * %d / %d / 1000000)\n", tsc_hz / 1000000, crystal_hz, ebx_tsc, eax_crystal); } } } if (max_level >= 0x16) { unsigned int base_mhz, max_mhz, bus_mhz, edx; /* * CPUID 16H Base MHz, Max MHz, Bus MHz */ base_mhz = max_mhz = bus_mhz = edx = 0; __cpuid(0x16, base_mhz, max_mhz, bus_mhz, edx); bclk = bus_mhz; base_hz = base_mhz * 1000000; has_base_hz = 1; if (platform->enable_tsc_tweak) tsc_tweak = base_hz / tsc_hz; if (!quiet) fprintf(outf, "CPUID(0x16): base_mhz: %d max_mhz: %d bus_mhz: %d\n", base_mhz, max_mhz, bus_mhz); } if (has_aperf) aperf_mperf_multiplier = platform->need_perf_multiplier ? 1024 : 1; BIC_PRESENT(BIC_IRQ); BIC_PRESENT(BIC_TSC_MHz); } static void counter_info_init(void) { for (int i = 0; i < NUM_CSTATE_COUNTERS; ++i) { struct cstate_counter_arch_info *const cai = &ccstate_counter_arch_infos[i]; if (platform->has_msr_knl_core_c6_residency && cai->msr == MSR_CORE_C6_RESIDENCY) cai->msr = MSR_KNL_CORE_C6_RESIDENCY; if (!platform->has_msr_core_c1_res && cai->msr == MSR_CORE_C1_RES) cai->msr = 0; if (platform->has_msr_atom_pkg_c6_residency && cai->msr == MSR_PKG_C6_RESIDENCY) cai->msr = MSR_ATOM_PKG_C6_RESIDENCY; } for (int i = 0; i < NUM_MSR_COUNTERS; ++i) { msr_counter_arch_infos[i].present = false; msr_counter_arch_infos[i].needed = false; } } void probe_pm_features(void) { probe_pstates(); probe_cstates(); probe_lpi(); probe_intel_uncore_frequency(); probe_graphics(); probe_rapl(); probe_thermal(); if (platform->has_nhm_msrs && !no_msr) BIC_PRESENT(BIC_SMI); if (!quiet) decode_misc_feature_control(); } /* * in /dev/cpu/ return success for names that are numbers * ie. filter out ".", "..", "microcode". */ int dir_filter(const struct dirent *dirp) { if (isdigit(dirp->d_name[0])) return 1; else return 0; } void topology_probe(bool startup) { int i; int max_core_id = 0; int max_package_id = 0; int max_siblings = 0; /* Initialize num_cpus, max_cpu_num */ set_max_cpu_num(); topo.num_cpus = 0; for_all_proc_cpus(count_cpus); if (!summary_only) BIC_PRESENT(BIC_CPU); if (debug > 1) fprintf(outf, "num_cpus %d max_cpu_num %d\n", topo.num_cpus, topo.max_cpu_num); cpus = calloc(1, (topo.max_cpu_num + 1) * sizeof(struct cpu_topology)); if (cpus == NULL) err(1, "calloc cpus"); /* * Allocate and initialize cpu_present_set */ cpu_present_set = CPU_ALLOC((topo.max_cpu_num + 1)); if (cpu_present_set == NULL) err(3, "CPU_ALLOC"); cpu_present_setsize = CPU_ALLOC_SIZE((topo.max_cpu_num + 1)); CPU_ZERO_S(cpu_present_setsize, cpu_present_set); for_all_proc_cpus(mark_cpu_present); /* * Allocate and initialize cpu_effective_set */ cpu_effective_set = CPU_ALLOC((topo.max_cpu_num + 1)); if (cpu_effective_set == NULL) err(3, "CPU_ALLOC"); cpu_effective_setsize = CPU_ALLOC_SIZE((topo.max_cpu_num + 1)); CPU_ZERO_S(cpu_effective_setsize, cpu_effective_set); update_effective_set(startup); /* * Allocate and initialize cpu_allowed_set */ cpu_allowed_set = CPU_ALLOC((topo.max_cpu_num + 1)); if (cpu_allowed_set == NULL) err(3, "CPU_ALLOC"); cpu_allowed_setsize = CPU_ALLOC_SIZE((topo.max_cpu_num + 1)); CPU_ZERO_S(cpu_allowed_setsize, cpu_allowed_set); /* * Validate and update cpu_allowed_set. * * Make sure all cpus in cpu_subset are also in cpu_present_set during startup. * Give a warning when cpus in cpu_subset become unavailable at runtime. * Give a warning when cpus are not effective because of cgroup setting. * * cpu_allowed_set is the intersection of cpu_present_set/cpu_effective_set/cpu_subset. */ for (i = 0; i < CPU_SUBSET_MAXCPUS; ++i) { if (cpu_subset && !CPU_ISSET_S(i, cpu_subset_size, cpu_subset)) continue; if (!CPU_ISSET_S(i, cpu_present_setsize, cpu_present_set)) { if (cpu_subset) { /* cpus in cpu_subset must be in cpu_present_set during startup */ if (startup) err(1, "cpu%d not present", i); else fprintf(stderr, "cpu%d not present\n", i); } continue; } if (CPU_COUNT_S(cpu_effective_setsize, cpu_effective_set)) { if (!CPU_ISSET_S(i, cpu_effective_setsize, cpu_effective_set)) { fprintf(stderr, "cpu%d not effective\n", i); continue; } } CPU_SET_S(i, cpu_allowed_setsize, cpu_allowed_set); } if (!CPU_COUNT_S(cpu_allowed_setsize, cpu_allowed_set)) err(-ENODEV, "No valid cpus found"); sched_setaffinity(0, cpu_allowed_setsize, cpu_allowed_set); /* * Allocate and initialize cpu_affinity_set */ cpu_affinity_set = CPU_ALLOC((topo.max_cpu_num + 1)); if (cpu_affinity_set == NULL) err(3, "CPU_ALLOC"); cpu_affinity_setsize = CPU_ALLOC_SIZE((topo.max_cpu_num + 1)); CPU_ZERO_S(cpu_affinity_setsize, cpu_affinity_set); for_all_proc_cpus(init_thread_id); for_all_proc_cpus(set_cpu_hybrid_type); /* * For online cpus * find max_core_id, max_package_id */ for (i = 0; i <= topo.max_cpu_num; ++i) { int siblings; if (cpu_is_not_present(i)) { if (debug > 1) fprintf(outf, "cpu%d NOT PRESENT\n", i); continue; } cpus[i].logical_cpu_id = i; /* get package information */ cpus[i].physical_package_id = get_physical_package_id(i); if (cpus[i].physical_package_id > max_package_id) max_package_id = cpus[i].physical_package_id; /* get die information */ cpus[i].die_id = get_die_id(i); if (cpus[i].die_id > topo.max_die_id) topo.max_die_id = cpus[i].die_id; /* get numa node information */ cpus[i].physical_node_id = get_physical_node_id(&cpus[i]); if (cpus[i].physical_node_id > topo.max_node_num) topo.max_node_num = cpus[i].physical_node_id; /* get core information */ cpus[i].physical_core_id = get_core_id(i); if (cpus[i].physical_core_id > max_core_id) max_core_id = cpus[i].physical_core_id; /* get thread information */ siblings = get_thread_siblings(&cpus[i]); if (siblings > max_siblings) max_siblings = siblings; if (cpus[i].thread_id == 0) topo.num_cores++; } topo.max_core_id = max_core_id; topo.max_package_id = max_package_id; topo.cores_per_node = max_core_id + 1; if (debug > 1) fprintf(outf, "max_core_id %d, sizing for %d cores per package\n", max_core_id, topo.cores_per_node); if (!summary_only) BIC_PRESENT(BIC_Core); topo.num_die = topo.max_die_id + 1; if (debug > 1) fprintf(outf, "max_die_id %d, sizing for %d die\n", topo.max_die_id, topo.num_die); if (!summary_only && topo.num_die > 1) BIC_PRESENT(BIC_Die); topo.num_packages = max_package_id + 1; if (debug > 1) fprintf(outf, "max_package_id %d, sizing for %d packages\n", max_package_id, topo.num_packages); if (!summary_only && topo.num_packages > 1) BIC_PRESENT(BIC_Package); set_node_data(); if (debug > 1) fprintf(outf, "nodes_per_pkg %d\n", topo.nodes_per_pkg); if (!summary_only && topo.nodes_per_pkg > 1) BIC_PRESENT(BIC_Node); topo.threads_per_core = max_siblings; if (debug > 1) fprintf(outf, "max_siblings %d\n", max_siblings); if (debug < 1) return; for (i = 0; i <= topo.max_cpu_num; ++i) { if (cpu_is_not_present(i)) continue; fprintf(outf, "cpu %d pkg %d die %d node %d lnode %d core %d thread %d\n", i, cpus[i].physical_package_id, cpus[i].die_id, cpus[i].physical_node_id, cpus[i].logical_node_id, cpus[i].physical_core_id, cpus[i].thread_id); } } void allocate_counters(struct thread_data **t, struct core_data **c, struct pkg_data **p) { int i; int num_cores = topo.cores_per_node * topo.nodes_per_pkg * topo.num_packages; int num_threads = topo.threads_per_core * num_cores; *t = calloc(num_threads, sizeof(struct thread_data)); if (*t == NULL) goto error; for (i = 0; i < num_threads; i++) (*t)[i].cpu_id = -1; *c = calloc(num_cores, sizeof(struct core_data)); if (*c == NULL) goto error; for (i = 0; i < num_cores; i++) { (*c)[i].core_id = -1; (*c)[i].base_cpu = -1; } *p = calloc(topo.num_packages, sizeof(struct pkg_data)); if (*p == NULL) goto error; for (i = 0; i < topo.num_packages; i++) { (*p)[i].package_id = i; (*p)[i].base_cpu = -1; } return; error: err(1, "calloc counters"); } /* * init_counter() * * set FIRST_THREAD_IN_CORE and FIRST_CORE_IN_PACKAGE */ void init_counter(struct thread_data *thread_base, struct core_data *core_base, struct pkg_data *pkg_base, int cpu_id) { int pkg_id = cpus[cpu_id].physical_package_id; int node_id = cpus[cpu_id].logical_node_id; int core_id = cpus[cpu_id].physical_core_id; int thread_id = cpus[cpu_id].thread_id; struct thread_data *t; struct core_data *c; struct pkg_data *p; /* Workaround for systems where physical_node_id==-1 * and logical_node_id==(-1 - topo.num_cpus) */ if (node_id < 0) node_id = 0; t = GET_THREAD(thread_base, thread_id, core_id, node_id, pkg_id); c = GET_CORE(core_base, core_id, node_id, pkg_id); p = GET_PKG(pkg_base, pkg_id); t->cpu_id = cpu_id; if (!cpu_is_not_allowed(cpu_id)) { if (c->base_cpu < 0) c->base_cpu = t->cpu_id; if (p->base_cpu < 0) p->base_cpu = t->cpu_id; } c->core_id = core_id; p->package_id = pkg_id; } int initialize_counters(int cpu_id) { init_counter(EVEN_COUNTERS, cpu_id); init_counter(ODD_COUNTERS, cpu_id); return 0; } void allocate_output_buffer() { output_buffer = calloc(1, (1 + topo.num_cpus) * 2048); outp = output_buffer; if (outp == NULL) err(-1, "calloc output buffer"); } void allocate_fd_percpu(void) { fd_percpu = calloc(topo.max_cpu_num + 1, sizeof(int)); if (fd_percpu == NULL) err(-1, "calloc fd_percpu"); } void allocate_irq_buffers(void) { irq_column_2_cpu = calloc(topo.num_cpus, sizeof(int)); if (irq_column_2_cpu == NULL) err(-1, "calloc %d", topo.num_cpus); irqs_per_cpu = calloc(topo.max_cpu_num + 1, sizeof(int)); if (irqs_per_cpu == NULL) err(-1, "calloc %d", topo.max_cpu_num + 1); } int update_topo(struct thread_data *t, struct core_data *c, struct pkg_data *p) { topo.allowed_cpus++; if ((int)t->cpu_id == c->base_cpu) topo.allowed_cores++; if ((int)t->cpu_id == p->base_cpu) topo.allowed_packages++; return 0; } void topology_update(void) { topo.allowed_cpus = 0; topo.allowed_cores = 0; topo.allowed_packages = 0; for_all_cpus(update_topo, ODD_COUNTERS); } void setup_all_buffers(bool startup) { topology_probe(startup); allocate_irq_buffers(); allocate_fd_percpu(); allocate_counters(&thread_even, &core_even, &package_even); allocate_counters(&thread_odd, &core_odd, &package_odd); allocate_output_buffer(); for_all_proc_cpus(initialize_counters); topology_update(); } void set_base_cpu(void) { int i; for (i = 0; i < topo.max_cpu_num + 1; ++i) { if (cpu_is_not_allowed(i)) continue; base_cpu = i; if (debug > 1) fprintf(outf, "base_cpu = %d\n", base_cpu); return; } err(-ENODEV, "No valid cpus found"); } bool has_added_counters(void) { /* * It only makes sense to call this after the command line is parsed, * otherwise sys structure is not populated. */ return sys.added_core_counters | sys.added_thread_counters | sys.added_package_counters; } void check_msr_access(void) { check_dev_msr(); check_msr_permission(); if (no_msr) bic_disable_msr_access(); } void check_perf_access(void) { if (no_perf || !BIC_IS_ENABLED(BIC_IPC) || !has_instr_count_access()) bic_enabled &= ~BIC_IPC; } bool perf_has_hybrid_devices(void) { /* * 0: unknown * 1: has separate perf device for p and e core * -1: doesn't have separate perf device for p and e core */ static int cached; if (cached > 0) return true; if (cached < 0) return false; if (access("/sys/bus/event_source/devices/cpu_core", F_OK)) { cached = -1; return false; } if (access("/sys/bus/event_source/devices/cpu_atom", F_OK)) { cached = -1; return false; } cached = 1; return true; } int added_perf_counters_init_(struct perf_counter_info *pinfo) { size_t num_domains = 0; unsigned int next_domain; bool *domain_visited; unsigned int perf_type, perf_config; double perf_scale; int fd_perf; if (!pinfo) return 0; const size_t max_num_domains = MAX(topo.max_cpu_num + 1, MAX(topo.max_core_id + 1, topo.max_package_id + 1)); domain_visited = calloc(max_num_domains, sizeof(*domain_visited)); while (pinfo) { switch (pinfo->scope) { case SCOPE_CPU: num_domains = topo.max_cpu_num + 1; break; case SCOPE_CORE: num_domains = topo.max_core_id + 1; break; case SCOPE_PACKAGE: num_domains = topo.max_package_id + 1; break; } /* Allocate buffer for file descriptor for each domain. */ pinfo->fd_perf_per_domain = calloc(num_domains, sizeof(*pinfo->fd_perf_per_domain)); if (!pinfo->fd_perf_per_domain) errx(1, "%s: alloc %s", __func__, "fd_perf_per_domain"); for (size_t i = 0; i < num_domains; ++i) pinfo->fd_perf_per_domain[i] = -1; pinfo->num_domains = num_domains; pinfo->scale = 1.0; memset(domain_visited, 0, max_num_domains * sizeof(*domain_visited)); for (int cpu = 0; cpu < topo.max_cpu_num + 1; ++cpu) { next_domain = cpu_to_domain(pinfo, cpu); assert(next_domain < num_domains); if (cpu_is_not_allowed(cpu)) continue; if (domain_visited[next_domain]) continue; /* * Intel hybrid platforms expose different perf devices for P and E cores. * Instead of one, "/sys/bus/event_source/devices/cpu" device, there are * "/sys/bus/event_source/devices/{cpu_core,cpu_atom}". * * This makes it more complicated to the user, because most of the counters * are available on both and have to be handled manually, otherwise. * * Code below, allow user to use the old "cpu" name, which is translated accordingly. */ const char *perf_device = pinfo->device; if (strcmp(perf_device, "cpu") == 0 && perf_has_hybrid_devices()) { switch (cpus[cpu].type) { case INTEL_PCORE_TYPE: perf_device = "cpu_core"; break; case INTEL_ECORE_TYPE: perf_device = "cpu_atom"; break; default: /* Don't change, we will probably fail and report a problem soon. */ break; } } perf_type = read_perf_type(perf_device); if (perf_type == (unsigned int)-1) { warnx("%s: perf/%s/%s: failed to read %s", __func__, perf_device, pinfo->event, "type"); continue; } perf_config = read_perf_config(perf_device, pinfo->event); if (perf_config == (unsigned int)-1) { warnx("%s: perf/%s/%s: failed to read %s", __func__, perf_device, pinfo->event, "config"); continue; } /* Scale is not required, some counters just don't have it. */ perf_scale = read_perf_scale(perf_device, pinfo->event); if (perf_scale == 0.0) perf_scale = 1.0; fd_perf = open_perf_counter(cpu, perf_type, perf_config, -1, 0); if (fd_perf == -1) { warnx("%s: perf/%s/%s: failed to open counter on cpu%d", __func__, perf_device, pinfo->event, cpu); continue; } domain_visited[next_domain] = 1; pinfo->fd_perf_per_domain[next_domain] = fd_perf; pinfo->scale = perf_scale; if (debug) fprintf(stderr, "Add perf/%s/%s cpu%d: %d\n", perf_device, pinfo->event, cpu, pinfo->fd_perf_per_domain[next_domain]); } pinfo = pinfo->next; } free(domain_visited); return 0; } void added_perf_counters_init(void) { if (added_perf_counters_init_(sys.perf_tp)) errx(1, "%s: %s", __func__, "thread"); if (added_perf_counters_init_(sys.perf_cp)) errx(1, "%s: %s", __func__, "core"); if (added_perf_counters_init_(sys.perf_pp)) errx(1, "%s: %s", __func__, "package"); } int parse_telem_info_file(int fd_dir, const char *info_filename, const char *format, unsigned long *output) { int fd_telem_info; FILE *file_telem_info; unsigned long value; fd_telem_info = openat(fd_dir, info_filename, O_RDONLY); if (fd_telem_info == -1) return -1; file_telem_info = fdopen(fd_telem_info, "r"); if (file_telem_info == NULL) { close(fd_telem_info); return -1; } if (fscanf(file_telem_info, format, &value) != 1) { fclose(file_telem_info); return -1; } fclose(file_telem_info); *output = value; return 0; } struct pmt_mmio *pmt_mmio_open(unsigned int target_guid) { DIR *dirp; struct dirent *entry; struct stat st; unsigned int telem_idx; int fd_telem_dir, fd_pmt; unsigned long guid, size, offset; size_t mmap_size; void *mmio; struct pmt_mmio *ret = NULL; if (stat(SYSFS_TELEM_PATH, &st) == -1) return NULL; dirp = opendir(SYSFS_TELEM_PATH); if (dirp == NULL) return NULL; for (;;) { entry = readdir(dirp); if (entry == NULL) break; if (strcmp(entry->d_name, ".") == 0) continue; if (strcmp(entry->d_name, "..") == 0) continue; if (sscanf(entry->d_name, "telem%u", &telem_idx) != 1) continue; if (fstatat(dirfd(dirp), entry->d_name, &st, 0) == -1) { break; } if (!S_ISDIR(st.st_mode)) continue; fd_telem_dir = openat(dirfd(dirp), entry->d_name, O_RDONLY); if (fd_telem_dir == -1) { break; } if (parse_telem_info_file(fd_telem_dir, "guid", "%lx", &guid)) { close(fd_telem_dir); break; } if (parse_telem_info_file(fd_telem_dir, "size", "%lu", &size)) { close(fd_telem_dir); break; } if (guid != target_guid) { close(fd_telem_dir); continue; } if (parse_telem_info_file(fd_telem_dir, "offset", "%lu", &offset)) { close(fd_telem_dir); break; } assert(offset == 0); fd_pmt = openat(fd_telem_dir, "telem", O_RDONLY); if (fd_pmt == -1) goto loop_cleanup_and_break; mmap_size = (size + 0x1000UL) & (~0x1000UL); mmio = mmap(0, mmap_size, PROT_READ, MAP_SHARED, fd_pmt, 0); if (mmio != MAP_FAILED) { if (debug) fprintf(stderr, "%s: 0x%lx mmaped at: %p\n", __func__, guid, mmio); ret = calloc(1, sizeof(*ret)); if (!ret) { fprintf(stderr, "%s: Failed to allocate pmt_mmio\n", __func__); exit(1); } ret->guid = guid; ret->mmio_base = mmio; ret->pmt_offset = offset; ret->size = size; ret->next = pmt_mmios; pmt_mmios = ret; } loop_cleanup_and_break: close(fd_pmt); close(fd_telem_dir); break; } closedir(dirp); return ret; } struct pmt_mmio *pmt_mmio_find(unsigned int guid) { struct pmt_mmio *pmmio = pmt_mmios; while (pmmio) { if (pmmio->guid == guid) return pmmio; pmmio = pmmio->next; } return NULL; } void *pmt_get_counter_pointer(struct pmt_mmio *pmmio, unsigned long counter_offset) { char *ret; /* Get base of mmaped PMT file. */ ret = (char *)pmmio->mmio_base; /* * Apply PMT MMIO offset to obtain beginning of the mmaped telemetry data. * It's not guaranteed that the mmaped memory begins with the telemetry data * - we might have to apply the offset first. */ ret += pmmio->pmt_offset; /* Apply the counter offset to get the address to the mmaped counter. */ ret += counter_offset; return ret; } struct pmt_mmio *pmt_add_guid(unsigned int guid) { struct pmt_mmio *ret; ret = pmt_mmio_find(guid); if (!ret) ret = pmt_mmio_open(guid); return ret; } enum pmt_open_mode { PMT_OPEN_TRY, /* Open failure is not an error. */ PMT_OPEN_REQUIRED, /* Open failure is a fatal error. */ }; struct pmt_counter *pmt_find_counter(struct pmt_counter *pcounter, const char *name) { while (pcounter) { if (strcmp(pcounter->name, name) == 0) break; pcounter = pcounter->next; } return pcounter; } struct pmt_counter **pmt_get_scope_root(enum counter_scope scope) { switch (scope) { case SCOPE_CPU: return &sys.pmt_tp; case SCOPE_CORE: return &sys.pmt_cp; case SCOPE_PACKAGE: return &sys.pmt_pp; } __builtin_unreachable(); } void pmt_counter_add_domain(struct pmt_counter *pcounter, unsigned long *pmmio, unsigned int domain_id) { /* Make sure the new domain fits. */ if (domain_id >= pcounter->num_domains) pmt_counter_resize(pcounter, domain_id + 1); assert(pcounter->domains); assert(domain_id < pcounter->num_domains); pcounter->domains[domain_id].pcounter = pmmio; } int pmt_add_counter(unsigned int guid, const char *name, enum pmt_datatype type, unsigned int lsb, unsigned int msb, unsigned int offset, enum counter_scope scope, enum counter_format format, unsigned int domain_id, enum pmt_open_mode mode) { struct pmt_mmio *mmio; struct pmt_counter *pcounter; struct pmt_counter **const pmt_root = pmt_get_scope_root(scope); bool new_counter = false; int conflict = 0; if (lsb > msb) { fprintf(stderr, "%s: %s: `%s` must be satisfied\n", __func__, "lsb <= msb", name); exit(1); } if (msb >= 64) { fprintf(stderr, "%s: %s: `%s` must be satisfied\n", __func__, "msb < 64", name); exit(1); } mmio = pmt_add_guid(guid); if (!mmio) { if (mode != PMT_OPEN_TRY) { fprintf(stderr, "%s: failed to map PMT MMIO for guid %x\n", __func__, guid); exit(1); } return 1; } if (offset >= mmio->size) { if (mode != PMT_OPEN_TRY) { fprintf(stderr, "%s: offset %u outside of PMT MMIO size %u\n", __func__, offset, mmio->size); exit(1); } return 1; } pcounter = pmt_find_counter(*pmt_root, name); if (!pcounter) { pcounter = calloc(1, sizeof(*pcounter)); new_counter = true; } if (new_counter) { strncpy(pcounter->name, name, ARRAY_SIZE(pcounter->name) - 1); pcounter->type = type; pcounter->scope = scope; pcounter->lsb = lsb; pcounter->msb = msb; pcounter->format = format; } else { conflict += pcounter->type != type; conflict += pcounter->scope != scope; conflict += pcounter->lsb != lsb; conflict += pcounter->msb != msb; conflict += pcounter->format != format; } if (conflict) { fprintf(stderr, "%s: conflicting parameters for the PMT counter with the same name %s\n", __func__, name); exit(1); } pmt_counter_add_domain(pcounter, pmt_get_counter_pointer(mmio, offset), domain_id); if (new_counter) { pcounter->next = *pmt_root; *pmt_root = pcounter; } return 0; } void pmt_init(void) { if (BIC_IS_ENABLED(BIC_Diec6)) { pmt_add_counter(PMT_MTL_DC6_GUID, "Die%c6", PMT_TYPE_XTAL_TIME, PMT_COUNTER_MTL_DC6_LSB, PMT_COUNTER_MTL_DC6_MSB, PMT_COUNTER_MTL_DC6_OFFSET, SCOPE_PACKAGE, FORMAT_DELTA, 0, PMT_OPEN_TRY); } } void turbostat_init() { setup_all_buffers(true); set_base_cpu(); check_msr_access(); check_perf_access(); process_cpuid(); counter_info_init(); probe_pm_features(); msr_perf_init(); linux_perf_init(); rapl_perf_init(); cstate_perf_init(); added_perf_counters_init(); pmt_init(); for_all_cpus(get_cpu_type, ODD_COUNTERS); for_all_cpus(get_cpu_type, EVEN_COUNTERS); if (BIC_IS_ENABLED(BIC_IPC) && has_aperf_access && get_instr_count_fd(base_cpu) != -1) BIC_PRESENT(BIC_IPC); /* * If TSC tweak is needed, but couldn't get it, * disable more BICs, since it can't be reported accurately. */ if (platform->enable_tsc_tweak && !has_base_hz) { bic_enabled &= ~BIC_Busy; bic_enabled &= ~BIC_Bzy_MHz; } } int fork_it(char **argv) { pid_t child_pid; int status; snapshot_proc_sysfs_files(); status = for_all_cpus(get_counters, EVEN_COUNTERS); first_counter_read = 0; if (status) exit(status); gettimeofday(&tv_even, (struct timezone *)NULL); child_pid = fork(); if (!child_pid) { /* child */ execvp(argv[0], argv); err(errno, "exec %s", argv[0]); } else { /* parent */ if (child_pid == -1) err(1, "fork"); signal(SIGINT, SIG_IGN); signal(SIGQUIT, SIG_IGN); if (waitpid(child_pid, &status, 0) == -1) err(status, "waitpid"); if (WIFEXITED(status)) status = WEXITSTATUS(status); } /* * n.b. fork_it() does not check for errors from for_all_cpus() * because re-starting is problematic when forking */ snapshot_proc_sysfs_files(); for_all_cpus(get_counters, ODD_COUNTERS); gettimeofday(&tv_odd, (struct timezone *)NULL); timersub(&tv_odd, &tv_even, &tv_delta); if (for_all_cpus_2(delta_cpu, ODD_COUNTERS, EVEN_COUNTERS)) fprintf(outf, "%s: Counter reset detected\n", progname); else { compute_average(EVEN_COUNTERS); format_all_counters(EVEN_COUNTERS); } fprintf(outf, "%.6f sec\n", tv_delta.tv_sec + tv_delta.tv_usec / 1000000.0); flush_output_stderr(); return status; } int get_and_dump_counters(void) { int status; snapshot_proc_sysfs_files(); status = for_all_cpus(get_counters, ODD_COUNTERS); if (status) return status; status = for_all_cpus(dump_counters, ODD_COUNTERS); if (status) return status; flush_output_stdout(); return status; } void print_version() { fprintf(outf, "turbostat version 2024.11.30 - Len Brown \n"); } #define COMMAND_LINE_SIZE 2048 void print_bootcmd(void) { char bootcmd[COMMAND_LINE_SIZE]; FILE *fp; int ret; memset(bootcmd, 0, COMMAND_LINE_SIZE); fp = fopen("/proc/cmdline", "r"); if (!fp) return; ret = fread(bootcmd, sizeof(char), COMMAND_LINE_SIZE - 1, fp); if (ret) { bootcmd[ret] = '\0'; /* the last character is already '\n' */ fprintf(outf, "Kernel command line: %s", bootcmd); } fclose(fp); } struct msr_counter *find_msrp_by_name(struct msr_counter *head, char *name) { struct msr_counter *mp; for (mp = head; mp; mp = mp->next) { if (debug) fprintf(stderr, "%s: %s %s\n", __func__, name, mp->name); if (!strncmp(name, mp->name, strlen(mp->name))) return mp; } return NULL; } int add_counter(unsigned int msr_num, char *path, char *name, unsigned int width, enum counter_scope scope, enum counter_type type, enum counter_format format, int flags, int id) { struct msr_counter *msrp; if (no_msr && msr_num) errx(1, "Requested MSR counter 0x%x, but in --no-msr mode", msr_num); if (debug) fprintf(stderr, "%s(msr%d, %s, %s, width%d, scope%d, type%d, format%d, flags%x, id%d)\n", __func__, msr_num, path, name, width, scope, type, format, flags, id); switch (scope) { case SCOPE_CPU: msrp = find_msrp_by_name(sys.tp, name); if (msrp) { if (debug) fprintf(stderr, "%s: %s FOUND\n", __func__, name); break; } if (sys.added_thread_counters++ >= MAX_ADDED_THREAD_COUNTERS) { warnx("ignoring thread counter %s", name); return -1; } break; case SCOPE_CORE: msrp = find_msrp_by_name(sys.cp, name); if (msrp) { if (debug) fprintf(stderr, "%s: %s FOUND\n", __func__, name); break; } if (sys.added_core_counters++ >= MAX_ADDED_CORE_COUNTERS) { warnx("ignoring core counter %s", name); return -1; } break; case SCOPE_PACKAGE: msrp = find_msrp_by_name(sys.pp, name); if (msrp) { if (debug) fprintf(stderr, "%s: %s FOUND\n", __func__, name); break; } if (sys.added_package_counters++ >= MAX_ADDED_PACKAGE_COUNTERS) { warnx("ignoring package counter %s", name); return -1; } break; default: warnx("ignoring counter %s with unknown scope", name); return -1; } if (msrp == NULL) { msrp = calloc(1, sizeof(struct msr_counter)); if (msrp == NULL) err(-1, "calloc msr_counter"); msrp->msr_num = msr_num; strncpy(msrp->name, name, NAME_BYTES - 1); msrp->width = width; msrp->type = type; msrp->format = format; msrp->flags = flags; switch (scope) { case SCOPE_CPU: msrp->next = sys.tp; sys.tp = msrp; break; case SCOPE_CORE: msrp->next = sys.cp; sys.cp = msrp; break; case SCOPE_PACKAGE: msrp->next = sys.pp; sys.pp = msrp; break; } } if (path) { struct sysfs_path *sp; sp = calloc(1, sizeof(struct sysfs_path)); if (sp == NULL) { perror("calloc"); exit(1); } strncpy(sp->path, path, PATH_BYTES - 1); sp->id = id; sp->next = msrp->sp; msrp->sp = sp; } return 0; } /* * Initialize the fields used for identifying and opening the counter. * * Defer the initialization of any runtime buffers for actually reading * the counters for when we initialize all perf counters, so we can later * easily call re_initialize(). */ struct perf_counter_info *make_perf_counter_info(const char *perf_device, const char *perf_event, const char *name, unsigned int width, enum counter_scope scope, enum counter_type type, enum counter_format format) { struct perf_counter_info *pinfo; pinfo = calloc(1, sizeof(*pinfo)); if (!pinfo) errx(1, "%s: Failed to allocate %s/%s\n", __func__, perf_device, perf_event); strncpy(pinfo->device, perf_device, ARRAY_SIZE(pinfo->device) - 1); strncpy(pinfo->event, perf_event, ARRAY_SIZE(pinfo->event) - 1); strncpy(pinfo->name, name, ARRAY_SIZE(pinfo->name) - 1); pinfo->width = width; pinfo->scope = scope; pinfo->type = type; pinfo->format = format; return pinfo; } int add_perf_counter(const char *perf_device, const char *perf_event, const char *name_buffer, unsigned int width, enum counter_scope scope, enum counter_type type, enum counter_format format) { struct perf_counter_info *pinfo; switch (scope) { case SCOPE_CPU: if (sys.added_thread_perf_counters >= MAX_ADDED_THREAD_COUNTERS) { warnx("ignoring thread counter perf/%s/%s", perf_device, perf_event); return -1; } break; case SCOPE_CORE: if (sys.added_core_perf_counters >= MAX_ADDED_CORE_COUNTERS) { warnx("ignoring core counter perf/%s/%s", perf_device, perf_event); return -1; } break; case SCOPE_PACKAGE: if (sys.added_package_perf_counters >= MAX_ADDED_PACKAGE_COUNTERS) { warnx("ignoring package counter perf/%s/%s", perf_device, perf_event); return -1; } break; } pinfo = make_perf_counter_info(perf_device, perf_event, name_buffer, width, scope, type, format); if (!pinfo) return -1; switch (scope) { case SCOPE_CPU: pinfo->next = sys.perf_tp; sys.perf_tp = pinfo; ++sys.added_thread_perf_counters; break; case SCOPE_CORE: pinfo->next = sys.perf_cp; sys.perf_cp = pinfo; ++sys.added_core_perf_counters; break; case SCOPE_PACKAGE: pinfo->next = sys.perf_pp; sys.perf_pp = pinfo; ++sys.added_package_perf_counters; break; } // FIXME: we might not have debug here yet if (debug) fprintf(stderr, "%s: %s/%s, name: %s, scope%d\n", __func__, pinfo->device, pinfo->event, pinfo->name, pinfo->scope); return 0; } void parse_add_command_msr(char *add_command) { int msr_num = 0; char *path = NULL; char perf_device[PERF_DEV_NAME_BYTES] = ""; char perf_event[PERF_EVT_NAME_BYTES] = ""; char name_buffer[PERF_NAME_BYTES] = ""; int width = 64; int fail = 0; enum counter_scope scope = SCOPE_CPU; enum counter_type type = COUNTER_CYCLES; enum counter_format format = FORMAT_DELTA; while (add_command) { if (sscanf(add_command, "msr0x%x", &msr_num) == 1) goto next; if (sscanf(add_command, "msr%d", &msr_num) == 1) goto next; BUILD_BUG_ON(ARRAY_SIZE(perf_device) <= 31); BUILD_BUG_ON(ARRAY_SIZE(perf_event) <= 31); if (sscanf(add_command, "perf/%31[^/]/%31[^,]", &perf_device[0], &perf_event[0]) == 2) goto next; if (*add_command == '/') { path = add_command; goto next; } if (sscanf(add_command, "u%d", &width) == 1) { if ((width == 32) || (width == 64)) goto next; width = 64; } if (!strncmp(add_command, "cpu", strlen("cpu"))) { scope = SCOPE_CPU; goto next; } if (!strncmp(add_command, "core", strlen("core"))) { scope = SCOPE_CORE; goto next; } if (!strncmp(add_command, "package", strlen("package"))) { scope = SCOPE_PACKAGE; goto next; } if (!strncmp(add_command, "cycles", strlen("cycles"))) { type = COUNTER_CYCLES; goto next; } if (!strncmp(add_command, "seconds", strlen("seconds"))) { type = COUNTER_SECONDS; goto next; } if (!strncmp(add_command, "usec", strlen("usec"))) { type = COUNTER_USEC; goto next; } if (!strncmp(add_command, "raw", strlen("raw"))) { format = FORMAT_RAW; goto next; } if (!strncmp(add_command, "delta", strlen("delta"))) { format = FORMAT_DELTA; goto next; } if (!strncmp(add_command, "percent", strlen("percent"))) { format = FORMAT_PERCENT; goto next; } BUILD_BUG_ON(ARRAY_SIZE(name_buffer) <= 18); if (sscanf(add_command, "%18s,%*s", name_buffer) == 1) { char *eos; eos = strchr(name_buffer, ','); if (eos) *eos = '\0'; goto next; } next: add_command = strchr(add_command, ','); if (add_command) { *add_command = '\0'; add_command++; } } if ((msr_num == 0) && (path == NULL) && (perf_device[0] == '\0' || perf_event[0] == '\0')) { fprintf(stderr, "--add: (msrDDD | msr0xXXX | /path_to_counter | perf/device/event ) required\n"); fail++; } /* Test for non-empty perf_device and perf_event */ const bool is_perf_counter = perf_device[0] && perf_event[0]; /* generate default column header */ if (*name_buffer == '\0') { if (is_perf_counter) { snprintf(name_buffer, ARRAY_SIZE(name_buffer), "perf/%s", perf_event); } else { if (width == 32) sprintf(name_buffer, "M0x%x%s", msr_num, format == FORMAT_PERCENT ? "%" : ""); else sprintf(name_buffer, "M0X%x%s", msr_num, format == FORMAT_PERCENT ? "%" : ""); } } if (is_perf_counter) { if (add_perf_counter(perf_device, perf_event, name_buffer, width, scope, type, format)) fail++; } else { if (add_counter(msr_num, path, name_buffer, width, scope, type, format, 0, 0)) fail++; } if (fail) { help(); exit(1); } } bool starts_with(const char *str, const char *prefix) { return strncmp(prefix, str, strlen(prefix)) == 0; } void parse_add_command_pmt(char *add_command) { char *name = NULL; char *type_name = NULL; char *format_name = NULL; unsigned int offset; unsigned int lsb; unsigned int msb; unsigned int guid; unsigned int domain_id; enum counter_scope scope = 0; enum pmt_datatype type = PMT_TYPE_RAW; enum counter_format format = FORMAT_RAW; bool has_offset = false; bool has_lsb = false; bool has_msb = false; bool has_format = true; /* Format has a default value. */ bool has_guid = false; bool has_scope = false; bool has_type = true; /* Type has a default value. */ /* Consume the "pmt," prefix. */ add_command = strchr(add_command, ','); if (!add_command) { help(); exit(1); } ++add_command; while (add_command) { if (starts_with(add_command, "name=")) { name = add_command + strlen("name="); goto next; } if (starts_with(add_command, "type=")) { type_name = add_command + strlen("type="); goto next; } if (starts_with(add_command, "domain=")) { const size_t prefix_len = strlen("domain="); if (sscanf(add_command + prefix_len, "cpu%u", &domain_id) == 1) { scope = SCOPE_CPU; has_scope = true; } else if (sscanf(add_command + prefix_len, "core%u", &domain_id) == 1) { scope = SCOPE_CORE; has_scope = true; } else if (sscanf(add_command + prefix_len, "package%u", &domain_id) == 1) { scope = SCOPE_PACKAGE; has_scope = true; } if (!has_scope) { printf("%s: invalid value for scope. Expected cpu%%u, core%%u or package%%u.\n", __func__); exit(1); } goto next; } if (starts_with(add_command, "format=")) { format_name = add_command + strlen("format="); goto next; } if (sscanf(add_command, "offset=%u", &offset) == 1) { has_offset = true; goto next; } if (sscanf(add_command, "lsb=%u", &lsb) == 1) { has_lsb = true; goto next; } if (sscanf(add_command, "msb=%u", &msb) == 1) { has_msb = true; goto next; } if (sscanf(add_command, "guid=%x", &guid) == 1) { has_guid = true; goto next; } next: add_command = strchr(add_command, ','); if (add_command) { *add_command = '\0'; add_command++; } } if (!name) { printf("%s: missing %s\n", __func__, "name"); exit(1); } if (strlen(name) >= PMT_COUNTER_NAME_SIZE_BYTES) { printf("%s: name has to be at most %d characters long\n", __func__, PMT_COUNTER_NAME_SIZE_BYTES); exit(1); } if (format_name) { has_format = false; if (strcmp("raw", format_name) == 0) { format = FORMAT_RAW; has_format = true; } if (strcmp("delta", format_name) == 0) { format = FORMAT_DELTA; has_format = true; } if (!has_format) { fprintf(stderr, "%s: Invalid format %s. Expected raw or delta\n", __func__, format_name); exit(1); } } if (type_name) { has_type = false; if (strcmp("raw", type_name) == 0) { type = PMT_TYPE_RAW; has_type = true; } if (strcmp("txtal_time", type_name) == 0) { type = PMT_TYPE_XTAL_TIME; has_type = true; } if (!has_type) { printf("%s: invalid %s: %s\n", __func__, "type", type_name); exit(1); } } if (!has_offset) { printf("%s : missing %s\n", __func__, "offset"); exit(1); } if (!has_lsb) { printf("%s: missing %s\n", __func__, "lsb"); exit(1); } if (!has_msb) { printf("%s: missing %s\n", __func__, "msb"); exit(1); } if (!has_guid) { printf("%s: missing %s\n", __func__, "guid"); exit(1); } if (!has_scope) { printf("%s: missing %s\n", __func__, "scope"); exit(1); } if (lsb > msb) { printf("%s: lsb > msb doesn't make sense\n", __func__); exit(1); } pmt_add_counter(guid, name, type, lsb, msb, offset, scope, format, domain_id, PMT_OPEN_REQUIRED); } void parse_add_command(char *add_command) { if (strncmp(add_command, "pmt", strlen("pmt")) == 0) return parse_add_command_pmt(add_command); return parse_add_command_msr(add_command); } int is_deferred_add(char *name) { int i; for (i = 0; i < deferred_add_index; ++i) if (!strcmp(name, deferred_add_names[i])) return 1; return 0; } int is_deferred_skip(char *name) { int i; for (i = 0; i < deferred_skip_index; ++i) if (!strcmp(name, deferred_skip_names[i])) return 1; return 0; } void probe_sysfs(void) { char path[64]; char name_buf[16]; FILE *input; int state; char *sp; for (state = 10; state >= 0; --state) { sprintf(path, "/sys/devices/system/cpu/cpu%d/cpuidle/state%d/name", base_cpu, state); input = fopen(path, "r"); if (input == NULL) continue; if (!fgets(name_buf, sizeof(name_buf), input)) err(1, "%s: failed to read file", path); /* truncate "C1-HSW\n" to "C1", or truncate "C1\n" to "C1" */ sp = strchr(name_buf, '-'); if (!sp) sp = strchrnul(name_buf, '\n'); *sp = '%'; *(sp + 1) = '\0'; remove_underbar(name_buf); fclose(input); sprintf(path, "cpuidle/state%d/time", state); if (!DO_BIC(BIC_sysfs) && !is_deferred_add(name_buf)) continue; if (is_deferred_skip(name_buf)) continue; add_counter(0, path, name_buf, 64, SCOPE_CPU, COUNTER_USEC, FORMAT_PERCENT, SYSFS_PERCPU, 0); } for (state = 10; state >= 0; --state) { sprintf(path, "/sys/devices/system/cpu/cpu%d/cpuidle/state%d/name", base_cpu, state); input = fopen(path, "r"); if (input == NULL) continue; if (!fgets(name_buf, sizeof(name_buf), input)) err(1, "%s: failed to read file", path); /* truncate "C1-HSW\n" to "C1", or truncate "C1\n" to "C1" */ sp = strchr(name_buf, '-'); if (!sp) sp = strchrnul(name_buf, '\n'); *sp = '\0'; fclose(input); remove_underbar(name_buf); sprintf(path, "cpuidle/state%d/usage", state); if (!DO_BIC(BIC_sysfs) && !is_deferred_add(name_buf)) continue; if (is_deferred_skip(name_buf)) continue; add_counter(0, path, name_buf, 64, SCOPE_CPU, COUNTER_ITEMS, FORMAT_DELTA, SYSFS_PERCPU, 0); } } /* * parse cpuset with following syntax * 1,2,4..6,8-10 and set bits in cpu_subset */ void parse_cpu_command(char *optarg) { if (!strcmp(optarg, "core")) { if (cpu_subset) goto error; show_core_only++; return; } if (!strcmp(optarg, "package")) { if (cpu_subset) goto error; show_pkg_only++; return; } if (show_core_only || show_pkg_only) goto error; cpu_subset = CPU_ALLOC(CPU_SUBSET_MAXCPUS); if (cpu_subset == NULL) err(3, "CPU_ALLOC"); cpu_subset_size = CPU_ALLOC_SIZE(CPU_SUBSET_MAXCPUS); CPU_ZERO_S(cpu_subset_size, cpu_subset); if (parse_cpu_str(optarg, cpu_subset, cpu_subset_size)) goto error; return; error: fprintf(stderr, "\"--cpu %s\" malformed\n", optarg); help(); exit(-1); } void cmdline(int argc, char **argv) { int opt; int option_index = 0; static struct option long_options[] = { { "add", required_argument, 0, 'a' }, { "cpu", required_argument, 0, 'c' }, { "Dump", no_argument, 0, 'D' }, { "debug", no_argument, 0, 'd' }, /* internal, not documented */ { "enable", required_argument, 0, 'e' }, { "interval", required_argument, 0, 'i' }, { "IPC", no_argument, 0, 'I' }, { "num_iterations", required_argument, 0, 'n' }, { "header_iterations", required_argument, 0, 'N' }, { "help", no_argument, 0, 'h' }, { "hide", required_argument, 0, 'H' }, // meh, -h taken by --help { "Joules", no_argument, 0, 'J' }, { "list", no_argument, 0, 'l' }, { "out", required_argument, 0, 'o' }, { "quiet", no_argument, 0, 'q' }, { "no-msr", no_argument, 0, 'M' }, { "no-perf", no_argument, 0, 'P' }, { "show", required_argument, 0, 's' }, { "Summary", no_argument, 0, 'S' }, { "TCC", required_argument, 0, 'T' }, { "version", no_argument, 0, 'v' }, { 0, 0, 0, 0 } }; progname = argv[0]; /* * Parse some options early, because they may make other options invalid, * like adding the MSR counter with --add and at the same time using --no-msr. */ while ((opt = getopt_long_only(argc, argv, "+MPn:", long_options, &option_index)) != -1) { switch (opt) { case 'M': no_msr = 1; break; case 'P': no_perf = 1; break; default: break; } } optind = 0; while ((opt = getopt_long_only(argc, argv, "+C:c:Dde:hi:Jn:o:qMST:v", long_options, &option_index)) != -1) { switch (opt) { case 'a': parse_add_command(optarg); break; case 'c': parse_cpu_command(optarg); break; case 'D': dump_only++; /* * Force the no_perf early to prevent using it as a source. * User asks for raw values, but perf returns them relative * to the opening of the file descriptor. */ no_perf = 1; break; case 'e': /* --enable specified counter */ bic_enabled = bic_enabled | bic_lookup(optarg, SHOW_LIST); break; case 'd': debug++; ENABLE_BIC(BIC_DISABLED_BY_DEFAULT); break; case 'H': /* * --hide: do not show those specified * multiple invocations simply clear more bits in enabled mask */ bic_enabled &= ~bic_lookup(optarg, HIDE_LIST); break; case 'h': default: help(); exit(1); case 'i': { double interval = strtod(optarg, NULL); if (interval < 0.001) { fprintf(outf, "interval %f seconds is too small\n", interval); exit(2); } interval_tv.tv_sec = interval_ts.tv_sec = interval; interval_tv.tv_usec = (interval - interval_tv.tv_sec) * 1000000; interval_ts.tv_nsec = (interval - interval_ts.tv_sec) * 1000000000; } break; case 'J': rapl_joules++; break; case 'l': ENABLE_BIC(BIC_DISABLED_BY_DEFAULT); list_header_only++; quiet++; break; case 'o': outf = fopen_or_die(optarg, "w"); break; case 'q': quiet = 1; break; case 'M': case 'P': /* Parsed earlier */ break; case 'n': num_iterations = strtod(optarg, NULL); if (num_iterations <= 0) { fprintf(outf, "iterations %d should be positive number\n", num_iterations); exit(2); } break; case 'N': header_iterations = strtod(optarg, NULL); if (header_iterations <= 0) { fprintf(outf, "iterations %d should be positive number\n", header_iterations); exit(2); } break; case 's': /* * --show: show only those specified * The 1st invocation will clear and replace the enabled mask * subsequent invocations can add to it. */ if (shown == 0) bic_enabled = bic_lookup(optarg, SHOW_LIST); else bic_enabled |= bic_lookup(optarg, SHOW_LIST); shown = 1; break; case 'S': summary_only++; break; case 'T': tj_max_override = atoi(optarg); break; case 'v': print_version(); exit(0); break; } } } void set_rlimit(void) { struct rlimit limit; if (getrlimit(RLIMIT_NOFILE, &limit) < 0) err(1, "Failed to get rlimit"); if (limit.rlim_max < MAX_NOFILE) limit.rlim_max = MAX_NOFILE; if (limit.rlim_cur < MAX_NOFILE) limit.rlim_cur = MAX_NOFILE; if (setrlimit(RLIMIT_NOFILE, &limit) < 0) err(1, "Failed to set rlimit"); } int main(int argc, char **argv) { int fd, ret; fd = open("/sys/fs/cgroup/cgroup.procs", O_WRONLY); if (fd < 0) goto skip_cgroup_setting; ret = write(fd, "0\n", 2); if (ret == -1) perror("Can't update cgroup\n"); close(fd); skip_cgroup_setting: outf = stderr; cmdline(argc, argv); if (!quiet) { print_version(); print_bootcmd(); } probe_sysfs(); if (!getuid()) set_rlimit(); turbostat_init(); if (!no_msr) msr_sum_record(); /* dump counters and exit */ if (dump_only) return get_and_dump_counters(); /* list header and exit */ if (list_header_only) { print_header(","); flush_output_stdout(); return 0; } /* * if any params left, it must be a command to fork */ if (argc - optind) return fork_it(argv + optind); else turbostat_loop(); return 0; }