// SPDX-License-Identifier: GPL-2.0-or-later /* * This driver supports the digital controls for the internal codec * found in Allwinner's A33 SoCs. * * (C) Copyright 2010-2016 * Reuuimlla Technology Co., Ltd. * huangxin * Mylène Josserand */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SUN8I_SYSCLK_CTL 0x00c #define SUN8I_SYSCLK_CTL_AIF1CLK_ENA 11 #define SUN8I_SYSCLK_CTL_AIF1CLK_SRC_PLL (0x2 << 8) #define SUN8I_SYSCLK_CTL_AIF2CLK_ENA 7 #define SUN8I_SYSCLK_CTL_AIF2CLK_SRC_PLL (0x2 << 4) #define SUN8I_SYSCLK_CTL_SYSCLK_ENA 3 #define SUN8I_SYSCLK_CTL_SYSCLK_SRC 0 #define SUN8I_SYSCLK_CTL_SYSCLK_SRC_AIF1CLK (0x0 << 0) #define SUN8I_SYSCLK_CTL_SYSCLK_SRC_AIF2CLK (0x1 << 0) #define SUN8I_MOD_CLK_ENA 0x010 #define SUN8I_MOD_CLK_ENA_AIF1 15 #define SUN8I_MOD_CLK_ENA_AIF2 14 #define SUN8I_MOD_CLK_ENA_AIF3 13 #define SUN8I_MOD_CLK_ENA_ADC 3 #define SUN8I_MOD_CLK_ENA_DAC 2 #define SUN8I_MOD_RST_CTL 0x014 #define SUN8I_MOD_RST_CTL_AIF1 15 #define SUN8I_MOD_RST_CTL_AIF2 14 #define SUN8I_MOD_RST_CTL_AIF3 13 #define SUN8I_MOD_RST_CTL_ADC 3 #define SUN8I_MOD_RST_CTL_DAC 2 #define SUN8I_SYS_SR_CTRL 0x018 #define SUN8I_SYS_SR_CTRL_AIF1_FS 12 #define SUN8I_SYS_SR_CTRL_AIF2_FS 8 #define SUN8I_AIF_CLK_CTRL(n) (0x040 * (1 + (n))) #define SUN8I_AIF_CLK_CTRL_MSTR_MOD 15 #define SUN8I_AIF_CLK_CTRL_CLK_INV 13 #define SUN8I_AIF_CLK_CTRL_BCLK_DIV 9 #define SUN8I_AIF_CLK_CTRL_LRCK_DIV 6 #define SUN8I_AIF_CLK_CTRL_WORD_SIZ 4 #define SUN8I_AIF_CLK_CTRL_DATA_FMT 2 #define SUN8I_AIF1_ADCDAT_CTRL 0x044 #define SUN8I_AIF1_ADCDAT_CTRL_AIF1_AD0L_ENA 15 #define SUN8I_AIF1_ADCDAT_CTRL_AIF1_AD0R_ENA 14 #define SUN8I_AIF1_ADCDAT_CTRL_AIF1_AD0L_SRC 10 #define SUN8I_AIF1_ADCDAT_CTRL_AIF1_AD0R_SRC 8 #define SUN8I_AIF1_DACDAT_CTRL 0x048 #define SUN8I_AIF1_DACDAT_CTRL_AIF1_DA0L_ENA 15 #define SUN8I_AIF1_DACDAT_CTRL_AIF1_DA0R_ENA 14 #define SUN8I_AIF1_DACDAT_CTRL_AIF1_DA0L_SRC 10 #define SUN8I_AIF1_DACDAT_CTRL_AIF1_DA0R_SRC 8 #define SUN8I_AIF1_MXR_SRC 0x04c #define SUN8I_AIF1_MXR_SRC_AD0L_MXR_SRC_AIF1DA0L 15 #define SUN8I_AIF1_MXR_SRC_AD0L_MXR_SRC_AIF2DACL 14 #define SUN8I_AIF1_MXR_SRC_AD0L_MXR_SRC_ADCL 13 #define SUN8I_AIF1_MXR_SRC_AD0L_MXR_SRC_AIF2DACR 12 #define SUN8I_AIF1_MXR_SRC_AD0R_MXR_SRC_AIF1DA0R 11 #define SUN8I_AIF1_MXR_SRC_AD0R_MXR_SRC_AIF2DACR 10 #define SUN8I_AIF1_MXR_SRC_AD0R_MXR_SRC_ADCR 9 #define SUN8I_AIF1_MXR_SRC_AD0R_MXR_SRC_AIF2DACL 8 #define SUN8I_AIF1_VOL_CTRL1 0x050 #define SUN8I_AIF1_VOL_CTRL1_AD0L_VOL 8 #define SUN8I_AIF1_VOL_CTRL1_AD0R_VOL 0 #define SUN8I_AIF1_VOL_CTRL3 0x058 #define SUN8I_AIF1_VOL_CTRL3_DA0L_VOL 8 #define SUN8I_AIF1_VOL_CTRL3_DA0R_VOL 0 #define SUN8I_AIF2_ADCDAT_CTRL 0x084 #define SUN8I_AIF2_ADCDAT_CTRL_AIF2_ADCL_ENA 15 #define SUN8I_AIF2_ADCDAT_CTRL_AIF2_ADCR_ENA 14 #define SUN8I_AIF2_ADCDAT_CTRL_AIF2_ADCL_SRC 10 #define SUN8I_AIF2_ADCDAT_CTRL_AIF2_ADCR_SRC 8 #define SUN8I_AIF2_DACDAT_CTRL 0x088 #define SUN8I_AIF2_DACDAT_CTRL_AIF2_DACL_ENA 15 #define SUN8I_AIF2_DACDAT_CTRL_AIF2_DACR_ENA 14 #define SUN8I_AIF2_DACDAT_CTRL_AIF2_DACL_SRC 10 #define SUN8I_AIF2_DACDAT_CTRL_AIF2_DACR_SRC 8 #define SUN8I_AIF2_MXR_SRC 0x08c #define SUN8I_AIF2_MXR_SRC_ADCL_MXR_SRC_AIF1DA0L 15 #define SUN8I_AIF2_MXR_SRC_ADCL_MXR_SRC_AIF1DA1L 14 #define SUN8I_AIF2_MXR_SRC_ADCL_MXR_SRC_AIF2DACR 13 #define SUN8I_AIF2_MXR_SRC_ADCL_MXR_SRC_ADCL 12 #define SUN8I_AIF2_MXR_SRC_ADCR_MXR_SRC_AIF1DA0R 11 #define SUN8I_AIF2_MXR_SRC_ADCR_MXR_SRC_AIF1DA1R 10 #define SUN8I_AIF2_MXR_SRC_ADCR_MXR_SRC_AIF2DACL 9 #define SUN8I_AIF2_MXR_SRC_ADCR_MXR_SRC_ADCR 8 #define SUN8I_AIF2_VOL_CTRL1 0x090 #define SUN8I_AIF2_VOL_CTRL1_ADCL_VOL 8 #define SUN8I_AIF2_VOL_CTRL1_ADCR_VOL 0 #define SUN8I_AIF2_VOL_CTRL2 0x098 #define SUN8I_AIF2_VOL_CTRL2_DACL_VOL 8 #define SUN8I_AIF2_VOL_CTRL2_DACR_VOL 0 #define SUN8I_AIF3_CLK_CTRL_AIF3_CLK_SRC_AIF1 (0x0 << 0) #define SUN8I_AIF3_CLK_CTRL_AIF3_CLK_SRC_AIF2 (0x1 << 0) #define SUN8I_AIF3_CLK_CTRL_AIF3_CLK_SRC_AIF1CLK (0x2 << 0) #define SUN8I_AIF3_PATH_CTRL 0x0cc #define SUN8I_AIF3_PATH_CTRL_AIF3_ADC_SRC 10 #define SUN8I_AIF3_PATH_CTRL_AIF2_DAC_SRC 8 #define SUN8I_AIF3_PATH_CTRL_AIF3_PINS_TRI 7 #define SUN8I_ADC_DIG_CTRL 0x100 #define SUN8I_ADC_DIG_CTRL_ENAD 15 #define SUN8I_ADC_DIG_CTRL_ADOUT_DTS 2 #define SUN8I_ADC_DIG_CTRL_ADOUT_DLY 1 #define SUN8I_ADC_VOL_CTRL 0x104 #define SUN8I_ADC_VOL_CTRL_ADCL_VOL 8 #define SUN8I_ADC_VOL_CTRL_ADCR_VOL 0 #define SUN8I_HMIC_CTRL1 0x110 #define SUN8I_HMIC_CTRL1_HMIC_M 12 #define SUN8I_HMIC_CTRL1_HMIC_N 8 #define SUN8I_HMIC_CTRL1_MDATA_THRESHOLD_DB 5 #define SUN8I_HMIC_CTRL1_JACK_OUT_IRQ_EN 4 #define SUN8I_HMIC_CTRL1_JACK_IN_IRQ_EN 3 #define SUN8I_HMIC_CTRL1_HMIC_DATA_IRQ_EN 0 #define SUN8I_HMIC_CTRL2 0x114 #define SUN8I_HMIC_CTRL2_HMIC_SAMPLE 14 #define SUN8I_HMIC_CTRL2_HMIC_MDATA_THRESHOLD 8 #define SUN8I_HMIC_CTRL2_HMIC_SF 6 #define SUN8I_HMIC_STS 0x118 #define SUN8I_HMIC_STS_MDATA_DISCARD 13 #define SUN8I_HMIC_STS_HMIC_DATA 8 #define SUN8I_HMIC_STS_JACK_OUT_IRQ_ST 4 #define SUN8I_HMIC_STS_JACK_IN_IRQ_ST 3 #define SUN8I_HMIC_STS_HMIC_DATA_IRQ_ST 0 #define SUN8I_DAC_DIG_CTRL 0x120 #define SUN8I_DAC_DIG_CTRL_ENDA 15 #define SUN8I_DAC_VOL_CTRL 0x124 #define SUN8I_DAC_VOL_CTRL_DACL_VOL 8 #define SUN8I_DAC_VOL_CTRL_DACR_VOL 0 #define SUN8I_DAC_MXR_SRC 0x130 #define SUN8I_DAC_MXR_SRC_DACL_MXR_SRC_AIF1DA0L 15 #define SUN8I_DAC_MXR_SRC_DACL_MXR_SRC_AIF1DA1L 14 #define SUN8I_DAC_MXR_SRC_DACL_MXR_SRC_AIF2DACL 13 #define SUN8I_DAC_MXR_SRC_DACL_MXR_SRC_ADCL 12 #define SUN8I_DAC_MXR_SRC_DACR_MXR_SRC_AIF1DA0R 11 #define SUN8I_DAC_MXR_SRC_DACR_MXR_SRC_AIF1DA1R 10 #define SUN8I_DAC_MXR_SRC_DACR_MXR_SRC_AIF2DACR 9 #define SUN8I_DAC_MXR_SRC_DACR_MXR_SRC_ADCR 8 #define SUN8I_SYSCLK_CTL_AIF1CLK_SRC_MASK GENMASK(9, 8) #define SUN8I_SYSCLK_CTL_AIF2CLK_SRC_MASK GENMASK(5, 4) #define SUN8I_SYS_SR_CTRL_AIF1_FS_MASK GENMASK(15, 12) #define SUN8I_SYS_SR_CTRL_AIF2_FS_MASK GENMASK(11, 8) #define SUN8I_AIF_CLK_CTRL_CLK_INV_MASK GENMASK(14, 13) #define SUN8I_AIF_CLK_CTRL_BCLK_DIV_MASK GENMASK(12, 9) #define SUN8I_AIF_CLK_CTRL_LRCK_DIV_MASK GENMASK(8, 6) #define SUN8I_AIF_CLK_CTRL_WORD_SIZ_MASK GENMASK(5, 4) #define SUN8I_AIF_CLK_CTRL_DATA_FMT_MASK GENMASK(3, 2) #define SUN8I_AIF3_CLK_CTRL_AIF3_CLK_SRC_MASK GENMASK(1, 0) #define SUN8I_HMIC_CTRL1_HMIC_M_MASK GENMASK(15, 12) #define SUN8I_HMIC_CTRL1_HMIC_N_MASK GENMASK(11, 8) #define SUN8I_HMIC_CTRL1_MDATA_THRESHOLD_DB_MASK GENMASK(6, 5) #define SUN8I_HMIC_CTRL2_HMIC_SAMPLE_MASK GENMASK(15, 14) #define SUN8I_HMIC_CTRL2_HMIC_SF_MASK GENMASK(7, 6) #define SUN8I_HMIC_STS_HMIC_DATA_MASK GENMASK(12, 8) #define SUN8I_CODEC_BUTTONS (SND_JACK_BTN_0|\ SND_JACK_BTN_1|\ SND_JACK_BTN_2|\ SND_JACK_BTN_3) #define SUN8I_CODEC_PASSTHROUGH_SAMPLE_RATE 48000 #define SUN8I_CODEC_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 |\ SNDRV_PCM_FMTBIT_S16_LE |\ SNDRV_PCM_FMTBIT_S20_LE |\ SNDRV_PCM_FMTBIT_S24_LE |\ SNDRV_PCM_FMTBIT_S20_3LE|\ SNDRV_PCM_FMTBIT_S24_3LE) #define SUN8I_CODEC_PCM_RATES (SNDRV_PCM_RATE_8000_48000|\ SNDRV_PCM_RATE_88200 |\ SNDRV_PCM_RATE_96000 |\ SNDRV_PCM_RATE_176400 |\ SNDRV_PCM_RATE_192000 |\ SNDRV_PCM_RATE_KNOT) enum { SUN8I_CODEC_AIF1, SUN8I_CODEC_AIF2, SUN8I_CODEC_AIF3, SUN8I_CODEC_NAIFS }; struct sun8i_codec_aif { unsigned int lrck_div_order; unsigned int sample_rate; unsigned int slots; unsigned int slot_width; unsigned int active_streams : 2; unsigned int open_streams : 2; }; struct sun8i_codec_quirks { bool bus_clock : 1; bool jack_detection : 1; bool legacy_widgets : 1; bool lrck_inversion : 1; }; enum { SUN8I_JACK_STATUS_DISCONNECTED, SUN8I_JACK_STATUS_WAITING_HBIAS, SUN8I_JACK_STATUS_CONNECTED, }; struct sun8i_codec { struct snd_soc_component *component; struct regmap *regmap; struct clk *clk_bus; struct clk *clk_module; const struct sun8i_codec_quirks *quirks; struct sun8i_codec_aif aifs[SUN8I_CODEC_NAIFS]; struct snd_soc_jack *jack; struct delayed_work jack_work; int jack_irq; int jack_status; int jack_last_sample; ktime_t jack_hbias_ready; struct mutex jack_mutex; int last_hmic_irq; unsigned int sysclk_rate; int sysclk_refcnt; }; static struct snd_soc_dai_driver sun8i_codec_dais[]; static int sun8i_codec_runtime_resume(struct device *dev) { struct sun8i_codec *scodec = dev_get_drvdata(dev); int ret; if (scodec->clk_bus) { ret = clk_prepare_enable(scodec->clk_bus); if (ret) { dev_err(dev, "Failed to enable the bus clock\n"); return ret; } } regcache_cache_only(scodec->regmap, false); ret = regcache_sync(scodec->regmap); if (ret) { dev_err(dev, "Failed to sync regmap cache\n"); return ret; } return 0; } static int sun8i_codec_runtime_suspend(struct device *dev) { struct sun8i_codec *scodec = dev_get_drvdata(dev); regcache_cache_only(scodec->regmap, true); regcache_mark_dirty(scodec->regmap); if (scodec->clk_bus) clk_disable_unprepare(scodec->clk_bus); return 0; } static int sun8i_codec_get_hw_rate(unsigned int sample_rate) { switch (sample_rate) { case 7350: case 8000: return 0x0; case 11025: return 0x1; case 12000: return 0x2; case 14700: case 16000: return 0x3; case 22050: return 0x4; case 24000: return 0x5; case 29400: case 32000: return 0x6; case 44100: return 0x7; case 48000: return 0x8; case 88200: case 96000: return 0x9; case 176400: case 192000: return 0xa; default: return -EINVAL; } } static int sun8i_codec_update_sample_rate(struct sun8i_codec *scodec) { unsigned int max_rate = 0; int hw_rate, i; for (i = SUN8I_CODEC_AIF1; i < SUN8I_CODEC_NAIFS; ++i) { struct sun8i_codec_aif *aif = &scodec->aifs[i]; if (aif->active_streams) max_rate = max(max_rate, aif->sample_rate); } /* Set the sample rate for ADC->DAC passthrough when no AIF is active. */ if (!max_rate) max_rate = SUN8I_CODEC_PASSTHROUGH_SAMPLE_RATE; hw_rate = sun8i_codec_get_hw_rate(max_rate); if (hw_rate < 0) return hw_rate; regmap_update_bits(scodec->regmap, SUN8I_SYS_SR_CTRL, SUN8I_SYS_SR_CTRL_AIF1_FS_MASK, hw_rate << SUN8I_SYS_SR_CTRL_AIF1_FS); return 0; } static int sun8i_codec_set_fmt(struct snd_soc_dai *dai, unsigned int fmt) { struct sun8i_codec *scodec = snd_soc_dai_get_drvdata(dai); u32 dsp_format, format, invert, value; /* clock masters */ switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) { case SND_SOC_DAIFMT_CBC_CFC: /* Codec slave, DAI master */ value = 0x1; break; case SND_SOC_DAIFMT_CBP_CFP: /* Codec Master, DAI slave */ value = 0x0; break; default: return -EINVAL; } if (dai->id == SUN8I_CODEC_AIF3) { /* AIF3 only supports master mode. */ if (value) return -EINVAL; /* Use the AIF2 BCLK and LRCK for AIF3. */ regmap_update_bits(scodec->regmap, SUN8I_AIF_CLK_CTRL(dai->id), SUN8I_AIF3_CLK_CTRL_AIF3_CLK_SRC_MASK, SUN8I_AIF3_CLK_CTRL_AIF3_CLK_SRC_AIF2); } else { regmap_update_bits(scodec->regmap, SUN8I_AIF_CLK_CTRL(dai->id), BIT(SUN8I_AIF_CLK_CTRL_MSTR_MOD), value << SUN8I_AIF_CLK_CTRL_MSTR_MOD); } /* DAI format */ switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: format = 0x0; break; case SND_SOC_DAIFMT_LEFT_J: format = 0x1; break; case SND_SOC_DAIFMT_RIGHT_J: format = 0x2; break; case SND_SOC_DAIFMT_DSP_A: format = 0x3; dsp_format = 0x0; /* Set LRCK_INV to 0 */ break; case SND_SOC_DAIFMT_DSP_B: format = 0x3; dsp_format = 0x1; /* Set LRCK_INV to 1 */ break; default: return -EINVAL; } if (dai->id == SUN8I_CODEC_AIF3) { /* AIF3 only supports DSP mode. */ if (format != 3) return -EINVAL; } else { regmap_update_bits(scodec->regmap, SUN8I_AIF_CLK_CTRL(dai->id), SUN8I_AIF_CLK_CTRL_DATA_FMT_MASK, format << SUN8I_AIF_CLK_CTRL_DATA_FMT); } /* clock inversion */ switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: /* Normal */ invert = 0x0; break; case SND_SOC_DAIFMT_NB_IF: /* Inverted LRCK */ invert = 0x1; break; case SND_SOC_DAIFMT_IB_NF: /* Inverted BCLK */ invert = 0x2; break; case SND_SOC_DAIFMT_IB_IF: /* Both inverted */ invert = 0x3; break; default: return -EINVAL; } if (format == 0x3) { /* Inverted LRCK is not available in DSP mode. */ if (invert & BIT(0)) return -EINVAL; /* Instead, the bit selects between DSP A/B formats. */ invert |= dsp_format; } else { /* * It appears that the DAI and the codec in the A33 SoC don't * share the same polarity for the LRCK signal when they mean * 'normal' and 'inverted' in the datasheet. * * Since the DAI here is our regular i2s driver that have been * tested with way more codecs than just this one, it means * that the codec probably gets it backward, and we have to * invert the value here. */ invert ^= scodec->quirks->lrck_inversion; } regmap_update_bits(scodec->regmap, SUN8I_AIF_CLK_CTRL(dai->id), SUN8I_AIF_CLK_CTRL_CLK_INV_MASK, invert << SUN8I_AIF_CLK_CTRL_CLK_INV); return 0; } static int sun8i_codec_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width) { struct sun8i_codec *scodec = snd_soc_dai_get_drvdata(dai); struct sun8i_codec_aif *aif = &scodec->aifs[dai->id]; if (slot_width && !is_power_of_2(slot_width)) return -EINVAL; aif->slots = slots; aif->slot_width = slot_width; return 0; } static const unsigned int sun8i_codec_rates[] = { 7350, 8000, 11025, 12000, 14700, 16000, 22050, 24000, 29400, 32000, 44100, 48000, 88200, 96000, 176400, 192000, }; static const struct snd_pcm_hw_constraint_list sun8i_codec_all_rates = { .list = sun8i_codec_rates, .count = ARRAY_SIZE(sun8i_codec_rates), }; static const struct snd_pcm_hw_constraint_list sun8i_codec_22M_rates = { .list = sun8i_codec_rates, .count = ARRAY_SIZE(sun8i_codec_rates), .mask = 0x5555, }; static const struct snd_pcm_hw_constraint_list sun8i_codec_24M_rates = { .list = sun8i_codec_rates, .count = ARRAY_SIZE(sun8i_codec_rates), .mask = 0xaaaa, }; static int sun8i_codec_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct sun8i_codec *scodec = snd_soc_dai_get_drvdata(dai); const struct snd_pcm_hw_constraint_list *list; /* hw_constraints is not relevant for codec2codec DAIs. */ if (dai->id != SUN8I_CODEC_AIF1) return 0; if (!scodec->sysclk_refcnt) list = &sun8i_codec_all_rates; else if (scodec->sysclk_rate == 22579200) list = &sun8i_codec_22M_rates; else if (scodec->sysclk_rate == 24576000) list = &sun8i_codec_24M_rates; else return -EINVAL; return snd_pcm_hw_constraint_list(substream->runtime, 0, SNDRV_PCM_HW_PARAM_RATE, list); } struct sun8i_codec_clk_div { u8 div; u8 val; }; static const struct sun8i_codec_clk_div sun8i_codec_bclk_div[] = { { .div = 1, .val = 0 }, { .div = 2, .val = 1 }, { .div = 4, .val = 2 }, { .div = 6, .val = 3 }, { .div = 8, .val = 4 }, { .div = 12, .val = 5 }, { .div = 16, .val = 6 }, { .div = 24, .val = 7 }, { .div = 32, .val = 8 }, { .div = 48, .val = 9 }, { .div = 64, .val = 10 }, { .div = 96, .val = 11 }, { .div = 128, .val = 12 }, { .div = 192, .val = 13 }, }; static int sun8i_codec_get_bclk_div(unsigned int sysclk_rate, unsigned int lrck_div_order, unsigned int sample_rate) { unsigned int div = sysclk_rate / sample_rate >> lrck_div_order; int i; for (i = 0; i < ARRAY_SIZE(sun8i_codec_bclk_div); i++) { const struct sun8i_codec_clk_div *bdiv = &sun8i_codec_bclk_div[i]; if (bdiv->div == div) return bdiv->val; } return -EINVAL; } static int sun8i_codec_get_lrck_div_order(unsigned int slots, unsigned int slot_width) { unsigned int div = slots * slot_width; if (div < 16 || div > 256) return -EINVAL; return order_base_2(div); } static unsigned int sun8i_codec_get_sysclk_rate(unsigned int sample_rate) { return (sample_rate % 4000) ? 22579200 : 24576000; } static int sun8i_codec_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct sun8i_codec *scodec = snd_soc_dai_get_drvdata(dai); struct sun8i_codec_aif *aif = &scodec->aifs[dai->id]; unsigned int sample_rate = params_rate(params); unsigned int slots = aif->slots ?: params_channels(params); unsigned int slot_width = aif->slot_width ?: params_width(params); unsigned int sysclk_rate = sun8i_codec_get_sysclk_rate(sample_rate); int bclk_div, lrck_div_order, ret, word_size; u32 clk_reg; /* word size */ switch (params_width(params)) { case 8: word_size = 0x0; break; case 16: word_size = 0x1; break; case 20: word_size = 0x2; break; case 24: word_size = 0x3; break; default: return -EINVAL; } regmap_update_bits(scodec->regmap, SUN8I_AIF_CLK_CTRL(dai->id), SUN8I_AIF_CLK_CTRL_WORD_SIZ_MASK, word_size << SUN8I_AIF_CLK_CTRL_WORD_SIZ); /* LRCK divider (BCLK/LRCK ratio) */ lrck_div_order = sun8i_codec_get_lrck_div_order(slots, slot_width); if (lrck_div_order < 0) return lrck_div_order; if (dai->id == SUN8I_CODEC_AIF2 || dai->id == SUN8I_CODEC_AIF3) { /* AIF2 and AIF3 share AIF2's BCLK and LRCK generation circuitry. */ int partner = (SUN8I_CODEC_AIF2 + SUN8I_CODEC_AIF3) - dai->id; const struct sun8i_codec_aif *partner_aif = &scodec->aifs[partner]; const char *partner_name = sun8i_codec_dais[partner].name; if (partner_aif->open_streams && (lrck_div_order != partner_aif->lrck_div_order || sample_rate != partner_aif->sample_rate)) { dev_err(dai->dev, "%s sample and bit rates must match %s when both are used\n", dai->name, partner_name); return -EBUSY; } clk_reg = SUN8I_AIF_CLK_CTRL(SUN8I_CODEC_AIF2); } else { clk_reg = SUN8I_AIF_CLK_CTRL(dai->id); } regmap_update_bits(scodec->regmap, clk_reg, SUN8I_AIF_CLK_CTRL_LRCK_DIV_MASK, (lrck_div_order - 4) << SUN8I_AIF_CLK_CTRL_LRCK_DIV); /* BCLK divider (SYSCLK/BCLK ratio) */ bclk_div = sun8i_codec_get_bclk_div(sysclk_rate, lrck_div_order, sample_rate); if (bclk_div < 0) return bclk_div; regmap_update_bits(scodec->regmap, clk_reg, SUN8I_AIF_CLK_CTRL_BCLK_DIV_MASK, bclk_div << SUN8I_AIF_CLK_CTRL_BCLK_DIV); /* * SYSCLK rate * * Clock rate protection is reference counted; but hw_params may be * called many times per substream, without matching calls to hw_free. * Protect the clock rate once per AIF, on the first hw_params call * for the first substream. clk_set_rate() will allow clock rate * changes on subsequent calls if only one AIF has open streams. */ ret = (aif->open_streams ? clk_set_rate : clk_set_rate_exclusive)(scodec->clk_module, sysclk_rate); if (ret == -EBUSY) dev_err(dai->dev, "%s sample rate (%u Hz) conflicts with other audio streams\n", dai->name, sample_rate); if (ret < 0) return ret; if (!aif->open_streams) scodec->sysclk_refcnt++; scodec->sysclk_rate = sysclk_rate; aif->lrck_div_order = lrck_div_order; aif->sample_rate = sample_rate; aif->open_streams |= BIT(substream->stream); return sun8i_codec_update_sample_rate(scodec); } static int sun8i_codec_hw_free(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct sun8i_codec *scodec = snd_soc_dai_get_drvdata(dai); struct sun8i_codec_aif *aif = &scodec->aifs[dai->id]; /* Drop references when the last substream for the AIF is freed. */ if (aif->open_streams != BIT(substream->stream)) goto done; clk_rate_exclusive_put(scodec->clk_module); scodec->sysclk_refcnt--; aif->lrck_div_order = 0; aif->sample_rate = 0; done: aif->open_streams &= ~BIT(substream->stream); return 0; } static const struct snd_soc_dai_ops sun8i_codec_dai_ops = { .set_fmt = sun8i_codec_set_fmt, .set_tdm_slot = sun8i_codec_set_tdm_slot, .startup = sun8i_codec_startup, .hw_params = sun8i_codec_hw_params, .hw_free = sun8i_codec_hw_free, }; static struct snd_soc_dai_driver sun8i_codec_dais[] = { { .name = "sun8i-codec-aif1", .id = SUN8I_CODEC_AIF1, .ops = &sun8i_codec_dai_ops, /* capture capabilities */ .capture = { .stream_name = "AIF1 Capture", .channels_min = 1, .channels_max = 2, .rates = SUN8I_CODEC_PCM_RATES, .formats = SUN8I_CODEC_PCM_FORMATS, .sig_bits = 24, }, /* playback capabilities */ .playback = { .stream_name = "AIF1 Playback", .channels_min = 1, .channels_max = 2, .rates = SUN8I_CODEC_PCM_RATES, .formats = SUN8I_CODEC_PCM_FORMATS, }, .symmetric_rate = true, .symmetric_channels = true, .symmetric_sample_bits = true, }, { .name = "sun8i-codec-aif2", .id = SUN8I_CODEC_AIF2, .ops = &sun8i_codec_dai_ops, /* capture capabilities */ .capture = { .stream_name = "AIF2 Capture", .channels_min = 1, .channels_max = 2, .rates = SUN8I_CODEC_PCM_RATES, .formats = SUN8I_CODEC_PCM_FORMATS, .sig_bits = 24, }, /* playback capabilities */ .playback = { .stream_name = "AIF2 Playback", .channels_min = 1, .channels_max = 2, .rates = SUN8I_CODEC_PCM_RATES, .formats = SUN8I_CODEC_PCM_FORMATS, }, .symmetric_rate = true, .symmetric_channels = true, .symmetric_sample_bits = true, }, { .name = "sun8i-codec-aif3", .id = SUN8I_CODEC_AIF3, .ops = &sun8i_codec_dai_ops, /* capture capabilities */ .capture = { .stream_name = "AIF3 Capture", .channels_min = 1, .channels_max = 1, .rates = SUN8I_CODEC_PCM_RATES, .formats = SUN8I_CODEC_PCM_FORMATS, .sig_bits = 24, }, /* playback capabilities */ .playback = { .stream_name = "AIF3 Playback", .channels_min = 1, .channels_max = 1, .rates = SUN8I_CODEC_PCM_RATES, .formats = SUN8I_CODEC_PCM_FORMATS, }, .symmetric_rate = true, .symmetric_channels = true, .symmetric_sample_bits = true, }, }; static const DECLARE_TLV_DB_SCALE(sun8i_codec_vol_scale, -12000, 75, 1); static const struct snd_kcontrol_new sun8i_codec_controls[] = { SOC_DOUBLE_TLV("AIF1 AD0 Capture Volume", SUN8I_AIF1_VOL_CTRL1, SUN8I_AIF1_VOL_CTRL1_AD0L_VOL, SUN8I_AIF1_VOL_CTRL1_AD0R_VOL, 0xc0, 0, sun8i_codec_vol_scale), SOC_DOUBLE_TLV("AIF1 DA0 Playback Volume", SUN8I_AIF1_VOL_CTRL3, SUN8I_AIF1_VOL_CTRL3_DA0L_VOL, SUN8I_AIF1_VOL_CTRL3_DA0R_VOL, 0xc0, 0, sun8i_codec_vol_scale), SOC_DOUBLE_TLV("AIF2 ADC Capture Volume", SUN8I_AIF2_VOL_CTRL1, SUN8I_AIF2_VOL_CTRL1_ADCL_VOL, SUN8I_AIF2_VOL_CTRL1_ADCR_VOL, 0xc0, 0, sun8i_codec_vol_scale), SOC_DOUBLE_TLV("AIF2 DAC Playback Volume", SUN8I_AIF2_VOL_CTRL2, SUN8I_AIF2_VOL_CTRL2_DACL_VOL, SUN8I_AIF2_VOL_CTRL2_DACR_VOL, 0xc0, 0, sun8i_codec_vol_scale), SOC_DOUBLE_TLV("ADC Capture Volume", SUN8I_ADC_VOL_CTRL, SUN8I_ADC_VOL_CTRL_ADCL_VOL, SUN8I_ADC_VOL_CTRL_ADCR_VOL, 0xc0, 0, sun8i_codec_vol_scale), SOC_DOUBLE_TLV("DAC Playback Volume", SUN8I_DAC_VOL_CTRL, SUN8I_DAC_VOL_CTRL_DACL_VOL, SUN8I_DAC_VOL_CTRL_DACR_VOL, 0xc0, 0, sun8i_codec_vol_scale), }; static int sun8i_codec_aif_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm); struct sun8i_codec *scodec = snd_soc_component_get_drvdata(component); struct sun8i_codec_aif *aif = &scodec->aifs[w->sname[3] - '1']; int stream = w->id == snd_soc_dapm_aif_out; if (SND_SOC_DAPM_EVENT_ON(event)) aif->active_streams |= BIT(stream); else aif->active_streams &= ~BIT(stream); return sun8i_codec_update_sample_rate(scodec); } static const char *const sun8i_aif_stereo_mux_enum_values[] = { "Stereo", "Reverse Stereo", "Sum Mono", "Mix Mono" }; static SOC_ENUM_DOUBLE_DECL(sun8i_aif1_ad0_stereo_mux_enum, SUN8I_AIF1_ADCDAT_CTRL, SUN8I_AIF1_ADCDAT_CTRL_AIF1_AD0L_SRC, SUN8I_AIF1_ADCDAT_CTRL_AIF1_AD0R_SRC, sun8i_aif_stereo_mux_enum_values); static const struct snd_kcontrol_new sun8i_aif1_ad0_stereo_mux_control = SOC_DAPM_ENUM("AIF1 AD0 Stereo Capture Route", sun8i_aif1_ad0_stereo_mux_enum); static SOC_ENUM_DOUBLE_DECL(sun8i_aif2_adc_stereo_mux_enum, SUN8I_AIF2_ADCDAT_CTRL, SUN8I_AIF2_ADCDAT_CTRL_AIF2_ADCL_SRC, SUN8I_AIF2_ADCDAT_CTRL_AIF2_ADCR_SRC, sun8i_aif_stereo_mux_enum_values); static const struct snd_kcontrol_new sun8i_aif2_adc_stereo_mux_control = SOC_DAPM_ENUM("AIF2 ADC Stereo Capture Route", sun8i_aif2_adc_stereo_mux_enum); static const char *const sun8i_aif3_adc_mux_enum_values[] = { "None", "AIF2 ADCL", "AIF2 ADCR" }; static SOC_ENUM_SINGLE_DECL(sun8i_aif3_adc_mux_enum, SUN8I_AIF3_PATH_CTRL, SUN8I_AIF3_PATH_CTRL_AIF3_ADC_SRC, sun8i_aif3_adc_mux_enum_values); static const struct snd_kcontrol_new sun8i_aif3_adc_mux_control = SOC_DAPM_ENUM("AIF3 ADC Source Capture Route", sun8i_aif3_adc_mux_enum); static const struct snd_kcontrol_new sun8i_aif1_ad0_mixer_controls[] = { SOC_DAPM_DOUBLE("AIF1 Slot 0 Digital ADC Capture Switch", SUN8I_AIF1_MXR_SRC, SUN8I_AIF1_MXR_SRC_AD0L_MXR_SRC_AIF1DA0L, SUN8I_AIF1_MXR_SRC_AD0R_MXR_SRC_AIF1DA0R, 1, 0), SOC_DAPM_DOUBLE("AIF2 Digital ADC Capture Switch", SUN8I_AIF1_MXR_SRC, SUN8I_AIF1_MXR_SRC_AD0L_MXR_SRC_AIF2DACL, SUN8I_AIF1_MXR_SRC_AD0R_MXR_SRC_AIF2DACR, 1, 0), SOC_DAPM_DOUBLE("AIF1 Data Digital ADC Capture Switch", SUN8I_AIF1_MXR_SRC, SUN8I_AIF1_MXR_SRC_AD0L_MXR_SRC_ADCL, SUN8I_AIF1_MXR_SRC_AD0R_MXR_SRC_ADCR, 1, 0), SOC_DAPM_DOUBLE("AIF2 Inv Digital ADC Capture Switch", SUN8I_AIF1_MXR_SRC, SUN8I_AIF1_MXR_SRC_AD0L_MXR_SRC_AIF2DACR, SUN8I_AIF1_MXR_SRC_AD0R_MXR_SRC_AIF2DACL, 1, 0), }; static const struct snd_kcontrol_new sun8i_aif2_adc_mixer_controls[] = { SOC_DAPM_DOUBLE("AIF2 ADC Mixer AIF1 DA0 Capture Switch", SUN8I_AIF2_MXR_SRC, SUN8I_AIF2_MXR_SRC_ADCL_MXR_SRC_AIF1DA0L, SUN8I_AIF2_MXR_SRC_ADCR_MXR_SRC_AIF1DA0R, 1, 0), SOC_DAPM_DOUBLE("AIF2 ADC Mixer AIF1 DA1 Capture Switch", SUN8I_AIF2_MXR_SRC, SUN8I_AIF2_MXR_SRC_ADCL_MXR_SRC_AIF1DA1L, SUN8I_AIF2_MXR_SRC_ADCR_MXR_SRC_AIF1DA1R, 1, 0), SOC_DAPM_DOUBLE("AIF2 ADC Mixer AIF2 DAC Rev Capture Switch", SUN8I_AIF2_MXR_SRC, SUN8I_AIF2_MXR_SRC_ADCL_MXR_SRC_AIF2DACR, SUN8I_AIF2_MXR_SRC_ADCR_MXR_SRC_AIF2DACL, 1, 0), SOC_DAPM_DOUBLE("AIF2 ADC Mixer ADC Capture Switch", SUN8I_AIF2_MXR_SRC, SUN8I_AIF2_MXR_SRC_ADCL_MXR_SRC_ADCL, SUN8I_AIF2_MXR_SRC_ADCR_MXR_SRC_ADCR, 1, 0), }; static const char *const sun8i_aif2_dac_mux_enum_values[] = { "AIF2", "AIF3+2", "AIF2+3" }; static SOC_ENUM_SINGLE_DECL(sun8i_aif2_dac_mux_enum, SUN8I_AIF3_PATH_CTRL, SUN8I_AIF3_PATH_CTRL_AIF2_DAC_SRC, sun8i_aif2_dac_mux_enum_values); static const struct snd_kcontrol_new sun8i_aif2_dac_mux_control = SOC_DAPM_ENUM("AIF2 DAC Source Playback Route", sun8i_aif2_dac_mux_enum); static SOC_ENUM_DOUBLE_DECL(sun8i_aif1_da0_stereo_mux_enum, SUN8I_AIF1_DACDAT_CTRL, SUN8I_AIF1_DACDAT_CTRL_AIF1_DA0L_SRC, SUN8I_AIF1_DACDAT_CTRL_AIF1_DA0R_SRC, sun8i_aif_stereo_mux_enum_values); static const struct snd_kcontrol_new sun8i_aif1_da0_stereo_mux_control = SOC_DAPM_ENUM("AIF1 DA0 Stereo Playback Route", sun8i_aif1_da0_stereo_mux_enum); static SOC_ENUM_DOUBLE_DECL(sun8i_aif2_dac_stereo_mux_enum, SUN8I_AIF2_DACDAT_CTRL, SUN8I_AIF2_DACDAT_CTRL_AIF2_DACL_SRC, SUN8I_AIF2_DACDAT_CTRL_AIF2_DACR_SRC, sun8i_aif_stereo_mux_enum_values); static const struct snd_kcontrol_new sun8i_aif2_dac_stereo_mux_control = SOC_DAPM_ENUM("AIF2 DAC Stereo Playback Route", sun8i_aif2_dac_stereo_mux_enum); static const struct snd_kcontrol_new sun8i_dac_mixer_controls[] = { SOC_DAPM_DOUBLE("AIF1 Slot 0 Digital DAC Playback Switch", SUN8I_DAC_MXR_SRC, SUN8I_DAC_MXR_SRC_DACL_MXR_SRC_AIF1DA0L, SUN8I_DAC_MXR_SRC_DACR_MXR_SRC_AIF1DA0R, 1, 0), SOC_DAPM_DOUBLE("AIF1 Slot 1 Digital DAC Playback Switch", SUN8I_DAC_MXR_SRC, SUN8I_DAC_MXR_SRC_DACL_MXR_SRC_AIF1DA1L, SUN8I_DAC_MXR_SRC_DACR_MXR_SRC_AIF1DA1R, 1, 0), SOC_DAPM_DOUBLE("AIF2 Digital DAC Playback Switch", SUN8I_DAC_MXR_SRC, SUN8I_DAC_MXR_SRC_DACL_MXR_SRC_AIF2DACL, SUN8I_DAC_MXR_SRC_DACR_MXR_SRC_AIF2DACR, 1, 0), SOC_DAPM_DOUBLE("ADC Digital DAC Playback Switch", SUN8I_DAC_MXR_SRC, SUN8I_DAC_MXR_SRC_DACL_MXR_SRC_ADCL, SUN8I_DAC_MXR_SRC_DACR_MXR_SRC_ADCR, 1, 0), }; static const struct snd_soc_dapm_widget sun8i_codec_dapm_widgets[] = { /* System Clocks */ SND_SOC_DAPM_CLOCK_SUPPLY("mod"), SND_SOC_DAPM_SUPPLY("AIF1CLK", SUN8I_SYSCLK_CTL, SUN8I_SYSCLK_CTL_AIF1CLK_ENA, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("AIF2CLK", SUN8I_SYSCLK_CTL, SUN8I_SYSCLK_CTL_AIF2CLK_ENA, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("SYSCLK", SUN8I_SYSCLK_CTL, SUN8I_SYSCLK_CTL_SYSCLK_ENA, 0, NULL, 0), /* Module Clocks */ SND_SOC_DAPM_SUPPLY("CLK AIF1", SUN8I_MOD_CLK_ENA, SUN8I_MOD_CLK_ENA_AIF1, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("CLK AIF2", SUN8I_MOD_CLK_ENA, SUN8I_MOD_CLK_ENA_AIF2, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("CLK AIF3", SUN8I_MOD_CLK_ENA, SUN8I_MOD_CLK_ENA_AIF3, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("CLK ADC", SUN8I_MOD_CLK_ENA, SUN8I_MOD_CLK_ENA_ADC, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("CLK DAC", SUN8I_MOD_CLK_ENA, SUN8I_MOD_CLK_ENA_DAC, 0, NULL, 0), /* Module Resets */ SND_SOC_DAPM_SUPPLY("RST AIF1", SUN8I_MOD_RST_CTL, SUN8I_MOD_RST_CTL_AIF1, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("RST AIF2", SUN8I_MOD_RST_CTL, SUN8I_MOD_RST_CTL_AIF2, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("RST AIF3", SUN8I_MOD_RST_CTL, SUN8I_MOD_RST_CTL_AIF3, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("RST ADC", SUN8I_MOD_RST_CTL, SUN8I_MOD_RST_CTL_ADC, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("RST DAC", SUN8I_MOD_RST_CTL, SUN8I_MOD_RST_CTL_DAC, 0, NULL, 0), /* Module Supplies */ SND_SOC_DAPM_SUPPLY("ADC", SUN8I_ADC_DIG_CTRL, SUN8I_ADC_DIG_CTRL_ENAD, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("DAC", SUN8I_DAC_DIG_CTRL, SUN8I_DAC_DIG_CTRL_ENDA, 0, NULL, 0), /* AIF "ADC" Outputs */ SND_SOC_DAPM_AIF_OUT_E("AIF1 AD0L", "AIF1 Capture", 0, SUN8I_AIF1_ADCDAT_CTRL, SUN8I_AIF1_ADCDAT_CTRL_AIF1_AD0L_ENA, 0, sun8i_codec_aif_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_AIF_OUT("AIF1 AD0R", "AIF1 Capture", 1, SUN8I_AIF1_ADCDAT_CTRL, SUN8I_AIF1_ADCDAT_CTRL_AIF1_AD0R_ENA, 0), SND_SOC_DAPM_AIF_OUT_E("AIF2 ADCL", "AIF2 Capture", 0, SUN8I_AIF2_ADCDAT_CTRL, SUN8I_AIF2_ADCDAT_CTRL_AIF2_ADCL_ENA, 0, sun8i_codec_aif_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_AIF_OUT("AIF2 ADCR", "AIF2 Capture", 1, SUN8I_AIF2_ADCDAT_CTRL, SUN8I_AIF2_ADCDAT_CTRL_AIF2_ADCR_ENA, 0), SND_SOC_DAPM_AIF_OUT_E("AIF3 ADC", "AIF3 Capture", 0, SND_SOC_NOPM, 0, 0, sun8i_codec_aif_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), /* AIF "ADC" Mono/Stereo Muxes */ SND_SOC_DAPM_MUX("AIF1 AD0L Stereo Mux", SND_SOC_NOPM, 0, 0, &sun8i_aif1_ad0_stereo_mux_control), SND_SOC_DAPM_MUX("AIF1 AD0R Stereo Mux", SND_SOC_NOPM, 0, 0, &sun8i_aif1_ad0_stereo_mux_control), SND_SOC_DAPM_MUX("AIF2 ADCL Stereo Mux", SND_SOC_NOPM, 0, 0, &sun8i_aif2_adc_stereo_mux_control), SND_SOC_DAPM_MUX("AIF2 ADCR Stereo Mux", SND_SOC_NOPM, 0, 0, &sun8i_aif2_adc_stereo_mux_control), /* AIF "ADC" Output Muxes */ SND_SOC_DAPM_MUX("AIF3 ADC Source Capture Route", SND_SOC_NOPM, 0, 0, &sun8i_aif3_adc_mux_control), /* AIF "ADC" Mixers */ SOC_MIXER_ARRAY("AIF1 AD0L Mixer", SND_SOC_NOPM, 0, 0, sun8i_aif1_ad0_mixer_controls), SOC_MIXER_ARRAY("AIF1 AD0R Mixer", SND_SOC_NOPM, 0, 0, sun8i_aif1_ad0_mixer_controls), SOC_MIXER_ARRAY("AIF2 ADCL Mixer", SND_SOC_NOPM, 0, 0, sun8i_aif2_adc_mixer_controls), SOC_MIXER_ARRAY("AIF2 ADCR Mixer", SND_SOC_NOPM, 0, 0, sun8i_aif2_adc_mixer_controls), /* AIF "DAC" Input Muxes */ SND_SOC_DAPM_MUX("AIF2 DACL Source", SND_SOC_NOPM, 0, 0, &sun8i_aif2_dac_mux_control), SND_SOC_DAPM_MUX("AIF2 DACR Source", SND_SOC_NOPM, 0, 0, &sun8i_aif2_dac_mux_control), /* AIF "DAC" Mono/Stereo Muxes */ SND_SOC_DAPM_MUX("AIF1 DA0L Stereo Mux", SND_SOC_NOPM, 0, 0, &sun8i_aif1_da0_stereo_mux_control), SND_SOC_DAPM_MUX("AIF1 DA0R Stereo Mux", SND_SOC_NOPM, 0, 0, &sun8i_aif1_da0_stereo_mux_control), SND_SOC_DAPM_MUX("AIF2 DACL Stereo Mux", SND_SOC_NOPM, 0, 0, &sun8i_aif2_dac_stereo_mux_control), SND_SOC_DAPM_MUX("AIF2 DACR Stereo Mux", SND_SOC_NOPM, 0, 0, &sun8i_aif2_dac_stereo_mux_control), /* AIF "DAC" Inputs */ SND_SOC_DAPM_AIF_IN_E("AIF1 DA0L", "AIF1 Playback", 0, SUN8I_AIF1_DACDAT_CTRL, SUN8I_AIF1_DACDAT_CTRL_AIF1_DA0L_ENA, 0, sun8i_codec_aif_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_AIF_IN("AIF1 DA0R", "AIF1 Playback", 1, SUN8I_AIF1_DACDAT_CTRL, SUN8I_AIF1_DACDAT_CTRL_AIF1_DA0R_ENA, 0), SND_SOC_DAPM_AIF_IN_E("AIF2 DACL", "AIF2 Playback", 0, SUN8I_AIF2_DACDAT_CTRL, SUN8I_AIF2_DACDAT_CTRL_AIF2_DACL_ENA, 0, sun8i_codec_aif_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_AIF_IN("AIF2 DACR", "AIF2 Playback", 1, SUN8I_AIF2_DACDAT_CTRL, SUN8I_AIF2_DACDAT_CTRL_AIF2_DACR_ENA, 0), SND_SOC_DAPM_AIF_IN_E("AIF3 DAC", "AIF3 Playback", 0, SND_SOC_NOPM, 0, 0, sun8i_codec_aif_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD), /* ADC Inputs (connected to analog codec DAPM context) */ SND_SOC_DAPM_ADC("ADCL", NULL, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_ADC("ADCR", NULL, SND_SOC_NOPM, 0, 0), /* DAC Outputs (connected to analog codec DAPM context) */ SND_SOC_DAPM_DAC("DACL", NULL, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_DAC("DACR", NULL, SND_SOC_NOPM, 0, 0), /* DAC Mixers */ SOC_MIXER_ARRAY("DACL Mixer", SND_SOC_NOPM, 0, 0, sun8i_dac_mixer_controls), SOC_MIXER_ARRAY("DACR Mixer", SND_SOC_NOPM, 0, 0, sun8i_dac_mixer_controls), }; static const struct snd_soc_dapm_route sun8i_codec_dapm_routes[] = { /* Clock Routes */ { "AIF1CLK", NULL, "mod" }, { "SYSCLK", NULL, "AIF1CLK" }, { "CLK AIF1", NULL, "AIF1CLK" }, { "CLK AIF1", NULL, "SYSCLK" }, { "RST AIF1", NULL, "CLK AIF1" }, { "AIF1 AD0L", NULL, "RST AIF1" }, { "AIF1 AD0R", NULL, "RST AIF1" }, { "AIF1 DA0L", NULL, "RST AIF1" }, { "AIF1 DA0R", NULL, "RST AIF1" }, { "CLK AIF2", NULL, "AIF2CLK" }, { "CLK AIF2", NULL, "SYSCLK" }, { "RST AIF2", NULL, "CLK AIF2" }, { "AIF2 ADCL", NULL, "RST AIF2" }, { "AIF2 ADCR", NULL, "RST AIF2" }, { "AIF2 DACL", NULL, "RST AIF2" }, { "AIF2 DACR", NULL, "RST AIF2" }, { "CLK AIF3", NULL, "AIF1CLK" }, { "CLK AIF3", NULL, "SYSCLK" }, { "RST AIF3", NULL, "CLK AIF3" }, { "AIF3 ADC", NULL, "RST AIF3" }, { "AIF3 DAC", NULL, "RST AIF3" }, { "CLK ADC", NULL, "SYSCLK" }, { "RST ADC", NULL, "CLK ADC" }, { "ADC", NULL, "RST ADC" }, { "ADCL", NULL, "ADC" }, { "ADCR", NULL, "ADC" }, { "CLK DAC", NULL, "SYSCLK" }, { "RST DAC", NULL, "CLK DAC" }, { "DAC", NULL, "RST DAC" }, { "DACL", NULL, "DAC" }, { "DACR", NULL, "DAC" }, /* AIF "ADC" Output Routes */ { "AIF1 AD0L", NULL, "AIF1 AD0L Stereo Mux" }, { "AIF1 AD0R", NULL, "AIF1 AD0R Stereo Mux" }, { "AIF2 ADCL", NULL, "AIF2 ADCL Stereo Mux" }, { "AIF2 ADCR", NULL, "AIF2 ADCR Stereo Mux" }, { "AIF3 ADC", NULL, "AIF3 ADC Source Capture Route" }, /* AIF "ADC" Mono/Stereo Mux Routes */ { "AIF1 AD0L Stereo Mux", "Stereo", "AIF1 AD0L Mixer" }, { "AIF1 AD0L Stereo Mux", "Reverse Stereo", "AIF1 AD0R Mixer" }, { "AIF1 AD0L Stereo Mux", "Sum Mono", "AIF1 AD0L Mixer" }, { "AIF1 AD0L Stereo Mux", "Sum Mono", "AIF1 AD0R Mixer" }, { "AIF1 AD0L Stereo Mux", "Mix Mono", "AIF1 AD0L Mixer" }, { "AIF1 AD0L Stereo Mux", "Mix Mono", "AIF1 AD0R Mixer" }, { "AIF1 AD0R Stereo Mux", "Stereo", "AIF1 AD0R Mixer" }, { "AIF1 AD0R Stereo Mux", "Reverse Stereo", "AIF1 AD0L Mixer" }, { "AIF1 AD0R Stereo Mux", "Sum Mono", "AIF1 AD0L Mixer" }, { "AIF1 AD0R Stereo Mux", "Sum Mono", "AIF1 AD0R Mixer" }, { "AIF1 AD0R Stereo Mux", "Mix Mono", "AIF1 AD0L Mixer" }, { "AIF1 AD0R Stereo Mux", "Mix Mono", "AIF1 AD0R Mixer" }, { "AIF2 ADCL Stereo Mux", "Stereo", "AIF2 ADCL Mixer" }, { "AIF2 ADCL Stereo Mux", "Reverse Stereo", "AIF2 ADCR Mixer" }, { "AIF2 ADCL Stereo Mux", "Sum Mono", "AIF2 ADCL Mixer" }, { "AIF2 ADCL Stereo Mux", "Sum Mono", "AIF2 ADCR Mixer" }, { "AIF2 ADCL Stereo Mux", "Mix Mono", "AIF2 ADCL Mixer" }, { "AIF2 ADCL Stereo Mux", "Mix Mono", "AIF2 ADCR Mixer" }, { "AIF2 ADCR Stereo Mux", "Stereo", "AIF2 ADCR Mixer" }, { "AIF2 ADCR Stereo Mux", "Reverse Stereo", "AIF2 ADCL Mixer" }, { "AIF2 ADCR Stereo Mux", "Sum Mono", "AIF2 ADCL Mixer" }, { "AIF2 ADCR Stereo Mux", "Sum Mono", "AIF2 ADCR Mixer" }, { "AIF2 ADCR Stereo Mux", "Mix Mono", "AIF2 ADCL Mixer" }, { "AIF2 ADCR Stereo Mux", "Mix Mono", "AIF2 ADCR Mixer" }, /* AIF "ADC" Output Mux Routes */ { "AIF3 ADC Source Capture Route", "AIF2 ADCL", "AIF2 ADCL Mixer" }, { "AIF3 ADC Source Capture Route", "AIF2 ADCR", "AIF2 ADCR Mixer" }, /* AIF "ADC" Mixer Routes */ { "AIF1 AD0L Mixer", "AIF1 Slot 0 Digital ADC Capture Switch", "AIF1 DA0L Stereo Mux" }, { "AIF1 AD0L Mixer", "AIF2 Digital ADC Capture Switch", "AIF2 DACL Source" }, { "AIF1 AD0L Mixer", "AIF1 Data Digital ADC Capture Switch", "ADCL" }, { "AIF1 AD0L Mixer", "AIF2 Inv Digital ADC Capture Switch", "AIF2 DACR Source" }, { "AIF1 AD0R Mixer", "AIF1 Slot 0 Digital ADC Capture Switch", "AIF1 DA0R Stereo Mux" }, { "AIF1 AD0R Mixer", "AIF2 Digital ADC Capture Switch", "AIF2 DACR Source" }, { "AIF1 AD0R Mixer", "AIF1 Data Digital ADC Capture Switch", "ADCR" }, { "AIF1 AD0R Mixer", "AIF2 Inv Digital ADC Capture Switch", "AIF2 DACL Source" }, { "AIF2 ADCL Mixer", "AIF2 ADC Mixer AIF1 DA0 Capture Switch", "AIF1 DA0L Stereo Mux" }, { "AIF2 ADCL Mixer", "AIF2 ADC Mixer AIF2 DAC Rev Capture Switch", "AIF2 DACR Source" }, { "AIF2 ADCL Mixer", "AIF2 ADC Mixer ADC Capture Switch", "ADCL" }, { "AIF2 ADCR Mixer", "AIF2 ADC Mixer AIF1 DA0 Capture Switch", "AIF1 DA0R Stereo Mux" }, { "AIF2 ADCR Mixer", "AIF2 ADC Mixer AIF2 DAC Rev Capture Switch", "AIF2 DACL Source" }, { "AIF2 ADCR Mixer", "AIF2 ADC Mixer ADC Capture Switch", "ADCR" }, /* AIF "DAC" Input Mux Routes */ { "AIF2 DACL Source", "AIF2", "AIF2 DACL Stereo Mux" }, { "AIF2 DACL Source", "AIF3+2", "AIF3 DAC" }, { "AIF2 DACL Source", "AIF2+3", "AIF2 DACL Stereo Mux" }, { "AIF2 DACR Source", "AIF2", "AIF2 DACR Stereo Mux" }, { "AIF2 DACR Source", "AIF3+2", "AIF2 DACR Stereo Mux" }, { "AIF2 DACR Source", "AIF2+3", "AIF3 DAC" }, /* AIF "DAC" Mono/Stereo Mux Routes */ { "AIF1 DA0L Stereo Mux", "Stereo", "AIF1 DA0L" }, { "AIF1 DA0L Stereo Mux", "Reverse Stereo", "AIF1 DA0R" }, { "AIF1 DA0L Stereo Mux", "Sum Mono", "AIF1 DA0L" }, { "AIF1 DA0L Stereo Mux", "Sum Mono", "AIF1 DA0R" }, { "AIF1 DA0L Stereo Mux", "Mix Mono", "AIF1 DA0L" }, { "AIF1 DA0L Stereo Mux", "Mix Mono", "AIF1 DA0R" }, { "AIF1 DA0R Stereo Mux", "Stereo", "AIF1 DA0R" }, { "AIF1 DA0R Stereo Mux", "Reverse Stereo", "AIF1 DA0L" }, { "AIF1 DA0R Stereo Mux", "Sum Mono", "AIF1 DA0L" }, { "AIF1 DA0R Stereo Mux", "Sum Mono", "AIF1 DA0R" }, { "AIF1 DA0R Stereo Mux", "Mix Mono", "AIF1 DA0L" }, { "AIF1 DA0R Stereo Mux", "Mix Mono", "AIF1 DA0R" }, { "AIF2 DACL Stereo Mux", "Stereo", "AIF2 DACL" }, { "AIF2 DACL Stereo Mux", "Reverse Stereo", "AIF2 DACR" }, { "AIF2 DACL Stereo Mux", "Sum Mono", "AIF2 DACL" }, { "AIF2 DACL Stereo Mux", "Sum Mono", "AIF2 DACR" }, { "AIF2 DACL Stereo Mux", "Mix Mono", "AIF2 DACL" }, { "AIF2 DACL Stereo Mux", "Mix Mono", "AIF2 DACR" }, { "AIF2 DACR Stereo Mux", "Stereo", "AIF2 DACR" }, { "AIF2 DACR Stereo Mux", "Reverse Stereo", "AIF2 DACL" }, { "AIF2 DACR Stereo Mux", "Sum Mono", "AIF2 DACL" }, { "AIF2 DACR Stereo Mux", "Sum Mono", "AIF2 DACR" }, { "AIF2 DACR Stereo Mux", "Mix Mono", "AIF2 DACL" }, { "AIF2 DACR Stereo Mux", "Mix Mono", "AIF2 DACR" }, /* DAC Output Routes */ { "DACL", NULL, "DACL Mixer" }, { "DACR", NULL, "DACR Mixer" }, /* DAC Mixer Routes */ { "DACL Mixer", "AIF1 Slot 0 Digital DAC Playback Switch", "AIF1 DA0L Stereo Mux" }, { "DACL Mixer", "AIF2 Digital DAC Playback Switch", "AIF2 DACL Source" }, { "DACL Mixer", "ADC Digital DAC Playback Switch", "ADCL" }, { "DACR Mixer", "AIF1 Slot 0 Digital DAC Playback Switch", "AIF1 DA0R Stereo Mux" }, { "DACR Mixer", "AIF2 Digital DAC Playback Switch", "AIF2 DACR Source" }, { "DACR Mixer", "ADC Digital DAC Playback Switch", "ADCR" }, }; static const struct snd_soc_dapm_widget sun8i_codec_legacy_widgets[] = { /* Legacy ADC Inputs (connected to analog codec DAPM context) */ SND_SOC_DAPM_ADC("AIF1 Slot 0 Left ADC", NULL, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_ADC("AIF1 Slot 0 Right ADC", NULL, SND_SOC_NOPM, 0, 0), /* Legacy DAC Outputs (connected to analog codec DAPM context) */ SND_SOC_DAPM_DAC("AIF1 Slot 0 Left", NULL, SND_SOC_NOPM, 0, 0), SND_SOC_DAPM_DAC("AIF1 Slot 0 Right", NULL, SND_SOC_NOPM, 0, 0), }; static const struct snd_soc_dapm_route sun8i_codec_legacy_routes[] = { /* Legacy ADC Routes */ { "ADCL", NULL, "AIF1 Slot 0 Left ADC" }, { "ADCR", NULL, "AIF1 Slot 0 Right ADC" }, /* Legacy DAC Routes */ { "AIF1 Slot 0 Left", NULL, "DACL" }, { "AIF1 Slot 0 Right", NULL, "DACR" }, }; static int sun8i_codec_component_probe(struct snd_soc_component *component) { struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component); struct sun8i_codec *scodec = snd_soc_component_get_drvdata(component); int ret; scodec->component = component; /* Add widgets for backward compatibility with old device trees. */ if (scodec->quirks->legacy_widgets) { ret = snd_soc_dapm_new_controls(dapm, sun8i_codec_legacy_widgets, ARRAY_SIZE(sun8i_codec_legacy_widgets)); if (ret) return ret; ret = snd_soc_dapm_add_routes(dapm, sun8i_codec_legacy_routes, ARRAY_SIZE(sun8i_codec_legacy_routes)); if (ret) return ret; } /* * AIF1CLK and AIF2CLK share a pair of clock parents: PLL_AUDIO ("mod") * and MCLK (from the CPU DAI connected to AIF1). MCLK's parent is also * PLL_AUDIO, so using it adds no additional flexibility. Use PLL_AUDIO * directly to simplify the clock tree. */ regmap_update_bits(scodec->regmap, SUN8I_SYSCLK_CTL, SUN8I_SYSCLK_CTL_AIF1CLK_SRC_MASK | SUN8I_SYSCLK_CTL_AIF2CLK_SRC_MASK, SUN8I_SYSCLK_CTL_AIF1CLK_SRC_PLL | SUN8I_SYSCLK_CTL_AIF2CLK_SRC_PLL); /* Use AIF1CLK as the SYSCLK parent since AIF1 is used most often. */ regmap_update_bits(scodec->regmap, SUN8I_SYSCLK_CTL, BIT(SUN8I_SYSCLK_CTL_SYSCLK_SRC), SUN8I_SYSCLK_CTL_SYSCLK_SRC_AIF1CLK); /* Program the default sample rate. */ sun8i_codec_update_sample_rate(scodec); return 0; } static void sun8i_codec_set_hmic_bias(struct sun8i_codec *scodec, bool enable) { struct snd_soc_dapm_context *dapm = &scodec->component->card->dapm; int irq_mask = BIT(SUN8I_HMIC_CTRL1_HMIC_DATA_IRQ_EN); if (enable) snd_soc_dapm_force_enable_pin(dapm, "HBIAS"); else snd_soc_dapm_disable_pin(dapm, "HBIAS"); snd_soc_dapm_sync(dapm); regmap_update_bits(scodec->regmap, SUN8I_HMIC_CTRL1, irq_mask, enable ? irq_mask : 0); } static void sun8i_codec_jack_work(struct work_struct *work) { struct sun8i_codec *scodec = container_of(work, struct sun8i_codec, jack_work.work); unsigned int mdata; int type_mask = scodec->jack->jack->type; int type; guard(mutex)(&scodec->jack_mutex); if (scodec->jack_status == SUN8I_JACK_STATUS_DISCONNECTED) { if (scodec->last_hmic_irq != SUN8I_HMIC_STS_JACK_IN_IRQ_ST) return; scodec->jack_last_sample = -1; if (type_mask & SND_JACK_MICROPHONE) { /* * If we were in disconnected state, we enable HBIAS and * wait 600ms before reading initial HDATA value. */ scodec->jack_hbias_ready = ktime_add_ms(ktime_get(), 600); sun8i_codec_set_hmic_bias(scodec, true); queue_delayed_work(system_power_efficient_wq, &scodec->jack_work, msecs_to_jiffies(610)); scodec->jack_status = SUN8I_JACK_STATUS_WAITING_HBIAS; } else { snd_soc_jack_report(scodec->jack, SND_JACK_HEADPHONE, type_mask); scodec->jack_status = SUN8I_JACK_STATUS_CONNECTED; } } else if (scodec->jack_status == SUN8I_JACK_STATUS_WAITING_HBIAS) { /* * If we're waiting for HBIAS to stabilize, and we get plug-out * interrupt and nothing more for > 100ms, just cancel the * initialization. */ if (scodec->last_hmic_irq == SUN8I_HMIC_STS_JACK_OUT_IRQ_ST) { scodec->jack_status = SUN8I_JACK_STATUS_DISCONNECTED; sun8i_codec_set_hmic_bias(scodec, false); return; } /* * If we're not done waiting for HBIAS to stabilize, wait more. */ if (!ktime_after(ktime_get(), scodec->jack_hbias_ready)) { s64 msecs = ktime_ms_delta(scodec->jack_hbias_ready, ktime_get()); queue_delayed_work(system_power_efficient_wq, &scodec->jack_work, msecs_to_jiffies(msecs + 10)); return; } /* * Everything is stabilized, determine jack type and report it. */ regmap_read(scodec->regmap, SUN8I_HMIC_STS, &mdata); mdata &= SUN8I_HMIC_STS_HMIC_DATA_MASK; mdata >>= SUN8I_HMIC_STS_HMIC_DATA; regmap_write(scodec->regmap, SUN8I_HMIC_STS, 0); type = mdata < 16 ? SND_JACK_HEADPHONE : SND_JACK_HEADSET; if (type == SND_JACK_HEADPHONE) sun8i_codec_set_hmic_bias(scodec, false); snd_soc_jack_report(scodec->jack, type, type_mask); scodec->jack_status = SUN8I_JACK_STATUS_CONNECTED; } else if (scodec->jack_status == SUN8I_JACK_STATUS_CONNECTED) { if (scodec->last_hmic_irq != SUN8I_HMIC_STS_JACK_OUT_IRQ_ST) return; scodec->jack_status = SUN8I_JACK_STATUS_DISCONNECTED; if (type_mask & SND_JACK_MICROPHONE) sun8i_codec_set_hmic_bias(scodec, false); snd_soc_jack_report(scodec->jack, 0, type_mask); } } static irqreturn_t sun8i_codec_jack_irq(int irq, void *dev_id) { struct sun8i_codec *scodec = dev_id; int type = SND_JACK_HEADSET; unsigned int status, value; guard(mutex)(&scodec->jack_mutex); regmap_read(scodec->regmap, SUN8I_HMIC_STS, &status); regmap_write(scodec->regmap, SUN8I_HMIC_STS, status); /* * De-bounce in/out interrupts via a delayed work re-scheduling to * 100ms after each interrupt.. */ if (status & BIT(SUN8I_HMIC_STS_JACK_OUT_IRQ_ST)) { /* * Out interrupt has priority over in interrupt so that if * we get both, we assume the disconnected state, which is * safer. */ scodec->last_hmic_irq = SUN8I_HMIC_STS_JACK_OUT_IRQ_ST; mod_delayed_work(system_power_efficient_wq, &scodec->jack_work, msecs_to_jiffies(100)); } else if (status & BIT(SUN8I_HMIC_STS_JACK_IN_IRQ_ST)) { scodec->last_hmic_irq = SUN8I_HMIC_STS_JACK_IN_IRQ_ST; mod_delayed_work(system_power_efficient_wq, &scodec->jack_work, msecs_to_jiffies(100)); } else if (status & BIT(SUN8I_HMIC_STS_HMIC_DATA_IRQ_ST)) { /* * Ignore data interrupts until jack status turns to connected * state, which is after HMIC enable stabilization is completed. * Until then tha data are bogus. */ if (scodec->jack_status != SUN8I_JACK_STATUS_CONNECTED) return IRQ_HANDLED; value = (status & SUN8I_HMIC_STS_HMIC_DATA_MASK) >> SUN8I_HMIC_STS_HMIC_DATA; /* * Assumes 60 mV per ADC LSB increment, 2V bias voltage, 2.2kOhm * bias resistor. */ if (value == 0) type |= SND_JACK_BTN_0; else if (value == 1) type |= SND_JACK_BTN_3; else if (value <= 3) type |= SND_JACK_BTN_1; else if (value <= 8) type |= SND_JACK_BTN_2; /* * De-bounce. Only report button after two consecutive A/D * samples are identical. */ if (scodec->jack_last_sample >= 0 && scodec->jack_last_sample == value) snd_soc_jack_report(scodec->jack, type, scodec->jack->jack->type); scodec->jack_last_sample = value; } return IRQ_HANDLED; } static int sun8i_codec_enable_jack_detect(struct snd_soc_component *component, struct snd_soc_jack *jack, void *data) { struct sun8i_codec *scodec = snd_soc_component_get_drvdata(component); struct platform_device *pdev = to_platform_device(component->dev); int ret; if (!scodec->quirks->jack_detection) return 0; scodec->jack = jack; scodec->jack_irq = platform_get_irq(pdev, 0); if (scodec->jack_irq < 0) return scodec->jack_irq; /* Reserved value required for jack IRQs to trigger. */ regmap_write(scodec->regmap, SUN8I_HMIC_CTRL1, 0xf << SUN8I_HMIC_CTRL1_HMIC_N | 0x0 << SUN8I_HMIC_CTRL1_MDATA_THRESHOLD_DB | 0x4 << SUN8I_HMIC_CTRL1_HMIC_M); /* Sample the ADC at 128 Hz; bypass smooth filter. */ regmap_write(scodec->regmap, SUN8I_HMIC_CTRL2, 0x0 << SUN8I_HMIC_CTRL2_HMIC_SAMPLE | 0x17 << SUN8I_HMIC_CTRL2_HMIC_MDATA_THRESHOLD | 0x0 << SUN8I_HMIC_CTRL2_HMIC_SF); /* Do not discard any MDATA, enable user written MDATA threshold. */ regmap_write(scodec->regmap, SUN8I_HMIC_STS, 0); regmap_set_bits(scodec->regmap, SUN8I_HMIC_CTRL1, BIT(SUN8I_HMIC_CTRL1_JACK_OUT_IRQ_EN) | BIT(SUN8I_HMIC_CTRL1_JACK_IN_IRQ_EN)); ret = devm_request_threaded_irq(&pdev->dev, scodec->jack_irq, NULL, sun8i_codec_jack_irq, IRQF_ONESHOT, dev_name(&pdev->dev), scodec); if (ret) return ret; return 0; } static void sun8i_codec_disable_jack_detect(struct snd_soc_component *component) { struct sun8i_codec *scodec = snd_soc_component_get_drvdata(component); if (!scodec->quirks->jack_detection) return; devm_free_irq(component->dev, scodec->jack_irq, scodec); cancel_delayed_work_sync(&scodec->jack_work); regmap_clear_bits(scodec->regmap, SUN8I_HMIC_CTRL1, BIT(SUN8I_HMIC_CTRL1_JACK_OUT_IRQ_EN) | BIT(SUN8I_HMIC_CTRL1_JACK_IN_IRQ_EN) | BIT(SUN8I_HMIC_CTRL1_HMIC_DATA_IRQ_EN)); scodec->jack = NULL; } static int sun8i_codec_component_set_jack(struct snd_soc_component *component, struct snd_soc_jack *jack, void *data) { int ret = 0; if (jack) ret = sun8i_codec_enable_jack_detect(component, jack, data); else sun8i_codec_disable_jack_detect(component); return ret; } static const struct snd_soc_component_driver sun8i_soc_component = { .controls = sun8i_codec_controls, .num_controls = ARRAY_SIZE(sun8i_codec_controls), .dapm_widgets = sun8i_codec_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(sun8i_codec_dapm_widgets), .dapm_routes = sun8i_codec_dapm_routes, .num_dapm_routes = ARRAY_SIZE(sun8i_codec_dapm_routes), .set_jack = sun8i_codec_component_set_jack, .probe = sun8i_codec_component_probe, .idle_bias_on = 1, .suspend_bias_off = 1, .endianness = 1, }; static bool sun8i_codec_volatile_reg(struct device *dev, unsigned int reg) { return reg == SUN8I_HMIC_STS; } static const struct regmap_config sun8i_codec_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .volatile_reg = sun8i_codec_volatile_reg, .max_register = SUN8I_DAC_MXR_SRC, .cache_type = REGCACHE_FLAT, }; static int sun8i_codec_probe(struct platform_device *pdev) { struct sun8i_codec *scodec; void __iomem *base; int ret; scodec = devm_kzalloc(&pdev->dev, sizeof(*scodec), GFP_KERNEL); if (!scodec) return -ENOMEM; scodec->quirks = of_device_get_match_data(&pdev->dev); INIT_DELAYED_WORK(&scodec->jack_work, sun8i_codec_jack_work); mutex_init(&scodec->jack_mutex); platform_set_drvdata(pdev, scodec); if (scodec->quirks->bus_clock) { scodec->clk_bus = devm_clk_get(&pdev->dev, "bus"); if (IS_ERR(scodec->clk_bus)) { dev_err(&pdev->dev, "Failed to get the bus clock\n"); return PTR_ERR(scodec->clk_bus); } } scodec->clk_module = devm_clk_get(&pdev->dev, "mod"); if (IS_ERR(scodec->clk_module)) { dev_err(&pdev->dev, "Failed to get the module clock\n"); return PTR_ERR(scodec->clk_module); } base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) { dev_err(&pdev->dev, "Failed to map the registers\n"); return PTR_ERR(base); } scodec->regmap = devm_regmap_init_mmio(&pdev->dev, base, &sun8i_codec_regmap_config); if (IS_ERR(scodec->regmap)) { dev_err(&pdev->dev, "Failed to create our regmap\n"); return PTR_ERR(scodec->regmap); } regcache_cache_only(scodec->regmap, true); pm_runtime_enable(&pdev->dev); if (!pm_runtime_enabled(&pdev->dev)) { ret = sun8i_codec_runtime_resume(&pdev->dev); if (ret) goto err_pm_disable; } ret = devm_snd_soc_register_component(&pdev->dev, &sun8i_soc_component, sun8i_codec_dais, ARRAY_SIZE(sun8i_codec_dais)); if (ret) { dev_err(&pdev->dev, "Failed to register codec\n"); goto err_suspend; } return ret; err_suspend: if (!pm_runtime_status_suspended(&pdev->dev)) sun8i_codec_runtime_suspend(&pdev->dev); err_pm_disable: pm_runtime_disable(&pdev->dev); return ret; } static void sun8i_codec_remove(struct platform_device *pdev) { pm_runtime_disable(&pdev->dev); if (!pm_runtime_status_suspended(&pdev->dev)) sun8i_codec_runtime_suspend(&pdev->dev); } static const struct sun8i_codec_quirks sun8i_a33_quirks = { .bus_clock = true, .legacy_widgets = true, .lrck_inversion = true, }; static const struct sun8i_codec_quirks sun50i_a64_quirks = { .bus_clock = true, .jack_detection = true, }; static const struct of_device_id sun8i_codec_of_match[] = { { .compatible = "allwinner,sun8i-a33-codec", .data = &sun8i_a33_quirks }, { .compatible = "allwinner,sun50i-a64-codec", .data = &sun50i_a64_quirks }, {} }; MODULE_DEVICE_TABLE(of, sun8i_codec_of_match); static const struct dev_pm_ops sun8i_codec_pm_ops = { SET_RUNTIME_PM_OPS(sun8i_codec_runtime_suspend, sun8i_codec_runtime_resume, NULL) }; static struct platform_driver sun8i_codec_driver = { .driver = { .name = "sun8i-codec", .of_match_table = sun8i_codec_of_match, .pm = &sun8i_codec_pm_ops, }, .probe = sun8i_codec_probe, .remove_new = sun8i_codec_remove, }; module_platform_driver(sun8i_codec_driver); MODULE_DESCRIPTION("Allwinner A33 (sun8i) codec driver"); MODULE_AUTHOR("Mylène Josserand "); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:sun8i-codec");