// SPDX-License-Identifier: GPL-2.0-only /* * STM32 ALSA SoC Digital Audio Interface (SPDIF-rx) driver. * * Copyright (C) 2017, STMicroelectronics - All Rights Reserved * Author(s): Olivier Moysan for STMicroelectronics. */ #include #include #include #include #include #include #include #include #include #include #include /* SPDIF-rx Register Map */ #define STM32_SPDIFRX_CR 0x00 #define STM32_SPDIFRX_IMR 0x04 #define STM32_SPDIFRX_SR 0x08 #define STM32_SPDIFRX_IFCR 0x0C #define STM32_SPDIFRX_DR 0x10 #define STM32_SPDIFRX_CSR 0x14 #define STM32_SPDIFRX_DIR 0x18 #define STM32_SPDIFRX_VERR 0x3F4 #define STM32_SPDIFRX_IDR 0x3F8 #define STM32_SPDIFRX_SIDR 0x3FC /* Bit definition for SPDIF_CR register */ #define SPDIFRX_CR_SPDIFEN_SHIFT 0 #define SPDIFRX_CR_SPDIFEN_MASK GENMASK(1, SPDIFRX_CR_SPDIFEN_SHIFT) #define SPDIFRX_CR_SPDIFENSET(x) ((x) << SPDIFRX_CR_SPDIFEN_SHIFT) #define SPDIFRX_CR_RXDMAEN BIT(2) #define SPDIFRX_CR_RXSTEO BIT(3) #define SPDIFRX_CR_DRFMT_SHIFT 4 #define SPDIFRX_CR_DRFMT_MASK GENMASK(5, SPDIFRX_CR_DRFMT_SHIFT) #define SPDIFRX_CR_DRFMTSET(x) ((x) << SPDIFRX_CR_DRFMT_SHIFT) #define SPDIFRX_CR_PMSK BIT(6) #define SPDIFRX_CR_VMSK BIT(7) #define SPDIFRX_CR_CUMSK BIT(8) #define SPDIFRX_CR_PTMSK BIT(9) #define SPDIFRX_CR_CBDMAEN BIT(10) #define SPDIFRX_CR_CHSEL_SHIFT 11 #define SPDIFRX_CR_CHSEL BIT(SPDIFRX_CR_CHSEL_SHIFT) #define SPDIFRX_CR_NBTR_SHIFT 12 #define SPDIFRX_CR_NBTR_MASK GENMASK(13, SPDIFRX_CR_NBTR_SHIFT) #define SPDIFRX_CR_NBTRSET(x) ((x) << SPDIFRX_CR_NBTR_SHIFT) #define SPDIFRX_CR_WFA BIT(14) #define SPDIFRX_CR_INSEL_SHIFT 16 #define SPDIFRX_CR_INSEL_MASK GENMASK(18, PDIFRX_CR_INSEL_SHIFT) #define SPDIFRX_CR_INSELSET(x) ((x) << SPDIFRX_CR_INSEL_SHIFT) #define SPDIFRX_CR_CKSEN_SHIFT 20 #define SPDIFRX_CR_CKSEN BIT(20) #define SPDIFRX_CR_CKSBKPEN BIT(21) /* Bit definition for SPDIFRX_IMR register */ #define SPDIFRX_IMR_RXNEI BIT(0) #define SPDIFRX_IMR_CSRNEIE BIT(1) #define SPDIFRX_IMR_PERRIE BIT(2) #define SPDIFRX_IMR_OVRIE BIT(3) #define SPDIFRX_IMR_SBLKIE BIT(4) #define SPDIFRX_IMR_SYNCDIE BIT(5) #define SPDIFRX_IMR_IFEIE BIT(6) #define SPDIFRX_XIMR_MASK GENMASK(6, 0) /* Bit definition for SPDIFRX_SR register */ #define SPDIFRX_SR_RXNE BIT(0) #define SPDIFRX_SR_CSRNE BIT(1) #define SPDIFRX_SR_PERR BIT(2) #define SPDIFRX_SR_OVR BIT(3) #define SPDIFRX_SR_SBD BIT(4) #define SPDIFRX_SR_SYNCD BIT(5) #define SPDIFRX_SR_FERR BIT(6) #define SPDIFRX_SR_SERR BIT(7) #define SPDIFRX_SR_TERR BIT(8) #define SPDIFRX_SR_WIDTH5_SHIFT 16 #define SPDIFRX_SR_WIDTH5_MASK GENMASK(30, PDIFRX_SR_WIDTH5_SHIFT) #define SPDIFRX_SR_WIDTH5SET(x) ((x) << SPDIFRX_SR_WIDTH5_SHIFT) /* Bit definition for SPDIFRX_IFCR register */ #define SPDIFRX_IFCR_PERRCF BIT(2) #define SPDIFRX_IFCR_OVRCF BIT(3) #define SPDIFRX_IFCR_SBDCF BIT(4) #define SPDIFRX_IFCR_SYNCDCF BIT(5) #define SPDIFRX_XIFCR_MASK GENMASK(5, 2) /* Bit definition for SPDIFRX_DR register (DRFMT = 0b00) */ #define SPDIFRX_DR0_DR_SHIFT 0 #define SPDIFRX_DR0_DR_MASK GENMASK(23, SPDIFRX_DR0_DR_SHIFT) #define SPDIFRX_DR0_DRSET(x) ((x) << SPDIFRX_DR0_DR_SHIFT) #define SPDIFRX_DR0_PE BIT(24) #define SPDIFRX_DR0_V BIT(25) #define SPDIFRX_DR0_U BIT(26) #define SPDIFRX_DR0_C BIT(27) #define SPDIFRX_DR0_PT_SHIFT 28 #define SPDIFRX_DR0_PT_MASK GENMASK(29, SPDIFRX_DR0_PT_SHIFT) #define SPDIFRX_DR0_PTSET(x) ((x) << SPDIFRX_DR0_PT_SHIFT) /* Bit definition for SPDIFRX_DR register (DRFMT = 0b01) */ #define SPDIFRX_DR1_PE BIT(0) #define SPDIFRX_DR1_V BIT(1) #define SPDIFRX_DR1_U BIT(2) #define SPDIFRX_DR1_C BIT(3) #define SPDIFRX_DR1_PT_SHIFT 4 #define SPDIFRX_DR1_PT_MASK GENMASK(5, SPDIFRX_DR1_PT_SHIFT) #define SPDIFRX_DR1_PTSET(x) ((x) << SPDIFRX_DR1_PT_SHIFT) #define SPDIFRX_DR1_DR_SHIFT 8 #define SPDIFRX_DR1_DR_MASK GENMASK(31, SPDIFRX_DR1_DR_SHIFT) #define SPDIFRX_DR1_DRSET(x) ((x) << SPDIFRX_DR1_DR_SHIFT) /* Bit definition for SPDIFRX_DR register (DRFMT = 0b10) */ #define SPDIFRX_DR1_DRNL1_SHIFT 0 #define SPDIFRX_DR1_DRNL1_MASK GENMASK(15, SPDIFRX_DR1_DRNL1_SHIFT) #define SPDIFRX_DR1_DRNL1SET(x) ((x) << SPDIFRX_DR1_DRNL1_SHIFT) #define SPDIFRX_DR1_DRNL2_SHIFT 16 #define SPDIFRX_DR1_DRNL2_MASK GENMASK(31, SPDIFRX_DR1_DRNL2_SHIFT) #define SPDIFRX_DR1_DRNL2SET(x) ((x) << SPDIFRX_DR1_DRNL2_SHIFT) /* Bit definition for SPDIFRX_CSR register */ #define SPDIFRX_CSR_USR_SHIFT 0 #define SPDIFRX_CSR_USR_MASK GENMASK(15, SPDIFRX_CSR_USR_SHIFT) #define SPDIFRX_CSR_USRGET(x) (((x) & SPDIFRX_CSR_USR_MASK)\ >> SPDIFRX_CSR_USR_SHIFT) #define SPDIFRX_CSR_CS_SHIFT 16 #define SPDIFRX_CSR_CS_MASK GENMASK(23, SPDIFRX_CSR_CS_SHIFT) #define SPDIFRX_CSR_CSGET(x) (((x) & SPDIFRX_CSR_CS_MASK)\ >> SPDIFRX_CSR_CS_SHIFT) #define SPDIFRX_CSR_SOB BIT(24) /* Bit definition for SPDIFRX_DIR register */ #define SPDIFRX_DIR_THI_SHIFT 0 #define SPDIFRX_DIR_THI_MASK GENMASK(12, SPDIFRX_DIR_THI_SHIFT) #define SPDIFRX_DIR_THI_SET(x) ((x) << SPDIFRX_DIR_THI_SHIFT) #define SPDIFRX_DIR_TLO_SHIFT 16 #define SPDIFRX_DIR_TLO_MASK GENMASK(28, SPDIFRX_DIR_TLO_SHIFT) #define SPDIFRX_DIR_TLO_SET(x) ((x) << SPDIFRX_DIR_TLO_SHIFT) #define SPDIFRX_SPDIFEN_DISABLE 0x0 #define SPDIFRX_SPDIFEN_SYNC 0x1 #define SPDIFRX_SPDIFEN_ENABLE 0x3 /* Bit definition for SPDIFRX_VERR register */ #define SPDIFRX_VERR_MIN_MASK GENMASK(3, 0) #define SPDIFRX_VERR_MAJ_MASK GENMASK(7, 4) /* Bit definition for SPDIFRX_IDR register */ #define SPDIFRX_IDR_ID_MASK GENMASK(31, 0) /* Bit definition for SPDIFRX_SIDR register */ #define SPDIFRX_SIDR_SID_MASK GENMASK(31, 0) #define SPDIFRX_IPIDR_NUMBER 0x00130041 #define SPDIFRX_IN1 0x1 #define SPDIFRX_IN2 0x2 #define SPDIFRX_IN3 0x3 #define SPDIFRX_IN4 0x4 #define SPDIFRX_IN5 0x5 #define SPDIFRX_IN6 0x6 #define SPDIFRX_IN7 0x7 #define SPDIFRX_IN8 0x8 #define SPDIFRX_NBTR_NONE 0x0 #define SPDIFRX_NBTR_3 0x1 #define SPDIFRX_NBTR_15 0x2 #define SPDIFRX_NBTR_63 0x3 #define SPDIFRX_DRFMT_RIGHT 0x0 #define SPDIFRX_DRFMT_LEFT 0x1 #define SPDIFRX_DRFMT_PACKED 0x2 /* 192 CS bits in S/PDIF frame. i.e 24 CS bytes */ #define SPDIFRX_CS_BYTES_NB 24 #define SPDIFRX_UB_BYTES_NB 48 /* * CSR register is retrieved as a 32 bits word * It contains 1 channel status byte and 2 user data bytes * 2 S/PDIF frames are acquired to get all CS/UB bits */ #define SPDIFRX_CSR_BUF_LENGTH (SPDIFRX_CS_BYTES_NB * 4 * 2) /** * struct stm32_spdifrx_data - private data of SPDIFRX * @pdev: device data pointer * @base: mmio register base virtual address * @regmap: SPDIFRX register map pointer * @regmap_conf: SPDIFRX register map configuration pointer * @cs_completion: channel status retrieving completion * @kclk: kernel clock feeding the SPDIFRX clock generator * @dma_params: dma configuration data for rx channel * @substream: PCM substream data pointer * @dmab: dma buffer info pointer * @ctrl_chan: dma channel for S/PDIF control bits * @desc:dma async transaction descriptor * @slave_config: dma slave channel runtime config pointer * @phys_addr: SPDIFRX registers physical base address * @lock: synchronization enabling lock * @irq_lock: prevent race condition with IRQ on stream state * @cs: channel status buffer * @ub: user data buffer * @irq: SPDIFRX interrupt line * @refcount: keep count of opened DMA channels */ struct stm32_spdifrx_data { struct platform_device *pdev; void __iomem *base; struct regmap *regmap; const struct regmap_config *regmap_conf; struct completion cs_completion; struct clk *kclk; struct snd_dmaengine_dai_dma_data dma_params; struct snd_pcm_substream *substream; struct snd_dma_buffer *dmab; struct dma_chan *ctrl_chan; struct dma_async_tx_descriptor *desc; struct dma_slave_config slave_config; dma_addr_t phys_addr; spinlock_t lock; /* Sync enabling lock */ spinlock_t irq_lock; /* Prevent race condition on stream state */ unsigned char cs[SPDIFRX_CS_BYTES_NB]; unsigned char ub[SPDIFRX_UB_BYTES_NB]; int irq; int refcount; }; static void stm32_spdifrx_dma_complete(void *data) { struct stm32_spdifrx_data *spdifrx = (struct stm32_spdifrx_data *)data; struct platform_device *pdev = spdifrx->pdev; u32 *p_start = (u32 *)spdifrx->dmab->area; u32 *p_end = p_start + (2 * SPDIFRX_CS_BYTES_NB) - 1; u32 *ptr = p_start; u16 *ub_ptr = (short *)spdifrx->ub; int i = 0; regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_CR, SPDIFRX_CR_CBDMAEN, (unsigned int)~SPDIFRX_CR_CBDMAEN); if (!spdifrx->dmab->area) return; while (ptr <= p_end) { if (*ptr & SPDIFRX_CSR_SOB) break; ptr++; } if (ptr > p_end) { dev_err(&pdev->dev, "Start of S/PDIF block not found\n"); return; } while (i < SPDIFRX_CS_BYTES_NB) { spdifrx->cs[i] = (unsigned char)SPDIFRX_CSR_CSGET(*ptr); *ub_ptr++ = SPDIFRX_CSR_USRGET(*ptr++); if (ptr > p_end) { dev_err(&pdev->dev, "Failed to get channel status\n"); return; } i++; } complete(&spdifrx->cs_completion); } static int stm32_spdifrx_dma_ctrl_start(struct stm32_spdifrx_data *spdifrx) { dma_cookie_t cookie; int err; spdifrx->desc = dmaengine_prep_slave_single(spdifrx->ctrl_chan, spdifrx->dmab->addr, SPDIFRX_CSR_BUF_LENGTH, DMA_DEV_TO_MEM, DMA_CTRL_ACK); if (!spdifrx->desc) return -EINVAL; spdifrx->desc->callback = stm32_spdifrx_dma_complete; spdifrx->desc->callback_param = spdifrx; cookie = dmaengine_submit(spdifrx->desc); err = dma_submit_error(cookie); if (err) return -EINVAL; dma_async_issue_pending(spdifrx->ctrl_chan); return 0; } static void stm32_spdifrx_dma_ctrl_stop(struct stm32_spdifrx_data *spdifrx) { dmaengine_terminate_async(spdifrx->ctrl_chan); } static int stm32_spdifrx_start_sync(struct stm32_spdifrx_data *spdifrx) { int cr, cr_mask, imr, ret; unsigned long flags; /* Enable IRQs */ imr = SPDIFRX_IMR_IFEIE | SPDIFRX_IMR_SYNCDIE | SPDIFRX_IMR_PERRIE; ret = regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_IMR, imr, imr); if (ret) return ret; spin_lock_irqsave(&spdifrx->lock, flags); spdifrx->refcount++; regmap_read(spdifrx->regmap, STM32_SPDIFRX_CR, &cr); if (!(cr & SPDIFRX_CR_SPDIFEN_MASK)) { /* * Start sync if SPDIFRX is still in idle state. * SPDIFRX reception enabled when sync done */ dev_dbg(&spdifrx->pdev->dev, "start synchronization\n"); /* * SPDIFRX configuration: * Wait for activity before starting sync process. This avoid * to issue sync errors when spdif signal is missing on input. * Preamble, CS, user, validity and parity error bits not copied * to DR register. */ cr = SPDIFRX_CR_WFA | SPDIFRX_CR_PMSK | SPDIFRX_CR_VMSK | SPDIFRX_CR_CUMSK | SPDIFRX_CR_PTMSK | SPDIFRX_CR_RXSTEO; cr_mask = cr; cr |= SPDIFRX_CR_NBTRSET(SPDIFRX_NBTR_63); cr_mask |= SPDIFRX_CR_NBTR_MASK; cr |= SPDIFRX_CR_SPDIFENSET(SPDIFRX_SPDIFEN_SYNC); cr_mask |= SPDIFRX_CR_SPDIFEN_MASK; ret = regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_CR, cr_mask, cr); if (ret < 0) dev_err(&spdifrx->pdev->dev, "Failed to start synchronization\n"); } spin_unlock_irqrestore(&spdifrx->lock, flags); return ret; } static void stm32_spdifrx_stop(struct stm32_spdifrx_data *spdifrx) { int cr, cr_mask, reg; unsigned long flags; spin_lock_irqsave(&spdifrx->lock, flags); if (--spdifrx->refcount) { spin_unlock_irqrestore(&spdifrx->lock, flags); return; } cr = SPDIFRX_CR_SPDIFENSET(SPDIFRX_SPDIFEN_DISABLE); cr_mask = SPDIFRX_CR_SPDIFEN_MASK | SPDIFRX_CR_RXDMAEN; regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_CR, cr_mask, cr); regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_IMR, SPDIFRX_XIMR_MASK, 0); regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_IFCR, SPDIFRX_XIFCR_MASK, SPDIFRX_XIFCR_MASK); /* dummy read to clear CSRNE and RXNE in status register */ regmap_read(spdifrx->regmap, STM32_SPDIFRX_DR, ®); regmap_read(spdifrx->regmap, STM32_SPDIFRX_CSR, ®); spin_unlock_irqrestore(&spdifrx->lock, flags); } static int stm32_spdifrx_dma_ctrl_register(struct device *dev, struct stm32_spdifrx_data *spdifrx) { int ret; spdifrx->ctrl_chan = dma_request_chan(dev, "rx-ctrl"); if (IS_ERR(spdifrx->ctrl_chan)) return dev_err_probe(dev, PTR_ERR(spdifrx->ctrl_chan), "dma_request_slave_channel error\n"); spdifrx->dmab = devm_kzalloc(dev, sizeof(struct snd_dma_buffer), GFP_KERNEL); if (!spdifrx->dmab) return -ENOMEM; spdifrx->dmab->dev.type = SNDRV_DMA_TYPE_DEV_IRAM; spdifrx->dmab->dev.dev = dev; ret = snd_dma_alloc_pages(spdifrx->dmab->dev.type, dev, SPDIFRX_CSR_BUF_LENGTH, spdifrx->dmab); if (ret < 0) { dev_err(dev, "snd_dma_alloc_pages returned error %d\n", ret); return ret; } spdifrx->slave_config.direction = DMA_DEV_TO_MEM; spdifrx->slave_config.src_addr = (dma_addr_t)(spdifrx->phys_addr + STM32_SPDIFRX_CSR); spdifrx->slave_config.dst_addr = spdifrx->dmab->addr; spdifrx->slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; spdifrx->slave_config.src_maxburst = 1; ret = dmaengine_slave_config(spdifrx->ctrl_chan, &spdifrx->slave_config); if (ret < 0) { dev_err(dev, "dmaengine_slave_config returned error %d\n", ret); spdifrx->ctrl_chan = NULL; } return ret; }; static const char * const spdifrx_enum_input[] = { "in0", "in1", "in2", "in3" }; /* By default CS bits are retrieved from channel A */ static const char * const spdifrx_enum_cs_channel[] = { "A", "B" }; static SOC_ENUM_SINGLE_DECL(ctrl_enum_input, STM32_SPDIFRX_CR, SPDIFRX_CR_INSEL_SHIFT, spdifrx_enum_input); static SOC_ENUM_SINGLE_DECL(ctrl_enum_cs_channel, STM32_SPDIFRX_CR, SPDIFRX_CR_CHSEL_SHIFT, spdifrx_enum_cs_channel); static int stm32_spdifrx_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int stm32_spdifrx_ub_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int stm32_spdifrx_get_ctrl_data(struct stm32_spdifrx_data *spdifrx) { int ret = 0; memset(spdifrx->cs, 0, SPDIFRX_CS_BYTES_NB); memset(spdifrx->ub, 0, SPDIFRX_UB_BYTES_NB); ret = stm32_spdifrx_dma_ctrl_start(spdifrx); if (ret < 0) return ret; ret = clk_prepare_enable(spdifrx->kclk); if (ret) { dev_err(&spdifrx->pdev->dev, "Enable kclk failed: %d\n", ret); return ret; } ret = regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_CR, SPDIFRX_CR_CBDMAEN, SPDIFRX_CR_CBDMAEN); if (ret < 0) goto end; ret = stm32_spdifrx_start_sync(spdifrx); if (ret < 0) goto end; if (wait_for_completion_interruptible_timeout(&spdifrx->cs_completion, msecs_to_jiffies(100)) <= 0) { dev_dbg(&spdifrx->pdev->dev, "Failed to get control data\n"); ret = -EAGAIN; } stm32_spdifrx_stop(spdifrx); stm32_spdifrx_dma_ctrl_stop(spdifrx); end: clk_disable_unprepare(spdifrx->kclk); return ret; } static int stm32_spdifrx_capture_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); struct stm32_spdifrx_data *spdifrx = snd_soc_dai_get_drvdata(cpu_dai); stm32_spdifrx_get_ctrl_data(spdifrx); ucontrol->value.iec958.status[0] = spdifrx->cs[0]; ucontrol->value.iec958.status[1] = spdifrx->cs[1]; ucontrol->value.iec958.status[2] = spdifrx->cs[2]; ucontrol->value.iec958.status[3] = spdifrx->cs[3]; ucontrol->value.iec958.status[4] = spdifrx->cs[4]; return 0; } static int stm32_spdif_user_bits_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); struct stm32_spdifrx_data *spdifrx = snd_soc_dai_get_drvdata(cpu_dai); stm32_spdifrx_get_ctrl_data(spdifrx); ucontrol->value.iec958.status[0] = spdifrx->ub[0]; ucontrol->value.iec958.status[1] = spdifrx->ub[1]; ucontrol->value.iec958.status[2] = spdifrx->ub[2]; ucontrol->value.iec958.status[3] = spdifrx->ub[3]; ucontrol->value.iec958.status[4] = spdifrx->ub[4]; return 0; } static struct snd_kcontrol_new stm32_spdifrx_iec_ctrls[] = { /* Channel status control */ { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT), .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = stm32_spdifrx_info, .get = stm32_spdifrx_capture_get, }, /* User bits control */ { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 User Bit Capture Default", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = stm32_spdifrx_ub_info, .get = stm32_spdif_user_bits_get, }, }; static struct snd_kcontrol_new stm32_spdifrx_ctrls[] = { SOC_ENUM("SPDIFRX input", ctrl_enum_input), SOC_ENUM("SPDIFRX CS channel", ctrl_enum_cs_channel), }; static int stm32_spdifrx_dai_register_ctrls(struct snd_soc_dai *cpu_dai) { int ret; ret = snd_soc_add_dai_controls(cpu_dai, stm32_spdifrx_iec_ctrls, ARRAY_SIZE(stm32_spdifrx_iec_ctrls)); if (ret < 0) return ret; return snd_soc_add_component_controls(cpu_dai->component, stm32_spdifrx_ctrls, ARRAY_SIZE(stm32_spdifrx_ctrls)); } static int stm32_spdifrx_dai_probe(struct snd_soc_dai *cpu_dai) { struct stm32_spdifrx_data *spdifrx = dev_get_drvdata(cpu_dai->dev); spdifrx->dma_params.addr = (dma_addr_t)(spdifrx->phys_addr + STM32_SPDIFRX_DR); spdifrx->dma_params.maxburst = 1; snd_soc_dai_init_dma_data(cpu_dai, NULL, &spdifrx->dma_params); return stm32_spdifrx_dai_register_ctrls(cpu_dai); } static bool stm32_spdifrx_readable_reg(struct device *dev, unsigned int reg) { switch (reg) { case STM32_SPDIFRX_CR: case STM32_SPDIFRX_IMR: case STM32_SPDIFRX_SR: case STM32_SPDIFRX_IFCR: case STM32_SPDIFRX_DR: case STM32_SPDIFRX_CSR: case STM32_SPDIFRX_DIR: case STM32_SPDIFRX_VERR: case STM32_SPDIFRX_IDR: case STM32_SPDIFRX_SIDR: return true; default: return false; } } static bool stm32_spdifrx_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case STM32_SPDIFRX_DR: case STM32_SPDIFRX_CSR: case STM32_SPDIFRX_SR: case STM32_SPDIFRX_DIR: return true; default: return false; } } static bool stm32_spdifrx_writeable_reg(struct device *dev, unsigned int reg) { switch (reg) { case STM32_SPDIFRX_CR: case STM32_SPDIFRX_IMR: case STM32_SPDIFRX_IFCR: return true; default: return false; } } static const struct regmap_config stm32_h7_spdifrx_regmap_conf = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = STM32_SPDIFRX_SIDR, .readable_reg = stm32_spdifrx_readable_reg, .volatile_reg = stm32_spdifrx_volatile_reg, .writeable_reg = stm32_spdifrx_writeable_reg, .num_reg_defaults_raw = STM32_SPDIFRX_SIDR / sizeof(u32) + 1, .fast_io = true, .cache_type = REGCACHE_FLAT, }; static irqreturn_t stm32_spdifrx_isr(int irq, void *devid) { struct stm32_spdifrx_data *spdifrx = (struct stm32_spdifrx_data *)devid; struct platform_device *pdev = spdifrx->pdev; unsigned int cr, mask, sr, imr; unsigned int flags, sync_state; int err = 0, err_xrun = 0; regmap_read(spdifrx->regmap, STM32_SPDIFRX_SR, &sr); regmap_read(spdifrx->regmap, STM32_SPDIFRX_IMR, &imr); mask = imr & SPDIFRX_XIMR_MASK; /* SERR, TERR, FERR IRQs are generated if IFEIE is set */ if (mask & SPDIFRX_IMR_IFEIE) mask |= (SPDIFRX_IMR_IFEIE << 1) | (SPDIFRX_IMR_IFEIE << 2); flags = sr & mask; if (!flags) { dev_err(&pdev->dev, "Unexpected IRQ. rflags=%#x, imr=%#x\n", sr, imr); return IRQ_NONE; } /* Clear IRQs */ regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_IFCR, SPDIFRX_XIFCR_MASK, flags); if (flags & SPDIFRX_SR_PERR) { dev_dbg(&pdev->dev, "Parity error\n"); err_xrun = 1; } if (flags & SPDIFRX_SR_OVR) { dev_dbg(&pdev->dev, "Overrun error\n"); err_xrun = 1; } if (flags & SPDIFRX_SR_SBD) dev_dbg(&pdev->dev, "Synchronization block detected\n"); if (flags & SPDIFRX_SR_SYNCD) { dev_dbg(&pdev->dev, "Synchronization done\n"); /* Enable spdifrx */ cr = SPDIFRX_CR_SPDIFENSET(SPDIFRX_SPDIFEN_ENABLE); regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_CR, SPDIFRX_CR_SPDIFEN_MASK, cr); } if (flags & SPDIFRX_SR_FERR) { dev_dbg(&pdev->dev, "Frame error\n"); err = 1; } if (flags & SPDIFRX_SR_SERR) { dev_dbg(&pdev->dev, "Synchronization error\n"); err = 1; } if (flags & SPDIFRX_SR_TERR) { dev_dbg(&pdev->dev, "Timeout error\n"); err = 1; } if (err) { regmap_read(spdifrx->regmap, STM32_SPDIFRX_CR, &cr); sync_state = FIELD_GET(SPDIFRX_CR_SPDIFEN_MASK, cr) && SPDIFRX_SPDIFEN_SYNC; /* SPDIFRX is in STATE_STOP. Disable SPDIFRX to clear errors */ cr = SPDIFRX_CR_SPDIFENSET(SPDIFRX_SPDIFEN_DISABLE); regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_CR, SPDIFRX_CR_SPDIFEN_MASK, cr); /* If SPDIFRX was in STATE_SYNC, retry synchro */ if (sync_state) { cr = SPDIFRX_CR_SPDIFENSET(SPDIFRX_SPDIFEN_SYNC); regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_CR, SPDIFRX_CR_SPDIFEN_MASK, cr); return IRQ_HANDLED; } spin_lock(&spdifrx->irq_lock); if (spdifrx->substream) snd_pcm_stop(spdifrx->substream, SNDRV_PCM_STATE_DISCONNECTED); spin_unlock(&spdifrx->irq_lock); return IRQ_HANDLED; } spin_lock(&spdifrx->irq_lock); if (err_xrun && spdifrx->substream) snd_pcm_stop_xrun(spdifrx->substream); spin_unlock(&spdifrx->irq_lock); return IRQ_HANDLED; } static int stm32_spdifrx_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *cpu_dai) { struct stm32_spdifrx_data *spdifrx = snd_soc_dai_get_drvdata(cpu_dai); unsigned long flags; int ret; spin_lock_irqsave(&spdifrx->irq_lock, flags); spdifrx->substream = substream; spin_unlock_irqrestore(&spdifrx->irq_lock, flags); ret = clk_prepare_enable(spdifrx->kclk); if (ret) dev_err(&spdifrx->pdev->dev, "Enable kclk failed: %d\n", ret); return ret; } static int stm32_spdifrx_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *cpu_dai) { struct stm32_spdifrx_data *spdifrx = snd_soc_dai_get_drvdata(cpu_dai); int data_size = params_width(params); int fmt; switch (data_size) { case 16: fmt = SPDIFRX_DRFMT_PACKED; break; case 32: fmt = SPDIFRX_DRFMT_LEFT; break; default: dev_err(&spdifrx->pdev->dev, "Unexpected data format\n"); return -EINVAL; } /* * Set buswidth to 4 bytes for all data formats. * Packed format: transfer 2 x 2 bytes samples * Left format: transfer 1 x 3 bytes samples + 1 dummy byte */ spdifrx->dma_params.addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; snd_soc_dai_init_dma_data(cpu_dai, NULL, &spdifrx->dma_params); return regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_CR, SPDIFRX_CR_DRFMT_MASK, SPDIFRX_CR_DRFMTSET(fmt)); } static int stm32_spdifrx_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *cpu_dai) { struct stm32_spdifrx_data *spdifrx = snd_soc_dai_get_drvdata(cpu_dai); int ret = 0; switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_IMR, SPDIFRX_IMR_OVRIE, SPDIFRX_IMR_OVRIE); regmap_update_bits(spdifrx->regmap, STM32_SPDIFRX_CR, SPDIFRX_CR_RXDMAEN, SPDIFRX_CR_RXDMAEN); ret = stm32_spdifrx_start_sync(spdifrx); break; case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: case SNDRV_PCM_TRIGGER_STOP: stm32_spdifrx_stop(spdifrx); break; default: return -EINVAL; } return ret; } static void stm32_spdifrx_shutdown(struct snd_pcm_substream *substream, struct snd_soc_dai *cpu_dai) { struct stm32_spdifrx_data *spdifrx = snd_soc_dai_get_drvdata(cpu_dai); unsigned long flags; spin_lock_irqsave(&spdifrx->irq_lock, flags); spdifrx->substream = NULL; spin_unlock_irqrestore(&spdifrx->irq_lock, flags); clk_disable_unprepare(spdifrx->kclk); } static const struct snd_soc_dai_ops stm32_spdifrx_pcm_dai_ops = { .probe = stm32_spdifrx_dai_probe, .startup = stm32_spdifrx_startup, .hw_params = stm32_spdifrx_hw_params, .trigger = stm32_spdifrx_trigger, .shutdown = stm32_spdifrx_shutdown, }; static struct snd_soc_dai_driver stm32_spdifrx_dai[] = { { .capture = { .stream_name = "CPU-Capture", .channels_min = 1, .channels_max = 2, .rates = SNDRV_PCM_RATE_8000_192000, .formats = SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S16_LE, }, .ops = &stm32_spdifrx_pcm_dai_ops, } }; static const struct snd_pcm_hardware stm32_spdifrx_pcm_hw = { .info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP, .buffer_bytes_max = 8 * PAGE_SIZE, .period_bytes_min = 1024, .period_bytes_max = 4 * PAGE_SIZE, .periods_min = 2, .periods_max = 8, }; static const struct snd_soc_component_driver stm32_spdifrx_component = { .name = "stm32-spdifrx", .legacy_dai_naming = 1, }; static const struct snd_dmaengine_pcm_config stm32_spdifrx_pcm_config = { .pcm_hardware = &stm32_spdifrx_pcm_hw, .prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config, }; static const struct of_device_id stm32_spdifrx_ids[] = { { .compatible = "st,stm32h7-spdifrx", .data = &stm32_h7_spdifrx_regmap_conf }, {} }; static int stm32_spdifrx_parse_of(struct platform_device *pdev, struct stm32_spdifrx_data *spdifrx) { struct device_node *np = pdev->dev.of_node; struct resource *res; if (!np) return -ENODEV; spdifrx->regmap_conf = device_get_match_data(&pdev->dev); if (!spdifrx->regmap_conf) return -EINVAL; spdifrx->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(spdifrx->base)) return PTR_ERR(spdifrx->base); spdifrx->phys_addr = res->start; spdifrx->kclk = devm_clk_get(&pdev->dev, "kclk"); if (IS_ERR(spdifrx->kclk)) return dev_err_probe(&pdev->dev, PTR_ERR(spdifrx->kclk), "Could not get kclk\n"); spdifrx->irq = platform_get_irq(pdev, 0); if (spdifrx->irq < 0) return spdifrx->irq; return 0; } static void stm32_spdifrx_remove(struct platform_device *pdev) { struct stm32_spdifrx_data *spdifrx = platform_get_drvdata(pdev); if (!IS_ERR(spdifrx->ctrl_chan)) dma_release_channel(spdifrx->ctrl_chan); if (spdifrx->dmab) snd_dma_free_pages(spdifrx->dmab); snd_dmaengine_pcm_unregister(&pdev->dev); snd_soc_unregister_component(&pdev->dev); pm_runtime_disable(&pdev->dev); } static int stm32_spdifrx_probe(struct platform_device *pdev) { struct stm32_spdifrx_data *spdifrx; struct reset_control *rst; const struct snd_dmaengine_pcm_config *pcm_config = NULL; u32 ver, idr; int ret; spdifrx = devm_kzalloc(&pdev->dev, sizeof(*spdifrx), GFP_KERNEL); if (!spdifrx) return -ENOMEM; spdifrx->pdev = pdev; init_completion(&spdifrx->cs_completion); spin_lock_init(&spdifrx->lock); spin_lock_init(&spdifrx->irq_lock); platform_set_drvdata(pdev, spdifrx); ret = stm32_spdifrx_parse_of(pdev, spdifrx); if (ret) return ret; spdifrx->regmap = devm_regmap_init_mmio_clk(&pdev->dev, "kclk", spdifrx->base, spdifrx->regmap_conf); if (IS_ERR(spdifrx->regmap)) return dev_err_probe(&pdev->dev, PTR_ERR(spdifrx->regmap), "Regmap init error\n"); ret = devm_request_irq(&pdev->dev, spdifrx->irq, stm32_spdifrx_isr, 0, dev_name(&pdev->dev), spdifrx); if (ret) { dev_err(&pdev->dev, "IRQ request returned %d\n", ret); return ret; } rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL); if (IS_ERR(rst)) return dev_err_probe(&pdev->dev, PTR_ERR(rst), "Reset controller error\n"); reset_control_assert(rst); udelay(2); reset_control_deassert(rst); pcm_config = &stm32_spdifrx_pcm_config; ret = snd_dmaengine_pcm_register(&pdev->dev, pcm_config, 0); if (ret) return dev_err_probe(&pdev->dev, ret, "PCM DMA register error\n"); ret = snd_soc_register_component(&pdev->dev, &stm32_spdifrx_component, stm32_spdifrx_dai, ARRAY_SIZE(stm32_spdifrx_dai)); if (ret) { snd_dmaengine_pcm_unregister(&pdev->dev); return ret; } ret = stm32_spdifrx_dma_ctrl_register(&pdev->dev, spdifrx); if (ret) goto error; ret = regmap_read(spdifrx->regmap, STM32_SPDIFRX_IDR, &idr); if (ret) goto error; if (idr == SPDIFRX_IPIDR_NUMBER) { ret = regmap_read(spdifrx->regmap, STM32_SPDIFRX_VERR, &ver); if (ret) goto error; dev_dbg(&pdev->dev, "SPDIFRX version: %lu.%lu registered\n", FIELD_GET(SPDIFRX_VERR_MAJ_MASK, ver), FIELD_GET(SPDIFRX_VERR_MIN_MASK, ver)); } pm_runtime_enable(&pdev->dev); return ret; error: stm32_spdifrx_remove(pdev); return ret; } MODULE_DEVICE_TABLE(of, stm32_spdifrx_ids); #ifdef CONFIG_PM_SLEEP static int stm32_spdifrx_suspend(struct device *dev) { struct stm32_spdifrx_data *spdifrx = dev_get_drvdata(dev); regcache_cache_only(spdifrx->regmap, true); regcache_mark_dirty(spdifrx->regmap); return 0; } static int stm32_spdifrx_resume(struct device *dev) { struct stm32_spdifrx_data *spdifrx = dev_get_drvdata(dev); regcache_cache_only(spdifrx->regmap, false); return regcache_sync(spdifrx->regmap); } #endif /* CONFIG_PM_SLEEP */ static const struct dev_pm_ops stm32_spdifrx_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(stm32_spdifrx_suspend, stm32_spdifrx_resume) }; static struct platform_driver stm32_spdifrx_driver = { .driver = { .name = "st,stm32-spdifrx", .of_match_table = stm32_spdifrx_ids, .pm = &stm32_spdifrx_pm_ops, }, .probe = stm32_spdifrx_probe, .remove = stm32_spdifrx_remove, }; module_platform_driver(stm32_spdifrx_driver); MODULE_DESCRIPTION("STM32 Soc spdifrx Interface"); MODULE_AUTHOR("Olivier Moysan, "); MODULE_ALIAS("platform:stm32-spdifrx"); MODULE_LICENSE("GPL v2");