// SPDX-License-Identifier: GPL-2.0 // // Freescale S/PDIF ALSA SoC Digital Audio Interface (DAI) driver // // Copyright (C) 2013 Freescale Semiconductor, Inc. // // Based on stmp3xxx_spdif_dai.c // Vladimir Barinov // Copyright 2008 SigmaTel, Inc // Copyright 2008 Embedded Alley Solutions, Inc #include #include #include #include #include #include #include #include #include #include #include #include "fsl_spdif.h" #include "fsl_utils.h" #include "imx-pcm.h" #define FSL_SPDIF_TXFIFO_WML 0x8 #define FSL_SPDIF_RXFIFO_WML 0x8 #define INTR_FOR_PLAYBACK (INT_TXFIFO_RESYNC) #define INTR_FOR_CAPTURE (INT_SYM_ERR | INT_BIT_ERR | INT_URX_FUL |\ INT_URX_OV | INT_QRX_FUL | INT_QRX_OV |\ INT_UQ_SYNC | INT_UQ_ERR | INT_RXFIFO_RESYNC |\ INT_LOSS_LOCK | INT_DPLL_LOCKED) #define SIE_INTR_FOR(tx) (tx ? INTR_FOR_PLAYBACK : INTR_FOR_CAPTURE) /* Index list for the values that has if (DPLL Locked) condition */ static u8 srpc_dpll_locked[] = { 0x0, 0x1, 0x2, 0x3, 0x4, 0xa, 0xb }; #define SRPC_NODPLL_START1 0x5 #define SRPC_NODPLL_START2 0xc #define DEFAULT_RXCLK_SRC 1 #define RX_SAMPLE_RATE_KCONTROL "RX Sample Rate" /** * struct fsl_spdif_soc_data: soc specific data * * @imx: for imx platform * @shared_root_clock: flag of sharing a clock source with others; * so the driver shouldn't set root clock rate * @raw_capture_mode: if raw capture mode support * @cchannel_192b: if there are registers for 192bits C channel data * @interrupts: interrupt number * @tx_burst: tx maxburst size * @rx_burst: rx maxburst size * @tx_formats: tx supported data format */ struct fsl_spdif_soc_data { bool imx; bool shared_root_clock; bool raw_capture_mode; bool cchannel_192b; u32 interrupts; u32 tx_burst; u32 rx_burst; u64 tx_formats; }; /* * SPDIF control structure * Defines channel status, subcode and Q sub */ struct spdif_mixer_control { /* spinlock to access control data */ spinlock_t ctl_lock; /* IEC958 channel tx status bit */ unsigned char ch_status[4]; /* User bits */ unsigned char subcode[2 * SPDIF_UBITS_SIZE]; /* Q subcode part of user bits */ unsigned char qsub[2 * SPDIF_QSUB_SIZE]; /* Buffer offset for U/Q */ u32 upos; u32 qpos; /* Ready buffer index of the two buffers */ u32 ready_buf; }; /** * struct fsl_spdif_priv - Freescale SPDIF private data * @soc: SPDIF soc data * @fsl_spdif_control: SPDIF control data * @cpu_dai_drv: cpu dai driver * @snd_card: sound card pointer * @rxrate_kcontrol: kcontrol for RX Sample Rate * @pdev: platform device pointer * @regmap: regmap handler * @dpll_locked: dpll lock flag * @txrate: the best rates for playback * @txclk_df: STC_TXCLK_DF dividers value for playback * @sysclk_df: STC_SYSCLK_DF dividers value for playback * @txclk_src: STC_TXCLK_SRC values for playback * @rxclk_src: SRPC_CLKSRC_SEL values for capture * @txclk: tx clock sources for playback * @rxclk: rx clock sources for capture * @coreclk: core clock for register access via DMA * @sysclk: system clock for rx clock rate measurement * @spbaclk: SPBA clock (optional, depending on SoC design) * @dma_params_tx: DMA parameters for transmit channel * @dma_params_rx: DMA parameters for receive channel * @regcache_srpc: regcache for SRPC * @bypass: status of bypass input to output * @pll8k_clk: PLL clock for the rate of multiply of 8kHz * @pll11k_clk: PLL clock for the rate of multiply of 11kHz */ struct fsl_spdif_priv { const struct fsl_spdif_soc_data *soc; struct spdif_mixer_control fsl_spdif_control; struct snd_soc_dai_driver cpu_dai_drv; struct snd_card *snd_card; struct snd_kcontrol *rxrate_kcontrol; struct platform_device *pdev; struct regmap *regmap; bool dpll_locked; u32 txrate[SPDIF_TXRATE_MAX]; u8 txclk_df[SPDIF_TXRATE_MAX]; u16 sysclk_df[SPDIF_TXRATE_MAX]; u8 txclk_src[SPDIF_TXRATE_MAX]; u8 rxclk_src; struct clk *txclk[STC_TXCLK_SRC_MAX]; struct clk *rxclk; struct clk *coreclk; struct clk *sysclk; struct clk *spbaclk; struct snd_dmaengine_dai_dma_data dma_params_tx; struct snd_dmaengine_dai_dma_data dma_params_rx; /* regcache for SRPC */ u32 regcache_srpc; bool bypass; struct clk *pll8k_clk; struct clk *pll11k_clk; }; static struct fsl_spdif_soc_data fsl_spdif_vf610 = { .imx = false, .shared_root_clock = false, .raw_capture_mode = false, .interrupts = 1, .tx_burst = FSL_SPDIF_TXFIFO_WML, .rx_burst = FSL_SPDIF_RXFIFO_WML, .tx_formats = FSL_SPDIF_FORMATS_PLAYBACK, }; static struct fsl_spdif_soc_data fsl_spdif_imx35 = { .imx = true, .shared_root_clock = false, .raw_capture_mode = false, .interrupts = 1, .tx_burst = FSL_SPDIF_TXFIFO_WML, .rx_burst = FSL_SPDIF_RXFIFO_WML, .tx_formats = FSL_SPDIF_FORMATS_PLAYBACK, }; static struct fsl_spdif_soc_data fsl_spdif_imx6sx = { .imx = true, .shared_root_clock = true, .raw_capture_mode = false, .interrupts = 1, .tx_burst = FSL_SPDIF_TXFIFO_WML, .rx_burst = FSL_SPDIF_RXFIFO_WML, .tx_formats = FSL_SPDIF_FORMATS_PLAYBACK, }; static struct fsl_spdif_soc_data fsl_spdif_imx8qm = { .imx = true, .shared_root_clock = true, .raw_capture_mode = false, .interrupts = 2, .tx_burst = 2, /* Applied for EDMA */ .rx_burst = 2, /* Applied for EDMA */ .tx_formats = SNDRV_PCM_FMTBIT_S24_LE, /* Applied for EDMA */ }; static struct fsl_spdif_soc_data fsl_spdif_imx8mm = { .imx = true, .shared_root_clock = false, .raw_capture_mode = true, .interrupts = 1, .tx_burst = FSL_SPDIF_TXFIFO_WML, .rx_burst = FSL_SPDIF_RXFIFO_WML, .tx_formats = FSL_SPDIF_FORMATS_PLAYBACK, }; static struct fsl_spdif_soc_data fsl_spdif_imx8ulp = { .imx = true, .shared_root_clock = true, .raw_capture_mode = false, .interrupts = 1, .tx_burst = 2, /* Applied for EDMA */ .rx_burst = 2, /* Applied for EDMA */ .tx_formats = SNDRV_PCM_FMTBIT_S24_LE, /* Applied for EDMA */ .cchannel_192b = true, }; /* Check if clk is a root clock that does not share clock source with others */ static inline bool fsl_spdif_can_set_clk_rate(struct fsl_spdif_priv *spdif, int clk) { return (clk == STC_TXCLK_SPDIF_ROOT) && !spdif->soc->shared_root_clock; } /* DPLL locked and lock loss interrupt handler */ static void spdif_irq_dpll_lock(struct fsl_spdif_priv *spdif_priv) { struct regmap *regmap = spdif_priv->regmap; struct platform_device *pdev = spdif_priv->pdev; u32 locked; regmap_read(regmap, REG_SPDIF_SRPC, &locked); locked &= SRPC_DPLL_LOCKED; dev_dbg(&pdev->dev, "isr: Rx dpll %s \n", locked ? "locked" : "loss lock"); spdif_priv->dpll_locked = locked ? true : false; if (spdif_priv->snd_card && spdif_priv->rxrate_kcontrol) { snd_ctl_notify(spdif_priv->snd_card, SNDRV_CTL_EVENT_MASK_VALUE, &spdif_priv->rxrate_kcontrol->id); } } /* Receiver found illegal symbol interrupt handler */ static void spdif_irq_sym_error(struct fsl_spdif_priv *spdif_priv) { struct regmap *regmap = spdif_priv->regmap; struct platform_device *pdev = spdif_priv->pdev; dev_dbg(&pdev->dev, "isr: receiver found illegal symbol\n"); /* Clear illegal symbol if DPLL unlocked since no audio stream */ if (!spdif_priv->dpll_locked) regmap_update_bits(regmap, REG_SPDIF_SIE, INT_SYM_ERR, 0); } /* U/Q Channel receive register full */ static void spdif_irq_uqrx_full(struct fsl_spdif_priv *spdif_priv, char name) { struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; struct regmap *regmap = spdif_priv->regmap; struct platform_device *pdev = spdif_priv->pdev; u32 *pos, size, val, reg; switch (name) { case 'U': pos = &ctrl->upos; size = SPDIF_UBITS_SIZE; reg = REG_SPDIF_SRU; break; case 'Q': pos = &ctrl->qpos; size = SPDIF_QSUB_SIZE; reg = REG_SPDIF_SRQ; break; default: dev_err(&pdev->dev, "unsupported channel name\n"); return; } dev_dbg(&pdev->dev, "isr: %c Channel receive register full\n", name); if (*pos >= size * 2) { *pos = 0; } else if (unlikely((*pos % size) + 3 > size)) { dev_err(&pdev->dev, "User bit receive buffer overflow\n"); return; } regmap_read(regmap, reg, &val); ctrl->subcode[*pos++] = val >> 16; ctrl->subcode[*pos++] = val >> 8; ctrl->subcode[*pos++] = val; } /* U/Q Channel sync found */ static void spdif_irq_uq_sync(struct fsl_spdif_priv *spdif_priv) { struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; struct platform_device *pdev = spdif_priv->pdev; dev_dbg(&pdev->dev, "isr: U/Q Channel sync found\n"); /* U/Q buffer reset */ if (ctrl->qpos == 0) return; /* Set ready to this buffer */ ctrl->ready_buf = (ctrl->qpos - 1) / SPDIF_QSUB_SIZE + 1; } /* U/Q Channel framing error */ static void spdif_irq_uq_err(struct fsl_spdif_priv *spdif_priv) { struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; struct regmap *regmap = spdif_priv->regmap; struct platform_device *pdev = spdif_priv->pdev; u32 val; dev_dbg(&pdev->dev, "isr: U/Q Channel framing error\n"); /* Read U/Q data to clear the irq and do buffer reset */ regmap_read(regmap, REG_SPDIF_SRU, &val); regmap_read(regmap, REG_SPDIF_SRQ, &val); /* Drop this U/Q buffer */ ctrl->ready_buf = 0; ctrl->upos = 0; ctrl->qpos = 0; } /* Get spdif interrupt status and clear the interrupt */ static u32 spdif_intr_status_clear(struct fsl_spdif_priv *spdif_priv) { struct regmap *regmap = spdif_priv->regmap; u32 val, val2; regmap_read(regmap, REG_SPDIF_SIS, &val); regmap_read(regmap, REG_SPDIF_SIE, &val2); regmap_write(regmap, REG_SPDIF_SIC, val & val2); return val; } static irqreturn_t spdif_isr(int irq, void *devid) { struct fsl_spdif_priv *spdif_priv = (struct fsl_spdif_priv *)devid; struct platform_device *pdev = spdif_priv->pdev; u32 sis; sis = spdif_intr_status_clear(spdif_priv); if (sis & INT_DPLL_LOCKED) spdif_irq_dpll_lock(spdif_priv); if (sis & INT_TXFIFO_UNOV) dev_dbg(&pdev->dev, "isr: Tx FIFO under/overrun\n"); if (sis & INT_TXFIFO_RESYNC) dev_dbg(&pdev->dev, "isr: Tx FIFO resync\n"); if (sis & INT_CNEW) dev_dbg(&pdev->dev, "isr: cstatus new\n"); if (sis & INT_VAL_NOGOOD) dev_dbg(&pdev->dev, "isr: validity flag no good\n"); if (sis & INT_SYM_ERR) spdif_irq_sym_error(spdif_priv); if (sis & INT_BIT_ERR) dev_dbg(&pdev->dev, "isr: receiver found parity bit error\n"); if (sis & INT_URX_FUL) spdif_irq_uqrx_full(spdif_priv, 'U'); if (sis & INT_URX_OV) dev_dbg(&pdev->dev, "isr: U Channel receive register overrun\n"); if (sis & INT_QRX_FUL) spdif_irq_uqrx_full(spdif_priv, 'Q'); if (sis & INT_QRX_OV) dev_dbg(&pdev->dev, "isr: Q Channel receive register overrun\n"); if (sis & INT_UQ_SYNC) spdif_irq_uq_sync(spdif_priv); if (sis & INT_UQ_ERR) spdif_irq_uq_err(spdif_priv); if (sis & INT_RXFIFO_UNOV) dev_dbg(&pdev->dev, "isr: Rx FIFO under/overrun\n"); if (sis & INT_RXFIFO_RESYNC) dev_dbg(&pdev->dev, "isr: Rx FIFO resync\n"); if (sis & INT_LOSS_LOCK) spdif_irq_dpll_lock(spdif_priv); /* FIXME: Write Tx FIFO to clear TxEm */ if (sis & INT_TX_EM) dev_dbg(&pdev->dev, "isr: Tx FIFO empty\n"); /* FIXME: Read Rx FIFO to clear RxFIFOFul */ if (sis & INT_RXFIFO_FUL) dev_dbg(&pdev->dev, "isr: Rx FIFO full\n"); return IRQ_HANDLED; } static int spdif_softreset(struct fsl_spdif_priv *spdif_priv) { struct regmap *regmap = spdif_priv->regmap; u32 val, cycle = 1000; regcache_cache_bypass(regmap, true); regmap_write(regmap, REG_SPDIF_SCR, SCR_SOFT_RESET); /* * RESET bit would be cleared after finishing its reset procedure, * which typically lasts 8 cycles. 1000 cycles will keep it safe. */ do { regmap_read(regmap, REG_SPDIF_SCR, &val); } while ((val & SCR_SOFT_RESET) && cycle--); regcache_cache_bypass(regmap, false); regcache_mark_dirty(regmap); regcache_sync(regmap); if (cycle) return 0; else return -EBUSY; } static void spdif_set_cstatus(struct spdif_mixer_control *ctrl, u8 mask, u8 cstatus) { ctrl->ch_status[3] &= ~mask; ctrl->ch_status[3] |= cstatus & mask; } static void spdif_write_channel_status(struct fsl_spdif_priv *spdif_priv) { struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; struct regmap *regmap = spdif_priv->regmap; struct platform_device *pdev = spdif_priv->pdev; u32 ch_status; ch_status = (bitrev8(ctrl->ch_status[0]) << 16) | (bitrev8(ctrl->ch_status[1]) << 8) | bitrev8(ctrl->ch_status[2]); regmap_write(regmap, REG_SPDIF_STCSCH, ch_status); dev_dbg(&pdev->dev, "STCSCH: 0x%06x\n", ch_status); ch_status = bitrev8(ctrl->ch_status[3]) << 16; regmap_write(regmap, REG_SPDIF_STCSCL, ch_status); dev_dbg(&pdev->dev, "STCSCL: 0x%06x\n", ch_status); if (spdif_priv->soc->cchannel_192b) { ch_status = (bitrev8(ctrl->ch_status[0]) << 24) | (bitrev8(ctrl->ch_status[1]) << 16) | (bitrev8(ctrl->ch_status[2]) << 8) | bitrev8(ctrl->ch_status[3]); regmap_update_bits(regmap, REG_SPDIF_SCR, 0x1000000, 0x1000000); /* * The first 32bit should be in REG_SPDIF_STCCA_31_0 register, * but here we need to set REG_SPDIF_STCCA_191_160 on 8ULP * then can get correct result with HDMI analyzer capture. * There is a hardware bug here. */ regmap_write(regmap, REG_SPDIF_STCCA_191_160, ch_status); } } /* Set SPDIF PhaseConfig register for rx clock */ static int spdif_set_rx_clksrc(struct fsl_spdif_priv *spdif_priv, enum spdif_gainsel gainsel, int dpll_locked) { struct regmap *regmap = spdif_priv->regmap; u8 clksrc = spdif_priv->rxclk_src; if (clksrc >= SRPC_CLKSRC_MAX || gainsel >= GAINSEL_MULTI_MAX) return -EINVAL; regmap_update_bits(regmap, REG_SPDIF_SRPC, SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK, SRPC_CLKSRC_SEL_SET(clksrc) | SRPC_GAINSEL_SET(gainsel)); return 0; } static int fsl_spdif_probe_txclk(struct fsl_spdif_priv *spdif_priv, enum spdif_txrate index); static int spdif_set_sample_rate(struct snd_pcm_substream *substream, int sample_rate) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0)); struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; struct regmap *regmap = spdif_priv->regmap; struct platform_device *pdev = spdif_priv->pdev; unsigned long csfs = 0; u32 stc, mask, rate; u16 sysclk_df; u8 clk, txclk_df; int ret; switch (sample_rate) { case 22050: rate = SPDIF_TXRATE_22050; csfs = IEC958_AES3_CON_FS_22050; break; case 32000: rate = SPDIF_TXRATE_32000; csfs = IEC958_AES3_CON_FS_32000; break; case 44100: rate = SPDIF_TXRATE_44100; csfs = IEC958_AES3_CON_FS_44100; break; case 48000: rate = SPDIF_TXRATE_48000; csfs = IEC958_AES3_CON_FS_48000; break; case 88200: rate = SPDIF_TXRATE_88200; csfs = IEC958_AES3_CON_FS_88200; break; case 96000: rate = SPDIF_TXRATE_96000; csfs = IEC958_AES3_CON_FS_96000; break; case 176400: rate = SPDIF_TXRATE_176400; csfs = IEC958_AES3_CON_FS_176400; break; case 192000: rate = SPDIF_TXRATE_192000; csfs = IEC958_AES3_CON_FS_192000; break; default: dev_err(&pdev->dev, "unsupported sample rate %d\n", sample_rate); return -EINVAL; } ret = fsl_spdif_probe_txclk(spdif_priv, rate); if (ret) return ret; clk = spdif_priv->txclk_src[rate]; if (clk >= STC_TXCLK_SRC_MAX) { dev_err(&pdev->dev, "tx clock source is out of range\n"); return -EINVAL; } txclk_df = spdif_priv->txclk_df[rate]; if (txclk_df == 0) { dev_err(&pdev->dev, "the txclk_df can't be zero\n"); return -EINVAL; } sysclk_df = spdif_priv->sysclk_df[rate]; if (!fsl_spdif_can_set_clk_rate(spdif_priv, clk)) goto clk_set_bypass; /* The S/PDIF block needs a clock of 64 * fs * txclk_df */ ret = clk_set_rate(spdif_priv->txclk[clk], 64 * sample_rate * txclk_df); if (ret) { dev_err(&pdev->dev, "failed to set tx clock rate\n"); return ret; } clk_set_bypass: dev_dbg(&pdev->dev, "expected clock rate = %d\n", (64 * sample_rate * txclk_df * sysclk_df)); dev_dbg(&pdev->dev, "actual clock rate = %ld\n", clk_get_rate(spdif_priv->txclk[clk])); /* set fs field in consumer channel status */ spdif_set_cstatus(ctrl, IEC958_AES3_CON_FS, csfs); /* select clock source and divisor */ stc = STC_TXCLK_ALL_EN | STC_TXCLK_SRC_SET(clk) | STC_TXCLK_DF(txclk_df) | STC_SYSCLK_DF(sysclk_df); mask = STC_TXCLK_ALL_EN_MASK | STC_TXCLK_SRC_MASK | STC_TXCLK_DF_MASK | STC_SYSCLK_DF_MASK; regmap_update_bits(regmap, REG_SPDIF_STC, mask, stc); dev_dbg(&pdev->dev, "set sample rate to %dHz for %dHz playback\n", spdif_priv->txrate[rate], sample_rate); return 0; } static int fsl_spdif_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *cpu_dai) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0)); struct platform_device *pdev = spdif_priv->pdev; struct regmap *regmap = spdif_priv->regmap; u32 scr, mask; int ret; /* Reset module and interrupts only for first initialization */ if (!snd_soc_dai_active(cpu_dai)) { ret = spdif_softreset(spdif_priv); if (ret) { dev_err(&pdev->dev, "failed to soft reset\n"); return ret; } /* Disable all the interrupts */ regmap_update_bits(regmap, REG_SPDIF_SIE, 0xffffff, 0); } if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { scr = SCR_TXFIFO_AUTOSYNC | SCR_TXFIFO_CTRL_NORMAL | SCR_TXSEL_NORMAL | SCR_USRC_SEL_CHIP | SCR_TXFIFO_FSEL_IF8; mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK | SCR_TXSEL_MASK | SCR_USRC_SEL_MASK | SCR_TXFIFO_FSEL_MASK; } else { scr = SCR_RXFIFO_FSEL_IF8 | SCR_RXFIFO_AUTOSYNC; mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK| SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK; } regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr); /* Power up SPDIF module */ regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_LOW_POWER, 0); return 0; } static void fsl_spdif_shutdown(struct snd_pcm_substream *substream, struct snd_soc_dai *cpu_dai) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0)); struct regmap *regmap = spdif_priv->regmap; u32 scr, mask; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { scr = 0; mask = SCR_TXFIFO_AUTOSYNC_MASK | SCR_TXFIFO_CTRL_MASK | SCR_TXSEL_MASK | SCR_USRC_SEL_MASK | SCR_TXFIFO_FSEL_MASK; /* Disable TX clock */ regmap_update_bits(regmap, REG_SPDIF_STC, STC_TXCLK_ALL_EN_MASK, 0); } else { scr = SCR_RXFIFO_OFF | SCR_RXFIFO_CTL_ZERO; mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK| SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK; } regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr); /* Power down SPDIF module only if tx&rx are both inactive */ if (!snd_soc_dai_active(cpu_dai)) { spdif_intr_status_clear(spdif_priv); regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_LOW_POWER, SCR_LOW_POWER); } } static int spdif_reparent_rootclk(struct fsl_spdif_priv *spdif_priv, unsigned int sample_rate) { struct platform_device *pdev = spdif_priv->pdev; struct clk *clk; int ret; /* Reparent clock if required condition is true */ if (!fsl_spdif_can_set_clk_rate(spdif_priv, STC_TXCLK_SPDIF_ROOT)) return 0; /* Get root clock */ clk = spdif_priv->txclk[STC_TXCLK_SPDIF_ROOT]; /* Disable clock first, for it was enabled by pm_runtime */ clk_disable_unprepare(clk); fsl_asoc_reparent_pll_clocks(&pdev->dev, clk, spdif_priv->pll8k_clk, spdif_priv->pll11k_clk, sample_rate); ret = clk_prepare_enable(clk); if (ret) return ret; return 0; } static int fsl_spdif_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0)); struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; struct platform_device *pdev = spdif_priv->pdev; u32 sample_rate = params_rate(params); int ret = 0; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { ret = spdif_reparent_rootclk(spdif_priv, sample_rate); if (ret) { dev_err(&pdev->dev, "%s: reparent root clk failed: %d\n", __func__, sample_rate); return ret; } ret = spdif_set_sample_rate(substream, sample_rate); if (ret) { dev_err(&pdev->dev, "%s: set sample rate failed: %d\n", __func__, sample_rate); return ret; } spdif_set_cstatus(ctrl, IEC958_AES3_CON_CLOCK, IEC958_AES3_CON_CLOCK_1000PPM); spdif_write_channel_status(spdif_priv); } else { /* Setup rx clock source */ ret = spdif_set_rx_clksrc(spdif_priv, SPDIF_DEFAULT_GAINSEL, 1); } return ret; } static int fsl_spdif_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) { struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream); struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(snd_soc_rtd_to_cpu(rtd, 0)); struct regmap *regmap = spdif_priv->regmap; bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; u32 intr = SIE_INTR_FOR(tx); u32 dmaen = SCR_DMA_xX_EN(tx); switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: regmap_update_bits(regmap, REG_SPDIF_SIE, intr, intr); regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, dmaen); break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: regmap_update_bits(regmap, REG_SPDIF_SCR, dmaen, 0); regmap_update_bits(regmap, REG_SPDIF_SIE, intr, 0); regmap_write(regmap, REG_SPDIF_STL, 0x0); regmap_write(regmap, REG_SPDIF_STR, 0x0); break; default: return -EINVAL; } return 0; } /* * FSL SPDIF IEC958 controller(mixer) functions * * Channel status get/put control * User bit value get/put control * Valid bit value get control * DPLL lock status get control * User bit sync mode selection control */ static int fsl_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int fsl_spdif_pb_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *uvalue) { struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; uvalue->value.iec958.status[0] = ctrl->ch_status[0]; uvalue->value.iec958.status[1] = ctrl->ch_status[1]; uvalue->value.iec958.status[2] = ctrl->ch_status[2]; uvalue->value.iec958.status[3] = ctrl->ch_status[3]; return 0; } static int fsl_spdif_pb_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *uvalue) { struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; ctrl->ch_status[0] = uvalue->value.iec958.status[0]; ctrl->ch_status[1] = uvalue->value.iec958.status[1]; ctrl->ch_status[2] = uvalue->value.iec958.status[2]; ctrl->ch_status[3] = uvalue->value.iec958.status[3]; spdif_write_channel_status(spdif_priv); return 0; } /* Get channel status from SPDIF_RX_CCHAN register */ static int fsl_spdif_capture_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); struct regmap *regmap = spdif_priv->regmap; u32 cstatus, val; regmap_read(regmap, REG_SPDIF_SIS, &val); if (!(val & INT_CNEW)) return -EAGAIN; regmap_read(regmap, REG_SPDIF_SRCSH, &cstatus); ucontrol->value.iec958.status[0] = (cstatus >> 16) & 0xFF; ucontrol->value.iec958.status[1] = (cstatus >> 8) & 0xFF; ucontrol->value.iec958.status[2] = cstatus & 0xFF; regmap_read(regmap, REG_SPDIF_SRCSL, &cstatus); ucontrol->value.iec958.status[3] = (cstatus >> 16) & 0xFF; ucontrol->value.iec958.status[4] = (cstatus >> 8) & 0xFF; ucontrol->value.iec958.status[5] = cstatus & 0xFF; /* Clear intr */ regmap_write(regmap, REG_SPDIF_SIC, INT_CNEW); return 0; } /* * Get User bits (subcode) from chip value which readed out * in UChannel register. */ static int fsl_spdif_subcode_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; unsigned long flags; int ret = -EAGAIN; spin_lock_irqsave(&ctrl->ctl_lock, flags); if (ctrl->ready_buf) { int idx = (ctrl->ready_buf - 1) * SPDIF_UBITS_SIZE; memcpy(&ucontrol->value.iec958.subcode[0], &ctrl->subcode[idx], SPDIF_UBITS_SIZE); ret = 0; } spin_unlock_irqrestore(&ctrl->ctl_lock, flags); return ret; } /* Q-subcode information. The byte size is SPDIF_UBITS_SIZE/8 */ static int fsl_spdif_qinfo(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; uinfo->count = SPDIF_QSUB_SIZE; return 0; } /* Get Q subcode from chip value which readed out in QChannel register */ static int fsl_spdif_qget(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); struct spdif_mixer_control *ctrl = &spdif_priv->fsl_spdif_control; unsigned long flags; int ret = -EAGAIN; spin_lock_irqsave(&ctrl->ctl_lock, flags); if (ctrl->ready_buf) { int idx = (ctrl->ready_buf - 1) * SPDIF_QSUB_SIZE; memcpy(&ucontrol->value.bytes.data[0], &ctrl->qsub[idx], SPDIF_QSUB_SIZE); ret = 0; } spin_unlock_irqrestore(&ctrl->ctl_lock, flags); return ret; } /* Get valid good bit from interrupt status register */ static int fsl_spdif_rx_vbit_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); struct regmap *regmap = spdif_priv->regmap; u32 val; regmap_read(regmap, REG_SPDIF_SIS, &val); ucontrol->value.integer.value[0] = (val & INT_VAL_NOGOOD) != 0; regmap_write(regmap, REG_SPDIF_SIC, INT_VAL_NOGOOD); return 0; } static int fsl_spdif_tx_vbit_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); struct regmap *regmap = spdif_priv->regmap; u32 val; regmap_read(regmap, REG_SPDIF_SCR, &val); val = (val & SCR_VAL_MASK) >> SCR_VAL_OFFSET; val = 1 - val; ucontrol->value.integer.value[0] = val; return 0; } static int fsl_spdif_tx_vbit_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); struct regmap *regmap = spdif_priv->regmap; u32 val = (1 - ucontrol->value.integer.value[0]) << SCR_VAL_OFFSET; regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_VAL_MASK, val); return 0; } static int fsl_spdif_rx_rcm_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); struct regmap *regmap = spdif_priv->regmap; u32 val; regmap_read(regmap, REG_SPDIF_SCR, &val); val = (val & SCR_RAW_CAPTURE_MODE) ? 1 : 0; ucontrol->value.integer.value[0] = val; return 0; } static int fsl_spdif_rx_rcm_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); struct regmap *regmap = spdif_priv->regmap; u32 val = (ucontrol->value.integer.value[0] ? SCR_RAW_CAPTURE_MODE : 0); if (val) cpu_dai->driver->capture.formats |= SNDRV_PCM_FMTBIT_S32_LE; else cpu_dai->driver->capture.formats &= ~SNDRV_PCM_FMTBIT_S32_LE; regmap_update_bits(regmap, REG_SPDIF_SCR, SCR_RAW_CAPTURE_MODE, val); return 0; } static int fsl_spdif_bypass_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol); struct fsl_spdif_priv *priv = snd_soc_dai_get_drvdata(dai); ucontrol->value.integer.value[0] = priv->bypass ? 1 : 0; return 0; } static int fsl_spdif_bypass_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dai *dai = snd_kcontrol_chip(kcontrol); struct fsl_spdif_priv *priv = snd_soc_dai_get_drvdata(dai); struct snd_soc_card *card = dai->component->card; bool set = (ucontrol->value.integer.value[0] != 0); struct regmap *regmap = priv->regmap; struct snd_soc_pcm_runtime *rtd; u32 scr, mask; int stream; rtd = snd_soc_get_pcm_runtime(card, card->dai_link); if (priv->bypass == set) return 0; /* nothing to do */ if (snd_soc_dai_active(dai)) { dev_err(dai->dev, "Cannot change BYPASS mode while stream is running.\n"); return -EBUSY; } pm_runtime_get_sync(dai->dev); if (set) { /* Disable interrupts */ regmap_update_bits(regmap, REG_SPDIF_SIE, 0xffffff, 0); /* Configure BYPASS mode */ scr = SCR_TXSEL_RX | SCR_RXFIFO_OFF; mask = SCR_RXFIFO_FSEL_MASK | SCR_RXFIFO_AUTOSYNC_MASK | SCR_RXFIFO_CTL_MASK | SCR_RXFIFO_OFF_MASK | SCR_TXSEL_MASK; /* Power up SPDIF module */ mask |= SCR_LOW_POWER; } else { /* Power down SPDIF module, disable TX */ scr = SCR_LOW_POWER | SCR_TXSEL_OFF; mask = SCR_LOW_POWER | SCR_TXSEL_MASK; } regmap_update_bits(regmap, REG_SPDIF_SCR, mask, scr); /* Disable playback & capture if BYPASS mode is enabled, enable otherwise */ for_each_pcm_streams(stream) rtd->pcm->streams[stream].substream_count = (set ? 0 : 1); priv->bypass = set; pm_runtime_put_sync(dai->dev); return 0; } /* DPLL lock information */ static int fsl_spdif_rxrate_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 1; uinfo->value.integer.min = 16000; uinfo->value.integer.max = 192000; return 0; } static u32 gainsel_multi[GAINSEL_MULTI_MAX] = { 24, 16, 12, 8, 6, 4, 3, }; /* Get RX data clock rate given the SPDIF bus_clk */ static int spdif_get_rxclk_rate(struct fsl_spdif_priv *spdif_priv, enum spdif_gainsel gainsel) { struct regmap *regmap = spdif_priv->regmap; struct platform_device *pdev = spdif_priv->pdev; u64 tmpval64, busclk_freq = 0; u32 freqmeas, phaseconf; u8 clksrc; regmap_read(regmap, REG_SPDIF_SRFM, &freqmeas); regmap_read(regmap, REG_SPDIF_SRPC, &phaseconf); clksrc = (phaseconf >> SRPC_CLKSRC_SEL_OFFSET) & 0xf; /* Get bus clock from system */ if (srpc_dpll_locked[clksrc] && (phaseconf & SRPC_DPLL_LOCKED)) busclk_freq = clk_get_rate(spdif_priv->sysclk); /* FreqMeas_CLK = (BUS_CLK * FreqMeas) / 2 ^ 10 / GAINSEL / 128 */ tmpval64 = (u64) busclk_freq * freqmeas; do_div(tmpval64, gainsel_multi[gainsel] * 1024); do_div(tmpval64, 128 * 1024); dev_dbg(&pdev->dev, "FreqMeas: %d\n", freqmeas); dev_dbg(&pdev->dev, "BusclkFreq: %lld\n", busclk_freq); dev_dbg(&pdev->dev, "RxRate: %lld\n", tmpval64); return (int)tmpval64; } /* * Get DPLL lock or not info from stable interrupt status register. * User application must use this control to get locked, * then can do next PCM operation */ static int fsl_spdif_rxrate_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); int rate = 0; if (spdif_priv->dpll_locked) rate = spdif_get_rxclk_rate(spdif_priv, SPDIF_DEFAULT_GAINSEL); ucontrol->value.integer.value[0] = rate; return 0; } /* * User bit sync mode: * 1 CD User channel subcode * 0 Non-CD data */ static int fsl_spdif_usync_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); struct regmap *regmap = spdif_priv->regmap; u32 val; regmap_read(regmap, REG_SPDIF_SRCD, &val); ucontrol->value.integer.value[0] = (val & SRCD_CD_USER) != 0; return 0; } /* * User bit sync mode: * 1 CD User channel subcode * 0 Non-CD data */ static int fsl_spdif_usync_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol); struct fsl_spdif_priv *spdif_priv = snd_soc_dai_get_drvdata(cpu_dai); struct regmap *regmap = spdif_priv->regmap; u32 val = ucontrol->value.integer.value[0] << SRCD_CD_USER_OFFSET; regmap_update_bits(regmap, REG_SPDIF_SRCD, SRCD_CD_USER, val); return 0; } /* FSL SPDIF IEC958 controller defines */ static struct snd_kcontrol_new fsl_spdif_ctrls[] = { /* Status cchanel controller */ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT), .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_WRITE | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = fsl_spdif_info, .get = fsl_spdif_pb_get, .put = fsl_spdif_pb_put, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT), .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = fsl_spdif_info, .get = fsl_spdif_capture_get, }, /* User bits controller */ { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 Subcode Capture Default", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = fsl_spdif_info, .get = fsl_spdif_subcode_get, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 Q-subcode Capture Default", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = fsl_spdif_qinfo, .get = fsl_spdif_qget, }, /* Valid bit error controller */ { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 RX V-Bit Errors", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ctl_boolean_mono_info, .get = fsl_spdif_rx_vbit_get, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 TX V-Bit", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_WRITE | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ctl_boolean_mono_info, .get = fsl_spdif_tx_vbit_get, .put = fsl_spdif_tx_vbit_put, }, /* DPLL lock info get controller */ { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = RX_SAMPLE_RATE_KCONTROL, .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = fsl_spdif_rxrate_info, .get = fsl_spdif_rxrate_get, }, /* RX bypass controller */ { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "Bypass Mode", .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, .info = snd_ctl_boolean_mono_info, .get = fsl_spdif_bypass_get, .put = fsl_spdif_bypass_put, }, /* User bit sync mode set/get controller */ { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 USyncMode CDText", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_WRITE | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ctl_boolean_mono_info, .get = fsl_spdif_usync_get, .put = fsl_spdif_usync_put, }, }; static struct snd_kcontrol_new fsl_spdif_ctrls_rcm[] = { { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "IEC958 Raw Capture Mode", .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_WRITE | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .info = snd_ctl_boolean_mono_info, .get = fsl_spdif_rx_rcm_get, .put = fsl_spdif_rx_rcm_put, }, }; static int fsl_spdif_dai_probe(struct snd_soc_dai *dai) { struct fsl_spdif_priv *spdif_private = snd_soc_dai_get_drvdata(dai); snd_soc_dai_init_dma_data(dai, &spdif_private->dma_params_tx, &spdif_private->dma_params_rx); snd_soc_add_dai_controls(dai, fsl_spdif_ctrls, ARRAY_SIZE(fsl_spdif_ctrls)); if (spdif_private->soc->raw_capture_mode) snd_soc_add_dai_controls(dai, fsl_spdif_ctrls_rcm, ARRAY_SIZE(fsl_spdif_ctrls_rcm)); spdif_private->snd_card = dai->component->card->snd_card; spdif_private->rxrate_kcontrol = snd_soc_card_get_kcontrol(dai->component->card, RX_SAMPLE_RATE_KCONTROL); if (!spdif_private->rxrate_kcontrol) dev_err(&spdif_private->pdev->dev, "failed to get %s kcontrol\n", RX_SAMPLE_RATE_KCONTROL); /*Clear the val bit for Tx*/ regmap_update_bits(spdif_private->regmap, REG_SPDIF_SCR, SCR_VAL_MASK, SCR_VAL_CLEAR); return 0; } static const struct snd_soc_dai_ops fsl_spdif_dai_ops = { .probe = fsl_spdif_dai_probe, .startup = fsl_spdif_startup, .hw_params = fsl_spdif_hw_params, .trigger = fsl_spdif_trigger, .shutdown = fsl_spdif_shutdown, }; static struct snd_soc_dai_driver fsl_spdif_dai = { .playback = { .stream_name = "CPU-Playback", .channels_min = 2, .channels_max = 2, .rates = FSL_SPDIF_RATES_PLAYBACK, .formats = FSL_SPDIF_FORMATS_PLAYBACK, }, .capture = { .stream_name = "CPU-Capture", .channels_min = 2, .channels_max = 2, .rates = FSL_SPDIF_RATES_CAPTURE, .formats = FSL_SPDIF_FORMATS_CAPTURE, }, .ops = &fsl_spdif_dai_ops, }; static const struct snd_soc_component_driver fsl_spdif_component = { .name = "fsl-spdif", .legacy_dai_naming = 1, }; /* FSL SPDIF REGMAP */ static const struct reg_default fsl_spdif_reg_defaults[] = { {REG_SPDIF_SCR, 0x00000400}, {REG_SPDIF_SRCD, 0x00000000}, {REG_SPDIF_SIE, 0x00000000}, {REG_SPDIF_STL, 0x00000000}, {REG_SPDIF_STR, 0x00000000}, {REG_SPDIF_STCSCH, 0x00000000}, {REG_SPDIF_STCSCL, 0x00000000}, {REG_SPDIF_STCSPH, 0x00000000}, {REG_SPDIF_STCSPL, 0x00000000}, {REG_SPDIF_STC, 0x00020f00}, }; static bool fsl_spdif_readable_reg(struct device *dev, unsigned int reg) { switch (reg) { case REG_SPDIF_SCR: case REG_SPDIF_SRCD: case REG_SPDIF_SRPC: case REG_SPDIF_SIE: case REG_SPDIF_SIS: case REG_SPDIF_SRL: case REG_SPDIF_SRR: case REG_SPDIF_SRCSH: case REG_SPDIF_SRCSL: case REG_SPDIF_SRU: case REG_SPDIF_SRQ: case REG_SPDIF_STCSCH: case REG_SPDIF_STCSCL: case REG_SPDIF_STCSPH: case REG_SPDIF_STCSPL: case REG_SPDIF_SRFM: case REG_SPDIF_STC: case REG_SPDIF_SRCCA_31_0: case REG_SPDIF_SRCCA_63_32: case REG_SPDIF_SRCCA_95_64: case REG_SPDIF_SRCCA_127_96: case REG_SPDIF_SRCCA_159_128: case REG_SPDIF_SRCCA_191_160: case REG_SPDIF_STCCA_31_0: case REG_SPDIF_STCCA_63_32: case REG_SPDIF_STCCA_95_64: case REG_SPDIF_STCCA_127_96: case REG_SPDIF_STCCA_159_128: case REG_SPDIF_STCCA_191_160: return true; default: return false; } } static bool fsl_spdif_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case REG_SPDIF_SRPC: case REG_SPDIF_SIS: case REG_SPDIF_SRL: case REG_SPDIF_SRR: case REG_SPDIF_SRCSH: case REG_SPDIF_SRCSL: case REG_SPDIF_SRU: case REG_SPDIF_SRQ: case REG_SPDIF_SRFM: case REG_SPDIF_SRCCA_31_0: case REG_SPDIF_SRCCA_63_32: case REG_SPDIF_SRCCA_95_64: case REG_SPDIF_SRCCA_127_96: case REG_SPDIF_SRCCA_159_128: case REG_SPDIF_SRCCA_191_160: return true; default: return false; } } static bool fsl_spdif_writeable_reg(struct device *dev, unsigned int reg) { switch (reg) { case REG_SPDIF_SCR: case REG_SPDIF_SRCD: case REG_SPDIF_SRPC: case REG_SPDIF_SIE: case REG_SPDIF_SIC: case REG_SPDIF_STL: case REG_SPDIF_STR: case REG_SPDIF_STCSCH: case REG_SPDIF_STCSCL: case REG_SPDIF_STCSPH: case REG_SPDIF_STCSPL: case REG_SPDIF_STC: case REG_SPDIF_STCCA_31_0: case REG_SPDIF_STCCA_63_32: case REG_SPDIF_STCCA_95_64: case REG_SPDIF_STCCA_127_96: case REG_SPDIF_STCCA_159_128: case REG_SPDIF_STCCA_191_160: return true; default: return false; } } static const struct regmap_config fsl_spdif_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = REG_SPDIF_STCCA_191_160, .reg_defaults = fsl_spdif_reg_defaults, .num_reg_defaults = ARRAY_SIZE(fsl_spdif_reg_defaults), .readable_reg = fsl_spdif_readable_reg, .volatile_reg = fsl_spdif_volatile_reg, .writeable_reg = fsl_spdif_writeable_reg, .cache_type = REGCACHE_FLAT, }; static u32 fsl_spdif_txclk_caldiv(struct fsl_spdif_priv *spdif_priv, struct clk *clk, u64 savesub, enum spdif_txrate index, bool round) { static const u32 rate[] = { 22050, 32000, 44100, 48000, 88200, 96000, 176400, 192000, }; bool is_sysclk = clk_is_match(clk, spdif_priv->sysclk); u64 rate_ideal, rate_actual, sub; u32 arate; u16 sysclk_dfmin, sysclk_dfmax, sysclk_df; u8 txclk_df; /* The sysclk has an extra divisor [2, 512] */ sysclk_dfmin = is_sysclk ? 2 : 1; sysclk_dfmax = is_sysclk ? 512 : 1; for (sysclk_df = sysclk_dfmin; sysclk_df <= sysclk_dfmax; sysclk_df++) { for (txclk_df = 1; txclk_df <= 128; txclk_df++) { rate_ideal = rate[index] * txclk_df * 64ULL; if (round) rate_actual = clk_round_rate(clk, rate_ideal); else rate_actual = clk_get_rate(clk); arate = rate_actual / 64; arate /= txclk_df * sysclk_df; if (arate == rate[index]) { /* We are lucky */ savesub = 0; spdif_priv->txclk_df[index] = txclk_df; spdif_priv->sysclk_df[index] = sysclk_df; spdif_priv->txrate[index] = arate; goto out; } else if (arate / rate[index] == 1) { /* A little bigger than expect */ sub = (u64)(arate - rate[index]) * 100000; do_div(sub, rate[index]); if (sub >= savesub) continue; savesub = sub; spdif_priv->txclk_df[index] = txclk_df; spdif_priv->sysclk_df[index] = sysclk_df; spdif_priv->txrate[index] = arate; } else if (rate[index] / arate == 1) { /* A little smaller than expect */ sub = (u64)(rate[index] - arate) * 100000; do_div(sub, rate[index]); if (sub >= savesub) continue; savesub = sub; spdif_priv->txclk_df[index] = txclk_df; spdif_priv->sysclk_df[index] = sysclk_df; spdif_priv->txrate[index] = arate; } } } out: return savesub; } static int fsl_spdif_probe_txclk(struct fsl_spdif_priv *spdif_priv, enum spdif_txrate index) { static const u32 rate[] = { 22050, 32000, 44100, 48000, 88200, 96000, 176400, 192000, }; struct platform_device *pdev = spdif_priv->pdev; struct device *dev = &pdev->dev; u64 savesub = 100000, ret; struct clk *clk; int i; for (i = 0; i < STC_TXCLK_SRC_MAX; i++) { clk = spdif_priv->txclk[i]; if (IS_ERR(clk)) { dev_err(dev, "no rxtx%d clock in devicetree\n", i); return PTR_ERR(clk); } if (!clk_get_rate(clk)) continue; ret = fsl_spdif_txclk_caldiv(spdif_priv, clk, savesub, index, fsl_spdif_can_set_clk_rate(spdif_priv, i)); if (savesub == ret) continue; savesub = ret; spdif_priv->txclk_src[index] = i; /* To quick catch a divisor, we allow a 0.1% deviation */ if (savesub < 100) break; } dev_dbg(dev, "use rxtx%d as tx clock source for %dHz sample rate\n", spdif_priv->txclk_src[index], rate[index]); dev_dbg(dev, "use txclk df %d for %dHz sample rate\n", spdif_priv->txclk_df[index], rate[index]); if (clk_is_match(spdif_priv->txclk[spdif_priv->txclk_src[index]], spdif_priv->sysclk)) dev_dbg(dev, "use sysclk df %d for %dHz sample rate\n", spdif_priv->sysclk_df[index], rate[index]); dev_dbg(dev, "the best rate for %dHz sample rate is %dHz\n", rate[index], spdif_priv->txrate[index]); return 0; } static int fsl_spdif_probe(struct platform_device *pdev) { struct fsl_spdif_priv *spdif_priv; struct spdif_mixer_control *ctrl; struct resource *res; void __iomem *regs; int irq, ret, i; char tmp[16]; spdif_priv = devm_kzalloc(&pdev->dev, sizeof(*spdif_priv), GFP_KERNEL); if (!spdif_priv) return -ENOMEM; spdif_priv->pdev = pdev; spdif_priv->soc = of_device_get_match_data(&pdev->dev); /* Initialize this copy of the CPU DAI driver structure */ memcpy(&spdif_priv->cpu_dai_drv, &fsl_spdif_dai, sizeof(fsl_spdif_dai)); spdif_priv->cpu_dai_drv.name = dev_name(&pdev->dev); spdif_priv->cpu_dai_drv.playback.formats = spdif_priv->soc->tx_formats; /* Get the addresses and IRQ */ regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(regs)) return PTR_ERR(regs); spdif_priv->regmap = devm_regmap_init_mmio(&pdev->dev, regs, &fsl_spdif_regmap_config); if (IS_ERR(spdif_priv->regmap)) { dev_err(&pdev->dev, "regmap init failed\n"); return PTR_ERR(spdif_priv->regmap); } for (i = 0; i < spdif_priv->soc->interrupts; i++) { irq = platform_get_irq(pdev, i); if (irq < 0) return irq; ret = devm_request_irq(&pdev->dev, irq, spdif_isr, 0, dev_name(&pdev->dev), spdif_priv); if (ret) { dev_err(&pdev->dev, "could not claim irq %u\n", irq); return ret; } } for (i = 0; i < STC_TXCLK_SRC_MAX; i++) { sprintf(tmp, "rxtx%d", i); spdif_priv->txclk[i] = devm_clk_get(&pdev->dev, tmp); if (IS_ERR(spdif_priv->txclk[i])) { dev_err(&pdev->dev, "no rxtx%d clock in devicetree\n", i); return PTR_ERR(spdif_priv->txclk[i]); } } /* Get system clock for rx clock rate calculation */ spdif_priv->sysclk = spdif_priv->txclk[5]; if (IS_ERR(spdif_priv->sysclk)) { dev_err(&pdev->dev, "no sys clock (rxtx5) in devicetree\n"); return PTR_ERR(spdif_priv->sysclk); } /* Get core clock for data register access via DMA */ spdif_priv->coreclk = devm_clk_get(&pdev->dev, "core"); if (IS_ERR(spdif_priv->coreclk)) { dev_err(&pdev->dev, "no core clock in devicetree\n"); return PTR_ERR(spdif_priv->coreclk); } spdif_priv->spbaclk = devm_clk_get(&pdev->dev, "spba"); if (IS_ERR(spdif_priv->spbaclk)) dev_warn(&pdev->dev, "no spba clock in devicetree\n"); /* Select clock source for rx/tx clock */ spdif_priv->rxclk = spdif_priv->txclk[1]; if (IS_ERR(spdif_priv->rxclk)) { dev_err(&pdev->dev, "no rxtx1 clock in devicetree\n"); return PTR_ERR(spdif_priv->rxclk); } spdif_priv->rxclk_src = DEFAULT_RXCLK_SRC; fsl_asoc_get_pll_clocks(&pdev->dev, &spdif_priv->pll8k_clk, &spdif_priv->pll11k_clk); /* Initial spinlock for control data */ ctrl = &spdif_priv->fsl_spdif_control; spin_lock_init(&ctrl->ctl_lock); /* Init tx channel status default value */ ctrl->ch_status[0] = IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS_5015; ctrl->ch_status[1] = IEC958_AES1_CON_DIGDIGCONV_ID; ctrl->ch_status[2] = 0x00; ctrl->ch_status[3] = IEC958_AES3_CON_FS_44100 | IEC958_AES3_CON_CLOCK_1000PPM; spdif_priv->dpll_locked = false; spdif_priv->dma_params_tx.maxburst = spdif_priv->soc->tx_burst; spdif_priv->dma_params_rx.maxburst = spdif_priv->soc->rx_burst; spdif_priv->dma_params_tx.addr = res->start + REG_SPDIF_STL; spdif_priv->dma_params_rx.addr = res->start + REG_SPDIF_SRL; /* Register with ASoC */ dev_set_drvdata(&pdev->dev, spdif_priv); pm_runtime_enable(&pdev->dev); regcache_cache_only(spdif_priv->regmap, true); /* * Register platform component before registering cpu dai for there * is not defer probe for platform component in snd_soc_add_pcm_runtime(). */ ret = imx_pcm_dma_init(pdev); if (ret) { dev_err_probe(&pdev->dev, ret, "imx_pcm_dma_init failed\n"); goto err_pm_disable; } ret = devm_snd_soc_register_component(&pdev->dev, &fsl_spdif_component, &spdif_priv->cpu_dai_drv, 1); if (ret) { dev_err(&pdev->dev, "failed to register DAI: %d\n", ret); goto err_pm_disable; } return ret; err_pm_disable: pm_runtime_disable(&pdev->dev); return ret; } static void fsl_spdif_remove(struct platform_device *pdev) { pm_runtime_disable(&pdev->dev); } #ifdef CONFIG_PM static int fsl_spdif_runtime_suspend(struct device *dev) { struct fsl_spdif_priv *spdif_priv = dev_get_drvdata(dev); int i; /* Disable all the interrupts */ regmap_update_bits(spdif_priv->regmap, REG_SPDIF_SIE, 0xffffff, 0); regmap_read(spdif_priv->regmap, REG_SPDIF_SRPC, &spdif_priv->regcache_srpc); regcache_cache_only(spdif_priv->regmap, true); for (i = 0; i < STC_TXCLK_SRC_MAX; i++) clk_disable_unprepare(spdif_priv->txclk[i]); if (!IS_ERR(spdif_priv->spbaclk)) clk_disable_unprepare(spdif_priv->spbaclk); clk_disable_unprepare(spdif_priv->coreclk); return 0; } static int fsl_spdif_runtime_resume(struct device *dev) { struct fsl_spdif_priv *spdif_priv = dev_get_drvdata(dev); int ret; int i; ret = clk_prepare_enable(spdif_priv->coreclk); if (ret) { dev_err(dev, "failed to enable core clock\n"); return ret; } if (!IS_ERR(spdif_priv->spbaclk)) { ret = clk_prepare_enable(spdif_priv->spbaclk); if (ret) { dev_err(dev, "failed to enable spba clock\n"); goto disable_core_clk; } } for (i = 0; i < STC_TXCLK_SRC_MAX; i++) { ret = clk_prepare_enable(spdif_priv->txclk[i]); if (ret) goto disable_tx_clk; } regcache_cache_only(spdif_priv->regmap, false); regcache_mark_dirty(spdif_priv->regmap); regmap_update_bits(spdif_priv->regmap, REG_SPDIF_SRPC, SRPC_CLKSRC_SEL_MASK | SRPC_GAINSEL_MASK, spdif_priv->regcache_srpc); ret = regcache_sync(spdif_priv->regmap); if (ret) goto disable_tx_clk; return 0; disable_tx_clk: for (i--; i >= 0; i--) clk_disable_unprepare(spdif_priv->txclk[i]); if (!IS_ERR(spdif_priv->spbaclk)) clk_disable_unprepare(spdif_priv->spbaclk); disable_core_clk: clk_disable_unprepare(spdif_priv->coreclk); return ret; } #endif /* CONFIG_PM */ static const struct dev_pm_ops fsl_spdif_pm = { SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) SET_RUNTIME_PM_OPS(fsl_spdif_runtime_suspend, fsl_spdif_runtime_resume, NULL) }; static const struct of_device_id fsl_spdif_dt_ids[] = { { .compatible = "fsl,imx35-spdif", .data = &fsl_spdif_imx35, }, { .compatible = "fsl,vf610-spdif", .data = &fsl_spdif_vf610, }, { .compatible = "fsl,imx6sx-spdif", .data = &fsl_spdif_imx6sx, }, { .compatible = "fsl,imx8qm-spdif", .data = &fsl_spdif_imx8qm, }, { .compatible = "fsl,imx8mm-spdif", .data = &fsl_spdif_imx8mm, }, { .compatible = "fsl,imx8ulp-spdif", .data = &fsl_spdif_imx8ulp, }, {} }; MODULE_DEVICE_TABLE(of, fsl_spdif_dt_ids); static struct platform_driver fsl_spdif_driver = { .driver = { .name = "fsl-spdif-dai", .of_match_table = fsl_spdif_dt_ids, .pm = &fsl_spdif_pm, }, .probe = fsl_spdif_probe, .remove_new = fsl_spdif_remove, }; module_platform_driver(fsl_spdif_driver); MODULE_AUTHOR("Freescale Semiconductor, Inc."); MODULE_DESCRIPTION("Freescale S/PDIF CPU DAI Driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:fsl-spdif-dai");