// SPDX-License-Identifier: GPL-2.0 // // Freescale ESAI ALSA SoC Digital Audio Interface (DAI) driver // // Copyright (C) 2014 Freescale Semiconductor, Inc. #include <linux/clk.h> #include <linux/dmaengine.h> #include <linux/module.h> #include <linux/of_irq.h> #include <linux/of_platform.h> #include <sound/dmaengine_pcm.h> #include <sound/pcm_params.h> #include "fsl_esai.h" #include "imx-pcm.h" #define FSL_ESAI_FORMATS (SNDRV_PCM_FMTBIT_S8 | \ SNDRV_PCM_FMTBIT_S16_LE | \ SNDRV_PCM_FMTBIT_S20_3LE | \ SNDRV_PCM_FMTBIT_S24_LE) /** * fsl_esai: ESAI private data * * @dma_params_rx: DMA parameters for receive channel * @dma_params_tx: DMA parameters for transmit channel * @pdev: platform device pointer * @regmap: regmap handler * @coreclk: clock source to access register * @extalclk: esai clock source to derive HCK, SCK and FS * @fsysclk: system clock source to derive HCK, SCK and FS * @spbaclk: SPBA clock (optional, depending on SoC design) * @fifo_depth: depth of tx/rx FIFO * @slot_width: width of each DAI slot * @slots: number of slots * @hck_rate: clock rate of desired HCKx clock * @sck_rate: clock rate of desired SCKx clock * @hck_dir: the direction of HCKx pads * @sck_div: if using PSR/PM dividers for SCKx clock * @slave_mode: if fully using DAI slave mode * @synchronous: if using tx/rx synchronous mode * @name: driver name */ struct fsl_esai { struct snd_dmaengine_dai_dma_data dma_params_rx; struct snd_dmaengine_dai_dma_data dma_params_tx; struct platform_device *pdev; struct regmap *regmap; struct clk *coreclk; struct clk *extalclk; struct clk *fsysclk; struct clk *spbaclk; u32 fifo_depth; u32 slot_width; u32 slots; u32 hck_rate[2]; u32 sck_rate[2]; bool hck_dir[2]; bool sck_div[2]; bool slave_mode; bool synchronous; char name[32]; }; static irqreturn_t esai_isr(int irq, void *devid) { struct fsl_esai *esai_priv = (struct fsl_esai *)devid; struct platform_device *pdev = esai_priv->pdev; u32 esr; regmap_read(esai_priv->regmap, REG_ESAI_ESR, &esr); if (esr & ESAI_ESR_TINIT_MASK) dev_dbg(&pdev->dev, "isr: Transmission Initialized\n"); if (esr & ESAI_ESR_RFF_MASK) dev_warn(&pdev->dev, "isr: Receiving overrun\n"); if (esr & ESAI_ESR_TFE_MASK) dev_warn(&pdev->dev, "isr: Transmission underrun\n"); if (esr & ESAI_ESR_TLS_MASK) dev_dbg(&pdev->dev, "isr: Just transmitted the last slot\n"); if (esr & ESAI_ESR_TDE_MASK) dev_dbg(&pdev->dev, "isr: Transmission data exception\n"); if (esr & ESAI_ESR_TED_MASK) dev_dbg(&pdev->dev, "isr: Transmitting even slots\n"); if (esr & ESAI_ESR_TD_MASK) dev_dbg(&pdev->dev, "isr: Transmitting data\n"); if (esr & ESAI_ESR_RLS_MASK) dev_dbg(&pdev->dev, "isr: Just received the last slot\n"); if (esr & ESAI_ESR_RDE_MASK) dev_dbg(&pdev->dev, "isr: Receiving data exception\n"); if (esr & ESAI_ESR_RED_MASK) dev_dbg(&pdev->dev, "isr: Receiving even slots\n"); if (esr & ESAI_ESR_RD_MASK) dev_dbg(&pdev->dev, "isr: Receiving data\n"); return IRQ_HANDLED; } /** * This function is used to calculate the divisors of psr, pm, fp and it is * supposed to be called in set_dai_sysclk() and set_bclk(). * * @ratio: desired overall ratio for the paticipating dividers * @usefp: for HCK setting, there is no need to set fp divider * @fp: bypass other dividers by setting fp directly if fp != 0 * @tx: current setting is for playback or capture */ static int fsl_esai_divisor_cal(struct snd_soc_dai *dai, bool tx, u32 ratio, bool usefp, u32 fp) { struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai); u32 psr, pm = 999, maxfp, prod, sub, savesub, i, j; maxfp = usefp ? 16 : 1; if (usefp && fp) goto out_fp; if (ratio > 2 * 8 * 256 * maxfp || ratio < 2) { dev_err(dai->dev, "the ratio is out of range (2 ~ %d)\n", 2 * 8 * 256 * maxfp); return -EINVAL; } else if (ratio % 2) { dev_err(dai->dev, "the raio must be even if using upper divider\n"); return -EINVAL; } ratio /= 2; psr = ratio <= 256 * maxfp ? ESAI_xCCR_xPSR_BYPASS : ESAI_xCCR_xPSR_DIV8; /* Do not loop-search if PM (1 ~ 256) alone can serve the ratio */ if (ratio <= 256) { pm = ratio; fp = 1; goto out; } /* Set the max fluctuation -- 0.1% of the max devisor */ savesub = (psr ? 1 : 8) * 256 * maxfp / 1000; /* Find the best value for PM */ for (i = 1; i <= 256; i++) { for (j = 1; j <= maxfp; j++) { /* PSR (1 or 8) * PM (1 ~ 256) * FP (1 ~ 16) */ prod = (psr ? 1 : 8) * i * j; if (prod == ratio) sub = 0; else if (prod / ratio == 1) sub = prod - ratio; else if (ratio / prod == 1) sub = ratio - prod; else continue; /* Calculate the fraction */ sub = sub * 1000 / ratio; if (sub < savesub) { savesub = sub; pm = i; fp = j; } /* We are lucky */ if (savesub == 0) goto out; } } if (pm == 999) { dev_err(dai->dev, "failed to calculate proper divisors\n"); return -EINVAL; } out: regmap_update_bits(esai_priv->regmap, REG_ESAI_xCCR(tx), ESAI_xCCR_xPSR_MASK | ESAI_xCCR_xPM_MASK, psr | ESAI_xCCR_xPM(pm)); out_fp: /* Bypass fp if not being required */ if (maxfp <= 1) return 0; regmap_update_bits(esai_priv->regmap, REG_ESAI_xCCR(tx), ESAI_xCCR_xFP_MASK, ESAI_xCCR_xFP(fp)); return 0; } /** * This function mainly configures the clock frequency of MCLK (HCKT/HCKR) * * @Parameters: * clk_id: The clock source of HCKT/HCKR * (Input from outside; output from inside, FSYS or EXTAL) * freq: The required clock rate of HCKT/HCKR * dir: The clock direction of HCKT/HCKR * * Note: If the direction is input, we do not care about clk_id. */ static int fsl_esai_set_dai_sysclk(struct snd_soc_dai *dai, int clk_id, unsigned int freq, int dir) { struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai); struct clk *clksrc = esai_priv->extalclk; bool tx = clk_id <= ESAI_HCKT_EXTAL; bool in = dir == SND_SOC_CLOCK_IN; u32 ratio, ecr = 0; unsigned long clk_rate; int ret; if (freq == 0) { dev_err(dai->dev, "%sput freq of HCK%c should not be 0Hz\n", in ? "in" : "out", tx ? 'T' : 'R'); return -EINVAL; } /* Bypass divider settings if the requirement doesn't change */ if (freq == esai_priv->hck_rate[tx] && dir == esai_priv->hck_dir[tx]) return 0; /* sck_div can be only bypassed if ETO/ERO=0 and SNC_SOC_CLOCK_OUT */ esai_priv->sck_div[tx] = true; /* Set the direction of HCKT/HCKR pins */ regmap_update_bits(esai_priv->regmap, REG_ESAI_xCCR(tx), ESAI_xCCR_xHCKD, in ? 0 : ESAI_xCCR_xHCKD); if (in) goto out; switch (clk_id) { case ESAI_HCKT_FSYS: case ESAI_HCKR_FSYS: clksrc = esai_priv->fsysclk; break; case ESAI_HCKT_EXTAL: ecr |= ESAI_ECR_ETI; case ESAI_HCKR_EXTAL: ecr |= ESAI_ECR_ERI; break; default: return -EINVAL; } if (IS_ERR(clksrc)) { dev_err(dai->dev, "no assigned %s clock\n", clk_id % 2 ? "extal" : "fsys"); return PTR_ERR(clksrc); } clk_rate = clk_get_rate(clksrc); ratio = clk_rate / freq; if (ratio * freq > clk_rate) ret = ratio * freq - clk_rate; else if (ratio * freq < clk_rate) ret = clk_rate - ratio * freq; else ret = 0; /* Block if clock source can not be divided into the required rate */ if (ret != 0 && clk_rate / ret < 1000) { dev_err(dai->dev, "failed to derive required HCK%c rate\n", tx ? 'T' : 'R'); return -EINVAL; } /* Only EXTAL source can be output directly without using PSR and PM */ if (ratio == 1 && clksrc == esai_priv->extalclk) { /* Bypass all the dividers if not being needed */ ecr |= tx ? ESAI_ECR_ETO : ESAI_ECR_ERO; goto out; } else if (ratio < 2) { /* The ratio should be no less than 2 if using other sources */ dev_err(dai->dev, "failed to derive required HCK%c rate\n", tx ? 'T' : 'R'); return -EINVAL; } ret = fsl_esai_divisor_cal(dai, tx, ratio, false, 0); if (ret) return ret; esai_priv->sck_div[tx] = false; out: esai_priv->hck_dir[tx] = dir; esai_priv->hck_rate[tx] = freq; regmap_update_bits(esai_priv->regmap, REG_ESAI_ECR, tx ? ESAI_ECR_ETI | ESAI_ECR_ETO : ESAI_ECR_ERI | ESAI_ECR_ERO, ecr); return 0; } /** * This function configures the related dividers according to the bclk rate */ static int fsl_esai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq) { struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai); u32 hck_rate = esai_priv->hck_rate[tx]; u32 sub, ratio = hck_rate / freq; int ret; /* Don't apply for fully slave mode or unchanged bclk */ if (esai_priv->slave_mode || esai_priv->sck_rate[tx] == freq) return 0; if (ratio * freq > hck_rate) sub = ratio * freq - hck_rate; else if (ratio * freq < hck_rate) sub = hck_rate - ratio * freq; else sub = 0; /* Block if clock source can not be divided into the required rate */ if (sub != 0 && hck_rate / sub < 1000) { dev_err(dai->dev, "failed to derive required SCK%c rate\n", tx ? 'T' : 'R'); return -EINVAL; } /* The ratio should be contented by FP alone if bypassing PM and PSR */ if (!esai_priv->sck_div[tx] && (ratio > 16 || ratio == 0)) { dev_err(dai->dev, "the ratio is out of range (1 ~ 16)\n"); return -EINVAL; } ret = fsl_esai_divisor_cal(dai, tx, ratio, true, esai_priv->sck_div[tx] ? 0 : ratio); if (ret) return ret; /* Save current bclk rate */ esai_priv->sck_rate[tx] = freq; return 0; } static int fsl_esai_set_dai_tdm_slot(struct snd_soc_dai *dai, u32 tx_mask, u32 rx_mask, int slots, int slot_width) { struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai); regmap_update_bits(esai_priv->regmap, REG_ESAI_TCCR, ESAI_xCCR_xDC_MASK, ESAI_xCCR_xDC(slots)); regmap_update_bits(esai_priv->regmap, REG_ESAI_TSMA, ESAI_xSMA_xS_MASK, ESAI_xSMA_xS(tx_mask)); regmap_update_bits(esai_priv->regmap, REG_ESAI_TSMB, ESAI_xSMB_xS_MASK, ESAI_xSMB_xS(tx_mask)); regmap_update_bits(esai_priv->regmap, REG_ESAI_RCCR, ESAI_xCCR_xDC_MASK, ESAI_xCCR_xDC(slots)); regmap_update_bits(esai_priv->regmap, REG_ESAI_RSMA, ESAI_xSMA_xS_MASK, ESAI_xSMA_xS(rx_mask)); regmap_update_bits(esai_priv->regmap, REG_ESAI_RSMB, ESAI_xSMB_xS_MASK, ESAI_xSMB_xS(rx_mask)); esai_priv->slot_width = slot_width; esai_priv->slots = slots; return 0; } static int fsl_esai_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt) { struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai); u32 xcr = 0, xccr = 0, mask; /* DAI mode */ switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: /* Data on rising edge of bclk, frame low, 1clk before data */ xcr |= ESAI_xCR_xFSR; xccr |= ESAI_xCCR_xFSP | ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP; break; case SND_SOC_DAIFMT_LEFT_J: /* Data on rising edge of bclk, frame high */ xccr |= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP; break; case SND_SOC_DAIFMT_RIGHT_J: /* Data on rising edge of bclk, frame high, right aligned */ xccr |= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP | ESAI_xCR_xWA; break; case SND_SOC_DAIFMT_DSP_A: /* Data on rising edge of bclk, frame high, 1clk before data */ xcr |= ESAI_xCR_xFSL | ESAI_xCR_xFSR; xccr |= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP; break; case SND_SOC_DAIFMT_DSP_B: /* Data on rising edge of bclk, frame high */ xcr |= ESAI_xCR_xFSL; xccr |= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP; break; default: return -EINVAL; } /* DAI clock inversion */ switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: /* Nothing to do for both normal cases */ break; case SND_SOC_DAIFMT_IB_NF: /* Invert bit clock */ xccr ^= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP; break; case SND_SOC_DAIFMT_NB_IF: /* Invert frame clock */ xccr ^= ESAI_xCCR_xFSP; break; case SND_SOC_DAIFMT_IB_IF: /* Invert both clocks */ xccr ^= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP | ESAI_xCCR_xFSP; break; default: return -EINVAL; } esai_priv->slave_mode = false; /* DAI clock master masks */ switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBM_CFM: esai_priv->slave_mode = true; break; case SND_SOC_DAIFMT_CBS_CFM: xccr |= ESAI_xCCR_xCKD; break; case SND_SOC_DAIFMT_CBM_CFS: xccr |= ESAI_xCCR_xFSD; break; case SND_SOC_DAIFMT_CBS_CFS: xccr |= ESAI_xCCR_xFSD | ESAI_xCCR_xCKD; break; default: return -EINVAL; } mask = ESAI_xCR_xFSL | ESAI_xCR_xFSR; regmap_update_bits(esai_priv->regmap, REG_ESAI_TCR, mask, xcr); regmap_update_bits(esai_priv->regmap, REG_ESAI_RCR, mask, xcr); mask = ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP | ESAI_xCCR_xFSP | ESAI_xCCR_xFSD | ESAI_xCCR_xCKD | ESAI_xCR_xWA; regmap_update_bits(esai_priv->regmap, REG_ESAI_TCCR, mask, xccr); regmap_update_bits(esai_priv->regmap, REG_ESAI_RCCR, mask, xccr); return 0; } static int fsl_esai_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai); int ret; /* * Some platforms might use the same bit to gate all three or two of * clocks, so keep all clocks open/close at the same time for safety */ ret = clk_prepare_enable(esai_priv->coreclk); if (ret) return ret; if (!IS_ERR(esai_priv->spbaclk)) { ret = clk_prepare_enable(esai_priv->spbaclk); if (ret) goto err_spbaclk; } if (!IS_ERR(esai_priv->extalclk)) { ret = clk_prepare_enable(esai_priv->extalclk); if (ret) goto err_extalck; } if (!IS_ERR(esai_priv->fsysclk)) { ret = clk_prepare_enable(esai_priv->fsysclk); if (ret) goto err_fsysclk; } if (!dai->active) { /* Set synchronous mode */ regmap_update_bits(esai_priv->regmap, REG_ESAI_SAICR, ESAI_SAICR_SYNC, esai_priv->synchronous ? ESAI_SAICR_SYNC : 0); /* Set a default slot number -- 2 */ regmap_update_bits(esai_priv->regmap, REG_ESAI_TCCR, ESAI_xCCR_xDC_MASK, ESAI_xCCR_xDC(2)); regmap_update_bits(esai_priv->regmap, REG_ESAI_RCCR, ESAI_xCCR_xDC_MASK, ESAI_xCCR_xDC(2)); } return 0; err_fsysclk: if (!IS_ERR(esai_priv->extalclk)) clk_disable_unprepare(esai_priv->extalclk); err_extalck: if (!IS_ERR(esai_priv->spbaclk)) clk_disable_unprepare(esai_priv->spbaclk); err_spbaclk: clk_disable_unprepare(esai_priv->coreclk); return ret; } static int fsl_esai_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai); bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; u32 width = params_width(params); u32 channels = params_channels(params); u32 pins = DIV_ROUND_UP(channels, esai_priv->slots); u32 slot_width = width; u32 bclk, mask, val; int ret; /* Override slot_width if being specifically set */ if (esai_priv->slot_width) slot_width = esai_priv->slot_width; bclk = params_rate(params) * slot_width * esai_priv->slots; ret = fsl_esai_set_bclk(dai, tx, bclk); if (ret) return ret; /* Use Normal mode to support monaural audio */ regmap_update_bits(esai_priv->regmap, REG_ESAI_xCR(tx), ESAI_xCR_xMOD_MASK, params_channels(params) > 1 ? ESAI_xCR_xMOD_NETWORK : 0); regmap_update_bits(esai_priv->regmap, REG_ESAI_xFCR(tx), ESAI_xFCR_xFR_MASK, ESAI_xFCR_xFR); mask = ESAI_xFCR_xFR_MASK | ESAI_xFCR_xWA_MASK | ESAI_xFCR_xFWM_MASK | (tx ? ESAI_xFCR_TE_MASK | ESAI_xFCR_TIEN : ESAI_xFCR_RE_MASK); val = ESAI_xFCR_xWA(width) | ESAI_xFCR_xFWM(esai_priv->fifo_depth) | (tx ? ESAI_xFCR_TE(pins) | ESAI_xFCR_TIEN : ESAI_xFCR_RE(pins)); regmap_update_bits(esai_priv->regmap, REG_ESAI_xFCR(tx), mask, val); mask = ESAI_xCR_xSWS_MASK | (tx ? ESAI_xCR_PADC : 0); val = ESAI_xCR_xSWS(slot_width, width) | (tx ? ESAI_xCR_PADC : 0); regmap_update_bits(esai_priv->regmap, REG_ESAI_xCR(tx), mask, val); /* Remove ESAI personal reset by configuring ESAI_PCRC and ESAI_PRRC */ regmap_update_bits(esai_priv->regmap, REG_ESAI_PRRC, ESAI_PRRC_PDC_MASK, ESAI_PRRC_PDC(ESAI_GPIO)); regmap_update_bits(esai_priv->regmap, REG_ESAI_PCRC, ESAI_PCRC_PC_MASK, ESAI_PCRC_PC(ESAI_GPIO)); return 0; } static void fsl_esai_shutdown(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai); if (!IS_ERR(esai_priv->fsysclk)) clk_disable_unprepare(esai_priv->fsysclk); if (!IS_ERR(esai_priv->extalclk)) clk_disable_unprepare(esai_priv->extalclk); if (!IS_ERR(esai_priv->spbaclk)) clk_disable_unprepare(esai_priv->spbaclk); clk_disable_unprepare(esai_priv->coreclk); } static int fsl_esai_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) { struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai); bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK; u8 i, channels = substream->runtime->channels; u32 pins = DIV_ROUND_UP(channels, esai_priv->slots); switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: regmap_update_bits(esai_priv->regmap, REG_ESAI_xFCR(tx), ESAI_xFCR_xFEN_MASK, ESAI_xFCR_xFEN); /* Write initial words reqiured by ESAI as normal procedure */ for (i = 0; tx && i < channels; i++) regmap_write(esai_priv->regmap, REG_ESAI_ETDR, 0x0); regmap_update_bits(esai_priv->regmap, REG_ESAI_xCR(tx), tx ? ESAI_xCR_TE_MASK : ESAI_xCR_RE_MASK, tx ? ESAI_xCR_TE(pins) : ESAI_xCR_RE(pins)); break; case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: regmap_update_bits(esai_priv->regmap, REG_ESAI_xCR(tx), tx ? ESAI_xCR_TE_MASK : ESAI_xCR_RE_MASK, 0); /* Disable and reset FIFO */ regmap_update_bits(esai_priv->regmap, REG_ESAI_xFCR(tx), ESAI_xFCR_xFR | ESAI_xFCR_xFEN, ESAI_xFCR_xFR); regmap_update_bits(esai_priv->regmap, REG_ESAI_xFCR(tx), ESAI_xFCR_xFR, 0); break; default: return -EINVAL; } return 0; } static const struct snd_soc_dai_ops fsl_esai_dai_ops = { .startup = fsl_esai_startup, .shutdown = fsl_esai_shutdown, .trigger = fsl_esai_trigger, .hw_params = fsl_esai_hw_params, .set_sysclk = fsl_esai_set_dai_sysclk, .set_fmt = fsl_esai_set_dai_fmt, .set_tdm_slot = fsl_esai_set_dai_tdm_slot, }; static int fsl_esai_dai_probe(struct snd_soc_dai *dai) { struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai); snd_soc_dai_init_dma_data(dai, &esai_priv->dma_params_tx, &esai_priv->dma_params_rx); return 0; } static struct snd_soc_dai_driver fsl_esai_dai = { .probe = fsl_esai_dai_probe, .playback = { .stream_name = "CPU-Playback", .channels_min = 1, .channels_max = 12, .rates = SNDRV_PCM_RATE_8000_192000, .formats = FSL_ESAI_FORMATS, }, .capture = { .stream_name = "CPU-Capture", .channels_min = 1, .channels_max = 8, .rates = SNDRV_PCM_RATE_8000_192000, .formats = FSL_ESAI_FORMATS, }, .ops = &fsl_esai_dai_ops, }; static const struct snd_soc_component_driver fsl_esai_component = { .name = "fsl-esai", }; static const struct reg_default fsl_esai_reg_defaults[] = { {REG_ESAI_ETDR, 0x00000000}, {REG_ESAI_ECR, 0x00000000}, {REG_ESAI_TFCR, 0x00000000}, {REG_ESAI_RFCR, 0x00000000}, {REG_ESAI_TX0, 0x00000000}, {REG_ESAI_TX1, 0x00000000}, {REG_ESAI_TX2, 0x00000000}, {REG_ESAI_TX3, 0x00000000}, {REG_ESAI_TX4, 0x00000000}, {REG_ESAI_TX5, 0x00000000}, {REG_ESAI_TSR, 0x00000000}, {REG_ESAI_SAICR, 0x00000000}, {REG_ESAI_TCR, 0x00000000}, {REG_ESAI_TCCR, 0x00000000}, {REG_ESAI_RCR, 0x00000000}, {REG_ESAI_RCCR, 0x00000000}, {REG_ESAI_TSMA, 0x0000ffff}, {REG_ESAI_TSMB, 0x0000ffff}, {REG_ESAI_RSMA, 0x0000ffff}, {REG_ESAI_RSMB, 0x0000ffff}, {REG_ESAI_PRRC, 0x00000000}, {REG_ESAI_PCRC, 0x00000000}, }; static bool fsl_esai_readable_reg(struct device *dev, unsigned int reg) { switch (reg) { case REG_ESAI_ERDR: case REG_ESAI_ECR: case REG_ESAI_ESR: case REG_ESAI_TFCR: case REG_ESAI_TFSR: case REG_ESAI_RFCR: case REG_ESAI_RFSR: case REG_ESAI_RX0: case REG_ESAI_RX1: case REG_ESAI_RX2: case REG_ESAI_RX3: case REG_ESAI_SAISR: case REG_ESAI_SAICR: case REG_ESAI_TCR: case REG_ESAI_TCCR: case REG_ESAI_RCR: case REG_ESAI_RCCR: case REG_ESAI_TSMA: case REG_ESAI_TSMB: case REG_ESAI_RSMA: case REG_ESAI_RSMB: case REG_ESAI_PRRC: case REG_ESAI_PCRC: return true; default: return false; } } static bool fsl_esai_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case REG_ESAI_ERDR: case REG_ESAI_ESR: case REG_ESAI_TFSR: case REG_ESAI_RFSR: case REG_ESAI_RX0: case REG_ESAI_RX1: case REG_ESAI_RX2: case REG_ESAI_RX3: case REG_ESAI_SAISR: return true; default: return false; } } static bool fsl_esai_writeable_reg(struct device *dev, unsigned int reg) { switch (reg) { case REG_ESAI_ETDR: case REG_ESAI_ECR: case REG_ESAI_TFCR: case REG_ESAI_RFCR: case REG_ESAI_TX0: case REG_ESAI_TX1: case REG_ESAI_TX2: case REG_ESAI_TX3: case REG_ESAI_TX4: case REG_ESAI_TX5: case REG_ESAI_TSR: case REG_ESAI_SAICR: case REG_ESAI_TCR: case REG_ESAI_TCCR: case REG_ESAI_RCR: case REG_ESAI_RCCR: case REG_ESAI_TSMA: case REG_ESAI_TSMB: case REG_ESAI_RSMA: case REG_ESAI_RSMB: case REG_ESAI_PRRC: case REG_ESAI_PCRC: return true; default: return false; } } static const struct regmap_config fsl_esai_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = REG_ESAI_PCRC, .reg_defaults = fsl_esai_reg_defaults, .num_reg_defaults = ARRAY_SIZE(fsl_esai_reg_defaults), .readable_reg = fsl_esai_readable_reg, .volatile_reg = fsl_esai_volatile_reg, .writeable_reg = fsl_esai_writeable_reg, .cache_type = REGCACHE_FLAT, }; static int fsl_esai_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct fsl_esai *esai_priv; struct resource *res; const __be32 *iprop; void __iomem *regs; int irq, ret; esai_priv = devm_kzalloc(&pdev->dev, sizeof(*esai_priv), GFP_KERNEL); if (!esai_priv) return -ENOMEM; esai_priv->pdev = pdev; strncpy(esai_priv->name, np->name, sizeof(esai_priv->name) - 1); /* Get the addresses and IRQ */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(regs)) return PTR_ERR(regs); esai_priv->regmap = devm_regmap_init_mmio_clk(&pdev->dev, "core", regs, &fsl_esai_regmap_config); if (IS_ERR(esai_priv->regmap)) { dev_err(&pdev->dev, "failed to init regmap: %ld\n", PTR_ERR(esai_priv->regmap)); return PTR_ERR(esai_priv->regmap); } esai_priv->coreclk = devm_clk_get(&pdev->dev, "core"); if (IS_ERR(esai_priv->coreclk)) { dev_err(&pdev->dev, "failed to get core clock: %ld\n", PTR_ERR(esai_priv->coreclk)); return PTR_ERR(esai_priv->coreclk); } esai_priv->extalclk = devm_clk_get(&pdev->dev, "extal"); if (IS_ERR(esai_priv->extalclk)) dev_warn(&pdev->dev, "failed to get extal clock: %ld\n", PTR_ERR(esai_priv->extalclk)); esai_priv->fsysclk = devm_clk_get(&pdev->dev, "fsys"); if (IS_ERR(esai_priv->fsysclk)) dev_warn(&pdev->dev, "failed to get fsys clock: %ld\n", PTR_ERR(esai_priv->fsysclk)); esai_priv->spbaclk = devm_clk_get(&pdev->dev, "spba"); if (IS_ERR(esai_priv->spbaclk)) dev_warn(&pdev->dev, "failed to get spba clock: %ld\n", PTR_ERR(esai_priv->spbaclk)); irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(&pdev->dev, "no irq for node %s\n", pdev->name); return irq; } ret = devm_request_irq(&pdev->dev, irq, esai_isr, 0, esai_priv->name, esai_priv); if (ret) { dev_err(&pdev->dev, "failed to claim irq %u\n", irq); return ret; } /* Set a default slot number */ esai_priv->slots = 2; /* Set a default master/slave state */ esai_priv->slave_mode = true; /* Determine the FIFO depth */ iprop = of_get_property(np, "fsl,fifo-depth", NULL); if (iprop) esai_priv->fifo_depth = be32_to_cpup(iprop); else esai_priv->fifo_depth = 64; esai_priv->dma_params_tx.maxburst = 16; esai_priv->dma_params_rx.maxburst = 16; esai_priv->dma_params_tx.addr = res->start + REG_ESAI_ETDR; esai_priv->dma_params_rx.addr = res->start + REG_ESAI_ERDR; esai_priv->synchronous = of_property_read_bool(np, "fsl,esai-synchronous"); /* Implement full symmetry for synchronous mode */ if (esai_priv->synchronous) { fsl_esai_dai.symmetric_rates = 1; fsl_esai_dai.symmetric_channels = 1; fsl_esai_dai.symmetric_samplebits = 1; } dev_set_drvdata(&pdev->dev, esai_priv); /* Reset ESAI unit */ ret = regmap_write(esai_priv->regmap, REG_ESAI_ECR, ESAI_ECR_ERST); if (ret) { dev_err(&pdev->dev, "failed to reset ESAI: %d\n", ret); return ret; } /* * We need to enable ESAI so as to access some of its registers. * Otherwise, we would fail to dump regmap from user space. */ ret = regmap_write(esai_priv->regmap, REG_ESAI_ECR, ESAI_ECR_ESAIEN); if (ret) { dev_err(&pdev->dev, "failed to enable ESAI: %d\n", ret); return ret; } ret = devm_snd_soc_register_component(&pdev->dev, &fsl_esai_component, &fsl_esai_dai, 1); if (ret) { dev_err(&pdev->dev, "failed to register DAI: %d\n", ret); return ret; } ret = imx_pcm_dma_init(pdev, IMX_ESAI_DMABUF_SIZE); if (ret) dev_err(&pdev->dev, "failed to init imx pcm dma: %d\n", ret); return ret; } static const struct of_device_id fsl_esai_dt_ids[] = { { .compatible = "fsl,imx35-esai", }, { .compatible = "fsl,vf610-esai", }, {} }; MODULE_DEVICE_TABLE(of, fsl_esai_dt_ids); #ifdef CONFIG_PM_SLEEP static int fsl_esai_suspend(struct device *dev) { struct fsl_esai *esai = dev_get_drvdata(dev); regcache_cache_only(esai->regmap, true); regcache_mark_dirty(esai->regmap); return 0; } static int fsl_esai_resume(struct device *dev) { struct fsl_esai *esai = dev_get_drvdata(dev); int ret; regcache_cache_only(esai->regmap, false); /* FIFO reset for safety */ regmap_update_bits(esai->regmap, REG_ESAI_TFCR, ESAI_xFCR_xFR, ESAI_xFCR_xFR); regmap_update_bits(esai->regmap, REG_ESAI_RFCR, ESAI_xFCR_xFR, ESAI_xFCR_xFR); ret = regcache_sync(esai->regmap); if (ret) return ret; /* FIFO reset done */ regmap_update_bits(esai->regmap, REG_ESAI_TFCR, ESAI_xFCR_xFR, 0); regmap_update_bits(esai->regmap, REG_ESAI_RFCR, ESAI_xFCR_xFR, 0); return 0; } #endif /* CONFIG_PM_SLEEP */ static const struct dev_pm_ops fsl_esai_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(fsl_esai_suspend, fsl_esai_resume) }; static struct platform_driver fsl_esai_driver = { .probe = fsl_esai_probe, .driver = { .name = "fsl-esai-dai", .pm = &fsl_esai_pm_ops, .of_match_table = fsl_esai_dt_ids, }, }; module_platform_driver(fsl_esai_driver); MODULE_AUTHOR("Freescale Semiconductor, Inc."); MODULE_DESCRIPTION("Freescale ESAI CPU DAI driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:fsl-esai-dai");