// SPDX-License-Identifier: GPL-2.0 //! A kernel mutex. //! //! This module allows Rust code to use the kernel's `struct mutex`. /// Creates a [`Mutex`] initialiser with the given name and a newly-created lock class. /// /// It uses the name if one is given, otherwise it generates one based on the file name and line /// number. #[macro_export] macro_rules! new_mutex { ($inner:expr $(, $name:literal)? $(,)?) => { $crate::sync::Mutex::new( $inner, $crate::optional_name!($($name)?), $crate::static_lock_class!()) }; } pub use new_mutex; /// A mutual exclusion primitive. /// /// Exposes the kernel's [`struct mutex`]. When multiple threads attempt to lock the same mutex, /// only one at a time is allowed to progress, the others will block (sleep) until the mutex is /// unlocked, at which point another thread will be allowed to wake up and make progress. /// /// Since it may block, [`Mutex`] needs to be used with care in atomic contexts. /// /// Instances of [`Mutex`] need a lock class and to be pinned. The recommended way to create such /// instances is with the [`pin_init`](crate::pin_init) and [`new_mutex`] macros. /// /// # Examples /// /// The following example shows how to declare, allocate and initialise a struct (`Example`) that /// contains an inner struct (`Inner`) that is protected by a mutex. /// /// ``` /// use kernel::sync::{new_mutex, Mutex}; /// /// struct Inner { /// a: u32, /// b: u32, /// } /// /// #[pin_data] /// struct Example { /// c: u32, /// #[pin] /// d: Mutex, /// } /// /// impl Example { /// fn new() -> impl PinInit { /// pin_init!(Self { /// c: 10, /// d <- new_mutex!(Inner { a: 20, b: 30 }), /// }) /// } /// } /// /// // Allocate a boxed `Example`. /// let e = Box::pin_init(Example::new(), GFP_KERNEL)?; /// assert_eq!(e.c, 10); /// assert_eq!(e.d.lock().a, 20); /// assert_eq!(e.d.lock().b, 30); /// # Ok::<(), Error>(()) /// ``` /// /// The following example shows how to use interior mutability to modify the contents of a struct /// protected by a mutex despite only having a shared reference: /// /// ``` /// use kernel::sync::Mutex; /// /// struct Example { /// a: u32, /// b: u32, /// } /// /// fn example(m: &Mutex) { /// let mut guard = m.lock(); /// guard.a += 10; /// guard.b += 20; /// } /// ``` /// /// [`struct mutex`]: srctree/include/linux/mutex.h pub type Mutex = super::Lock; /// A kernel `struct mutex` lock backend. pub struct MutexBackend; // SAFETY: The underlying kernel `struct mutex` object ensures mutual exclusion. unsafe impl super::Backend for MutexBackend { type State = bindings::mutex; type GuardState = (); unsafe fn init( ptr: *mut Self::State, name: *const core::ffi::c_char, key: *mut bindings::lock_class_key, ) { // SAFETY: The safety requirements ensure that `ptr` is valid for writes, and `name` and // `key` are valid for read indefinitely. unsafe { bindings::__mutex_init(ptr, name, key) } } unsafe fn lock(ptr: *mut Self::State) -> Self::GuardState { // SAFETY: The safety requirements of this function ensure that `ptr` points to valid // memory, and that it has been initialised before. unsafe { bindings::mutex_lock(ptr) }; } unsafe fn unlock(ptr: *mut Self::State, _guard_state: &Self::GuardState) { // SAFETY: The safety requirements of this function ensure that `ptr` is valid and that the // caller is the owner of the mutex. unsafe { bindings::mutex_unlock(ptr) }; } unsafe fn try_lock(ptr: *mut Self::State) -> Option { // SAFETY: The `ptr` pointer is guaranteed to be valid and initialized before use. let result = unsafe { bindings::mutex_trylock(ptr) }; if result != 0 { Some(()) } else { None } } }