// SPDX-License-Identifier: GPL-2.0-only /* * lib80211 crypt: host-based CCMP encryption implementation for lib80211 * * Copyright (c) 2003-2004, Jouni Malinen * Copyright (c) 2008, John W. Linville */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_AUTHOR("Jouni Malinen"); MODULE_DESCRIPTION("Host AP crypt: CCMP"); MODULE_LICENSE("GPL"); #define AES_BLOCK_LEN 16 #define CCMP_HDR_LEN 8 #define CCMP_MIC_LEN 8 #define CCMP_TK_LEN 16 #define CCMP_PN_LEN 6 struct lib80211_ccmp_data { u8 key[CCMP_TK_LEN]; int key_set; u8 tx_pn[CCMP_PN_LEN]; u8 rx_pn[CCMP_PN_LEN]; u32 dot11RSNAStatsCCMPFormatErrors; u32 dot11RSNAStatsCCMPReplays; u32 dot11RSNAStatsCCMPDecryptErrors; int key_idx; struct crypto_aead *tfm; /* scratch buffers for virt_to_page() (crypto API) */ u8 tx_aad[2 * AES_BLOCK_LEN]; u8 rx_aad[2 * AES_BLOCK_LEN]; }; static void *lib80211_ccmp_init(int key_idx) { struct lib80211_ccmp_data *priv; priv = kzalloc(sizeof(*priv), GFP_ATOMIC); if (priv == NULL) goto fail; priv->key_idx = key_idx; priv->tfm = crypto_alloc_aead("ccm(aes)", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(priv->tfm)) { priv->tfm = NULL; goto fail; } return priv; fail: if (priv) { if (priv->tfm) crypto_free_aead(priv->tfm); kfree(priv); } return NULL; } static void lib80211_ccmp_deinit(void *priv) { struct lib80211_ccmp_data *_priv = priv; if (_priv && _priv->tfm) crypto_free_aead(_priv->tfm); kfree(priv); } static int ccmp_init_iv_and_aad(const struct ieee80211_hdr *hdr, const u8 *pn, u8 *iv, u8 *aad) { u8 *pos, qc = 0; size_t aad_len; int a4_included, qc_included; a4_included = ieee80211_has_a4(hdr->frame_control); qc_included = ieee80211_is_data_qos(hdr->frame_control); aad_len = 22; if (a4_included) aad_len += 6; if (qc_included) { pos = (u8 *) & hdr->addr4; if (a4_included) pos += 6; qc = *pos & 0x0f; aad_len += 2; } /* In CCM, the initial vectors (IV) used for CTR mode encryption and CBC * mode authentication are not allowed to collide, yet both are derived * from the same vector. We only set L := 1 here to indicate that the * data size can be represented in (L+1) bytes. The CCM layer will take * care of storing the data length in the top (L+1) bytes and setting * and clearing the other bits as is required to derive the two IVs. */ iv[0] = 0x1; /* Nonce: QC | A2 | PN */ iv[1] = qc; memcpy(iv + 2, hdr->addr2, ETH_ALEN); memcpy(iv + 8, pn, CCMP_PN_LEN); /* AAD: * FC with bits 4..6 and 11..13 masked to zero; 14 is always one * A1 | A2 | A3 * SC with bits 4..15 (seq#) masked to zero * A4 (if present) * QC (if present) */ pos = (u8 *) hdr; aad[0] = pos[0] & 0x8f; aad[1] = pos[1] & 0xc7; memcpy(aad + 2, &hdr->addrs, 3 * ETH_ALEN); pos = (u8 *) & hdr->seq_ctrl; aad[20] = pos[0] & 0x0f; aad[21] = 0; /* all bits masked */ memset(aad + 22, 0, 8); if (a4_included) memcpy(aad + 22, hdr->addr4, ETH_ALEN); if (qc_included) { aad[a4_included ? 28 : 22] = qc; /* rest of QC masked */ } return aad_len; } static int lib80211_ccmp_hdr(struct sk_buff *skb, int hdr_len, u8 *aeskey, int keylen, void *priv) { struct lib80211_ccmp_data *key = priv; int i; u8 *pos; if (skb_headroom(skb) < CCMP_HDR_LEN || skb->len < hdr_len) return -1; if (aeskey != NULL && keylen >= CCMP_TK_LEN) memcpy(aeskey, key->key, CCMP_TK_LEN); pos = skb_push(skb, CCMP_HDR_LEN); memmove(pos, pos + CCMP_HDR_LEN, hdr_len); pos += hdr_len; i = CCMP_PN_LEN - 1; while (i >= 0) { key->tx_pn[i]++; if (key->tx_pn[i] != 0) break; i--; } *pos++ = key->tx_pn[5]; *pos++ = key->tx_pn[4]; *pos++ = 0; *pos++ = (key->key_idx << 6) | (1 << 5) /* Ext IV included */ ; *pos++ = key->tx_pn[3]; *pos++ = key->tx_pn[2]; *pos++ = key->tx_pn[1]; *pos++ = key->tx_pn[0]; return CCMP_HDR_LEN; } static int lib80211_ccmp_encrypt(struct sk_buff *skb, int hdr_len, void *priv) { struct lib80211_ccmp_data *key = priv; struct ieee80211_hdr *hdr; struct aead_request *req; struct scatterlist sg[2]; u8 *aad = key->tx_aad; u8 iv[AES_BLOCK_LEN]; int len, data_len, aad_len; int ret; if (skb_tailroom(skb) < CCMP_MIC_LEN || skb->len < hdr_len) return -1; data_len = skb->len - hdr_len; len = lib80211_ccmp_hdr(skb, hdr_len, NULL, 0, priv); if (len < 0) return -1; req = aead_request_alloc(key->tfm, GFP_ATOMIC); if (!req) return -ENOMEM; hdr = (struct ieee80211_hdr *)skb->data; aad_len = ccmp_init_iv_and_aad(hdr, key->tx_pn, iv, aad); skb_put(skb, CCMP_MIC_LEN); sg_init_table(sg, 2); sg_set_buf(&sg[0], aad, aad_len); sg_set_buf(&sg[1], skb->data + hdr_len + CCMP_HDR_LEN, data_len + CCMP_MIC_LEN); aead_request_set_callback(req, 0, NULL, NULL); aead_request_set_ad(req, aad_len); aead_request_set_crypt(req, sg, sg, data_len, iv); ret = crypto_aead_encrypt(req); aead_request_free(req); return ret; } /* * deal with seq counter wrapping correctly. * refer to timer_after() for jiffies wrapping handling */ static inline int ccmp_replay_check(u8 *pn_n, u8 *pn_o) { u32 iv32_n, iv16_n; u32 iv32_o, iv16_o; iv32_n = (pn_n[0] << 24) | (pn_n[1] << 16) | (pn_n[2] << 8) | pn_n[3]; iv16_n = (pn_n[4] << 8) | pn_n[5]; iv32_o = (pn_o[0] << 24) | (pn_o[1] << 16) | (pn_o[2] << 8) | pn_o[3]; iv16_o = (pn_o[4] << 8) | pn_o[5]; if ((s32)iv32_n - (s32)iv32_o < 0 || (iv32_n == iv32_o && iv16_n <= iv16_o)) return 1; return 0; } static int lib80211_ccmp_decrypt(struct sk_buff *skb, int hdr_len, void *priv) { struct lib80211_ccmp_data *key = priv; u8 keyidx, *pos; struct ieee80211_hdr *hdr; struct aead_request *req; struct scatterlist sg[2]; u8 *aad = key->rx_aad; u8 iv[AES_BLOCK_LEN]; u8 pn[6]; int aad_len, ret; size_t data_len = skb->len - hdr_len - CCMP_HDR_LEN; if (skb->len < hdr_len + CCMP_HDR_LEN + CCMP_MIC_LEN) { key->dot11RSNAStatsCCMPFormatErrors++; return -1; } hdr = (struct ieee80211_hdr *)skb->data; pos = skb->data + hdr_len; keyidx = pos[3]; if (!(keyidx & (1 << 5))) { net_dbg_ratelimited("CCMP: received packet without ExtIV flag from %pM\n", hdr->addr2); key->dot11RSNAStatsCCMPFormatErrors++; return -2; } keyidx >>= 6; if (key->key_idx != keyidx) { net_dbg_ratelimited("CCMP: RX tkey->key_idx=%d frame keyidx=%d\n", key->key_idx, keyidx); return -6; } if (!key->key_set) { net_dbg_ratelimited("CCMP: received packet from %pM with keyid=%d that does not have a configured key\n", hdr->addr2, keyidx); return -3; } pn[0] = pos[7]; pn[1] = pos[6]; pn[2] = pos[5]; pn[3] = pos[4]; pn[4] = pos[1]; pn[5] = pos[0]; pos += 8; if (ccmp_replay_check(pn, key->rx_pn)) { #ifdef CONFIG_LIB80211_DEBUG net_dbg_ratelimited("CCMP: replay detected: STA=%pM previous PN %02x%02x%02x%02x%02x%02x received PN %02x%02x%02x%02x%02x%02x\n", hdr->addr2, key->rx_pn[0], key->rx_pn[1], key->rx_pn[2], key->rx_pn[3], key->rx_pn[4], key->rx_pn[5], pn[0], pn[1], pn[2], pn[3], pn[4], pn[5]); #endif key->dot11RSNAStatsCCMPReplays++; return -4; } req = aead_request_alloc(key->tfm, GFP_ATOMIC); if (!req) return -ENOMEM; aad_len = ccmp_init_iv_and_aad(hdr, pn, iv, aad); sg_init_table(sg, 2); sg_set_buf(&sg[0], aad, aad_len); sg_set_buf(&sg[1], pos, data_len); aead_request_set_callback(req, 0, NULL, NULL); aead_request_set_ad(req, aad_len); aead_request_set_crypt(req, sg, sg, data_len, iv); ret = crypto_aead_decrypt(req); aead_request_free(req); if (ret) { net_dbg_ratelimited("CCMP: decrypt failed: STA=%pM (%d)\n", hdr->addr2, ret); key->dot11RSNAStatsCCMPDecryptErrors++; return -5; } memcpy(key->rx_pn, pn, CCMP_PN_LEN); /* Remove hdr and MIC */ memmove(skb->data + CCMP_HDR_LEN, skb->data, hdr_len); skb_pull(skb, CCMP_HDR_LEN); skb_trim(skb, skb->len - CCMP_MIC_LEN); return keyidx; } static int lib80211_ccmp_set_key(void *key, int len, u8 * seq, void *priv) { struct lib80211_ccmp_data *data = priv; int keyidx; struct crypto_aead *tfm = data->tfm; keyidx = data->key_idx; memset(data, 0, sizeof(*data)); data->key_idx = keyidx; data->tfm = tfm; if (len == CCMP_TK_LEN) { memcpy(data->key, key, CCMP_TK_LEN); data->key_set = 1; if (seq) { data->rx_pn[0] = seq[5]; data->rx_pn[1] = seq[4]; data->rx_pn[2] = seq[3]; data->rx_pn[3] = seq[2]; data->rx_pn[4] = seq[1]; data->rx_pn[5] = seq[0]; } if (crypto_aead_setauthsize(data->tfm, CCMP_MIC_LEN) || crypto_aead_setkey(data->tfm, data->key, CCMP_TK_LEN)) return -1; } else if (len == 0) data->key_set = 0; else return -1; return 0; } static int lib80211_ccmp_get_key(void *key, int len, u8 * seq, void *priv) { struct lib80211_ccmp_data *data = priv; if (len < CCMP_TK_LEN) return -1; if (!data->key_set) return 0; memcpy(key, data->key, CCMP_TK_LEN); if (seq) { seq[0] = data->tx_pn[5]; seq[1] = data->tx_pn[4]; seq[2] = data->tx_pn[3]; seq[3] = data->tx_pn[2]; seq[4] = data->tx_pn[1]; seq[5] = data->tx_pn[0]; } return CCMP_TK_LEN; } static void lib80211_ccmp_print_stats(struct seq_file *m, void *priv) { struct lib80211_ccmp_data *ccmp = priv; seq_printf(m, "key[%d] alg=CCMP key_set=%d " "tx_pn=%02x%02x%02x%02x%02x%02x " "rx_pn=%02x%02x%02x%02x%02x%02x " "format_errors=%d replays=%d decrypt_errors=%d\n", ccmp->key_idx, ccmp->key_set, ccmp->tx_pn[0], ccmp->tx_pn[1], ccmp->tx_pn[2], ccmp->tx_pn[3], ccmp->tx_pn[4], ccmp->tx_pn[5], ccmp->rx_pn[0], ccmp->rx_pn[1], ccmp->rx_pn[2], ccmp->rx_pn[3], ccmp->rx_pn[4], ccmp->rx_pn[5], ccmp->dot11RSNAStatsCCMPFormatErrors, ccmp->dot11RSNAStatsCCMPReplays, ccmp->dot11RSNAStatsCCMPDecryptErrors); } static const struct lib80211_crypto_ops lib80211_crypt_ccmp = { .name = "CCMP", .init = lib80211_ccmp_init, .deinit = lib80211_ccmp_deinit, .encrypt_mpdu = lib80211_ccmp_encrypt, .decrypt_mpdu = lib80211_ccmp_decrypt, .encrypt_msdu = NULL, .decrypt_msdu = NULL, .set_key = lib80211_ccmp_set_key, .get_key = lib80211_ccmp_get_key, .print_stats = lib80211_ccmp_print_stats, .extra_mpdu_prefix_len = CCMP_HDR_LEN, .extra_mpdu_postfix_len = CCMP_MIC_LEN, .owner = THIS_MODULE, }; static int __init lib80211_crypto_ccmp_init(void) { return lib80211_register_crypto_ops(&lib80211_crypt_ccmp); } static void __exit lib80211_crypto_ccmp_exit(void) { lib80211_unregister_crypto_ops(&lib80211_crypt_ccmp); } module_init(lib80211_crypto_ccmp_init); module_exit(lib80211_crypto_ccmp_exit);