// SPDX-License-Identifier: GPL-2.0-or-later /* * Linux INET6 implementation * FIB front-end. * * Authors: * Pedro Roque */ /* Changes: * * YOSHIFUJI Hideaki @USAGI * reworked default router selection. * - respect outgoing interface * - select from (probably) reachable routers (i.e. * routers in REACHABLE, STALE, DELAY or PROBE states). * - always select the same router if it is (probably) * reachable. otherwise, round-robin the list. * Ville Nuorvala * Fixed routing subtrees. */ #define pr_fmt(fmt) "IPv6: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SYSCTL #include #endif static int ip6_rt_type_to_error(u8 fib6_type); #define CREATE_TRACE_POINTS #include EXPORT_TRACEPOINT_SYMBOL_GPL(fib6_table_lookup); #undef CREATE_TRACE_POINTS enum rt6_nud_state { RT6_NUD_FAIL_HARD = -3, RT6_NUD_FAIL_PROBE = -2, RT6_NUD_FAIL_DO_RR = -1, RT6_NUD_SUCCEED = 1 }; INDIRECT_CALLABLE_SCOPE struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie); static unsigned int ip6_default_advmss(const struct dst_entry *dst); INDIRECT_CALLABLE_SCOPE unsigned int ip6_mtu(const struct dst_entry *dst); static void ip6_negative_advice(struct sock *sk, struct dst_entry *dst); static void ip6_dst_destroy(struct dst_entry *); static void ip6_dst_ifdown(struct dst_entry *, struct net_device *dev); static void ip6_dst_gc(struct dst_ops *ops); static int ip6_pkt_discard(struct sk_buff *skb); static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb); static int ip6_pkt_prohibit(struct sk_buff *skb); static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb); static void ip6_link_failure(struct sk_buff *skb); static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb, u32 mtu, bool confirm_neigh); static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb); static int rt6_score_route(const struct fib6_nh *nh, u32 fib6_flags, int oif, int strict); static size_t rt6_nlmsg_size(struct fib6_info *f6i); static int rt6_fill_node(struct net *net, struct sk_buff *skb, struct fib6_info *rt, struct dst_entry *dst, struct in6_addr *dest, struct in6_addr *src, int iif, int type, u32 portid, u32 seq, unsigned int flags); static struct rt6_info *rt6_find_cached_rt(const struct fib6_result *res, const struct in6_addr *daddr, const struct in6_addr *saddr); #ifdef CONFIG_IPV6_ROUTE_INFO static struct fib6_info *rt6_add_route_info(struct net *net, const struct in6_addr *prefix, int prefixlen, const struct in6_addr *gwaddr, struct net_device *dev, unsigned int pref); static struct fib6_info *rt6_get_route_info(struct net *net, const struct in6_addr *prefix, int prefixlen, const struct in6_addr *gwaddr, struct net_device *dev); #endif struct uncached_list { spinlock_t lock; struct list_head head; struct list_head quarantine; }; static DEFINE_PER_CPU_ALIGNED(struct uncached_list, rt6_uncached_list); void rt6_uncached_list_add(struct rt6_info *rt) { struct uncached_list *ul = raw_cpu_ptr(&rt6_uncached_list); rt->dst.rt_uncached_list = ul; spin_lock_bh(&ul->lock); list_add_tail(&rt->dst.rt_uncached, &ul->head); spin_unlock_bh(&ul->lock); } void rt6_uncached_list_del(struct rt6_info *rt) { if (!list_empty(&rt->dst.rt_uncached)) { struct uncached_list *ul = rt->dst.rt_uncached_list; spin_lock_bh(&ul->lock); list_del_init(&rt->dst.rt_uncached); spin_unlock_bh(&ul->lock); } } static void rt6_uncached_list_flush_dev(struct net_device *dev) { int cpu; for_each_possible_cpu(cpu) { struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu); struct rt6_info *rt, *safe; if (list_empty(&ul->head)) continue; spin_lock_bh(&ul->lock); list_for_each_entry_safe(rt, safe, &ul->head, dst.rt_uncached) { struct inet6_dev *rt_idev = rt->rt6i_idev; struct net_device *rt_dev = rt->dst.dev; bool handled = false; if (rt_idev->dev == dev) { rt->rt6i_idev = in6_dev_get(blackhole_netdev); in6_dev_put(rt_idev); handled = true; } if (rt_dev == dev) { rt->dst.dev = blackhole_netdev; netdev_ref_replace(rt_dev, blackhole_netdev, &rt->dst.dev_tracker, GFP_ATOMIC); handled = true; } if (handled) list_move(&rt->dst.rt_uncached, &ul->quarantine); } spin_unlock_bh(&ul->lock); } } static inline const void *choose_neigh_daddr(const struct in6_addr *p, struct sk_buff *skb, const void *daddr) { if (!ipv6_addr_any(p)) return (const void *) p; else if (skb) return &ipv6_hdr(skb)->daddr; return daddr; } struct neighbour *ip6_neigh_lookup(const struct in6_addr *gw, struct net_device *dev, struct sk_buff *skb, const void *daddr) { struct neighbour *n; daddr = choose_neigh_daddr(gw, skb, daddr); n = __ipv6_neigh_lookup(dev, daddr); if (n) return n; n = neigh_create(&nd_tbl, daddr, dev); return IS_ERR(n) ? NULL : n; } static struct neighbour *ip6_dst_neigh_lookup(const struct dst_entry *dst, struct sk_buff *skb, const void *daddr) { const struct rt6_info *rt = dst_rt6_info(dst); return ip6_neigh_lookup(rt6_nexthop(rt, &in6addr_any), dst->dev, skb, daddr); } static void ip6_confirm_neigh(const struct dst_entry *dst, const void *daddr) { const struct rt6_info *rt = dst_rt6_info(dst); struct net_device *dev = dst->dev; daddr = choose_neigh_daddr(rt6_nexthop(rt, &in6addr_any), NULL, daddr); if (!daddr) return; if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) return; if (ipv6_addr_is_multicast((const struct in6_addr *)daddr)) return; __ipv6_confirm_neigh(dev, daddr); } static struct dst_ops ip6_dst_ops_template = { .family = AF_INET6, .gc = ip6_dst_gc, .gc_thresh = 1024, .check = ip6_dst_check, .default_advmss = ip6_default_advmss, .mtu = ip6_mtu, .cow_metrics = dst_cow_metrics_generic, .destroy = ip6_dst_destroy, .ifdown = ip6_dst_ifdown, .negative_advice = ip6_negative_advice, .link_failure = ip6_link_failure, .update_pmtu = ip6_rt_update_pmtu, .redirect = rt6_do_redirect, .local_out = __ip6_local_out, .neigh_lookup = ip6_dst_neigh_lookup, .confirm_neigh = ip6_confirm_neigh, }; static struct dst_ops ip6_dst_blackhole_ops = { .family = AF_INET6, .default_advmss = ip6_default_advmss, .neigh_lookup = ip6_dst_neigh_lookup, .check = ip6_dst_check, .destroy = ip6_dst_destroy, .cow_metrics = dst_cow_metrics_generic, .update_pmtu = dst_blackhole_update_pmtu, .redirect = dst_blackhole_redirect, .mtu = dst_blackhole_mtu, }; static const u32 ip6_template_metrics[RTAX_MAX] = { [RTAX_HOPLIMIT - 1] = 0, }; static const struct fib6_info fib6_null_entry_template = { .fib6_flags = (RTF_REJECT | RTF_NONEXTHOP), .fib6_protocol = RTPROT_KERNEL, .fib6_metric = ~(u32)0, .fib6_ref = REFCOUNT_INIT(1), .fib6_type = RTN_UNREACHABLE, .fib6_metrics = (struct dst_metrics *)&dst_default_metrics, }; static const struct rt6_info ip6_null_entry_template = { .dst = { .__rcuref = RCUREF_INIT(1), .__use = 1, .obsolete = DST_OBSOLETE_FORCE_CHK, .error = -ENETUNREACH, .input = ip6_pkt_discard, .output = ip6_pkt_discard_out, }, .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), }; #ifdef CONFIG_IPV6_MULTIPLE_TABLES static const struct rt6_info ip6_prohibit_entry_template = { .dst = { .__rcuref = RCUREF_INIT(1), .__use = 1, .obsolete = DST_OBSOLETE_FORCE_CHK, .error = -EACCES, .input = ip6_pkt_prohibit, .output = ip6_pkt_prohibit_out, }, .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), }; static const struct rt6_info ip6_blk_hole_entry_template = { .dst = { .__rcuref = RCUREF_INIT(1), .__use = 1, .obsolete = DST_OBSOLETE_FORCE_CHK, .error = -EINVAL, .input = dst_discard, .output = dst_discard_out, }, .rt6i_flags = (RTF_REJECT | RTF_NONEXTHOP), }; #endif static void rt6_info_init(struct rt6_info *rt) { memset_after(rt, 0, dst); } /* allocate dst with ip6_dst_ops */ struct rt6_info *ip6_dst_alloc(struct net *net, struct net_device *dev, int flags) { struct rt6_info *rt = dst_alloc(&net->ipv6.ip6_dst_ops, dev, DST_OBSOLETE_FORCE_CHK, flags); if (rt) { rt6_info_init(rt); atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc); } return rt; } EXPORT_SYMBOL(ip6_dst_alloc); static void ip6_dst_destroy(struct dst_entry *dst) { struct rt6_info *rt = dst_rt6_info(dst); struct fib6_info *from; struct inet6_dev *idev; ip_dst_metrics_put(dst); rt6_uncached_list_del(rt); idev = rt->rt6i_idev; if (idev) { rt->rt6i_idev = NULL; in6_dev_put(idev); } from = xchg((__force struct fib6_info **)&rt->from, NULL); fib6_info_release(from); } static void ip6_dst_ifdown(struct dst_entry *dst, struct net_device *dev) { struct rt6_info *rt = dst_rt6_info(dst); struct inet6_dev *idev = rt->rt6i_idev; if (idev && idev->dev != blackhole_netdev) { struct inet6_dev *blackhole_idev = in6_dev_get(blackhole_netdev); if (blackhole_idev) { rt->rt6i_idev = blackhole_idev; in6_dev_put(idev); } } } static bool __rt6_check_expired(const struct rt6_info *rt) { if (rt->rt6i_flags & RTF_EXPIRES) return time_after(jiffies, rt->dst.expires); else return false; } static bool rt6_check_expired(const struct rt6_info *rt) { struct fib6_info *from; from = rcu_dereference(rt->from); if (rt->rt6i_flags & RTF_EXPIRES) { if (time_after(jiffies, rt->dst.expires)) return true; } else if (from) { return rt->dst.obsolete != DST_OBSOLETE_FORCE_CHK || fib6_check_expired(from); } return false; } void fib6_select_path(const struct net *net, struct fib6_result *res, struct flowi6 *fl6, int oif, bool have_oif_match, const struct sk_buff *skb, int strict) { struct fib6_info *sibling, *next_sibling; struct fib6_info *match = res->f6i; if (!match->nh && (!match->fib6_nsiblings || have_oif_match)) goto out; if (match->nh && have_oif_match && res->nh) return; if (skb) IP6CB(skb)->flags |= IP6SKB_MULTIPATH; /* We might have already computed the hash for ICMPv6 errors. In such * case it will always be non-zero. Otherwise now is the time to do it. */ if (!fl6->mp_hash && (!match->nh || nexthop_is_multipath(match->nh))) fl6->mp_hash = rt6_multipath_hash(net, fl6, skb, NULL); if (unlikely(match->nh)) { nexthop_path_fib6_result(res, fl6->mp_hash); return; } if (fl6->mp_hash <= atomic_read(&match->fib6_nh->fib_nh_upper_bound)) goto out; list_for_each_entry_safe(sibling, next_sibling, &match->fib6_siblings, fib6_siblings) { const struct fib6_nh *nh = sibling->fib6_nh; int nh_upper_bound; nh_upper_bound = atomic_read(&nh->fib_nh_upper_bound); if (fl6->mp_hash > nh_upper_bound) continue; if (rt6_score_route(nh, sibling->fib6_flags, oif, strict) < 0) break; match = sibling; break; } out: res->f6i = match; res->nh = match->fib6_nh; } /* * Route lookup. rcu_read_lock() should be held. */ static bool __rt6_device_match(struct net *net, const struct fib6_nh *nh, const struct in6_addr *saddr, int oif, int flags) { const struct net_device *dev; if (nh->fib_nh_flags & RTNH_F_DEAD) return false; dev = nh->fib_nh_dev; if (oif) { if (dev->ifindex == oif) return true; } else { if (ipv6_chk_addr(net, saddr, dev, flags & RT6_LOOKUP_F_IFACE)) return true; } return false; } struct fib6_nh_dm_arg { struct net *net; const struct in6_addr *saddr; int oif; int flags; struct fib6_nh *nh; }; static int __rt6_nh_dev_match(struct fib6_nh *nh, void *_arg) { struct fib6_nh_dm_arg *arg = _arg; arg->nh = nh; return __rt6_device_match(arg->net, nh, arg->saddr, arg->oif, arg->flags); } /* returns fib6_nh from nexthop or NULL */ static struct fib6_nh *rt6_nh_dev_match(struct net *net, struct nexthop *nh, struct fib6_result *res, const struct in6_addr *saddr, int oif, int flags) { struct fib6_nh_dm_arg arg = { .net = net, .saddr = saddr, .oif = oif, .flags = flags, }; if (nexthop_is_blackhole(nh)) return NULL; if (nexthop_for_each_fib6_nh(nh, __rt6_nh_dev_match, &arg)) return arg.nh; return NULL; } static void rt6_device_match(struct net *net, struct fib6_result *res, const struct in6_addr *saddr, int oif, int flags) { struct fib6_info *f6i = res->f6i; struct fib6_info *spf6i; struct fib6_nh *nh; if (!oif && ipv6_addr_any(saddr)) { if (unlikely(f6i->nh)) { nh = nexthop_fib6_nh(f6i->nh); if (nexthop_is_blackhole(f6i->nh)) goto out_blackhole; } else { nh = f6i->fib6_nh; } if (!(nh->fib_nh_flags & RTNH_F_DEAD)) goto out; } for (spf6i = f6i; spf6i; spf6i = rcu_dereference(spf6i->fib6_next)) { bool matched = false; if (unlikely(spf6i->nh)) { nh = rt6_nh_dev_match(net, spf6i->nh, res, saddr, oif, flags); if (nh) matched = true; } else { nh = spf6i->fib6_nh; if (__rt6_device_match(net, nh, saddr, oif, flags)) matched = true; } if (matched) { res->f6i = spf6i; goto out; } } if (oif && flags & RT6_LOOKUP_F_IFACE) { res->f6i = net->ipv6.fib6_null_entry; nh = res->f6i->fib6_nh; goto out; } if (unlikely(f6i->nh)) { nh = nexthop_fib6_nh(f6i->nh); if (nexthop_is_blackhole(f6i->nh)) goto out_blackhole; } else { nh = f6i->fib6_nh; } if (nh->fib_nh_flags & RTNH_F_DEAD) { res->f6i = net->ipv6.fib6_null_entry; nh = res->f6i->fib6_nh; } out: res->nh = nh; res->fib6_type = res->f6i->fib6_type; res->fib6_flags = res->f6i->fib6_flags; return; out_blackhole: res->fib6_flags |= RTF_REJECT; res->fib6_type = RTN_BLACKHOLE; res->nh = nh; } #ifdef CONFIG_IPV6_ROUTER_PREF struct __rt6_probe_work { struct work_struct work; struct in6_addr target; struct net_device *dev; netdevice_tracker dev_tracker; }; static void rt6_probe_deferred(struct work_struct *w) { struct in6_addr mcaddr; struct __rt6_probe_work *work = container_of(w, struct __rt6_probe_work, work); addrconf_addr_solict_mult(&work->target, &mcaddr); ndisc_send_ns(work->dev, &work->target, &mcaddr, NULL, 0); netdev_put(work->dev, &work->dev_tracker); kfree(work); } static void rt6_probe(struct fib6_nh *fib6_nh) { struct __rt6_probe_work *work = NULL; const struct in6_addr *nh_gw; unsigned long last_probe; struct neighbour *neigh; struct net_device *dev; struct inet6_dev *idev; /* * Okay, this does not seem to be appropriate * for now, however, we need to check if it * is really so; aka Router Reachability Probing. * * Router Reachability Probe MUST be rate-limited * to no more than one per minute. */ if (!fib6_nh->fib_nh_gw_family) return; nh_gw = &fib6_nh->fib_nh_gw6; dev = fib6_nh->fib_nh_dev; rcu_read_lock(); last_probe = READ_ONCE(fib6_nh->last_probe); idev = __in6_dev_get(dev); neigh = __ipv6_neigh_lookup_noref(dev, nh_gw); if (neigh) { if (READ_ONCE(neigh->nud_state) & NUD_VALID) goto out; write_lock_bh(&neigh->lock); if (!(neigh->nud_state & NUD_VALID) && time_after(jiffies, neigh->updated + READ_ONCE(idev->cnf.rtr_probe_interval))) { work = kmalloc(sizeof(*work), GFP_ATOMIC); if (work) __neigh_set_probe_once(neigh); } write_unlock_bh(&neigh->lock); } else if (time_after(jiffies, last_probe + READ_ONCE(idev->cnf.rtr_probe_interval))) { work = kmalloc(sizeof(*work), GFP_ATOMIC); } if (!work || cmpxchg(&fib6_nh->last_probe, last_probe, jiffies) != last_probe) { kfree(work); } else { INIT_WORK(&work->work, rt6_probe_deferred); work->target = *nh_gw; netdev_hold(dev, &work->dev_tracker, GFP_ATOMIC); work->dev = dev; schedule_work(&work->work); } out: rcu_read_unlock(); } #else static inline void rt6_probe(struct fib6_nh *fib6_nh) { } #endif /* * Default Router Selection (RFC 2461 6.3.6) */ static enum rt6_nud_state rt6_check_neigh(const struct fib6_nh *fib6_nh) { enum rt6_nud_state ret = RT6_NUD_FAIL_HARD; struct neighbour *neigh; rcu_read_lock(); neigh = __ipv6_neigh_lookup_noref(fib6_nh->fib_nh_dev, &fib6_nh->fib_nh_gw6); if (neigh) { u8 nud_state = READ_ONCE(neigh->nud_state); if (nud_state & NUD_VALID) ret = RT6_NUD_SUCCEED; #ifdef CONFIG_IPV6_ROUTER_PREF else if (!(nud_state & NUD_FAILED)) ret = RT6_NUD_SUCCEED; else ret = RT6_NUD_FAIL_PROBE; #endif } else { ret = IS_ENABLED(CONFIG_IPV6_ROUTER_PREF) ? RT6_NUD_SUCCEED : RT6_NUD_FAIL_DO_RR; } rcu_read_unlock(); return ret; } static int rt6_score_route(const struct fib6_nh *nh, u32 fib6_flags, int oif, int strict) { int m = 0; if (!oif || nh->fib_nh_dev->ifindex == oif) m = 2; if (!m && (strict & RT6_LOOKUP_F_IFACE)) return RT6_NUD_FAIL_HARD; #ifdef CONFIG_IPV6_ROUTER_PREF m |= IPV6_DECODE_PREF(IPV6_EXTRACT_PREF(fib6_flags)) << 2; #endif if ((strict & RT6_LOOKUP_F_REACHABLE) && !(fib6_flags & RTF_NONEXTHOP) && nh->fib_nh_gw_family) { int n = rt6_check_neigh(nh); if (n < 0) return n; } return m; } static bool find_match(struct fib6_nh *nh, u32 fib6_flags, int oif, int strict, int *mpri, bool *do_rr) { bool match_do_rr = false; bool rc = false; int m; if (nh->fib_nh_flags & RTNH_F_DEAD) goto out; if (ip6_ignore_linkdown(nh->fib_nh_dev) && nh->fib_nh_flags & RTNH_F_LINKDOWN && !(strict & RT6_LOOKUP_F_IGNORE_LINKSTATE)) goto out; m = rt6_score_route(nh, fib6_flags, oif, strict); if (m == RT6_NUD_FAIL_DO_RR) { match_do_rr = true; m = 0; /* lowest valid score */ } else if (m == RT6_NUD_FAIL_HARD) { goto out; } if (strict & RT6_LOOKUP_F_REACHABLE) rt6_probe(nh); /* note that m can be RT6_NUD_FAIL_PROBE at this point */ if (m > *mpri) { *do_rr = match_do_rr; *mpri = m; rc = true; } out: return rc; } struct fib6_nh_frl_arg { u32 flags; int oif; int strict; int *mpri; bool *do_rr; struct fib6_nh *nh; }; static int rt6_nh_find_match(struct fib6_nh *nh, void *_arg) { struct fib6_nh_frl_arg *arg = _arg; arg->nh = nh; return find_match(nh, arg->flags, arg->oif, arg->strict, arg->mpri, arg->do_rr); } static void __find_rr_leaf(struct fib6_info *f6i_start, struct fib6_info *nomatch, u32 metric, struct fib6_result *res, struct fib6_info **cont, int oif, int strict, bool *do_rr, int *mpri) { struct fib6_info *f6i; for (f6i = f6i_start; f6i && f6i != nomatch; f6i = rcu_dereference(f6i->fib6_next)) { bool matched = false; struct fib6_nh *nh; if (cont && f6i->fib6_metric != metric) { *cont = f6i; return; } if (fib6_check_expired(f6i)) continue; if (unlikely(f6i->nh)) { struct fib6_nh_frl_arg arg = { .flags = f6i->fib6_flags, .oif = oif, .strict = strict, .mpri = mpri, .do_rr = do_rr }; if (nexthop_is_blackhole(f6i->nh)) { res->fib6_flags = RTF_REJECT; res->fib6_type = RTN_BLACKHOLE; res->f6i = f6i; res->nh = nexthop_fib6_nh(f6i->nh); return; } if (nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_find_match, &arg)) { matched = true; nh = arg.nh; } } else { nh = f6i->fib6_nh; if (find_match(nh, f6i->fib6_flags, oif, strict, mpri, do_rr)) matched = true; } if (matched) { res->f6i = f6i; res->nh = nh; res->fib6_flags = f6i->fib6_flags; res->fib6_type = f6i->fib6_type; } } } static void find_rr_leaf(struct fib6_node *fn, struct fib6_info *leaf, struct fib6_info *rr_head, int oif, int strict, bool *do_rr, struct fib6_result *res) { u32 metric = rr_head->fib6_metric; struct fib6_info *cont = NULL; int mpri = -1; __find_rr_leaf(rr_head, NULL, metric, res, &cont, oif, strict, do_rr, &mpri); __find_rr_leaf(leaf, rr_head, metric, res, &cont, oif, strict, do_rr, &mpri); if (res->f6i || !cont) return; __find_rr_leaf(cont, NULL, metric, res, NULL, oif, strict, do_rr, &mpri); } static void rt6_select(struct net *net, struct fib6_node *fn, int oif, struct fib6_result *res, int strict) { struct fib6_info *leaf = rcu_dereference(fn->leaf); struct fib6_info *rt0; bool do_rr = false; int key_plen; /* make sure this function or its helpers sets f6i */ res->f6i = NULL; if (!leaf || leaf == net->ipv6.fib6_null_entry) goto out; rt0 = rcu_dereference(fn->rr_ptr); if (!rt0) rt0 = leaf; /* Double check to make sure fn is not an intermediate node * and fn->leaf does not points to its child's leaf * (This might happen if all routes under fn are deleted from * the tree and fib6_repair_tree() is called on the node.) */ key_plen = rt0->fib6_dst.plen; #ifdef CONFIG_IPV6_SUBTREES if (rt0->fib6_src.plen) key_plen = rt0->fib6_src.plen; #endif if (fn->fn_bit != key_plen) goto out; find_rr_leaf(fn, leaf, rt0, oif, strict, &do_rr, res); if (do_rr) { struct fib6_info *next = rcu_dereference(rt0->fib6_next); /* no entries matched; do round-robin */ if (!next || next->fib6_metric != rt0->fib6_metric) next = leaf; if (next != rt0) { spin_lock_bh(&leaf->fib6_table->tb6_lock); /* make sure next is not being deleted from the tree */ if (next->fib6_node) rcu_assign_pointer(fn->rr_ptr, next); spin_unlock_bh(&leaf->fib6_table->tb6_lock); } } out: if (!res->f6i) { res->f6i = net->ipv6.fib6_null_entry; res->nh = res->f6i->fib6_nh; res->fib6_flags = res->f6i->fib6_flags; res->fib6_type = res->f6i->fib6_type; } } static bool rt6_is_gw_or_nonexthop(const struct fib6_result *res) { return (res->f6i->fib6_flags & RTF_NONEXTHOP) || res->nh->fib_nh_gw_family; } #ifdef CONFIG_IPV6_ROUTE_INFO int rt6_route_rcv(struct net_device *dev, u8 *opt, int len, const struct in6_addr *gwaddr) { struct net *net = dev_net(dev); struct route_info *rinfo = (struct route_info *) opt; struct in6_addr prefix_buf, *prefix; struct fib6_table *table; unsigned int pref; unsigned long lifetime; struct fib6_info *rt; if (len < sizeof(struct route_info)) { return -EINVAL; } /* Sanity check for prefix_len and length */ if (rinfo->length > 3) { return -EINVAL; } else if (rinfo->prefix_len > 128) { return -EINVAL; } else if (rinfo->prefix_len > 64) { if (rinfo->length < 2) { return -EINVAL; } } else if (rinfo->prefix_len > 0) { if (rinfo->length < 1) { return -EINVAL; } } pref = rinfo->route_pref; if (pref == ICMPV6_ROUTER_PREF_INVALID) return -EINVAL; lifetime = addrconf_timeout_fixup(ntohl(rinfo->lifetime), HZ); if (rinfo->length == 3) prefix = (struct in6_addr *)rinfo->prefix; else { /* this function is safe */ ipv6_addr_prefix(&prefix_buf, (struct in6_addr *)rinfo->prefix, rinfo->prefix_len); prefix = &prefix_buf; } if (rinfo->prefix_len == 0) rt = rt6_get_dflt_router(net, gwaddr, dev); else rt = rt6_get_route_info(net, prefix, rinfo->prefix_len, gwaddr, dev); if (rt && !lifetime) { ip6_del_rt(net, rt, false); rt = NULL; } if (!rt && lifetime) rt = rt6_add_route_info(net, prefix, rinfo->prefix_len, gwaddr, dev, pref); else if (rt) rt->fib6_flags = RTF_ROUTEINFO | (rt->fib6_flags & ~RTF_PREF_MASK) | RTF_PREF(pref); if (rt) { table = rt->fib6_table; spin_lock_bh(&table->tb6_lock); if (!addrconf_finite_timeout(lifetime)) { fib6_clean_expires(rt); fib6_remove_gc_list(rt); } else { fib6_set_expires(rt, jiffies + HZ * lifetime); fib6_add_gc_list(rt); } spin_unlock_bh(&table->tb6_lock); fib6_info_release(rt); } return 0; } #endif /* * Misc support functions */ /* called with rcu_lock held */ static struct net_device *ip6_rt_get_dev_rcu(const struct fib6_result *res) { struct net_device *dev = res->nh->fib_nh_dev; if (res->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) { /* for copies of local routes, dst->dev needs to be the * device if it is a master device, the master device if * device is enslaved, and the loopback as the default */ if (netif_is_l3_slave(dev) && !rt6_need_strict(&res->f6i->fib6_dst.addr)) dev = l3mdev_master_dev_rcu(dev); else if (!netif_is_l3_master(dev)) dev = dev_net(dev)->loopback_dev; /* last case is netif_is_l3_master(dev) is true in which * case we want dev returned to be dev */ } return dev; } static const int fib6_prop[RTN_MAX + 1] = { [RTN_UNSPEC] = 0, [RTN_UNICAST] = 0, [RTN_LOCAL] = 0, [RTN_BROADCAST] = 0, [RTN_ANYCAST] = 0, [RTN_MULTICAST] = 0, [RTN_BLACKHOLE] = -EINVAL, [RTN_UNREACHABLE] = -EHOSTUNREACH, [RTN_PROHIBIT] = -EACCES, [RTN_THROW] = -EAGAIN, [RTN_NAT] = -EINVAL, [RTN_XRESOLVE] = -EINVAL, }; static int ip6_rt_type_to_error(u8 fib6_type) { return fib6_prop[fib6_type]; } static unsigned short fib6_info_dst_flags(struct fib6_info *rt) { unsigned short flags = 0; if (rt->dst_nocount) flags |= DST_NOCOUNT; if (rt->dst_nopolicy) flags |= DST_NOPOLICY; return flags; } static void ip6_rt_init_dst_reject(struct rt6_info *rt, u8 fib6_type) { rt->dst.error = ip6_rt_type_to_error(fib6_type); switch (fib6_type) { case RTN_BLACKHOLE: rt->dst.output = dst_discard_out; rt->dst.input = dst_discard; break; case RTN_PROHIBIT: rt->dst.output = ip6_pkt_prohibit_out; rt->dst.input = ip6_pkt_prohibit; break; case RTN_THROW: case RTN_UNREACHABLE: default: rt->dst.output = ip6_pkt_discard_out; rt->dst.input = ip6_pkt_discard; break; } } static void ip6_rt_init_dst(struct rt6_info *rt, const struct fib6_result *res) { struct fib6_info *f6i = res->f6i; if (res->fib6_flags & RTF_REJECT) { ip6_rt_init_dst_reject(rt, res->fib6_type); return; } rt->dst.error = 0; rt->dst.output = ip6_output; if (res->fib6_type == RTN_LOCAL || res->fib6_type == RTN_ANYCAST) { rt->dst.input = ip6_input; } else if (ipv6_addr_type(&f6i->fib6_dst.addr) & IPV6_ADDR_MULTICAST) { rt->dst.input = ip6_mc_input; } else { rt->dst.input = ip6_forward; } if (res->nh->fib_nh_lws) { rt->dst.lwtstate = lwtstate_get(res->nh->fib_nh_lws); lwtunnel_set_redirect(&rt->dst); } rt->dst.lastuse = jiffies; } /* Caller must already hold reference to @from */ static void rt6_set_from(struct rt6_info *rt, struct fib6_info *from) { rt->rt6i_flags &= ~RTF_EXPIRES; rcu_assign_pointer(rt->from, from); ip_dst_init_metrics(&rt->dst, from->fib6_metrics); } /* Caller must already hold reference to f6i in result */ static void ip6_rt_copy_init(struct rt6_info *rt, const struct fib6_result *res) { const struct fib6_nh *nh = res->nh; const struct net_device *dev = nh->fib_nh_dev; struct fib6_info *f6i = res->f6i; ip6_rt_init_dst(rt, res); rt->rt6i_dst = f6i->fib6_dst; rt->rt6i_idev = dev ? in6_dev_get(dev) : NULL; rt->rt6i_flags = res->fib6_flags; if (nh->fib_nh_gw_family) { rt->rt6i_gateway = nh->fib_nh_gw6; rt->rt6i_flags |= RTF_GATEWAY; } rt6_set_from(rt, f6i); #ifdef CONFIG_IPV6_SUBTREES rt->rt6i_src = f6i->fib6_src; #endif } static struct fib6_node* fib6_backtrack(struct fib6_node *fn, struct in6_addr *saddr) { struct fib6_node *pn, *sn; while (1) { if (fn->fn_flags & RTN_TL_ROOT) return NULL; pn = rcu_dereference(fn->parent); sn = FIB6_SUBTREE(pn); if (sn && sn != fn) fn = fib6_node_lookup(sn, NULL, saddr); else fn = pn; if (fn->fn_flags & RTN_RTINFO) return fn; } } static bool ip6_hold_safe(struct net *net, struct rt6_info **prt) { struct rt6_info *rt = *prt; if (dst_hold_safe(&rt->dst)) return true; if (net) { rt = net->ipv6.ip6_null_entry; dst_hold(&rt->dst); } else { rt = NULL; } *prt = rt; return false; } /* called with rcu_lock held */ static struct rt6_info *ip6_create_rt_rcu(const struct fib6_result *res) { struct net_device *dev = res->nh->fib_nh_dev; struct fib6_info *f6i = res->f6i; unsigned short flags; struct rt6_info *nrt; if (!fib6_info_hold_safe(f6i)) goto fallback; flags = fib6_info_dst_flags(f6i); nrt = ip6_dst_alloc(dev_net(dev), dev, flags); if (!nrt) { fib6_info_release(f6i); goto fallback; } ip6_rt_copy_init(nrt, res); return nrt; fallback: nrt = dev_net(dev)->ipv6.ip6_null_entry; dst_hold(&nrt->dst); return nrt; } INDIRECT_CALLABLE_SCOPE struct rt6_info *ip6_pol_route_lookup(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags) { struct fib6_result res = {}; struct fib6_node *fn; struct rt6_info *rt; rcu_read_lock(); fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); restart: res.f6i = rcu_dereference(fn->leaf); if (!res.f6i) res.f6i = net->ipv6.fib6_null_entry; else rt6_device_match(net, &res, &fl6->saddr, fl6->flowi6_oif, flags); if (res.f6i == net->ipv6.fib6_null_entry) { fn = fib6_backtrack(fn, &fl6->saddr); if (fn) goto restart; rt = net->ipv6.ip6_null_entry; dst_hold(&rt->dst); goto out; } else if (res.fib6_flags & RTF_REJECT) { goto do_create; } fib6_select_path(net, &res, fl6, fl6->flowi6_oif, fl6->flowi6_oif != 0, skb, flags); /* Search through exception table */ rt = rt6_find_cached_rt(&res, &fl6->daddr, &fl6->saddr); if (rt) { if (ip6_hold_safe(net, &rt)) dst_use_noref(&rt->dst, jiffies); } else { do_create: rt = ip6_create_rt_rcu(&res); } out: trace_fib6_table_lookup(net, &res, table, fl6); rcu_read_unlock(); return rt; } struct dst_entry *ip6_route_lookup(struct net *net, struct flowi6 *fl6, const struct sk_buff *skb, int flags) { return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_lookup); } EXPORT_SYMBOL_GPL(ip6_route_lookup); struct rt6_info *rt6_lookup(struct net *net, const struct in6_addr *daddr, const struct in6_addr *saddr, int oif, const struct sk_buff *skb, int strict) { struct flowi6 fl6 = { .flowi6_oif = oif, .daddr = *daddr, }; struct dst_entry *dst; int flags = strict ? RT6_LOOKUP_F_IFACE : 0; if (saddr) { memcpy(&fl6.saddr, saddr, sizeof(*saddr)); flags |= RT6_LOOKUP_F_HAS_SADDR; } dst = fib6_rule_lookup(net, &fl6, skb, flags, ip6_pol_route_lookup); if (dst->error == 0) return dst_rt6_info(dst); dst_release(dst); return NULL; } EXPORT_SYMBOL(rt6_lookup); /* ip6_ins_rt is called with FREE table->tb6_lock. * It takes new route entry, the addition fails by any reason the * route is released. * Caller must hold dst before calling it. */ static int __ip6_ins_rt(struct fib6_info *rt, struct nl_info *info, struct netlink_ext_ack *extack) { int err; struct fib6_table *table; table = rt->fib6_table; spin_lock_bh(&table->tb6_lock); err = fib6_add(&table->tb6_root, rt, info, extack); spin_unlock_bh(&table->tb6_lock); return err; } int ip6_ins_rt(struct net *net, struct fib6_info *rt) { struct nl_info info = { .nl_net = net, }; return __ip6_ins_rt(rt, &info, NULL); } static struct rt6_info *ip6_rt_cache_alloc(const struct fib6_result *res, const struct in6_addr *daddr, const struct in6_addr *saddr) { struct fib6_info *f6i = res->f6i; struct net_device *dev; struct rt6_info *rt; /* * Clone the route. */ if (!fib6_info_hold_safe(f6i)) return NULL; dev = ip6_rt_get_dev_rcu(res); rt = ip6_dst_alloc(dev_net(dev), dev, 0); if (!rt) { fib6_info_release(f6i); return NULL; } ip6_rt_copy_init(rt, res); rt->rt6i_flags |= RTF_CACHE; rt->rt6i_dst.addr = *daddr; rt->rt6i_dst.plen = 128; if (!rt6_is_gw_or_nonexthop(res)) { if (f6i->fib6_dst.plen != 128 && ipv6_addr_equal(&f6i->fib6_dst.addr, daddr)) rt->rt6i_flags |= RTF_ANYCAST; #ifdef CONFIG_IPV6_SUBTREES if (rt->rt6i_src.plen && saddr) { rt->rt6i_src.addr = *saddr; rt->rt6i_src.plen = 128; } #endif } return rt; } static struct rt6_info *ip6_rt_pcpu_alloc(const struct fib6_result *res) { struct fib6_info *f6i = res->f6i; unsigned short flags = fib6_info_dst_flags(f6i); struct net_device *dev; struct rt6_info *pcpu_rt; if (!fib6_info_hold_safe(f6i)) return NULL; rcu_read_lock(); dev = ip6_rt_get_dev_rcu(res); pcpu_rt = ip6_dst_alloc(dev_net(dev), dev, flags | DST_NOCOUNT); rcu_read_unlock(); if (!pcpu_rt) { fib6_info_release(f6i); return NULL; } ip6_rt_copy_init(pcpu_rt, res); pcpu_rt->rt6i_flags |= RTF_PCPU; if (f6i->nh) pcpu_rt->sernum = rt_genid_ipv6(dev_net(dev)); return pcpu_rt; } static bool rt6_is_valid(const struct rt6_info *rt6) { return rt6->sernum == rt_genid_ipv6(dev_net(rt6->dst.dev)); } /* It should be called with rcu_read_lock() acquired */ static struct rt6_info *rt6_get_pcpu_route(const struct fib6_result *res) { struct rt6_info *pcpu_rt; pcpu_rt = this_cpu_read(*res->nh->rt6i_pcpu); if (pcpu_rt && pcpu_rt->sernum && !rt6_is_valid(pcpu_rt)) { struct rt6_info *prev, **p; p = this_cpu_ptr(res->nh->rt6i_pcpu); /* Paired with READ_ONCE() in __fib6_drop_pcpu_from() */ prev = xchg(p, NULL); if (prev) { dst_dev_put(&prev->dst); dst_release(&prev->dst); } pcpu_rt = NULL; } return pcpu_rt; } static struct rt6_info *rt6_make_pcpu_route(struct net *net, const struct fib6_result *res) { struct rt6_info *pcpu_rt, *prev, **p; pcpu_rt = ip6_rt_pcpu_alloc(res); if (!pcpu_rt) return NULL; p = this_cpu_ptr(res->nh->rt6i_pcpu); prev = cmpxchg(p, NULL, pcpu_rt); BUG_ON(prev); if (res->f6i->fib6_destroying) { struct fib6_info *from; from = xchg((__force struct fib6_info **)&pcpu_rt->from, NULL); fib6_info_release(from); } return pcpu_rt; } /* exception hash table implementation */ static DEFINE_SPINLOCK(rt6_exception_lock); /* Remove rt6_ex from hash table and free the memory * Caller must hold rt6_exception_lock */ static void rt6_remove_exception(struct rt6_exception_bucket *bucket, struct rt6_exception *rt6_ex) { struct fib6_info *from; struct net *net; if (!bucket || !rt6_ex) return; net = dev_net(rt6_ex->rt6i->dst.dev); net->ipv6.rt6_stats->fib_rt_cache--; /* purge completely the exception to allow releasing the held resources: * some [sk] cache may keep the dst around for unlimited time */ from = xchg((__force struct fib6_info **)&rt6_ex->rt6i->from, NULL); fib6_info_release(from); dst_dev_put(&rt6_ex->rt6i->dst); hlist_del_rcu(&rt6_ex->hlist); dst_release(&rt6_ex->rt6i->dst); kfree_rcu(rt6_ex, rcu); WARN_ON_ONCE(!bucket->depth); bucket->depth--; } /* Remove oldest rt6_ex in bucket and free the memory * Caller must hold rt6_exception_lock */ static void rt6_exception_remove_oldest(struct rt6_exception_bucket *bucket) { struct rt6_exception *rt6_ex, *oldest = NULL; if (!bucket) return; hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { if (!oldest || time_before(rt6_ex->stamp, oldest->stamp)) oldest = rt6_ex; } rt6_remove_exception(bucket, oldest); } static u32 rt6_exception_hash(const struct in6_addr *dst, const struct in6_addr *src) { static siphash_aligned_key_t rt6_exception_key; struct { struct in6_addr dst; struct in6_addr src; } __aligned(SIPHASH_ALIGNMENT) combined = { .dst = *dst, }; u64 val; net_get_random_once(&rt6_exception_key, sizeof(rt6_exception_key)); #ifdef CONFIG_IPV6_SUBTREES if (src) combined.src = *src; #endif val = siphash(&combined, sizeof(combined), &rt6_exception_key); return hash_64(val, FIB6_EXCEPTION_BUCKET_SIZE_SHIFT); } /* Helper function to find the cached rt in the hash table * and update bucket pointer to point to the bucket for this * (daddr, saddr) pair * Caller must hold rt6_exception_lock */ static struct rt6_exception * __rt6_find_exception_spinlock(struct rt6_exception_bucket **bucket, const struct in6_addr *daddr, const struct in6_addr *saddr) { struct rt6_exception *rt6_ex; u32 hval; if (!(*bucket) || !daddr) return NULL; hval = rt6_exception_hash(daddr, saddr); *bucket += hval; hlist_for_each_entry(rt6_ex, &(*bucket)->chain, hlist) { struct rt6_info *rt6 = rt6_ex->rt6i; bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr); #ifdef CONFIG_IPV6_SUBTREES if (matched && saddr) matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr); #endif if (matched) return rt6_ex; } return NULL; } /* Helper function to find the cached rt in the hash table * and update bucket pointer to point to the bucket for this * (daddr, saddr) pair * Caller must hold rcu_read_lock() */ static struct rt6_exception * __rt6_find_exception_rcu(struct rt6_exception_bucket **bucket, const struct in6_addr *daddr, const struct in6_addr *saddr) { struct rt6_exception *rt6_ex; u32 hval; WARN_ON_ONCE(!rcu_read_lock_held()); if (!(*bucket) || !daddr) return NULL; hval = rt6_exception_hash(daddr, saddr); *bucket += hval; hlist_for_each_entry_rcu(rt6_ex, &(*bucket)->chain, hlist) { struct rt6_info *rt6 = rt6_ex->rt6i; bool matched = ipv6_addr_equal(daddr, &rt6->rt6i_dst.addr); #ifdef CONFIG_IPV6_SUBTREES if (matched && saddr) matched = ipv6_addr_equal(saddr, &rt6->rt6i_src.addr); #endif if (matched) return rt6_ex; } return NULL; } static unsigned int fib6_mtu(const struct fib6_result *res) { const struct fib6_nh *nh = res->nh; unsigned int mtu; if (res->f6i->fib6_pmtu) { mtu = res->f6i->fib6_pmtu; } else { struct net_device *dev = nh->fib_nh_dev; struct inet6_dev *idev; rcu_read_lock(); idev = __in6_dev_get(dev); mtu = READ_ONCE(idev->cnf.mtu6); rcu_read_unlock(); } mtu = min_t(unsigned int, mtu, IP6_MAX_MTU); return mtu - lwtunnel_headroom(nh->fib_nh_lws, mtu); } #define FIB6_EXCEPTION_BUCKET_FLUSHED 0x1UL /* used when the flushed bit is not relevant, only access to the bucket * (ie., all bucket users except rt6_insert_exception); * * called under rcu lock; sometimes called with rt6_exception_lock held */ static struct rt6_exception_bucket *fib6_nh_get_excptn_bucket(const struct fib6_nh *nh, spinlock_t *lock) { struct rt6_exception_bucket *bucket; if (lock) bucket = rcu_dereference_protected(nh->rt6i_exception_bucket, lockdep_is_held(lock)); else bucket = rcu_dereference(nh->rt6i_exception_bucket); /* remove bucket flushed bit if set */ if (bucket) { unsigned long p = (unsigned long)bucket; p &= ~FIB6_EXCEPTION_BUCKET_FLUSHED; bucket = (struct rt6_exception_bucket *)p; } return bucket; } static bool fib6_nh_excptn_bucket_flushed(struct rt6_exception_bucket *bucket) { unsigned long p = (unsigned long)bucket; return !!(p & FIB6_EXCEPTION_BUCKET_FLUSHED); } /* called with rt6_exception_lock held */ static void fib6_nh_excptn_bucket_set_flushed(struct fib6_nh *nh, spinlock_t *lock) { struct rt6_exception_bucket *bucket; unsigned long p; bucket = rcu_dereference_protected(nh->rt6i_exception_bucket, lockdep_is_held(lock)); p = (unsigned long)bucket; p |= FIB6_EXCEPTION_BUCKET_FLUSHED; bucket = (struct rt6_exception_bucket *)p; rcu_assign_pointer(nh->rt6i_exception_bucket, bucket); } static int rt6_insert_exception(struct rt6_info *nrt, const struct fib6_result *res) { struct net *net = dev_net(nrt->dst.dev); struct rt6_exception_bucket *bucket; struct fib6_info *f6i = res->f6i; struct in6_addr *src_key = NULL; struct rt6_exception *rt6_ex; struct fib6_nh *nh = res->nh; int max_depth; int err = 0; spin_lock_bh(&rt6_exception_lock); bucket = rcu_dereference_protected(nh->rt6i_exception_bucket, lockdep_is_held(&rt6_exception_lock)); if (!bucket) { bucket = kcalloc(FIB6_EXCEPTION_BUCKET_SIZE, sizeof(*bucket), GFP_ATOMIC); if (!bucket) { err = -ENOMEM; goto out; } rcu_assign_pointer(nh->rt6i_exception_bucket, bucket); } else if (fib6_nh_excptn_bucket_flushed(bucket)) { err = -EINVAL; goto out; } #ifdef CONFIG_IPV6_SUBTREES /* fib6_src.plen != 0 indicates f6i is in subtree * and exception table is indexed by a hash of * both fib6_dst and fib6_src. * Otherwise, the exception table is indexed by * a hash of only fib6_dst. */ if (f6i->fib6_src.plen) src_key = &nrt->rt6i_src.addr; #endif /* rt6_mtu_change() might lower mtu on f6i. * Only insert this exception route if its mtu * is less than f6i's mtu value. */ if (dst_metric_raw(&nrt->dst, RTAX_MTU) >= fib6_mtu(res)) { err = -EINVAL; goto out; } rt6_ex = __rt6_find_exception_spinlock(&bucket, &nrt->rt6i_dst.addr, src_key); if (rt6_ex) rt6_remove_exception(bucket, rt6_ex); rt6_ex = kzalloc(sizeof(*rt6_ex), GFP_ATOMIC); if (!rt6_ex) { err = -ENOMEM; goto out; } rt6_ex->rt6i = nrt; rt6_ex->stamp = jiffies; hlist_add_head_rcu(&rt6_ex->hlist, &bucket->chain); bucket->depth++; net->ipv6.rt6_stats->fib_rt_cache++; /* Randomize max depth to avoid some side channels attacks. */ max_depth = FIB6_MAX_DEPTH + get_random_u32_below(FIB6_MAX_DEPTH); while (bucket->depth > max_depth) rt6_exception_remove_oldest(bucket); out: spin_unlock_bh(&rt6_exception_lock); /* Update fn->fn_sernum to invalidate all cached dst */ if (!err) { spin_lock_bh(&f6i->fib6_table->tb6_lock); fib6_update_sernum(net, f6i); spin_unlock_bh(&f6i->fib6_table->tb6_lock); fib6_force_start_gc(net); } return err; } static void fib6_nh_flush_exceptions(struct fib6_nh *nh, struct fib6_info *from) { struct rt6_exception_bucket *bucket; struct rt6_exception *rt6_ex; struct hlist_node *tmp; int i; spin_lock_bh(&rt6_exception_lock); bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); if (!bucket) goto out; /* Prevent rt6_insert_exception() to recreate the bucket list */ if (!from) fib6_nh_excptn_bucket_set_flushed(nh, &rt6_exception_lock); for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { hlist_for_each_entry_safe(rt6_ex, tmp, &bucket->chain, hlist) { if (!from || rcu_access_pointer(rt6_ex->rt6i->from) == from) rt6_remove_exception(bucket, rt6_ex); } WARN_ON_ONCE(!from && bucket->depth); bucket++; } out: spin_unlock_bh(&rt6_exception_lock); } static int rt6_nh_flush_exceptions(struct fib6_nh *nh, void *arg) { struct fib6_info *f6i = arg; fib6_nh_flush_exceptions(nh, f6i); return 0; } void rt6_flush_exceptions(struct fib6_info *f6i) { if (f6i->nh) nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_flush_exceptions, f6i); else fib6_nh_flush_exceptions(f6i->fib6_nh, f6i); } /* Find cached rt in the hash table inside passed in rt * Caller has to hold rcu_read_lock() */ static struct rt6_info *rt6_find_cached_rt(const struct fib6_result *res, const struct in6_addr *daddr, const struct in6_addr *saddr) { const struct in6_addr *src_key = NULL; struct rt6_exception_bucket *bucket; struct rt6_exception *rt6_ex; struct rt6_info *ret = NULL; #ifdef CONFIG_IPV6_SUBTREES /* fib6i_src.plen != 0 indicates f6i is in subtree * and exception table is indexed by a hash of * both fib6_dst and fib6_src. * However, the src addr used to create the hash * might not be exactly the passed in saddr which * is a /128 addr from the flow. * So we need to use f6i->fib6_src to redo lookup * if the passed in saddr does not find anything. * (See the logic in ip6_rt_cache_alloc() on how * rt->rt6i_src is updated.) */ if (res->f6i->fib6_src.plen) src_key = saddr; find_ex: #endif bucket = fib6_nh_get_excptn_bucket(res->nh, NULL); rt6_ex = __rt6_find_exception_rcu(&bucket, daddr, src_key); if (rt6_ex && !rt6_check_expired(rt6_ex->rt6i)) ret = rt6_ex->rt6i; #ifdef CONFIG_IPV6_SUBTREES /* Use fib6_src as src_key and redo lookup */ if (!ret && src_key && src_key != &res->f6i->fib6_src.addr) { src_key = &res->f6i->fib6_src.addr; goto find_ex; } #endif return ret; } /* Remove the passed in cached rt from the hash table that contains it */ static int fib6_nh_remove_exception(const struct fib6_nh *nh, int plen, const struct rt6_info *rt) { const struct in6_addr *src_key = NULL; struct rt6_exception_bucket *bucket; struct rt6_exception *rt6_ex; int err; if (!rcu_access_pointer(nh->rt6i_exception_bucket)) return -ENOENT; spin_lock_bh(&rt6_exception_lock); bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); #ifdef CONFIG_IPV6_SUBTREES /* rt6i_src.plen != 0 indicates 'from' is in subtree * and exception table is indexed by a hash of * both rt6i_dst and rt6i_src. * Otherwise, the exception table is indexed by * a hash of only rt6i_dst. */ if (plen) src_key = &rt->rt6i_src.addr; #endif rt6_ex = __rt6_find_exception_spinlock(&bucket, &rt->rt6i_dst.addr, src_key); if (rt6_ex) { rt6_remove_exception(bucket, rt6_ex); err = 0; } else { err = -ENOENT; } spin_unlock_bh(&rt6_exception_lock); return err; } struct fib6_nh_excptn_arg { struct rt6_info *rt; int plen; }; static int rt6_nh_remove_exception_rt(struct fib6_nh *nh, void *_arg) { struct fib6_nh_excptn_arg *arg = _arg; int err; err = fib6_nh_remove_exception(nh, arg->plen, arg->rt); if (err == 0) return 1; return 0; } static int rt6_remove_exception_rt(struct rt6_info *rt) { struct fib6_info *from; from = rcu_dereference(rt->from); if (!from || !(rt->rt6i_flags & RTF_CACHE)) return -EINVAL; if (from->nh) { struct fib6_nh_excptn_arg arg = { .rt = rt, .plen = from->fib6_src.plen }; int rc; /* rc = 1 means an entry was found */ rc = nexthop_for_each_fib6_nh(from->nh, rt6_nh_remove_exception_rt, &arg); return rc ? 0 : -ENOENT; } return fib6_nh_remove_exception(from->fib6_nh, from->fib6_src.plen, rt); } /* Find rt6_ex which contains the passed in rt cache and * refresh its stamp */ static void fib6_nh_update_exception(const struct fib6_nh *nh, int plen, const struct rt6_info *rt) { const struct in6_addr *src_key = NULL; struct rt6_exception_bucket *bucket; struct rt6_exception *rt6_ex; bucket = fib6_nh_get_excptn_bucket(nh, NULL); #ifdef CONFIG_IPV6_SUBTREES /* rt6i_src.plen != 0 indicates 'from' is in subtree * and exception table is indexed by a hash of * both rt6i_dst and rt6i_src. * Otherwise, the exception table is indexed by * a hash of only rt6i_dst. */ if (plen) src_key = &rt->rt6i_src.addr; #endif rt6_ex = __rt6_find_exception_rcu(&bucket, &rt->rt6i_dst.addr, src_key); if (rt6_ex) rt6_ex->stamp = jiffies; } struct fib6_nh_match_arg { const struct net_device *dev; const struct in6_addr *gw; struct fib6_nh *match; }; /* determine if fib6_nh has given device and gateway */ static int fib6_nh_find_match(struct fib6_nh *nh, void *_arg) { struct fib6_nh_match_arg *arg = _arg; if (arg->dev != nh->fib_nh_dev || (arg->gw && !nh->fib_nh_gw_family) || (!arg->gw && nh->fib_nh_gw_family) || (arg->gw && !ipv6_addr_equal(arg->gw, &nh->fib_nh_gw6))) return 0; arg->match = nh; /* found a match, break the loop */ return 1; } static void rt6_update_exception_stamp_rt(struct rt6_info *rt) { struct fib6_info *from; struct fib6_nh *fib6_nh; rcu_read_lock(); from = rcu_dereference(rt->from); if (!from || !(rt->rt6i_flags & RTF_CACHE)) goto unlock; if (from->nh) { struct fib6_nh_match_arg arg = { .dev = rt->dst.dev, .gw = &rt->rt6i_gateway, }; nexthop_for_each_fib6_nh(from->nh, fib6_nh_find_match, &arg); if (!arg.match) goto unlock; fib6_nh = arg.match; } else { fib6_nh = from->fib6_nh; } fib6_nh_update_exception(fib6_nh, from->fib6_src.plen, rt); unlock: rcu_read_unlock(); } static bool rt6_mtu_change_route_allowed(struct inet6_dev *idev, struct rt6_info *rt, int mtu) { /* If the new MTU is lower than the route PMTU, this new MTU will be the * lowest MTU in the path: always allow updating the route PMTU to * reflect PMTU decreases. * * If the new MTU is higher, and the route PMTU is equal to the local * MTU, this means the old MTU is the lowest in the path, so allow * updating it: if other nodes now have lower MTUs, PMTU discovery will * handle this. */ if (dst_mtu(&rt->dst) >= mtu) return true; if (dst_mtu(&rt->dst) == idev->cnf.mtu6) return true; return false; } static void rt6_exceptions_update_pmtu(struct inet6_dev *idev, const struct fib6_nh *nh, int mtu) { struct rt6_exception_bucket *bucket; struct rt6_exception *rt6_ex; int i; bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); if (!bucket) return; for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { struct rt6_info *entry = rt6_ex->rt6i; /* For RTF_CACHE with rt6i_pmtu == 0 (i.e. a redirected * route), the metrics of its rt->from have already * been updated. */ if (dst_metric_raw(&entry->dst, RTAX_MTU) && rt6_mtu_change_route_allowed(idev, entry, mtu)) dst_metric_set(&entry->dst, RTAX_MTU, mtu); } bucket++; } } #define RTF_CACHE_GATEWAY (RTF_GATEWAY | RTF_CACHE) static void fib6_nh_exceptions_clean_tohost(const struct fib6_nh *nh, const struct in6_addr *gateway) { struct rt6_exception_bucket *bucket; struct rt6_exception *rt6_ex; struct hlist_node *tmp; int i; if (!rcu_access_pointer(nh->rt6i_exception_bucket)) return; spin_lock_bh(&rt6_exception_lock); bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); if (bucket) { for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { hlist_for_each_entry_safe(rt6_ex, tmp, &bucket->chain, hlist) { struct rt6_info *entry = rt6_ex->rt6i; if ((entry->rt6i_flags & RTF_CACHE_GATEWAY) == RTF_CACHE_GATEWAY && ipv6_addr_equal(gateway, &entry->rt6i_gateway)) { rt6_remove_exception(bucket, rt6_ex); } } bucket++; } } spin_unlock_bh(&rt6_exception_lock); } static void rt6_age_examine_exception(struct rt6_exception_bucket *bucket, struct rt6_exception *rt6_ex, struct fib6_gc_args *gc_args, unsigned long now) { struct rt6_info *rt = rt6_ex->rt6i; /* we are pruning and obsoleting aged-out and non gateway exceptions * even if others have still references to them, so that on next * dst_check() such references can be dropped. * EXPIRES exceptions - e.g. pmtu-generated ones are pruned when * expired, independently from their aging, as per RFC 8201 section 4 */ if (!(rt->rt6i_flags & RTF_EXPIRES)) { if (time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) { pr_debug("aging clone %p\n", rt); rt6_remove_exception(bucket, rt6_ex); return; } } else if (time_after(jiffies, rt->dst.expires)) { pr_debug("purging expired route %p\n", rt); rt6_remove_exception(bucket, rt6_ex); return; } if (rt->rt6i_flags & RTF_GATEWAY) { struct neighbour *neigh; neigh = __ipv6_neigh_lookup_noref(rt->dst.dev, &rt->rt6i_gateway); if (!(neigh && (neigh->flags & NTF_ROUTER))) { pr_debug("purging route %p via non-router but gateway\n", rt); rt6_remove_exception(bucket, rt6_ex); return; } } gc_args->more++; } static void fib6_nh_age_exceptions(const struct fib6_nh *nh, struct fib6_gc_args *gc_args, unsigned long now) { struct rt6_exception_bucket *bucket; struct rt6_exception *rt6_ex; struct hlist_node *tmp; int i; if (!rcu_access_pointer(nh->rt6i_exception_bucket)) return; rcu_read_lock_bh(); spin_lock(&rt6_exception_lock); bucket = fib6_nh_get_excptn_bucket(nh, &rt6_exception_lock); if (bucket) { for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { hlist_for_each_entry_safe(rt6_ex, tmp, &bucket->chain, hlist) { rt6_age_examine_exception(bucket, rt6_ex, gc_args, now); } bucket++; } } spin_unlock(&rt6_exception_lock); rcu_read_unlock_bh(); } struct fib6_nh_age_excptn_arg { struct fib6_gc_args *gc_args; unsigned long now; }; static int rt6_nh_age_exceptions(struct fib6_nh *nh, void *_arg) { struct fib6_nh_age_excptn_arg *arg = _arg; fib6_nh_age_exceptions(nh, arg->gc_args, arg->now); return 0; } void rt6_age_exceptions(struct fib6_info *f6i, struct fib6_gc_args *gc_args, unsigned long now) { if (f6i->nh) { struct fib6_nh_age_excptn_arg arg = { .gc_args = gc_args, .now = now }; nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_age_exceptions, &arg); } else { fib6_nh_age_exceptions(f6i->fib6_nh, gc_args, now); } } /* must be called with rcu lock held */ int fib6_table_lookup(struct net *net, struct fib6_table *table, int oif, struct flowi6 *fl6, struct fib6_result *res, int strict) { struct fib6_node *fn, *saved_fn; fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); saved_fn = fn; redo_rt6_select: rt6_select(net, fn, oif, res, strict); if (res->f6i == net->ipv6.fib6_null_entry) { fn = fib6_backtrack(fn, &fl6->saddr); if (fn) goto redo_rt6_select; else if (strict & RT6_LOOKUP_F_REACHABLE) { /* also consider unreachable route */ strict &= ~RT6_LOOKUP_F_REACHABLE; fn = saved_fn; goto redo_rt6_select; } } trace_fib6_table_lookup(net, res, table, fl6); return 0; } struct rt6_info *ip6_pol_route(struct net *net, struct fib6_table *table, int oif, struct flowi6 *fl6, const struct sk_buff *skb, int flags) { struct fib6_result res = {}; struct rt6_info *rt = NULL; int strict = 0; WARN_ON_ONCE((flags & RT6_LOOKUP_F_DST_NOREF) && !rcu_read_lock_held()); strict |= flags & RT6_LOOKUP_F_IFACE; strict |= flags & RT6_LOOKUP_F_IGNORE_LINKSTATE; if (READ_ONCE(net->ipv6.devconf_all->forwarding) == 0) strict |= RT6_LOOKUP_F_REACHABLE; rcu_read_lock(); fib6_table_lookup(net, table, oif, fl6, &res, strict); if (res.f6i == net->ipv6.fib6_null_entry) goto out; fib6_select_path(net, &res, fl6, oif, false, skb, strict); /*Search through exception table */ rt = rt6_find_cached_rt(&res, &fl6->daddr, &fl6->saddr); if (rt) { goto out; } else if (unlikely((fl6->flowi6_flags & FLOWI_FLAG_KNOWN_NH) && !res.nh->fib_nh_gw_family)) { /* Create a RTF_CACHE clone which will not be * owned by the fib6 tree. It is for the special case where * the daddr in the skb during the neighbor look-up is different * from the fl6->daddr used to look-up route here. */ rt = ip6_rt_cache_alloc(&res, &fl6->daddr, NULL); if (rt) { /* 1 refcnt is taken during ip6_rt_cache_alloc(). * As rt6_uncached_list_add() does not consume refcnt, * this refcnt is always returned to the caller even * if caller sets RT6_LOOKUP_F_DST_NOREF flag. */ rt6_uncached_list_add(rt); rcu_read_unlock(); return rt; } } else { /* Get a percpu copy */ local_bh_disable(); rt = rt6_get_pcpu_route(&res); if (!rt) rt = rt6_make_pcpu_route(net, &res); local_bh_enable(); } out: if (!rt) rt = net->ipv6.ip6_null_entry; if (!(flags & RT6_LOOKUP_F_DST_NOREF)) ip6_hold_safe(net, &rt); rcu_read_unlock(); return rt; } EXPORT_SYMBOL_GPL(ip6_pol_route); INDIRECT_CALLABLE_SCOPE struct rt6_info *ip6_pol_route_input(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags) { return ip6_pol_route(net, table, fl6->flowi6_iif, fl6, skb, flags); } struct dst_entry *ip6_route_input_lookup(struct net *net, struct net_device *dev, struct flowi6 *fl6, const struct sk_buff *skb, int flags) { if (rt6_need_strict(&fl6->daddr) && dev->type != ARPHRD_PIMREG) flags |= RT6_LOOKUP_F_IFACE; return fib6_rule_lookup(net, fl6, skb, flags, ip6_pol_route_input); } EXPORT_SYMBOL_GPL(ip6_route_input_lookup); static void ip6_multipath_l3_keys(const struct sk_buff *skb, struct flow_keys *keys, struct flow_keys *flkeys) { const struct ipv6hdr *outer_iph = ipv6_hdr(skb); const struct ipv6hdr *key_iph = outer_iph; struct flow_keys *_flkeys = flkeys; const struct ipv6hdr *inner_iph; const struct icmp6hdr *icmph; struct ipv6hdr _inner_iph; struct icmp6hdr _icmph; if (likely(outer_iph->nexthdr != IPPROTO_ICMPV6)) goto out; icmph = skb_header_pointer(skb, skb_transport_offset(skb), sizeof(_icmph), &_icmph); if (!icmph) goto out; if (!icmpv6_is_err(icmph->icmp6_type)) goto out; inner_iph = skb_header_pointer(skb, skb_transport_offset(skb) + sizeof(*icmph), sizeof(_inner_iph), &_inner_iph); if (!inner_iph) goto out; key_iph = inner_iph; _flkeys = NULL; out: if (_flkeys) { keys->addrs.v6addrs.src = _flkeys->addrs.v6addrs.src; keys->addrs.v6addrs.dst = _flkeys->addrs.v6addrs.dst; keys->tags.flow_label = _flkeys->tags.flow_label; keys->basic.ip_proto = _flkeys->basic.ip_proto; } else { keys->addrs.v6addrs.src = key_iph->saddr; keys->addrs.v6addrs.dst = key_iph->daddr; keys->tags.flow_label = ip6_flowlabel(key_iph); keys->basic.ip_proto = key_iph->nexthdr; } } static u32 rt6_multipath_custom_hash_outer(const struct net *net, const struct sk_buff *skb, bool *p_has_inner) { u32 hash_fields = ip6_multipath_hash_fields(net); struct flow_keys keys, hash_keys; if (!(hash_fields & FIB_MULTIPATH_HASH_FIELD_OUTER_MASK)) return 0; memset(&hash_keys, 0, sizeof(hash_keys)); skb_flow_dissect_flow_keys(skb, &keys, FLOW_DISSECTOR_F_STOP_AT_ENCAP); hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_IP) hash_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_IP) hash_keys.addrs.v6addrs.dst = keys.addrs.v6addrs.dst; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_IP_PROTO) hash_keys.basic.ip_proto = keys.basic.ip_proto; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_FLOWLABEL) hash_keys.tags.flow_label = keys.tags.flow_label; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_PORT) hash_keys.ports.src = keys.ports.src; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_PORT) hash_keys.ports.dst = keys.ports.dst; *p_has_inner = !!(keys.control.flags & FLOW_DIS_ENCAPSULATION); return flow_hash_from_keys(&hash_keys); } static u32 rt6_multipath_custom_hash_inner(const struct net *net, const struct sk_buff *skb, bool has_inner) { u32 hash_fields = ip6_multipath_hash_fields(net); struct flow_keys keys, hash_keys; /* We assume the packet carries an encapsulation, but if none was * encountered during dissection of the outer flow, then there is no * point in calling the flow dissector again. */ if (!has_inner) return 0; if (!(hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_MASK)) return 0; memset(&hash_keys, 0, sizeof(hash_keys)); skb_flow_dissect_flow_keys(skb, &keys, 0); if (!(keys.control.flags & FLOW_DIS_ENCAPSULATION)) return 0; if (keys.control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_SRC_IP) hash_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_DST_IP) hash_keys.addrs.v4addrs.dst = keys.addrs.v4addrs.dst; } else if (keys.control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_SRC_IP) hash_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_DST_IP) hash_keys.addrs.v6addrs.dst = keys.addrs.v6addrs.dst; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_FLOWLABEL) hash_keys.tags.flow_label = keys.tags.flow_label; } if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_IP_PROTO) hash_keys.basic.ip_proto = keys.basic.ip_proto; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_SRC_PORT) hash_keys.ports.src = keys.ports.src; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_INNER_DST_PORT) hash_keys.ports.dst = keys.ports.dst; return flow_hash_from_keys(&hash_keys); } static u32 rt6_multipath_custom_hash_skb(const struct net *net, const struct sk_buff *skb) { u32 mhash, mhash_inner; bool has_inner = true; mhash = rt6_multipath_custom_hash_outer(net, skb, &has_inner); mhash_inner = rt6_multipath_custom_hash_inner(net, skb, has_inner); return jhash_2words(mhash, mhash_inner, 0); } static u32 rt6_multipath_custom_hash_fl6(const struct net *net, const struct flowi6 *fl6) { u32 hash_fields = ip6_multipath_hash_fields(net); struct flow_keys hash_keys; if (!(hash_fields & FIB_MULTIPATH_HASH_FIELD_OUTER_MASK)) return 0; memset(&hash_keys, 0, sizeof(hash_keys)); hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_IP) hash_keys.addrs.v6addrs.src = fl6->saddr; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_IP) hash_keys.addrs.v6addrs.dst = fl6->daddr; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_IP_PROTO) hash_keys.basic.ip_proto = fl6->flowi6_proto; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_FLOWLABEL) hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); if (hash_fields & FIB_MULTIPATH_HASH_FIELD_SRC_PORT) hash_keys.ports.src = fl6->fl6_sport; if (hash_fields & FIB_MULTIPATH_HASH_FIELD_DST_PORT) hash_keys.ports.dst = fl6->fl6_dport; return flow_hash_from_keys(&hash_keys); } /* if skb is set it will be used and fl6 can be NULL */ u32 rt6_multipath_hash(const struct net *net, const struct flowi6 *fl6, const struct sk_buff *skb, struct flow_keys *flkeys) { struct flow_keys hash_keys; u32 mhash = 0; switch (ip6_multipath_hash_policy(net)) { case 0: memset(&hash_keys, 0, sizeof(hash_keys)); hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; if (skb) { ip6_multipath_l3_keys(skb, &hash_keys, flkeys); } else { hash_keys.addrs.v6addrs.src = fl6->saddr; hash_keys.addrs.v6addrs.dst = fl6->daddr; hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); hash_keys.basic.ip_proto = fl6->flowi6_proto; } mhash = flow_hash_from_keys(&hash_keys); break; case 1: if (skb) { unsigned int flag = FLOW_DISSECTOR_F_STOP_AT_ENCAP; struct flow_keys keys; /* short-circuit if we already have L4 hash present */ if (skb->l4_hash) return skb_get_hash_raw(skb) >> 1; memset(&hash_keys, 0, sizeof(hash_keys)); if (!flkeys) { skb_flow_dissect_flow_keys(skb, &keys, flag); flkeys = &keys; } hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; hash_keys.addrs.v6addrs.src = flkeys->addrs.v6addrs.src; hash_keys.addrs.v6addrs.dst = flkeys->addrs.v6addrs.dst; hash_keys.ports.src = flkeys->ports.src; hash_keys.ports.dst = flkeys->ports.dst; hash_keys.basic.ip_proto = flkeys->basic.ip_proto; } else { memset(&hash_keys, 0, sizeof(hash_keys)); hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; hash_keys.addrs.v6addrs.src = fl6->saddr; hash_keys.addrs.v6addrs.dst = fl6->daddr; hash_keys.ports.src = fl6->fl6_sport; hash_keys.ports.dst = fl6->fl6_dport; hash_keys.basic.ip_proto = fl6->flowi6_proto; } mhash = flow_hash_from_keys(&hash_keys); break; case 2: memset(&hash_keys, 0, sizeof(hash_keys)); hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; if (skb) { struct flow_keys keys; if (!flkeys) { skb_flow_dissect_flow_keys(skb, &keys, 0); flkeys = &keys; } /* Inner can be v4 or v6 */ if (flkeys->control.addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) { hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS; hash_keys.addrs.v4addrs.src = flkeys->addrs.v4addrs.src; hash_keys.addrs.v4addrs.dst = flkeys->addrs.v4addrs.dst; } else if (flkeys->control.addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) { hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; hash_keys.addrs.v6addrs.src = flkeys->addrs.v6addrs.src; hash_keys.addrs.v6addrs.dst = flkeys->addrs.v6addrs.dst; hash_keys.tags.flow_label = flkeys->tags.flow_label; hash_keys.basic.ip_proto = flkeys->basic.ip_proto; } else { /* Same as case 0 */ hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; ip6_multipath_l3_keys(skb, &hash_keys, flkeys); } } else { /* Same as case 0 */ hash_keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS; hash_keys.addrs.v6addrs.src = fl6->saddr; hash_keys.addrs.v6addrs.dst = fl6->daddr; hash_keys.tags.flow_label = (__force u32)flowi6_get_flowlabel(fl6); hash_keys.basic.ip_proto = fl6->flowi6_proto; } mhash = flow_hash_from_keys(&hash_keys); break; case 3: if (skb) mhash = rt6_multipath_custom_hash_skb(net, skb); else mhash = rt6_multipath_custom_hash_fl6(net, fl6); break; } return mhash >> 1; } /* Called with rcu held */ void ip6_route_input(struct sk_buff *skb) { const struct ipv6hdr *iph = ipv6_hdr(skb); struct net *net = dev_net(skb->dev); int flags = RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_DST_NOREF; struct ip_tunnel_info *tun_info; struct flowi6 fl6 = { .flowi6_iif = skb->dev->ifindex, .daddr = iph->daddr, .saddr = iph->saddr, .flowlabel = ip6_flowinfo(iph), .flowi6_mark = skb->mark, .flowi6_proto = iph->nexthdr, }; struct flow_keys *flkeys = NULL, _flkeys; tun_info = skb_tunnel_info(skb); if (tun_info && !(tun_info->mode & IP_TUNNEL_INFO_TX)) fl6.flowi6_tun_key.tun_id = tun_info->key.tun_id; if (fib6_rules_early_flow_dissect(net, skb, &fl6, &_flkeys)) flkeys = &_flkeys; if (unlikely(fl6.flowi6_proto == IPPROTO_ICMPV6)) fl6.mp_hash = rt6_multipath_hash(net, &fl6, skb, flkeys); skb_dst_drop(skb); skb_dst_set_noref(skb, ip6_route_input_lookup(net, skb->dev, &fl6, skb, flags)); } INDIRECT_CALLABLE_SCOPE struct rt6_info *ip6_pol_route_output(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags) { return ip6_pol_route(net, table, fl6->flowi6_oif, fl6, skb, flags); } static struct dst_entry *ip6_route_output_flags_noref(struct net *net, const struct sock *sk, struct flowi6 *fl6, int flags) { bool any_src; if (ipv6_addr_type(&fl6->daddr) & (IPV6_ADDR_MULTICAST | IPV6_ADDR_LINKLOCAL)) { struct dst_entry *dst; /* This function does not take refcnt on the dst */ dst = l3mdev_link_scope_lookup(net, fl6); if (dst) return dst; } fl6->flowi6_iif = LOOPBACK_IFINDEX; flags |= RT6_LOOKUP_F_DST_NOREF; any_src = ipv6_addr_any(&fl6->saddr); if ((sk && sk->sk_bound_dev_if) || rt6_need_strict(&fl6->daddr) || (fl6->flowi6_oif && any_src)) flags |= RT6_LOOKUP_F_IFACE; if (!any_src) flags |= RT6_LOOKUP_F_HAS_SADDR; else if (sk) flags |= rt6_srcprefs2flags(READ_ONCE(inet6_sk(sk)->srcprefs)); return fib6_rule_lookup(net, fl6, NULL, flags, ip6_pol_route_output); } struct dst_entry *ip6_route_output_flags(struct net *net, const struct sock *sk, struct flowi6 *fl6, int flags) { struct dst_entry *dst; struct rt6_info *rt6; rcu_read_lock(); dst = ip6_route_output_flags_noref(net, sk, fl6, flags); rt6 = dst_rt6_info(dst); /* For dst cached in uncached_list, refcnt is already taken. */ if (list_empty(&rt6->dst.rt_uncached) && !dst_hold_safe(dst)) { dst = &net->ipv6.ip6_null_entry->dst; dst_hold(dst); } rcu_read_unlock(); return dst; } EXPORT_SYMBOL_GPL(ip6_route_output_flags); struct dst_entry *ip6_blackhole_route(struct net *net, struct dst_entry *dst_orig) { struct rt6_info *rt, *ort = dst_rt6_info(dst_orig); struct net_device *loopback_dev = net->loopback_dev; struct dst_entry *new = NULL; rt = dst_alloc(&ip6_dst_blackhole_ops, loopback_dev, DST_OBSOLETE_DEAD, 0); if (rt) { rt6_info_init(rt); atomic_inc(&net->ipv6.rt6_stats->fib_rt_alloc); new = &rt->dst; new->__use = 1; new->input = dst_discard; new->output = dst_discard_out; dst_copy_metrics(new, &ort->dst); rt->rt6i_idev = in6_dev_get(loopback_dev); rt->rt6i_gateway = ort->rt6i_gateway; rt->rt6i_flags = ort->rt6i_flags & ~RTF_PCPU; memcpy(&rt->rt6i_dst, &ort->rt6i_dst, sizeof(struct rt6key)); #ifdef CONFIG_IPV6_SUBTREES memcpy(&rt->rt6i_src, &ort->rt6i_src, sizeof(struct rt6key)); #endif } dst_release(dst_orig); return new ? new : ERR_PTR(-ENOMEM); } /* * Destination cache support functions */ static bool fib6_check(struct fib6_info *f6i, u32 cookie) { u32 rt_cookie = 0; if (!fib6_get_cookie_safe(f6i, &rt_cookie) || rt_cookie != cookie) return false; if (fib6_check_expired(f6i)) return false; return true; } static struct dst_entry *rt6_check(struct rt6_info *rt, struct fib6_info *from, u32 cookie) { u32 rt_cookie = 0; if (!from || !fib6_get_cookie_safe(from, &rt_cookie) || rt_cookie != cookie) return NULL; if (rt6_check_expired(rt)) return NULL; return &rt->dst; } static struct dst_entry *rt6_dst_from_check(struct rt6_info *rt, struct fib6_info *from, u32 cookie) { if (!__rt6_check_expired(rt) && rt->dst.obsolete == DST_OBSOLETE_FORCE_CHK && fib6_check(from, cookie)) return &rt->dst; else return NULL; } INDIRECT_CALLABLE_SCOPE struct dst_entry *ip6_dst_check(struct dst_entry *dst, u32 cookie) { struct dst_entry *dst_ret; struct fib6_info *from; struct rt6_info *rt; rt = dst_rt6_info(dst); if (rt->sernum) return rt6_is_valid(rt) ? dst : NULL; rcu_read_lock(); /* All IPV6 dsts are created with ->obsolete set to the value * DST_OBSOLETE_FORCE_CHK which forces validation calls down * into this function always. */ from = rcu_dereference(rt->from); if (from && (rt->rt6i_flags & RTF_PCPU || unlikely(!list_empty(&rt->dst.rt_uncached)))) dst_ret = rt6_dst_from_check(rt, from, cookie); else dst_ret = rt6_check(rt, from, cookie); rcu_read_unlock(); return dst_ret; } EXPORT_INDIRECT_CALLABLE(ip6_dst_check); static void ip6_negative_advice(struct sock *sk, struct dst_entry *dst) { struct rt6_info *rt = dst_rt6_info(dst); if (rt->rt6i_flags & RTF_CACHE) { rcu_read_lock(); if (rt6_check_expired(rt)) { /* counteract the dst_release() in sk_dst_reset() */ dst_hold(dst); sk_dst_reset(sk); rt6_remove_exception_rt(rt); } rcu_read_unlock(); return; } sk_dst_reset(sk); } static void ip6_link_failure(struct sk_buff *skb) { struct rt6_info *rt; icmpv6_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0); rt = dst_rt6_info(skb_dst(skb)); if (rt) { rcu_read_lock(); if (rt->rt6i_flags & RTF_CACHE) { rt6_remove_exception_rt(rt); } else { struct fib6_info *from; struct fib6_node *fn; from = rcu_dereference(rt->from); if (from) { fn = rcu_dereference(from->fib6_node); if (fn && (rt->rt6i_flags & RTF_DEFAULT)) WRITE_ONCE(fn->fn_sernum, -1); } } rcu_read_unlock(); } } static void rt6_update_expires(struct rt6_info *rt0, int timeout) { if (!(rt0->rt6i_flags & RTF_EXPIRES)) { struct fib6_info *from; rcu_read_lock(); from = rcu_dereference(rt0->from); if (from) rt0->dst.expires = from->expires; rcu_read_unlock(); } dst_set_expires(&rt0->dst, timeout); rt0->rt6i_flags |= RTF_EXPIRES; } static void rt6_do_update_pmtu(struct rt6_info *rt, u32 mtu) { struct net *net = dev_net(rt->dst.dev); dst_metric_set(&rt->dst, RTAX_MTU, mtu); rt->rt6i_flags |= RTF_MODIFIED; rt6_update_expires(rt, net->ipv6.sysctl.ip6_rt_mtu_expires); } static bool rt6_cache_allowed_for_pmtu(const struct rt6_info *rt) { return !(rt->rt6i_flags & RTF_CACHE) && (rt->rt6i_flags & RTF_PCPU || rcu_access_pointer(rt->from)); } static void __ip6_rt_update_pmtu(struct dst_entry *dst, const struct sock *sk, const struct ipv6hdr *iph, u32 mtu, bool confirm_neigh) { const struct in6_addr *daddr, *saddr; struct rt6_info *rt6 = dst_rt6_info(dst); /* Note: do *NOT* check dst_metric_locked(dst, RTAX_MTU) * IPv6 pmtu discovery isn't optional, so 'mtu lock' cannot disable it. * [see also comment in rt6_mtu_change_route()] */ if (iph) { daddr = &iph->daddr; saddr = &iph->saddr; } else if (sk) { daddr = &sk->sk_v6_daddr; saddr = &inet6_sk(sk)->saddr; } else { daddr = NULL; saddr = NULL; } if (confirm_neigh) dst_confirm_neigh(dst, daddr); if (mtu < IPV6_MIN_MTU) return; if (mtu >= dst_mtu(dst)) return; if (!rt6_cache_allowed_for_pmtu(rt6)) { rt6_do_update_pmtu(rt6, mtu); /* update rt6_ex->stamp for cache */ if (rt6->rt6i_flags & RTF_CACHE) rt6_update_exception_stamp_rt(rt6); } else if (daddr) { struct fib6_result res = {}; struct rt6_info *nrt6; rcu_read_lock(); res.f6i = rcu_dereference(rt6->from); if (!res.f6i) goto out_unlock; res.fib6_flags = res.f6i->fib6_flags; res.fib6_type = res.f6i->fib6_type; if (res.f6i->nh) { struct fib6_nh_match_arg arg = { .dev = dst->dev, .gw = &rt6->rt6i_gateway, }; nexthop_for_each_fib6_nh(res.f6i->nh, fib6_nh_find_match, &arg); /* fib6_info uses a nexthop that does not have fib6_nh * using the dst->dev + gw. Should be impossible. */ if (!arg.match) goto out_unlock; res.nh = arg.match; } else { res.nh = res.f6i->fib6_nh; } nrt6 = ip6_rt_cache_alloc(&res, daddr, saddr); if (nrt6) { rt6_do_update_pmtu(nrt6, mtu); if (rt6_insert_exception(nrt6, &res)) dst_release_immediate(&nrt6->dst); } out_unlock: rcu_read_unlock(); } } static void ip6_rt_update_pmtu(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb, u32 mtu, bool confirm_neigh) { __ip6_rt_update_pmtu(dst, sk, skb ? ipv6_hdr(skb) : NULL, mtu, confirm_neigh); } void ip6_update_pmtu(struct sk_buff *skb, struct net *net, __be32 mtu, int oif, u32 mark, kuid_t uid) { const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data; struct dst_entry *dst; struct flowi6 fl6 = { .flowi6_oif = oif, .flowi6_mark = mark ? mark : IP6_REPLY_MARK(net, skb->mark), .daddr = iph->daddr, .saddr = iph->saddr, .flowlabel = ip6_flowinfo(iph), .flowi6_uid = uid, }; dst = ip6_route_output(net, NULL, &fl6); if (!dst->error) __ip6_rt_update_pmtu(dst, NULL, iph, ntohl(mtu), true); dst_release(dst); } EXPORT_SYMBOL_GPL(ip6_update_pmtu); void ip6_sk_update_pmtu(struct sk_buff *skb, struct sock *sk, __be32 mtu) { int oif = sk->sk_bound_dev_if; struct dst_entry *dst; if (!oif && skb->dev) oif = l3mdev_master_ifindex(skb->dev); ip6_update_pmtu(skb, sock_net(sk), mtu, oif, READ_ONCE(sk->sk_mark), sk->sk_uid); dst = __sk_dst_get(sk); if (!dst || !dst->obsolete || dst->ops->check(dst, inet6_sk(sk)->dst_cookie)) return; bh_lock_sock(sk); if (!sock_owned_by_user(sk) && !ipv6_addr_v4mapped(&sk->sk_v6_daddr)) ip6_datagram_dst_update(sk, false); bh_unlock_sock(sk); } EXPORT_SYMBOL_GPL(ip6_sk_update_pmtu); void ip6_sk_dst_store_flow(struct sock *sk, struct dst_entry *dst, const struct flowi6 *fl6) { #ifdef CONFIG_IPV6_SUBTREES struct ipv6_pinfo *np = inet6_sk(sk); #endif ip6_dst_store(sk, dst, ipv6_addr_equal(&fl6->daddr, &sk->sk_v6_daddr) ? &sk->sk_v6_daddr : NULL, #ifdef CONFIG_IPV6_SUBTREES ipv6_addr_equal(&fl6->saddr, &np->saddr) ? &np->saddr : #endif NULL); } static bool ip6_redirect_nh_match(const struct fib6_result *res, struct flowi6 *fl6, const struct in6_addr *gw, struct rt6_info **ret) { const struct fib6_nh *nh = res->nh; if (nh->fib_nh_flags & RTNH_F_DEAD || !nh->fib_nh_gw_family || fl6->flowi6_oif != nh->fib_nh_dev->ifindex) return false; /* rt_cache's gateway might be different from its 'parent' * in the case of an ip redirect. * So we keep searching in the exception table if the gateway * is different. */ if (!ipv6_addr_equal(gw, &nh->fib_nh_gw6)) { struct rt6_info *rt_cache; rt_cache = rt6_find_cached_rt(res, &fl6->daddr, &fl6->saddr); if (rt_cache && ipv6_addr_equal(gw, &rt_cache->rt6i_gateway)) { *ret = rt_cache; return true; } return false; } return true; } struct fib6_nh_rd_arg { struct fib6_result *res; struct flowi6 *fl6; const struct in6_addr *gw; struct rt6_info **ret; }; static int fib6_nh_redirect_match(struct fib6_nh *nh, void *_arg) { struct fib6_nh_rd_arg *arg = _arg; arg->res->nh = nh; return ip6_redirect_nh_match(arg->res, arg->fl6, arg->gw, arg->ret); } /* Handle redirects */ struct ip6rd_flowi { struct flowi6 fl6; struct in6_addr gateway; }; INDIRECT_CALLABLE_SCOPE struct rt6_info *__ip6_route_redirect(struct net *net, struct fib6_table *table, struct flowi6 *fl6, const struct sk_buff *skb, int flags) { struct ip6rd_flowi *rdfl = (struct ip6rd_flowi *)fl6; struct rt6_info *ret = NULL; struct fib6_result res = {}; struct fib6_nh_rd_arg arg = { .res = &res, .fl6 = fl6, .gw = &rdfl->gateway, .ret = &ret }; struct fib6_info *rt; struct fib6_node *fn; /* Get the "current" route for this destination and * check if the redirect has come from appropriate router. * * RFC 4861 specifies that redirects should only be * accepted if they come from the nexthop to the target. * Due to the way the routes are chosen, this notion * is a bit fuzzy and one might need to check all possible * routes. */ rcu_read_lock(); fn = fib6_node_lookup(&table->tb6_root, &fl6->daddr, &fl6->saddr); restart: for_each_fib6_node_rt_rcu(fn) { res.f6i = rt; if (fib6_check_expired(rt)) continue; if (rt->fib6_flags & RTF_REJECT) break; if (unlikely(rt->nh)) { if (nexthop_is_blackhole(rt->nh)) continue; /* on match, res->nh is filled in and potentially ret */ if (nexthop_for_each_fib6_nh(rt->nh, fib6_nh_redirect_match, &arg)) goto out; } else { res.nh = rt->fib6_nh; if (ip6_redirect_nh_match(&res, fl6, &rdfl->gateway, &ret)) goto out; } } if (!rt) rt = net->ipv6.fib6_null_entry; else if (rt->fib6_flags & RTF_REJECT) { ret = net->ipv6.ip6_null_entry; goto out; } if (rt == net->ipv6.fib6_null_entry) { fn = fib6_backtrack(fn, &fl6->saddr); if (fn) goto restart; } res.f6i = rt; res.nh = rt->fib6_nh; out: if (ret) { ip6_hold_safe(net, &ret); } else { res.fib6_flags = res.f6i->fib6_flags; res.fib6_type = res.f6i->fib6_type; ret = ip6_create_rt_rcu(&res); } rcu_read_unlock(); trace_fib6_table_lookup(net, &res, table, fl6); return ret; }; static struct dst_entry *ip6_route_redirect(struct net *net, const struct flowi6 *fl6, const struct sk_buff *skb, const struct in6_addr *gateway) { int flags = RT6_LOOKUP_F_HAS_SADDR; struct ip6rd_flowi rdfl; rdfl.fl6 = *fl6; rdfl.gateway = *gateway; return fib6_rule_lookup(net, &rdfl.fl6, skb, flags, __ip6_route_redirect); } void ip6_redirect(struct sk_buff *skb, struct net *net, int oif, u32 mark, kuid_t uid) { const struct ipv6hdr *iph = (struct ipv6hdr *) skb->data; struct dst_entry *dst; struct flowi6 fl6 = { .flowi6_iif = LOOPBACK_IFINDEX, .flowi6_oif = oif, .flowi6_mark = mark, .daddr = iph->daddr, .saddr = iph->saddr, .flowlabel = ip6_flowinfo(iph), .flowi6_uid = uid, }; dst = ip6_route_redirect(net, &fl6, skb, &ipv6_hdr(skb)->saddr); rt6_do_redirect(dst, NULL, skb); dst_release(dst); } EXPORT_SYMBOL_GPL(ip6_redirect); void ip6_redirect_no_header(struct sk_buff *skb, struct net *net, int oif) { const struct ipv6hdr *iph = ipv6_hdr(skb); const struct rd_msg *msg = (struct rd_msg *)icmp6_hdr(skb); struct dst_entry *dst; struct flowi6 fl6 = { .flowi6_iif = LOOPBACK_IFINDEX, .flowi6_oif = oif, .daddr = msg->dest, .saddr = iph->daddr, .flowi6_uid = sock_net_uid(net, NULL), }; dst = ip6_route_redirect(net, &fl6, skb, &iph->saddr); rt6_do_redirect(dst, NULL, skb); dst_release(dst); } void ip6_sk_redirect(struct sk_buff *skb, struct sock *sk) { ip6_redirect(skb, sock_net(sk), sk->sk_bound_dev_if, READ_ONCE(sk->sk_mark), sk->sk_uid); } EXPORT_SYMBOL_GPL(ip6_sk_redirect); static unsigned int ip6_default_advmss(const struct dst_entry *dst) { struct net_device *dev = dst->dev; unsigned int mtu = dst_mtu(dst); struct net *net = dev_net(dev); mtu -= sizeof(struct ipv6hdr) + sizeof(struct tcphdr); if (mtu < net->ipv6.sysctl.ip6_rt_min_advmss) mtu = net->ipv6.sysctl.ip6_rt_min_advmss; /* * Maximal non-jumbo IPv6 payload is IPV6_MAXPLEN and * corresponding MSS is IPV6_MAXPLEN - tcp_header_size. * IPV6_MAXPLEN is also valid and means: "any MSS, * rely only on pmtu discovery" */ if (mtu > IPV6_MAXPLEN - sizeof(struct tcphdr)) mtu = IPV6_MAXPLEN; return mtu; } INDIRECT_CALLABLE_SCOPE unsigned int ip6_mtu(const struct dst_entry *dst) { return ip6_dst_mtu_maybe_forward(dst, false); } EXPORT_INDIRECT_CALLABLE(ip6_mtu); /* MTU selection: * 1. mtu on route is locked - use it * 2. mtu from nexthop exception * 3. mtu from egress device * * based on ip6_dst_mtu_forward and exception logic of * rt6_find_cached_rt; called with rcu_read_lock */ u32 ip6_mtu_from_fib6(const struct fib6_result *res, const struct in6_addr *daddr, const struct in6_addr *saddr) { const struct fib6_nh *nh = res->nh; struct fib6_info *f6i = res->f6i; struct inet6_dev *idev; struct rt6_info *rt; u32 mtu = 0; if (unlikely(fib6_metric_locked(f6i, RTAX_MTU))) { mtu = f6i->fib6_pmtu; if (mtu) goto out; } rt = rt6_find_cached_rt(res, daddr, saddr); if (unlikely(rt)) { mtu = dst_metric_raw(&rt->dst, RTAX_MTU); } else { struct net_device *dev = nh->fib_nh_dev; mtu = IPV6_MIN_MTU; idev = __in6_dev_get(dev); if (idev) mtu = max_t(u32, mtu, READ_ONCE(idev->cnf.mtu6)); } mtu = min_t(unsigned int, mtu, IP6_MAX_MTU); out: return mtu - lwtunnel_headroom(nh->fib_nh_lws, mtu); } struct dst_entry *icmp6_dst_alloc(struct net_device *dev, struct flowi6 *fl6) { struct dst_entry *dst; struct rt6_info *rt; struct inet6_dev *idev = in6_dev_get(dev); struct net *net = dev_net(dev); if (unlikely(!idev)) return ERR_PTR(-ENODEV); rt = ip6_dst_alloc(net, dev, 0); if (unlikely(!rt)) { in6_dev_put(idev); dst = ERR_PTR(-ENOMEM); goto out; } rt->dst.input = ip6_input; rt->dst.output = ip6_output; rt->rt6i_gateway = fl6->daddr; rt->rt6i_dst.addr = fl6->daddr; rt->rt6i_dst.plen = 128; rt->rt6i_idev = idev; dst_metric_set(&rt->dst, RTAX_HOPLIMIT, 0); /* Add this dst into uncached_list so that rt6_disable_ip() can * do proper release of the net_device */ rt6_uncached_list_add(rt); dst = xfrm_lookup(net, &rt->dst, flowi6_to_flowi(fl6), NULL, 0); out: return dst; } static void ip6_dst_gc(struct dst_ops *ops) { struct net *net = container_of(ops, struct net, ipv6.ip6_dst_ops); int rt_min_interval = net->ipv6.sysctl.ip6_rt_gc_min_interval; int rt_elasticity = net->ipv6.sysctl.ip6_rt_gc_elasticity; int rt_gc_timeout = net->ipv6.sysctl.ip6_rt_gc_timeout; unsigned long rt_last_gc = net->ipv6.ip6_rt_last_gc; unsigned int val; int entries; if (time_after(rt_last_gc + rt_min_interval, jiffies)) goto out; fib6_run_gc(atomic_inc_return(&net->ipv6.ip6_rt_gc_expire), net, true); entries = dst_entries_get_slow(ops); if (entries < ops->gc_thresh) atomic_set(&net->ipv6.ip6_rt_gc_expire, rt_gc_timeout >> 1); out: val = atomic_read(&net->ipv6.ip6_rt_gc_expire); atomic_set(&net->ipv6.ip6_rt_gc_expire, val - (val >> rt_elasticity)); } static int ip6_nh_lookup_table(struct net *net, struct fib6_config *cfg, const struct in6_addr *gw_addr, u32 tbid, int flags, struct fib6_result *res) { struct flowi6 fl6 = { .flowi6_oif = cfg->fc_ifindex, .daddr = *gw_addr, .saddr = cfg->fc_prefsrc, }; struct fib6_table *table; int err; table = fib6_get_table(net, tbid); if (!table) return -EINVAL; if (!ipv6_addr_any(&cfg->fc_prefsrc)) flags |= RT6_LOOKUP_F_HAS_SADDR; flags |= RT6_LOOKUP_F_IGNORE_LINKSTATE; err = fib6_table_lookup(net, table, cfg->fc_ifindex, &fl6, res, flags); if (!err && res->f6i != net->ipv6.fib6_null_entry) fib6_select_path(net, res, &fl6, cfg->fc_ifindex, cfg->fc_ifindex != 0, NULL, flags); return err; } static int ip6_route_check_nh_onlink(struct net *net, struct fib6_config *cfg, const struct net_device *dev, struct netlink_ext_ack *extack) { u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN; const struct in6_addr *gw_addr = &cfg->fc_gateway; struct fib6_result res = {}; int err; err = ip6_nh_lookup_table(net, cfg, gw_addr, tbid, 0, &res); if (!err && !(res.fib6_flags & RTF_REJECT) && /* ignore match if it is the default route */ !ipv6_addr_any(&res.f6i->fib6_dst.addr) && (res.fib6_type != RTN_UNICAST || dev != res.nh->fib_nh_dev)) { NL_SET_ERR_MSG(extack, "Nexthop has invalid gateway or device mismatch"); err = -EINVAL; } return err; } static int ip6_route_check_nh(struct net *net, struct fib6_config *cfg, struct net_device **_dev, netdevice_tracker *dev_tracker, struct inet6_dev **idev) { const struct in6_addr *gw_addr = &cfg->fc_gateway; struct net_device *dev = _dev ? *_dev : NULL; int flags = RT6_LOOKUP_F_IFACE; struct fib6_result res = {}; int err = -EHOSTUNREACH; if (cfg->fc_table) { err = ip6_nh_lookup_table(net, cfg, gw_addr, cfg->fc_table, flags, &res); /* gw_addr can not require a gateway or resolve to a reject * route. If a device is given, it must match the result. */ if (err || res.fib6_flags & RTF_REJECT || res.nh->fib_nh_gw_family || (dev && dev != res.nh->fib_nh_dev)) err = -EHOSTUNREACH; } if (err < 0) { struct flowi6 fl6 = { .flowi6_oif = cfg->fc_ifindex, .daddr = *gw_addr, }; err = fib6_lookup(net, cfg->fc_ifindex, &fl6, &res, flags); if (err || res.fib6_flags & RTF_REJECT || res.nh->fib_nh_gw_family) err = -EHOSTUNREACH; if (err) return err; fib6_select_path(net, &res, &fl6, cfg->fc_ifindex, cfg->fc_ifindex != 0, NULL, flags); } err = 0; if (dev) { if (dev != res.nh->fib_nh_dev) err = -EHOSTUNREACH; } else { *_dev = dev = res.nh->fib_nh_dev; netdev_hold(dev, dev_tracker, GFP_ATOMIC); *idev = in6_dev_get(dev); } return err; } static int ip6_validate_gw(struct net *net, struct fib6_config *cfg, struct net_device **_dev, netdevice_tracker *dev_tracker, struct inet6_dev **idev, struct netlink_ext_ack *extack) { const struct in6_addr *gw_addr = &cfg->fc_gateway; int gwa_type = ipv6_addr_type(gw_addr); bool skip_dev = gwa_type & IPV6_ADDR_LINKLOCAL ? false : true; const struct net_device *dev = *_dev; bool need_addr_check = !dev; int err = -EINVAL; /* if gw_addr is local we will fail to detect this in case * address is still TENTATIVE (DAD in progress). rt6_lookup() * will return already-added prefix route via interface that * prefix route was assigned to, which might be non-loopback. */ if (dev && ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) { NL_SET_ERR_MSG(extack, "Gateway can not be a local address"); goto out; } if (gwa_type != (IPV6_ADDR_LINKLOCAL | IPV6_ADDR_UNICAST)) { /* IPv6 strictly inhibits using not link-local * addresses as nexthop address. * Otherwise, router will not able to send redirects. * It is very good, but in some (rare!) circumstances * (SIT, PtP, NBMA NOARP links) it is handy to allow * some exceptions. --ANK * We allow IPv4-mapped nexthops to support RFC4798-type * addressing */ if (!(gwa_type & (IPV6_ADDR_UNICAST | IPV6_ADDR_MAPPED))) { NL_SET_ERR_MSG(extack, "Invalid gateway address"); goto out; } rcu_read_lock(); if (cfg->fc_flags & RTNH_F_ONLINK) err = ip6_route_check_nh_onlink(net, cfg, dev, extack); else err = ip6_route_check_nh(net, cfg, _dev, dev_tracker, idev); rcu_read_unlock(); if (err) goto out; } /* reload in case device was changed */ dev = *_dev; err = -EINVAL; if (!dev) { NL_SET_ERR_MSG(extack, "Egress device not specified"); goto out; } else if (dev->flags & IFF_LOOPBACK) { NL_SET_ERR_MSG(extack, "Egress device can not be loopback device for this route"); goto out; } /* if we did not check gw_addr above, do so now that the * egress device has been resolved. */ if (need_addr_check && ipv6_chk_addr_and_flags(net, gw_addr, dev, skip_dev, 0, 0)) { NL_SET_ERR_MSG(extack, "Gateway can not be a local address"); goto out; } err = 0; out: return err; } static bool fib6_is_reject(u32 flags, struct net_device *dev, int addr_type) { if ((flags & RTF_REJECT) || (dev && (dev->flags & IFF_LOOPBACK) && !(addr_type & IPV6_ADDR_LOOPBACK) && !(flags & (RTF_ANYCAST | RTF_LOCAL)))) return true; return false; } int fib6_nh_init(struct net *net, struct fib6_nh *fib6_nh, struct fib6_config *cfg, gfp_t gfp_flags, struct netlink_ext_ack *extack) { netdevice_tracker *dev_tracker = &fib6_nh->fib_nh_dev_tracker; struct net_device *dev = NULL; struct inet6_dev *idev = NULL; int addr_type; int err; fib6_nh->fib_nh_family = AF_INET6; #ifdef CONFIG_IPV6_ROUTER_PREF fib6_nh->last_probe = jiffies; #endif if (cfg->fc_is_fdb) { fib6_nh->fib_nh_gw6 = cfg->fc_gateway; fib6_nh->fib_nh_gw_family = AF_INET6; return 0; } err = -ENODEV; if (cfg->fc_ifindex) { dev = netdev_get_by_index(net, cfg->fc_ifindex, dev_tracker, gfp_flags); if (!dev) goto out; idev = in6_dev_get(dev); if (!idev) goto out; } if (cfg->fc_flags & RTNH_F_ONLINK) { if (!dev) { NL_SET_ERR_MSG(extack, "Nexthop device required for onlink"); goto out; } if (!(dev->flags & IFF_UP)) { NL_SET_ERR_MSG(extack, "Nexthop device is not up"); err = -ENETDOWN; goto out; } fib6_nh->fib_nh_flags |= RTNH_F_ONLINK; } fib6_nh->fib_nh_weight = 1; /* We cannot add true routes via loopback here, * they would result in kernel looping; promote them to reject routes */ addr_type = ipv6_addr_type(&cfg->fc_dst); if (fib6_is_reject(cfg->fc_flags, dev, addr_type)) { /* hold loopback dev/idev if we haven't done so. */ if (dev != net->loopback_dev) { if (dev) { netdev_put(dev, dev_tracker); in6_dev_put(idev); } dev = net->loopback_dev; netdev_hold(dev, dev_tracker, gfp_flags); idev = in6_dev_get(dev); if (!idev) { err = -ENODEV; goto out; } } goto pcpu_alloc; } if (cfg->fc_flags & RTF_GATEWAY) { err = ip6_validate_gw(net, cfg, &dev, dev_tracker, &idev, extack); if (err) goto out; fib6_nh->fib_nh_gw6 = cfg->fc_gateway; fib6_nh->fib_nh_gw_family = AF_INET6; } err = -ENODEV; if (!dev) goto out; if (idev->cnf.disable_ipv6) { NL_SET_ERR_MSG(extack, "IPv6 is disabled on nexthop device"); err = -EACCES; goto out; } if (!(dev->flags & IFF_UP) && !cfg->fc_ignore_dev_down) { NL_SET_ERR_MSG(extack, "Nexthop device is not up"); err = -ENETDOWN; goto out; } if (!(cfg->fc_flags & (RTF_LOCAL | RTF_ANYCAST)) && !netif_carrier_ok(dev)) fib6_nh->fib_nh_flags |= RTNH_F_LINKDOWN; err = fib_nh_common_init(net, &fib6_nh->nh_common, cfg->fc_encap, cfg->fc_encap_type, cfg, gfp_flags, extack); if (err) goto out; pcpu_alloc: fib6_nh->rt6i_pcpu = alloc_percpu_gfp(struct rt6_info *, gfp_flags); if (!fib6_nh->rt6i_pcpu) { err = -ENOMEM; goto out; } fib6_nh->fib_nh_dev = dev; fib6_nh->fib_nh_oif = dev->ifindex; err = 0; out: if (idev) in6_dev_put(idev); if (err) { lwtstate_put(fib6_nh->fib_nh_lws); fib6_nh->fib_nh_lws = NULL; netdev_put(dev, dev_tracker); } return err; } void fib6_nh_release(struct fib6_nh *fib6_nh) { struct rt6_exception_bucket *bucket; rcu_read_lock(); fib6_nh_flush_exceptions(fib6_nh, NULL); bucket = fib6_nh_get_excptn_bucket(fib6_nh, NULL); if (bucket) { rcu_assign_pointer(fib6_nh->rt6i_exception_bucket, NULL); kfree(bucket); } rcu_read_unlock(); fib6_nh_release_dsts(fib6_nh); free_percpu(fib6_nh->rt6i_pcpu); fib_nh_common_release(&fib6_nh->nh_common); } void fib6_nh_release_dsts(struct fib6_nh *fib6_nh) { int cpu; if (!fib6_nh->rt6i_pcpu) return; for_each_possible_cpu(cpu) { struct rt6_info *pcpu_rt, **ppcpu_rt; ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu); pcpu_rt = xchg(ppcpu_rt, NULL); if (pcpu_rt) { dst_dev_put(&pcpu_rt->dst); dst_release(&pcpu_rt->dst); } } } static struct fib6_info *ip6_route_info_create(struct fib6_config *cfg, gfp_t gfp_flags, struct netlink_ext_ack *extack) { struct net *net = cfg->fc_nlinfo.nl_net; struct fib6_info *rt = NULL; struct nexthop *nh = NULL; struct fib6_table *table; struct fib6_nh *fib6_nh; int err = -EINVAL; int addr_type; /* RTF_PCPU is an internal flag; can not be set by userspace */ if (cfg->fc_flags & RTF_PCPU) { NL_SET_ERR_MSG(extack, "Userspace can not set RTF_PCPU"); goto out; } /* RTF_CACHE is an internal flag; can not be set by userspace */ if (cfg->fc_flags & RTF_CACHE) { NL_SET_ERR_MSG(extack, "Userspace can not set RTF_CACHE"); goto out; } if (cfg->fc_type > RTN_MAX) { NL_SET_ERR_MSG(extack, "Invalid route type"); goto out; } if (cfg->fc_dst_len > 128) { NL_SET_ERR_MSG(extack, "Invalid prefix length"); goto out; } if (cfg->fc_src_len > 128) { NL_SET_ERR_MSG(extack, "Invalid source address length"); goto out; } #ifndef CONFIG_IPV6_SUBTREES if (cfg->fc_src_len) { NL_SET_ERR_MSG(extack, "Specifying source address requires IPV6_SUBTREES to be enabled"); goto out; } #endif if (cfg->fc_nh_id) { nh = nexthop_find_by_id(net, cfg->fc_nh_id); if (!nh) { NL_SET_ERR_MSG(extack, "Nexthop id does not exist"); goto out; } err = fib6_check_nexthop(nh, cfg, extack); if (err) goto out; } err = -ENOBUFS; if (cfg->fc_nlinfo.nlh && !(cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_CREATE)) { table = fib6_get_table(net, cfg->fc_table); if (!table) { pr_warn("NLM_F_CREATE should be specified when creating new route\n"); table = fib6_new_table(net, cfg->fc_table); } } else { table = fib6_new_table(net, cfg->fc_table); } if (!table) goto out; err = -ENOMEM; rt = fib6_info_alloc(gfp_flags, !nh); if (!rt) goto out; rt->fib6_metrics = ip_fib_metrics_init(net, cfg->fc_mx, cfg->fc_mx_len, extack); if (IS_ERR(rt->fib6_metrics)) { err = PTR_ERR(rt->fib6_metrics); /* Do not leave garbage there. */ rt->fib6_metrics = (struct dst_metrics *)&dst_default_metrics; goto out_free; } if (cfg->fc_flags & RTF_ADDRCONF) rt->dst_nocount = true; if (cfg->fc_flags & RTF_EXPIRES) fib6_set_expires(rt, jiffies + clock_t_to_jiffies(cfg->fc_expires)); if (cfg->fc_protocol == RTPROT_UNSPEC) cfg->fc_protocol = RTPROT_BOOT; rt->fib6_protocol = cfg->fc_protocol; rt->fib6_table = table; rt->fib6_metric = cfg->fc_metric; rt->fib6_type = cfg->fc_type ? : RTN_UNICAST; rt->fib6_flags = cfg->fc_flags & ~RTF_GATEWAY; ipv6_addr_prefix(&rt->fib6_dst.addr, &cfg->fc_dst, cfg->fc_dst_len); rt->fib6_dst.plen = cfg->fc_dst_len; #ifdef CONFIG_IPV6_SUBTREES ipv6_addr_prefix(&rt->fib6_src.addr, &cfg->fc_src, cfg->fc_src_len); rt->fib6_src.plen = cfg->fc_src_len; #endif if (nh) { if (rt->fib6_src.plen) { NL_SET_ERR_MSG(extack, "Nexthops can not be used with source routing"); goto out_free; } if (!nexthop_get(nh)) { NL_SET_ERR_MSG(extack, "Nexthop has been deleted"); goto out_free; } rt->nh = nh; fib6_nh = nexthop_fib6_nh(rt->nh); } else { err = fib6_nh_init(net, rt->fib6_nh, cfg, gfp_flags, extack); if (err) goto out; fib6_nh = rt->fib6_nh; /* We cannot add true routes via loopback here, they would * result in kernel looping; promote them to reject routes */ addr_type = ipv6_addr_type(&cfg->fc_dst); if (fib6_is_reject(cfg->fc_flags, rt->fib6_nh->fib_nh_dev, addr_type)) rt->fib6_flags = RTF_REJECT | RTF_NONEXTHOP; } if (!ipv6_addr_any(&cfg->fc_prefsrc)) { struct net_device *dev = fib6_nh->fib_nh_dev; if (!ipv6_chk_addr(net, &cfg->fc_prefsrc, dev, 0)) { NL_SET_ERR_MSG(extack, "Invalid source address"); err = -EINVAL; goto out; } rt->fib6_prefsrc.addr = cfg->fc_prefsrc; rt->fib6_prefsrc.plen = 128; } else rt->fib6_prefsrc.plen = 0; return rt; out: fib6_info_release(rt); return ERR_PTR(err); out_free: ip_fib_metrics_put(rt->fib6_metrics); kfree(rt); return ERR_PTR(err); } int ip6_route_add(struct fib6_config *cfg, gfp_t gfp_flags, struct netlink_ext_ack *extack) { struct fib6_info *rt; int err; rt = ip6_route_info_create(cfg, gfp_flags, extack); if (IS_ERR(rt)) return PTR_ERR(rt); err = __ip6_ins_rt(rt, &cfg->fc_nlinfo, extack); fib6_info_release(rt); return err; } static int __ip6_del_rt(struct fib6_info *rt, struct nl_info *info) { struct net *net = info->nl_net; struct fib6_table *table; int err; if (rt == net->ipv6.fib6_null_entry) { err = -ENOENT; goto out; } table = rt->fib6_table; spin_lock_bh(&table->tb6_lock); err = fib6_del(rt, info); spin_unlock_bh(&table->tb6_lock); out: fib6_info_release(rt); return err; } int ip6_del_rt(struct net *net, struct fib6_info *rt, bool skip_notify) { struct nl_info info = { .nl_net = net, .skip_notify = skip_notify }; return __ip6_del_rt(rt, &info); } static int __ip6_del_rt_siblings(struct fib6_info *rt, struct fib6_config *cfg) { struct nl_info *info = &cfg->fc_nlinfo; struct net *net = info->nl_net; struct sk_buff *skb = NULL; struct fib6_table *table; int err = -ENOENT; if (rt == net->ipv6.fib6_null_entry) goto out_put; table = rt->fib6_table; spin_lock_bh(&table->tb6_lock); if (rt->fib6_nsiblings && cfg->fc_delete_all_nh) { struct fib6_info *sibling, *next_sibling; struct fib6_node *fn; /* prefer to send a single notification with all hops */ skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any()); if (skb) { u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0; if (rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0, RTM_DELROUTE, info->portid, seq, 0) < 0) { kfree_skb(skb); skb = NULL; } else info->skip_notify = 1; } /* 'rt' points to the first sibling route. If it is not the * leaf, then we do not need to send a notification. Otherwise, * we need to check if the last sibling has a next route or not * and emit a replace or delete notification, respectively. */ info->skip_notify_kernel = 1; fn = rcu_dereference_protected(rt->fib6_node, lockdep_is_held(&table->tb6_lock)); if (rcu_access_pointer(fn->leaf) == rt) { struct fib6_info *last_sibling, *replace_rt; last_sibling = list_last_entry(&rt->fib6_siblings, struct fib6_info, fib6_siblings); replace_rt = rcu_dereference_protected( last_sibling->fib6_next, lockdep_is_held(&table->tb6_lock)); if (replace_rt) call_fib6_entry_notifiers_replace(net, replace_rt); else call_fib6_multipath_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, rt, rt->fib6_nsiblings, NULL); } list_for_each_entry_safe(sibling, next_sibling, &rt->fib6_siblings, fib6_siblings) { err = fib6_del(sibling, info); if (err) goto out_unlock; } } err = fib6_del(rt, info); out_unlock: spin_unlock_bh(&table->tb6_lock); out_put: fib6_info_release(rt); if (skb) { rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, info->nlh, gfp_any()); } return err; } static int __ip6_del_cached_rt(struct rt6_info *rt, struct fib6_config *cfg) { int rc = -ESRCH; if (cfg->fc_ifindex && rt->dst.dev->ifindex != cfg->fc_ifindex) goto out; if (cfg->fc_flags & RTF_GATEWAY && !ipv6_addr_equal(&cfg->fc_gateway, &rt->rt6i_gateway)) goto out; rc = rt6_remove_exception_rt(rt); out: return rc; } static int ip6_del_cached_rt(struct fib6_config *cfg, struct fib6_info *rt, struct fib6_nh *nh) { struct fib6_result res = { .f6i = rt, .nh = nh, }; struct rt6_info *rt_cache; rt_cache = rt6_find_cached_rt(&res, &cfg->fc_dst, &cfg->fc_src); if (rt_cache) return __ip6_del_cached_rt(rt_cache, cfg); return 0; } struct fib6_nh_del_cached_rt_arg { struct fib6_config *cfg; struct fib6_info *f6i; }; static int fib6_nh_del_cached_rt(struct fib6_nh *nh, void *_arg) { struct fib6_nh_del_cached_rt_arg *arg = _arg; int rc; rc = ip6_del_cached_rt(arg->cfg, arg->f6i, nh); return rc != -ESRCH ? rc : 0; } static int ip6_del_cached_rt_nh(struct fib6_config *cfg, struct fib6_info *f6i) { struct fib6_nh_del_cached_rt_arg arg = { .cfg = cfg, .f6i = f6i }; return nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_del_cached_rt, &arg); } static int ip6_route_del(struct fib6_config *cfg, struct netlink_ext_ack *extack) { struct fib6_table *table; struct fib6_info *rt; struct fib6_node *fn; int err = -ESRCH; table = fib6_get_table(cfg->fc_nlinfo.nl_net, cfg->fc_table); if (!table) { NL_SET_ERR_MSG(extack, "FIB table does not exist"); return err; } rcu_read_lock(); fn = fib6_locate(&table->tb6_root, &cfg->fc_dst, cfg->fc_dst_len, &cfg->fc_src, cfg->fc_src_len, !(cfg->fc_flags & RTF_CACHE)); if (fn) { for_each_fib6_node_rt_rcu(fn) { struct fib6_nh *nh; if (rt->nh && cfg->fc_nh_id && rt->nh->id != cfg->fc_nh_id) continue; if (cfg->fc_flags & RTF_CACHE) { int rc = 0; if (rt->nh) { rc = ip6_del_cached_rt_nh(cfg, rt); } else if (cfg->fc_nh_id) { continue; } else { nh = rt->fib6_nh; rc = ip6_del_cached_rt(cfg, rt, nh); } if (rc != -ESRCH) { rcu_read_unlock(); return rc; } continue; } if (cfg->fc_metric && cfg->fc_metric != rt->fib6_metric) continue; if (cfg->fc_protocol && cfg->fc_protocol != rt->fib6_protocol) continue; if (rt->nh) { if (!fib6_info_hold_safe(rt)) continue; rcu_read_unlock(); return __ip6_del_rt(rt, &cfg->fc_nlinfo); } if (cfg->fc_nh_id) continue; nh = rt->fib6_nh; if (cfg->fc_ifindex && (!nh->fib_nh_dev || nh->fib_nh_dev->ifindex != cfg->fc_ifindex)) continue; if (cfg->fc_flags & RTF_GATEWAY && !ipv6_addr_equal(&cfg->fc_gateway, &nh->fib_nh_gw6)) continue; if (!fib6_info_hold_safe(rt)) continue; rcu_read_unlock(); /* if gateway was specified only delete the one hop */ if (cfg->fc_flags & RTF_GATEWAY) return __ip6_del_rt(rt, &cfg->fc_nlinfo); return __ip6_del_rt_siblings(rt, cfg); } } rcu_read_unlock(); return err; } static void rt6_do_redirect(struct dst_entry *dst, struct sock *sk, struct sk_buff *skb) { struct netevent_redirect netevent; struct rt6_info *rt, *nrt = NULL; struct fib6_result res = {}; struct ndisc_options ndopts; struct inet6_dev *in6_dev; struct neighbour *neigh; struct rd_msg *msg; int optlen, on_link; u8 *lladdr; optlen = skb_tail_pointer(skb) - skb_transport_header(skb); optlen -= sizeof(*msg); if (optlen < 0) { net_dbg_ratelimited("rt6_do_redirect: packet too short\n"); return; } msg = (struct rd_msg *)icmp6_hdr(skb); if (ipv6_addr_is_multicast(&msg->dest)) { net_dbg_ratelimited("rt6_do_redirect: destination address is multicast\n"); return; } on_link = 0; if (ipv6_addr_equal(&msg->dest, &msg->target)) { on_link = 1; } else if (ipv6_addr_type(&msg->target) != (IPV6_ADDR_UNICAST|IPV6_ADDR_LINKLOCAL)) { net_dbg_ratelimited("rt6_do_redirect: target address is not link-local unicast\n"); return; } in6_dev = __in6_dev_get(skb->dev); if (!in6_dev) return; if (READ_ONCE(in6_dev->cnf.forwarding) || !READ_ONCE(in6_dev->cnf.accept_redirects)) return; /* RFC2461 8.1: * The IP source address of the Redirect MUST be the same as the current * first-hop router for the specified ICMP Destination Address. */ if (!ndisc_parse_options(skb->dev, msg->opt, optlen, &ndopts)) { net_dbg_ratelimited("rt6_redirect: invalid ND options\n"); return; } lladdr = NULL; if (ndopts.nd_opts_tgt_lladdr) { lladdr = ndisc_opt_addr_data(ndopts.nd_opts_tgt_lladdr, skb->dev); if (!lladdr) { net_dbg_ratelimited("rt6_redirect: invalid link-layer address length\n"); return; } } rt = dst_rt6_info(dst); if (rt->rt6i_flags & RTF_REJECT) { net_dbg_ratelimited("rt6_redirect: source isn't a valid nexthop for redirect target\n"); return; } /* Redirect received -> path was valid. * Look, redirects are sent only in response to data packets, * so that this nexthop apparently is reachable. --ANK */ dst_confirm_neigh(&rt->dst, &ipv6_hdr(skb)->saddr); neigh = __neigh_lookup(&nd_tbl, &msg->target, skb->dev, 1); if (!neigh) return; /* * We have finally decided to accept it. */ ndisc_update(skb->dev, neigh, lladdr, NUD_STALE, NEIGH_UPDATE_F_WEAK_OVERRIDE| NEIGH_UPDATE_F_OVERRIDE| (on_link ? 0 : (NEIGH_UPDATE_F_OVERRIDE_ISROUTER| NEIGH_UPDATE_F_ISROUTER)), NDISC_REDIRECT, &ndopts); rcu_read_lock(); res.f6i = rcu_dereference(rt->from); if (!res.f6i) goto out; if (res.f6i->nh) { struct fib6_nh_match_arg arg = { .dev = dst->dev, .gw = &rt->rt6i_gateway, }; nexthop_for_each_fib6_nh(res.f6i->nh, fib6_nh_find_match, &arg); /* fib6_info uses a nexthop that does not have fib6_nh * using the dst->dev. Should be impossible */ if (!arg.match) goto out; res.nh = arg.match; } else { res.nh = res.f6i->fib6_nh; } res.fib6_flags = res.f6i->fib6_flags; res.fib6_type = res.f6i->fib6_type; nrt = ip6_rt_cache_alloc(&res, &msg->dest, NULL); if (!nrt) goto out; nrt->rt6i_flags = RTF_GATEWAY|RTF_UP|RTF_DYNAMIC|RTF_CACHE; if (on_link) nrt->rt6i_flags &= ~RTF_GATEWAY; nrt->rt6i_gateway = *(struct in6_addr *)neigh->primary_key; /* rt6_insert_exception() will take care of duplicated exceptions */ if (rt6_insert_exception(nrt, &res)) { dst_release_immediate(&nrt->dst); goto out; } netevent.old = &rt->dst; netevent.new = &nrt->dst; netevent.daddr = &msg->dest; netevent.neigh = neigh; call_netevent_notifiers(NETEVENT_REDIRECT, &netevent); out: rcu_read_unlock(); neigh_release(neigh); } #ifdef CONFIG_IPV6_ROUTE_INFO static struct fib6_info *rt6_get_route_info(struct net *net, const struct in6_addr *prefix, int prefixlen, const struct in6_addr *gwaddr, struct net_device *dev) { u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO; int ifindex = dev->ifindex; struct fib6_node *fn; struct fib6_info *rt = NULL; struct fib6_table *table; table = fib6_get_table(net, tb_id); if (!table) return NULL; rcu_read_lock(); fn = fib6_locate(&table->tb6_root, prefix, prefixlen, NULL, 0, true); if (!fn) goto out; for_each_fib6_node_rt_rcu(fn) { /* these routes do not use nexthops */ if (rt->nh) continue; if (rt->fib6_nh->fib_nh_dev->ifindex != ifindex) continue; if (!(rt->fib6_flags & RTF_ROUTEINFO) || !rt->fib6_nh->fib_nh_gw_family) continue; if (!ipv6_addr_equal(&rt->fib6_nh->fib_nh_gw6, gwaddr)) continue; if (!fib6_info_hold_safe(rt)) continue; break; } out: rcu_read_unlock(); return rt; } static struct fib6_info *rt6_add_route_info(struct net *net, const struct in6_addr *prefix, int prefixlen, const struct in6_addr *gwaddr, struct net_device *dev, unsigned int pref) { struct fib6_config cfg = { .fc_metric = IP6_RT_PRIO_USER, .fc_ifindex = dev->ifindex, .fc_dst_len = prefixlen, .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_ROUTEINFO | RTF_UP | RTF_PREF(pref), .fc_protocol = RTPROT_RA, .fc_type = RTN_UNICAST, .fc_nlinfo.portid = 0, .fc_nlinfo.nlh = NULL, .fc_nlinfo.nl_net = net, }; cfg.fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_INFO; cfg.fc_dst = *prefix; cfg.fc_gateway = *gwaddr; /* We should treat it as a default route if prefix length is 0. */ if (!prefixlen) cfg.fc_flags |= RTF_DEFAULT; ip6_route_add(&cfg, GFP_ATOMIC, NULL); return rt6_get_route_info(net, prefix, prefixlen, gwaddr, dev); } #endif struct fib6_info *rt6_get_dflt_router(struct net *net, const struct in6_addr *addr, struct net_device *dev) { u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT; struct fib6_info *rt; struct fib6_table *table; table = fib6_get_table(net, tb_id); if (!table) return NULL; rcu_read_lock(); for_each_fib6_node_rt_rcu(&table->tb6_root) { struct fib6_nh *nh; /* RA routes do not use nexthops */ if (rt->nh) continue; nh = rt->fib6_nh; if (dev == nh->fib_nh_dev && ((rt->fib6_flags & (RTF_ADDRCONF | RTF_DEFAULT)) == (RTF_ADDRCONF | RTF_DEFAULT)) && ipv6_addr_equal(&nh->fib_nh_gw6, addr)) break; } if (rt && !fib6_info_hold_safe(rt)) rt = NULL; rcu_read_unlock(); return rt; } struct fib6_info *rt6_add_dflt_router(struct net *net, const struct in6_addr *gwaddr, struct net_device *dev, unsigned int pref, u32 defrtr_usr_metric, int lifetime) { struct fib6_config cfg = { .fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_DFLT, .fc_metric = defrtr_usr_metric, .fc_ifindex = dev->ifindex, .fc_flags = RTF_GATEWAY | RTF_ADDRCONF | RTF_DEFAULT | RTF_UP | RTF_EXPIRES | RTF_PREF(pref), .fc_protocol = RTPROT_RA, .fc_type = RTN_UNICAST, .fc_nlinfo.portid = 0, .fc_nlinfo.nlh = NULL, .fc_nlinfo.nl_net = net, .fc_expires = jiffies_to_clock_t(lifetime * HZ), }; cfg.fc_gateway = *gwaddr; if (!ip6_route_add(&cfg, GFP_ATOMIC, NULL)) { struct fib6_table *table; table = fib6_get_table(dev_net(dev), cfg.fc_table); if (table) table->flags |= RT6_TABLE_HAS_DFLT_ROUTER; } return rt6_get_dflt_router(net, gwaddr, dev); } static void __rt6_purge_dflt_routers(struct net *net, struct fib6_table *table) { struct fib6_info *rt; restart: rcu_read_lock(); for_each_fib6_node_rt_rcu(&table->tb6_root) { struct net_device *dev = fib6_info_nh_dev(rt); struct inet6_dev *idev = dev ? __in6_dev_get(dev) : NULL; if (rt->fib6_flags & (RTF_DEFAULT | RTF_ADDRCONF) && (!idev || idev->cnf.accept_ra != 2) && fib6_info_hold_safe(rt)) { rcu_read_unlock(); ip6_del_rt(net, rt, false); goto restart; } } rcu_read_unlock(); table->flags &= ~RT6_TABLE_HAS_DFLT_ROUTER; } void rt6_purge_dflt_routers(struct net *net) { struct fib6_table *table; struct hlist_head *head; unsigned int h; rcu_read_lock(); for (h = 0; h < FIB6_TABLE_HASHSZ; h++) { head = &net->ipv6.fib_table_hash[h]; hlist_for_each_entry_rcu(table, head, tb6_hlist) { if (table->flags & RT6_TABLE_HAS_DFLT_ROUTER) __rt6_purge_dflt_routers(net, table); } } rcu_read_unlock(); } static void rtmsg_to_fib6_config(struct net *net, struct in6_rtmsg *rtmsg, struct fib6_config *cfg) { *cfg = (struct fib6_config){ .fc_table = l3mdev_fib_table_by_index(net, rtmsg->rtmsg_ifindex) ? : RT6_TABLE_MAIN, .fc_ifindex = rtmsg->rtmsg_ifindex, .fc_metric = rtmsg->rtmsg_metric, .fc_expires = rtmsg->rtmsg_info, .fc_dst_len = rtmsg->rtmsg_dst_len, .fc_src_len = rtmsg->rtmsg_src_len, .fc_flags = rtmsg->rtmsg_flags, .fc_type = rtmsg->rtmsg_type, .fc_nlinfo.nl_net = net, .fc_dst = rtmsg->rtmsg_dst, .fc_src = rtmsg->rtmsg_src, .fc_gateway = rtmsg->rtmsg_gateway, }; } int ipv6_route_ioctl(struct net *net, unsigned int cmd, struct in6_rtmsg *rtmsg) { struct fib6_config cfg; int err; if (cmd != SIOCADDRT && cmd != SIOCDELRT) return -EINVAL; if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) return -EPERM; rtmsg_to_fib6_config(net, rtmsg, &cfg); rtnl_lock(); switch (cmd) { case SIOCADDRT: /* Only do the default setting of fc_metric in route adding */ if (cfg.fc_metric == 0) cfg.fc_metric = IP6_RT_PRIO_USER; err = ip6_route_add(&cfg, GFP_KERNEL, NULL); break; case SIOCDELRT: err = ip6_route_del(&cfg, NULL); break; } rtnl_unlock(); return err; } /* * Drop the packet on the floor */ static int ip6_pkt_drop(struct sk_buff *skb, u8 code, int ipstats_mib_noroutes) { struct dst_entry *dst = skb_dst(skb); struct net *net = dev_net(dst->dev); struct inet6_dev *idev; SKB_DR(reason); int type; if (netif_is_l3_master(skb->dev) || dst->dev == net->loopback_dev) idev = __in6_dev_get_safely(dev_get_by_index_rcu(net, IP6CB(skb)->iif)); else idev = ip6_dst_idev(dst); switch (ipstats_mib_noroutes) { case IPSTATS_MIB_INNOROUTES: type = ipv6_addr_type(&ipv6_hdr(skb)->daddr); if (type == IPV6_ADDR_ANY) { SKB_DR_SET(reason, IP_INADDRERRORS); IP6_INC_STATS(net, idev, IPSTATS_MIB_INADDRERRORS); break; } SKB_DR_SET(reason, IP_INNOROUTES); fallthrough; case IPSTATS_MIB_OUTNOROUTES: SKB_DR_OR(reason, IP_OUTNOROUTES); IP6_INC_STATS(net, idev, ipstats_mib_noroutes); break; } /* Start over by dropping the dst for l3mdev case */ if (netif_is_l3_master(skb->dev)) skb_dst_drop(skb); icmpv6_send(skb, ICMPV6_DEST_UNREACH, code, 0); kfree_skb_reason(skb, reason); return 0; } static int ip6_pkt_discard(struct sk_buff *skb) { return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_INNOROUTES); } static int ip6_pkt_discard_out(struct net *net, struct sock *sk, struct sk_buff *skb) { skb->dev = skb_dst(skb)->dev; return ip6_pkt_drop(skb, ICMPV6_NOROUTE, IPSTATS_MIB_OUTNOROUTES); } static int ip6_pkt_prohibit(struct sk_buff *skb) { return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_INNOROUTES); } static int ip6_pkt_prohibit_out(struct net *net, struct sock *sk, struct sk_buff *skb) { skb->dev = skb_dst(skb)->dev; return ip6_pkt_drop(skb, ICMPV6_ADM_PROHIBITED, IPSTATS_MIB_OUTNOROUTES); } /* * Allocate a dst for local (unicast / anycast) address. */ struct fib6_info *addrconf_f6i_alloc(struct net *net, struct inet6_dev *idev, const struct in6_addr *addr, bool anycast, gfp_t gfp_flags, struct netlink_ext_ack *extack) { struct fib6_config cfg = { .fc_table = l3mdev_fib_table(idev->dev) ? : RT6_TABLE_LOCAL, .fc_ifindex = idev->dev->ifindex, .fc_flags = RTF_UP | RTF_NONEXTHOP, .fc_dst = *addr, .fc_dst_len = 128, .fc_protocol = RTPROT_KERNEL, .fc_nlinfo.nl_net = net, .fc_ignore_dev_down = true, }; struct fib6_info *f6i; if (anycast) { cfg.fc_type = RTN_ANYCAST; cfg.fc_flags |= RTF_ANYCAST; } else { cfg.fc_type = RTN_LOCAL; cfg.fc_flags |= RTF_LOCAL; } f6i = ip6_route_info_create(&cfg, gfp_flags, extack); if (!IS_ERR(f6i)) { f6i->dst_nocount = true; if (!anycast && (READ_ONCE(net->ipv6.devconf_all->disable_policy) || READ_ONCE(idev->cnf.disable_policy))) f6i->dst_nopolicy = true; } return f6i; } /* remove deleted ip from prefsrc entries */ struct arg_dev_net_ip { struct net *net; struct in6_addr *addr; }; static int fib6_remove_prefsrc(struct fib6_info *rt, void *arg) { struct net *net = ((struct arg_dev_net_ip *)arg)->net; struct in6_addr *addr = ((struct arg_dev_net_ip *)arg)->addr; if (!rt->nh && rt != net->ipv6.fib6_null_entry && ipv6_addr_equal(addr, &rt->fib6_prefsrc.addr) && !ipv6_chk_addr(net, addr, rt->fib6_nh->fib_nh_dev, 0)) { spin_lock_bh(&rt6_exception_lock); /* remove prefsrc entry */ rt->fib6_prefsrc.plen = 0; spin_unlock_bh(&rt6_exception_lock); } return 0; } void rt6_remove_prefsrc(struct inet6_ifaddr *ifp) { struct net *net = dev_net(ifp->idev->dev); struct arg_dev_net_ip adni = { .net = net, .addr = &ifp->addr, }; fib6_clean_all(net, fib6_remove_prefsrc, &adni); } #define RTF_RA_ROUTER (RTF_ADDRCONF | RTF_DEFAULT) /* Remove routers and update dst entries when gateway turn into host. */ static int fib6_clean_tohost(struct fib6_info *rt, void *arg) { struct in6_addr *gateway = (struct in6_addr *)arg; struct fib6_nh *nh; /* RA routes do not use nexthops */ if (rt->nh) return 0; nh = rt->fib6_nh; if (((rt->fib6_flags & RTF_RA_ROUTER) == RTF_RA_ROUTER) && nh->fib_nh_gw_family && ipv6_addr_equal(gateway, &nh->fib_nh_gw6)) return -1; /* Further clean up cached routes in exception table. * This is needed because cached route may have a different * gateway than its 'parent' in the case of an ip redirect. */ fib6_nh_exceptions_clean_tohost(nh, gateway); return 0; } void rt6_clean_tohost(struct net *net, struct in6_addr *gateway) { fib6_clean_all(net, fib6_clean_tohost, gateway); } struct arg_netdev_event { const struct net_device *dev; union { unsigned char nh_flags; unsigned long event; }; }; static struct fib6_info *rt6_multipath_first_sibling(const struct fib6_info *rt) { struct fib6_info *iter; struct fib6_node *fn; fn = rcu_dereference_protected(rt->fib6_node, lockdep_is_held(&rt->fib6_table->tb6_lock)); iter = rcu_dereference_protected(fn->leaf, lockdep_is_held(&rt->fib6_table->tb6_lock)); while (iter) { if (iter->fib6_metric == rt->fib6_metric && rt6_qualify_for_ecmp(iter)) return iter; iter = rcu_dereference_protected(iter->fib6_next, lockdep_is_held(&rt->fib6_table->tb6_lock)); } return NULL; } /* only called for fib entries with builtin fib6_nh */ static bool rt6_is_dead(const struct fib6_info *rt) { if (rt->fib6_nh->fib_nh_flags & RTNH_F_DEAD || (rt->fib6_nh->fib_nh_flags & RTNH_F_LINKDOWN && ip6_ignore_linkdown(rt->fib6_nh->fib_nh_dev))) return true; return false; } static int rt6_multipath_total_weight(const struct fib6_info *rt) { struct fib6_info *iter; int total = 0; if (!rt6_is_dead(rt)) total += rt->fib6_nh->fib_nh_weight; list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) { if (!rt6_is_dead(iter)) total += iter->fib6_nh->fib_nh_weight; } return total; } static void rt6_upper_bound_set(struct fib6_info *rt, int *weight, int total) { int upper_bound = -1; if (!rt6_is_dead(rt)) { *weight += rt->fib6_nh->fib_nh_weight; upper_bound = DIV_ROUND_CLOSEST_ULL((u64) (*weight) << 31, total) - 1; } atomic_set(&rt->fib6_nh->fib_nh_upper_bound, upper_bound); } static void rt6_multipath_upper_bound_set(struct fib6_info *rt, int total) { struct fib6_info *iter; int weight = 0; rt6_upper_bound_set(rt, &weight, total); list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) rt6_upper_bound_set(iter, &weight, total); } void rt6_multipath_rebalance(struct fib6_info *rt) { struct fib6_info *first; int total; /* In case the entire multipath route was marked for flushing, * then there is no need to rebalance upon the removal of every * sibling route. */ if (!rt->fib6_nsiblings || rt->should_flush) return; /* During lookup routes are evaluated in order, so we need to * make sure upper bounds are assigned from the first sibling * onwards. */ first = rt6_multipath_first_sibling(rt); if (WARN_ON_ONCE(!first)) return; total = rt6_multipath_total_weight(first); rt6_multipath_upper_bound_set(first, total); } static int fib6_ifup(struct fib6_info *rt, void *p_arg) { const struct arg_netdev_event *arg = p_arg; struct net *net = dev_net(arg->dev); if (rt != net->ipv6.fib6_null_entry && !rt->nh && rt->fib6_nh->fib_nh_dev == arg->dev) { rt->fib6_nh->fib_nh_flags &= ~arg->nh_flags; fib6_update_sernum_upto_root(net, rt); rt6_multipath_rebalance(rt); } return 0; } void rt6_sync_up(struct net_device *dev, unsigned char nh_flags) { struct arg_netdev_event arg = { .dev = dev, { .nh_flags = nh_flags, }, }; if (nh_flags & RTNH_F_DEAD && netif_carrier_ok(dev)) arg.nh_flags |= RTNH_F_LINKDOWN; fib6_clean_all(dev_net(dev), fib6_ifup, &arg); } /* only called for fib entries with inline fib6_nh */ static bool rt6_multipath_uses_dev(const struct fib6_info *rt, const struct net_device *dev) { struct fib6_info *iter; if (rt->fib6_nh->fib_nh_dev == dev) return true; list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) if (iter->fib6_nh->fib_nh_dev == dev) return true; return false; } static void rt6_multipath_flush(struct fib6_info *rt) { struct fib6_info *iter; rt->should_flush = 1; list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) iter->should_flush = 1; } static unsigned int rt6_multipath_dead_count(const struct fib6_info *rt, const struct net_device *down_dev) { struct fib6_info *iter; unsigned int dead = 0; if (rt->fib6_nh->fib_nh_dev == down_dev || rt->fib6_nh->fib_nh_flags & RTNH_F_DEAD) dead++; list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) if (iter->fib6_nh->fib_nh_dev == down_dev || iter->fib6_nh->fib_nh_flags & RTNH_F_DEAD) dead++; return dead; } static void rt6_multipath_nh_flags_set(struct fib6_info *rt, const struct net_device *dev, unsigned char nh_flags) { struct fib6_info *iter; if (rt->fib6_nh->fib_nh_dev == dev) rt->fib6_nh->fib_nh_flags |= nh_flags; list_for_each_entry(iter, &rt->fib6_siblings, fib6_siblings) if (iter->fib6_nh->fib_nh_dev == dev) iter->fib6_nh->fib_nh_flags |= nh_flags; } /* called with write lock held for table with rt */ static int fib6_ifdown(struct fib6_info *rt, void *p_arg) { const struct arg_netdev_event *arg = p_arg; const struct net_device *dev = arg->dev; struct net *net = dev_net(dev); if (rt == net->ipv6.fib6_null_entry || rt->nh) return 0; switch (arg->event) { case NETDEV_UNREGISTER: return rt->fib6_nh->fib_nh_dev == dev ? -1 : 0; case NETDEV_DOWN: if (rt->should_flush) return -1; if (!rt->fib6_nsiblings) return rt->fib6_nh->fib_nh_dev == dev ? -1 : 0; if (rt6_multipath_uses_dev(rt, dev)) { unsigned int count; count = rt6_multipath_dead_count(rt, dev); if (rt->fib6_nsiblings + 1 == count) { rt6_multipath_flush(rt); return -1; } rt6_multipath_nh_flags_set(rt, dev, RTNH_F_DEAD | RTNH_F_LINKDOWN); fib6_update_sernum(net, rt); rt6_multipath_rebalance(rt); } return -2; case NETDEV_CHANGE: if (rt->fib6_nh->fib_nh_dev != dev || rt->fib6_flags & (RTF_LOCAL | RTF_ANYCAST)) break; rt->fib6_nh->fib_nh_flags |= RTNH_F_LINKDOWN; rt6_multipath_rebalance(rt); break; } return 0; } void rt6_sync_down_dev(struct net_device *dev, unsigned long event) { struct arg_netdev_event arg = { .dev = dev, { .event = event, }, }; struct net *net = dev_net(dev); if (net->ipv6.sysctl.skip_notify_on_dev_down) fib6_clean_all_skip_notify(net, fib6_ifdown, &arg); else fib6_clean_all(net, fib6_ifdown, &arg); } void rt6_disable_ip(struct net_device *dev, unsigned long event) { rt6_sync_down_dev(dev, event); rt6_uncached_list_flush_dev(dev); neigh_ifdown(&nd_tbl, dev); } struct rt6_mtu_change_arg { struct net_device *dev; unsigned int mtu; struct fib6_info *f6i; }; static int fib6_nh_mtu_change(struct fib6_nh *nh, void *_arg) { struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *)_arg; struct fib6_info *f6i = arg->f6i; /* For administrative MTU increase, there is no way to discover * IPv6 PMTU increase, so PMTU increase should be updated here. * Since RFC 1981 doesn't include administrative MTU increase * update PMTU increase is a MUST. (i.e. jumbo frame) */ if (nh->fib_nh_dev == arg->dev) { struct inet6_dev *idev = __in6_dev_get(arg->dev); u32 mtu = f6i->fib6_pmtu; if (mtu >= arg->mtu || (mtu < arg->mtu && mtu == idev->cnf.mtu6)) fib6_metric_set(f6i, RTAX_MTU, arg->mtu); spin_lock_bh(&rt6_exception_lock); rt6_exceptions_update_pmtu(idev, nh, arg->mtu); spin_unlock_bh(&rt6_exception_lock); } return 0; } static int rt6_mtu_change_route(struct fib6_info *f6i, void *p_arg) { struct rt6_mtu_change_arg *arg = (struct rt6_mtu_change_arg *) p_arg; struct inet6_dev *idev; /* In IPv6 pmtu discovery is not optional, so that RTAX_MTU lock cannot disable it. We still use this lock to block changes caused by addrconf/ndisc. */ idev = __in6_dev_get(arg->dev); if (!idev) return 0; if (fib6_metric_locked(f6i, RTAX_MTU)) return 0; arg->f6i = f6i; if (f6i->nh) { /* fib6_nh_mtu_change only returns 0, so this is safe */ return nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_mtu_change, arg); } return fib6_nh_mtu_change(f6i->fib6_nh, arg); } void rt6_mtu_change(struct net_device *dev, unsigned int mtu) { struct rt6_mtu_change_arg arg = { .dev = dev, .mtu = mtu, }; fib6_clean_all(dev_net(dev), rt6_mtu_change_route, &arg); } static const struct nla_policy rtm_ipv6_policy[RTA_MAX+1] = { [RTA_UNSPEC] = { .strict_start_type = RTA_DPORT + 1 }, [RTA_GATEWAY] = { .len = sizeof(struct in6_addr) }, [RTA_PREFSRC] = { .len = sizeof(struct in6_addr) }, [RTA_OIF] = { .type = NLA_U32 }, [RTA_IIF] = { .type = NLA_U32 }, [RTA_PRIORITY] = { .type = NLA_U32 }, [RTA_METRICS] = { .type = NLA_NESTED }, [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) }, [RTA_PREF] = { .type = NLA_U8 }, [RTA_ENCAP_TYPE] = { .type = NLA_U16 }, [RTA_ENCAP] = { .type = NLA_NESTED }, [RTA_EXPIRES] = { .type = NLA_U32 }, [RTA_UID] = { .type = NLA_U32 }, [RTA_MARK] = { .type = NLA_U32 }, [RTA_TABLE] = { .type = NLA_U32 }, [RTA_IP_PROTO] = { .type = NLA_U8 }, [RTA_SPORT] = { .type = NLA_U16 }, [RTA_DPORT] = { .type = NLA_U16 }, [RTA_NH_ID] = { .type = NLA_U32 }, }; static int rtm_to_fib6_config(struct sk_buff *skb, struct nlmsghdr *nlh, struct fib6_config *cfg, struct netlink_ext_ack *extack) { struct rtmsg *rtm; struct nlattr *tb[RTA_MAX+1]; unsigned int pref; int err; err = nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy, extack); if (err < 0) goto errout; err = -EINVAL; rtm = nlmsg_data(nlh); if (rtm->rtm_tos) { NL_SET_ERR_MSG(extack, "Invalid dsfield (tos): option not available for IPv6"); goto errout; } *cfg = (struct fib6_config){ .fc_table = rtm->rtm_table, .fc_dst_len = rtm->rtm_dst_len, .fc_src_len = rtm->rtm_src_len, .fc_flags = RTF_UP, .fc_protocol = rtm->rtm_protocol, .fc_type = rtm->rtm_type, .fc_nlinfo.portid = NETLINK_CB(skb).portid, .fc_nlinfo.nlh = nlh, .fc_nlinfo.nl_net = sock_net(skb->sk), }; if (rtm->rtm_type == RTN_UNREACHABLE || rtm->rtm_type == RTN_BLACKHOLE || rtm->rtm_type == RTN_PROHIBIT || rtm->rtm_type == RTN_THROW) cfg->fc_flags |= RTF_REJECT; if (rtm->rtm_type == RTN_LOCAL) cfg->fc_flags |= RTF_LOCAL; if (rtm->rtm_flags & RTM_F_CLONED) cfg->fc_flags |= RTF_CACHE; cfg->fc_flags |= (rtm->rtm_flags & RTNH_F_ONLINK); if (tb[RTA_NH_ID]) { if (tb[RTA_GATEWAY] || tb[RTA_OIF] || tb[RTA_MULTIPATH] || tb[RTA_ENCAP]) { NL_SET_ERR_MSG(extack, "Nexthop specification and nexthop id are mutually exclusive"); goto errout; } cfg->fc_nh_id = nla_get_u32(tb[RTA_NH_ID]); } if (tb[RTA_GATEWAY]) { cfg->fc_gateway = nla_get_in6_addr(tb[RTA_GATEWAY]); cfg->fc_flags |= RTF_GATEWAY; } if (tb[RTA_VIA]) { NL_SET_ERR_MSG(extack, "IPv6 does not support RTA_VIA attribute"); goto errout; } if (tb[RTA_DST]) { int plen = (rtm->rtm_dst_len + 7) >> 3; if (nla_len(tb[RTA_DST]) < plen) goto errout; nla_memcpy(&cfg->fc_dst, tb[RTA_DST], plen); } if (tb[RTA_SRC]) { int plen = (rtm->rtm_src_len + 7) >> 3; if (nla_len(tb[RTA_SRC]) < plen) goto errout; nla_memcpy(&cfg->fc_src, tb[RTA_SRC], plen); } if (tb[RTA_PREFSRC]) cfg->fc_prefsrc = nla_get_in6_addr(tb[RTA_PREFSRC]); if (tb[RTA_OIF]) cfg->fc_ifindex = nla_get_u32(tb[RTA_OIF]); if (tb[RTA_PRIORITY]) cfg->fc_metric = nla_get_u32(tb[RTA_PRIORITY]); if (tb[RTA_METRICS]) { cfg->fc_mx = nla_data(tb[RTA_METRICS]); cfg->fc_mx_len = nla_len(tb[RTA_METRICS]); } if (tb[RTA_TABLE]) cfg->fc_table = nla_get_u32(tb[RTA_TABLE]); if (tb[RTA_MULTIPATH]) { cfg->fc_mp = nla_data(tb[RTA_MULTIPATH]); cfg->fc_mp_len = nla_len(tb[RTA_MULTIPATH]); err = lwtunnel_valid_encap_type_attr(cfg->fc_mp, cfg->fc_mp_len, extack); if (err < 0) goto errout; } if (tb[RTA_PREF]) { pref = nla_get_u8(tb[RTA_PREF]); if (pref != ICMPV6_ROUTER_PREF_LOW && pref != ICMPV6_ROUTER_PREF_HIGH) pref = ICMPV6_ROUTER_PREF_MEDIUM; cfg->fc_flags |= RTF_PREF(pref); } if (tb[RTA_ENCAP]) cfg->fc_encap = tb[RTA_ENCAP]; if (tb[RTA_ENCAP_TYPE]) { cfg->fc_encap_type = nla_get_u16(tb[RTA_ENCAP_TYPE]); err = lwtunnel_valid_encap_type(cfg->fc_encap_type, extack); if (err < 0) goto errout; } if (tb[RTA_EXPIRES]) { unsigned long timeout = addrconf_timeout_fixup(nla_get_u32(tb[RTA_EXPIRES]), HZ); if (addrconf_finite_timeout(timeout)) { cfg->fc_expires = jiffies_to_clock_t(timeout * HZ); cfg->fc_flags |= RTF_EXPIRES; } } err = 0; errout: return err; } struct rt6_nh { struct fib6_info *fib6_info; struct fib6_config r_cfg; struct list_head next; }; static int ip6_route_info_append(struct net *net, struct list_head *rt6_nh_list, struct fib6_info *rt, struct fib6_config *r_cfg) { struct rt6_nh *nh; int err = -EEXIST; list_for_each_entry(nh, rt6_nh_list, next) { /* check if fib6_info already exists */ if (rt6_duplicate_nexthop(nh->fib6_info, rt)) return err; } nh = kzalloc(sizeof(*nh), GFP_KERNEL); if (!nh) return -ENOMEM; nh->fib6_info = rt; memcpy(&nh->r_cfg, r_cfg, sizeof(*r_cfg)); list_add_tail(&nh->next, rt6_nh_list); return 0; } static void ip6_route_mpath_notify(struct fib6_info *rt, struct fib6_info *rt_last, struct nl_info *info, __u16 nlflags) { /* if this is an APPEND route, then rt points to the first route * inserted and rt_last points to last route inserted. Userspace * wants a consistent dump of the route which starts at the first * nexthop. Since sibling routes are always added at the end of * the list, find the first sibling of the last route appended */ if ((nlflags & NLM_F_APPEND) && rt_last && rt_last->fib6_nsiblings) { rt = list_first_entry(&rt_last->fib6_siblings, struct fib6_info, fib6_siblings); } if (rt) inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags); } static bool ip6_route_mpath_should_notify(const struct fib6_info *rt) { bool rt_can_ecmp = rt6_qualify_for_ecmp(rt); bool should_notify = false; struct fib6_info *leaf; struct fib6_node *fn; rcu_read_lock(); fn = rcu_dereference(rt->fib6_node); if (!fn) goto out; leaf = rcu_dereference(fn->leaf); if (!leaf) goto out; if (rt == leaf || (rt_can_ecmp && rt->fib6_metric == leaf->fib6_metric && rt6_qualify_for_ecmp(leaf))) should_notify = true; out: rcu_read_unlock(); return should_notify; } static int fib6_gw_from_attr(struct in6_addr *gw, struct nlattr *nla, struct netlink_ext_ack *extack) { if (nla_len(nla) < sizeof(*gw)) { NL_SET_ERR_MSG(extack, "Invalid IPv6 address in RTA_GATEWAY"); return -EINVAL; } *gw = nla_get_in6_addr(nla); return 0; } static int ip6_route_multipath_add(struct fib6_config *cfg, struct netlink_ext_ack *extack) { struct fib6_info *rt_notif = NULL, *rt_last = NULL; struct nl_info *info = &cfg->fc_nlinfo; struct fib6_config r_cfg; struct rtnexthop *rtnh; struct fib6_info *rt; struct rt6_nh *err_nh; struct rt6_nh *nh, *nh_safe; __u16 nlflags; int remaining; int attrlen; int err = 1; int nhn = 0; int replace = (cfg->fc_nlinfo.nlh && (cfg->fc_nlinfo.nlh->nlmsg_flags & NLM_F_REPLACE)); LIST_HEAD(rt6_nh_list); nlflags = replace ? NLM_F_REPLACE : NLM_F_CREATE; if (info->nlh && info->nlh->nlmsg_flags & NLM_F_APPEND) nlflags |= NLM_F_APPEND; remaining = cfg->fc_mp_len; rtnh = (struct rtnexthop *)cfg->fc_mp; /* Parse a Multipath Entry and build a list (rt6_nh_list) of * fib6_info structs per nexthop */ while (rtnh_ok(rtnh, remaining)) { memcpy(&r_cfg, cfg, sizeof(*cfg)); if (rtnh->rtnh_ifindex) r_cfg.fc_ifindex = rtnh->rtnh_ifindex; attrlen = rtnh_attrlen(rtnh); if (attrlen > 0) { struct nlattr *nla, *attrs = rtnh_attrs(rtnh); nla = nla_find(attrs, attrlen, RTA_GATEWAY); if (nla) { err = fib6_gw_from_attr(&r_cfg.fc_gateway, nla, extack); if (err) goto cleanup; r_cfg.fc_flags |= RTF_GATEWAY; } r_cfg.fc_encap = nla_find(attrs, attrlen, RTA_ENCAP); /* RTA_ENCAP_TYPE length checked in * lwtunnel_valid_encap_type_attr */ nla = nla_find(attrs, attrlen, RTA_ENCAP_TYPE); if (nla) r_cfg.fc_encap_type = nla_get_u16(nla); } r_cfg.fc_flags |= (rtnh->rtnh_flags & RTNH_F_ONLINK); rt = ip6_route_info_create(&r_cfg, GFP_KERNEL, extack); if (IS_ERR(rt)) { err = PTR_ERR(rt); rt = NULL; goto cleanup; } if (!rt6_qualify_for_ecmp(rt)) { err = -EINVAL; NL_SET_ERR_MSG(extack, "Device only routes can not be added for IPv6 using the multipath API."); fib6_info_release(rt); goto cleanup; } rt->fib6_nh->fib_nh_weight = rtnh->rtnh_hops + 1; err = ip6_route_info_append(info->nl_net, &rt6_nh_list, rt, &r_cfg); if (err) { fib6_info_release(rt); goto cleanup; } rtnh = rtnh_next(rtnh, &remaining); } if (list_empty(&rt6_nh_list)) { NL_SET_ERR_MSG(extack, "Invalid nexthop configuration - no valid nexthops"); return -EINVAL; } /* for add and replace send one notification with all nexthops. * Skip the notification in fib6_add_rt2node and send one with * the full route when done */ info->skip_notify = 1; /* For add and replace, send one notification with all nexthops. For * append, send one notification with all appended nexthops. */ info->skip_notify_kernel = 1; err_nh = NULL; list_for_each_entry(nh, &rt6_nh_list, next) { err = __ip6_ins_rt(nh->fib6_info, info, extack); if (err) { if (replace && nhn) NL_SET_ERR_MSG_MOD(extack, "multipath route replace failed (check consistency of installed routes)"); err_nh = nh; goto add_errout; } /* save reference to last route successfully inserted */ rt_last = nh->fib6_info; /* save reference to first route for notification */ if (!rt_notif) rt_notif = nh->fib6_info; /* Because each route is added like a single route we remove * these flags after the first nexthop: if there is a collision, * we have already failed to add the first nexthop: * fib6_add_rt2node() has rejected it; when replacing, old * nexthops have been replaced by first new, the rest should * be added to it. */ if (cfg->fc_nlinfo.nlh) { cfg->fc_nlinfo.nlh->nlmsg_flags &= ~(NLM_F_EXCL | NLM_F_REPLACE); cfg->fc_nlinfo.nlh->nlmsg_flags |= NLM_F_CREATE; } nhn++; } /* An in-kernel notification should only be sent in case the new * multipath route is added as the first route in the node, or if * it was appended to it. We pass 'rt_notif' since it is the first * sibling and might allow us to skip some checks in the replace case. */ if (ip6_route_mpath_should_notify(rt_notif)) { enum fib_event_type fib_event; if (rt_notif->fib6_nsiblings != nhn - 1) fib_event = FIB_EVENT_ENTRY_APPEND; else fib_event = FIB_EVENT_ENTRY_REPLACE; err = call_fib6_multipath_entry_notifiers(info->nl_net, fib_event, rt_notif, nhn - 1, extack); if (err) { /* Delete all the siblings that were just added */ err_nh = NULL; goto add_errout; } } /* success ... tell user about new route */ ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags); goto cleanup; add_errout: /* send notification for routes that were added so that * the delete notifications sent by ip6_route_del are * coherent */ if (rt_notif) ip6_route_mpath_notify(rt_notif, rt_last, info, nlflags); /* Delete routes that were already added */ list_for_each_entry(nh, &rt6_nh_list, next) { if (err_nh == nh) break; ip6_route_del(&nh->r_cfg, extack); } cleanup: list_for_each_entry_safe(nh, nh_safe, &rt6_nh_list, next) { fib6_info_release(nh->fib6_info); list_del(&nh->next); kfree(nh); } return err; } static int ip6_route_multipath_del(struct fib6_config *cfg, struct netlink_ext_ack *extack) { struct fib6_config r_cfg; struct rtnexthop *rtnh; int last_err = 0; int remaining; int attrlen; int err; remaining = cfg->fc_mp_len; rtnh = (struct rtnexthop *)cfg->fc_mp; /* Parse a Multipath Entry */ while (rtnh_ok(rtnh, remaining)) { memcpy(&r_cfg, cfg, sizeof(*cfg)); if (rtnh->rtnh_ifindex) r_cfg.fc_ifindex = rtnh->rtnh_ifindex; attrlen = rtnh_attrlen(rtnh); if (attrlen > 0) { struct nlattr *nla, *attrs = rtnh_attrs(rtnh); nla = nla_find(attrs, attrlen, RTA_GATEWAY); if (nla) { err = fib6_gw_from_attr(&r_cfg.fc_gateway, nla, extack); if (err) { last_err = err; goto next_rtnh; } r_cfg.fc_flags |= RTF_GATEWAY; } } err = ip6_route_del(&r_cfg, extack); if (err) last_err = err; next_rtnh: rtnh = rtnh_next(rtnh, &remaining); } return last_err; } static int inet6_rtm_delroute(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct fib6_config cfg; int err; err = rtm_to_fib6_config(skb, nlh, &cfg, extack); if (err < 0) return err; if (cfg.fc_nh_id && !nexthop_find_by_id(sock_net(skb->sk), cfg.fc_nh_id)) { NL_SET_ERR_MSG(extack, "Nexthop id does not exist"); return -EINVAL; } if (cfg.fc_mp) return ip6_route_multipath_del(&cfg, extack); else { cfg.fc_delete_all_nh = 1; return ip6_route_del(&cfg, extack); } } static int inet6_rtm_newroute(struct sk_buff *skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct fib6_config cfg; int err; err = rtm_to_fib6_config(skb, nlh, &cfg, extack); if (err < 0) return err; if (cfg.fc_metric == 0) cfg.fc_metric = IP6_RT_PRIO_USER; if (cfg.fc_mp) return ip6_route_multipath_add(&cfg, extack); else return ip6_route_add(&cfg, GFP_KERNEL, extack); } /* add the overhead of this fib6_nh to nexthop_len */ static int rt6_nh_nlmsg_size(struct fib6_nh *nh, void *arg) { int *nexthop_len = arg; *nexthop_len += nla_total_size(0) /* RTA_MULTIPATH */ + NLA_ALIGN(sizeof(struct rtnexthop)) + nla_total_size(16); /* RTA_GATEWAY */ if (nh->fib_nh_lws) { /* RTA_ENCAP_TYPE */ *nexthop_len += lwtunnel_get_encap_size(nh->fib_nh_lws); /* RTA_ENCAP */ *nexthop_len += nla_total_size(2); } return 0; } static size_t rt6_nlmsg_size(struct fib6_info *f6i) { int nexthop_len; if (f6i->nh) { nexthop_len = nla_total_size(4); /* RTA_NH_ID */ nexthop_for_each_fib6_nh(f6i->nh, rt6_nh_nlmsg_size, &nexthop_len); } else { struct fib6_info *sibling, *next_sibling; struct fib6_nh *nh = f6i->fib6_nh; nexthop_len = 0; if (f6i->fib6_nsiblings) { rt6_nh_nlmsg_size(nh, &nexthop_len); list_for_each_entry_safe(sibling, next_sibling, &f6i->fib6_siblings, fib6_siblings) { rt6_nh_nlmsg_size(sibling->fib6_nh, &nexthop_len); } } nexthop_len += lwtunnel_get_encap_size(nh->fib_nh_lws); } return NLMSG_ALIGN(sizeof(struct rtmsg)) + nla_total_size(16) /* RTA_SRC */ + nla_total_size(16) /* RTA_DST */ + nla_total_size(16) /* RTA_GATEWAY */ + nla_total_size(16) /* RTA_PREFSRC */ + nla_total_size(4) /* RTA_TABLE */ + nla_total_size(4) /* RTA_IIF */ + nla_total_size(4) /* RTA_OIF */ + nla_total_size(4) /* RTA_PRIORITY */ + RTAX_MAX * nla_total_size(4) /* RTA_METRICS */ + nla_total_size(sizeof(struct rta_cacheinfo)) + nla_total_size(TCP_CA_NAME_MAX) /* RTAX_CC_ALGO */ + nla_total_size(1) /* RTA_PREF */ + nexthop_len; } static int rt6_fill_node_nexthop(struct sk_buff *skb, struct nexthop *nh, unsigned char *flags) { if (nexthop_is_multipath(nh)) { struct nlattr *mp; mp = nla_nest_start_noflag(skb, RTA_MULTIPATH); if (!mp) goto nla_put_failure; if (nexthop_mpath_fill_node(skb, nh, AF_INET6)) goto nla_put_failure; nla_nest_end(skb, mp); } else { struct fib6_nh *fib6_nh; fib6_nh = nexthop_fib6_nh(nh); if (fib_nexthop_info(skb, &fib6_nh->nh_common, AF_INET6, flags, false) < 0) goto nla_put_failure; } return 0; nla_put_failure: return -EMSGSIZE; } static int rt6_fill_node(struct net *net, struct sk_buff *skb, struct fib6_info *rt, struct dst_entry *dst, struct in6_addr *dest, struct in6_addr *src, int iif, int type, u32 portid, u32 seq, unsigned int flags) { struct rt6_info *rt6 = dst_rt6_info(dst); struct rt6key *rt6_dst, *rt6_src; u32 *pmetrics, table, rt6_flags; unsigned char nh_flags = 0; struct nlmsghdr *nlh; struct rtmsg *rtm; long expires = 0; nlh = nlmsg_put(skb, portid, seq, type, sizeof(*rtm), flags); if (!nlh) return -EMSGSIZE; if (rt6) { rt6_dst = &rt6->rt6i_dst; rt6_src = &rt6->rt6i_src; rt6_flags = rt6->rt6i_flags; } else { rt6_dst = &rt->fib6_dst; rt6_src = &rt->fib6_src; rt6_flags = rt->fib6_flags; } rtm = nlmsg_data(nlh); rtm->rtm_family = AF_INET6; rtm->rtm_dst_len = rt6_dst->plen; rtm->rtm_src_len = rt6_src->plen; rtm->rtm_tos = 0; if (rt->fib6_table) table = rt->fib6_table->tb6_id; else table = RT6_TABLE_UNSPEC; rtm->rtm_table = table < 256 ? table : RT_TABLE_COMPAT; if (nla_put_u32(skb, RTA_TABLE, table)) goto nla_put_failure; rtm->rtm_type = rt->fib6_type; rtm->rtm_flags = 0; rtm->rtm_scope = RT_SCOPE_UNIVERSE; rtm->rtm_protocol = rt->fib6_protocol; if (rt6_flags & RTF_CACHE) rtm->rtm_flags |= RTM_F_CLONED; if (dest) { if (nla_put_in6_addr(skb, RTA_DST, dest)) goto nla_put_failure; rtm->rtm_dst_len = 128; } else if (rtm->rtm_dst_len) if (nla_put_in6_addr(skb, RTA_DST, &rt6_dst->addr)) goto nla_put_failure; #ifdef CONFIG_IPV6_SUBTREES if (src) { if (nla_put_in6_addr(skb, RTA_SRC, src)) goto nla_put_failure; rtm->rtm_src_len = 128; } else if (rtm->rtm_src_len && nla_put_in6_addr(skb, RTA_SRC, &rt6_src->addr)) goto nla_put_failure; #endif if (iif) { #ifdef CONFIG_IPV6_MROUTE if (ipv6_addr_is_multicast(&rt6_dst->addr)) { int err = ip6mr_get_route(net, skb, rtm, portid); if (err == 0) return 0; if (err < 0) goto nla_put_failure; } else #endif if (nla_put_u32(skb, RTA_IIF, iif)) goto nla_put_failure; } else if (dest) { struct in6_addr saddr_buf; if (ip6_route_get_saddr(net, rt, dest, 0, &saddr_buf) == 0 && nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf)) goto nla_put_failure; } if (rt->fib6_prefsrc.plen) { struct in6_addr saddr_buf; saddr_buf = rt->fib6_prefsrc.addr; if (nla_put_in6_addr(skb, RTA_PREFSRC, &saddr_buf)) goto nla_put_failure; } pmetrics = dst ? dst_metrics_ptr(dst) : rt->fib6_metrics->metrics; if (rtnetlink_put_metrics(skb, pmetrics) < 0) goto nla_put_failure; if (nla_put_u32(skb, RTA_PRIORITY, rt->fib6_metric)) goto nla_put_failure; /* For multipath routes, walk the siblings list and add * each as a nexthop within RTA_MULTIPATH. */ if (rt6) { if (rt6_flags & RTF_GATEWAY && nla_put_in6_addr(skb, RTA_GATEWAY, &rt6->rt6i_gateway)) goto nla_put_failure; if (dst->dev && nla_put_u32(skb, RTA_OIF, dst->dev->ifindex)) goto nla_put_failure; if (dst->lwtstate && lwtunnel_fill_encap(skb, dst->lwtstate, RTA_ENCAP, RTA_ENCAP_TYPE) < 0) goto nla_put_failure; } else if (rt->fib6_nsiblings) { struct fib6_info *sibling, *next_sibling; struct nlattr *mp; mp = nla_nest_start_noflag(skb, RTA_MULTIPATH); if (!mp) goto nla_put_failure; if (fib_add_nexthop(skb, &rt->fib6_nh->nh_common, rt->fib6_nh->fib_nh_weight, AF_INET6, 0) < 0) goto nla_put_failure; list_for_each_entry_safe(sibling, next_sibling, &rt->fib6_siblings, fib6_siblings) { if (fib_add_nexthop(skb, &sibling->fib6_nh->nh_common, sibling->fib6_nh->fib_nh_weight, AF_INET6, 0) < 0) goto nla_put_failure; } nla_nest_end(skb, mp); } else if (rt->nh) { if (nla_put_u32(skb, RTA_NH_ID, rt->nh->id)) goto nla_put_failure; if (nexthop_is_blackhole(rt->nh)) rtm->rtm_type = RTN_BLACKHOLE; if (READ_ONCE(net->ipv4.sysctl_nexthop_compat_mode) && rt6_fill_node_nexthop(skb, rt->nh, &nh_flags) < 0) goto nla_put_failure; rtm->rtm_flags |= nh_flags; } else { if (fib_nexthop_info(skb, &rt->fib6_nh->nh_common, AF_INET6, &nh_flags, false) < 0) goto nla_put_failure; rtm->rtm_flags |= nh_flags; } if (rt6_flags & RTF_EXPIRES) { expires = dst ? dst->expires : rt->expires; expires -= jiffies; } if (!dst) { if (READ_ONCE(rt->offload)) rtm->rtm_flags |= RTM_F_OFFLOAD; if (READ_ONCE(rt->trap)) rtm->rtm_flags |= RTM_F_TRAP; if (READ_ONCE(rt->offload_failed)) rtm->rtm_flags |= RTM_F_OFFLOAD_FAILED; } if (rtnl_put_cacheinfo(skb, dst, 0, expires, dst ? dst->error : 0) < 0) goto nla_put_failure; if (nla_put_u8(skb, RTA_PREF, IPV6_EXTRACT_PREF(rt6_flags))) goto nla_put_failure; nlmsg_end(skb, nlh); return 0; nla_put_failure: nlmsg_cancel(skb, nlh); return -EMSGSIZE; } static int fib6_info_nh_uses_dev(struct fib6_nh *nh, void *arg) { const struct net_device *dev = arg; if (nh->fib_nh_dev == dev) return 1; return 0; } static bool fib6_info_uses_dev(const struct fib6_info *f6i, const struct net_device *dev) { if (f6i->nh) { struct net_device *_dev = (struct net_device *)dev; return !!nexthop_for_each_fib6_nh(f6i->nh, fib6_info_nh_uses_dev, _dev); } if (f6i->fib6_nh->fib_nh_dev == dev) return true; if (f6i->fib6_nsiblings) { struct fib6_info *sibling, *next_sibling; list_for_each_entry_safe(sibling, next_sibling, &f6i->fib6_siblings, fib6_siblings) { if (sibling->fib6_nh->fib_nh_dev == dev) return true; } } return false; } struct fib6_nh_exception_dump_walker { struct rt6_rtnl_dump_arg *dump; struct fib6_info *rt; unsigned int flags; unsigned int skip; unsigned int count; }; static int rt6_nh_dump_exceptions(struct fib6_nh *nh, void *arg) { struct fib6_nh_exception_dump_walker *w = arg; struct rt6_rtnl_dump_arg *dump = w->dump; struct rt6_exception_bucket *bucket; struct rt6_exception *rt6_ex; int i, err; bucket = fib6_nh_get_excptn_bucket(nh, NULL); if (!bucket) return 0; for (i = 0; i < FIB6_EXCEPTION_BUCKET_SIZE; i++) { hlist_for_each_entry(rt6_ex, &bucket->chain, hlist) { if (w->skip) { w->skip--; continue; } /* Expiration of entries doesn't bump sernum, insertion * does. Removal is triggered by insertion, so we can * rely on the fact that if entries change between two * partial dumps, this node is scanned again completely, * see rt6_insert_exception() and fib6_dump_table(). * * Count expired entries we go through as handled * entries that we'll skip next time, in case of partial * node dump. Otherwise, if entries expire meanwhile, * we'll skip the wrong amount. */ if (rt6_check_expired(rt6_ex->rt6i)) { w->count++; continue; } err = rt6_fill_node(dump->net, dump->skb, w->rt, &rt6_ex->rt6i->dst, NULL, NULL, 0, RTM_NEWROUTE, NETLINK_CB(dump->cb->skb).portid, dump->cb->nlh->nlmsg_seq, w->flags); if (err) return err; w->count++; } bucket++; } return 0; } /* Return -1 if done with node, number of handled routes on partial dump */ int rt6_dump_route(struct fib6_info *rt, void *p_arg, unsigned int skip) { struct rt6_rtnl_dump_arg *arg = (struct rt6_rtnl_dump_arg *) p_arg; struct fib_dump_filter *filter = &arg->filter; unsigned int flags = NLM_F_MULTI; struct net *net = arg->net; int count = 0; if (rt == net->ipv6.fib6_null_entry) return -1; if ((filter->flags & RTM_F_PREFIX) && !(rt->fib6_flags & RTF_PREFIX_RT)) { /* success since this is not a prefix route */ return -1; } if (filter->filter_set && ((filter->rt_type && rt->fib6_type != filter->rt_type) || (filter->dev && !fib6_info_uses_dev(rt, filter->dev)) || (filter->protocol && rt->fib6_protocol != filter->protocol))) { return -1; } if (filter->filter_set || !filter->dump_routes || !filter->dump_exceptions) { flags |= NLM_F_DUMP_FILTERED; } if (filter->dump_routes) { if (skip) { skip--; } else { if (rt6_fill_node(net, arg->skb, rt, NULL, NULL, NULL, 0, RTM_NEWROUTE, NETLINK_CB(arg->cb->skb).portid, arg->cb->nlh->nlmsg_seq, flags)) { return 0; } count++; } } if (filter->dump_exceptions) { struct fib6_nh_exception_dump_walker w = { .dump = arg, .rt = rt, .flags = flags, .skip = skip, .count = 0 }; int err; rcu_read_lock(); if (rt->nh) { err = nexthop_for_each_fib6_nh(rt->nh, rt6_nh_dump_exceptions, &w); } else { err = rt6_nh_dump_exceptions(rt->fib6_nh, &w); } rcu_read_unlock(); if (err) return count + w.count; } return -1; } static int inet6_rtm_valid_getroute_req(struct sk_buff *skb, const struct nlmsghdr *nlh, struct nlattr **tb, struct netlink_ext_ack *extack) { struct rtmsg *rtm; int i, err; if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*rtm))) { NL_SET_ERR_MSG_MOD(extack, "Invalid header for get route request"); return -EINVAL; } if (!netlink_strict_get_check(skb)) return nlmsg_parse_deprecated(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy, extack); rtm = nlmsg_data(nlh); if ((rtm->rtm_src_len && rtm->rtm_src_len != 128) || (rtm->rtm_dst_len && rtm->rtm_dst_len != 128) || rtm->rtm_table || rtm->rtm_protocol || rtm->rtm_scope || rtm->rtm_type) { NL_SET_ERR_MSG_MOD(extack, "Invalid values in header for get route request"); return -EINVAL; } if (rtm->rtm_flags & ~RTM_F_FIB_MATCH) { NL_SET_ERR_MSG_MOD(extack, "Invalid flags for get route request"); return -EINVAL; } err = nlmsg_parse_deprecated_strict(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy, extack); if (err) return err; if ((tb[RTA_SRC] && !rtm->rtm_src_len) || (tb[RTA_DST] && !rtm->rtm_dst_len)) { NL_SET_ERR_MSG_MOD(extack, "rtm_src_len and rtm_dst_len must be 128 for IPv6"); return -EINVAL; } for (i = 0; i <= RTA_MAX; i++) { if (!tb[i]) continue; switch (i) { case RTA_SRC: case RTA_DST: case RTA_IIF: case RTA_OIF: case RTA_MARK: case RTA_UID: case RTA_SPORT: case RTA_DPORT: case RTA_IP_PROTO: break; default: NL_SET_ERR_MSG_MOD(extack, "Unsupported attribute in get route request"); return -EINVAL; } } return 0; } static int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh, struct netlink_ext_ack *extack) { struct net *net = sock_net(in_skb->sk); struct nlattr *tb[RTA_MAX+1]; int err, iif = 0, oif = 0; struct fib6_info *from; struct dst_entry *dst; struct rt6_info *rt; struct sk_buff *skb; struct rtmsg *rtm; struct flowi6 fl6 = {}; bool fibmatch; err = inet6_rtm_valid_getroute_req(in_skb, nlh, tb, extack); if (err < 0) goto errout; err = -EINVAL; rtm = nlmsg_data(nlh); fl6.flowlabel = ip6_make_flowinfo(rtm->rtm_tos, 0); fibmatch = !!(rtm->rtm_flags & RTM_F_FIB_MATCH); if (tb[RTA_SRC]) { if (nla_len(tb[RTA_SRC]) < sizeof(struct in6_addr)) goto errout; fl6.saddr = *(struct in6_addr *)nla_data(tb[RTA_SRC]); } if (tb[RTA_DST]) { if (nla_len(tb[RTA_DST]) < sizeof(struct in6_addr)) goto errout; fl6.daddr = *(struct in6_addr *)nla_data(tb[RTA_DST]); } if (tb[RTA_IIF]) iif = nla_get_u32(tb[RTA_IIF]); if (tb[RTA_OIF]) oif = nla_get_u32(tb[RTA_OIF]); if (tb[RTA_MARK]) fl6.flowi6_mark = nla_get_u32(tb[RTA_MARK]); if (tb[RTA_UID]) fl6.flowi6_uid = make_kuid(current_user_ns(), nla_get_u32(tb[RTA_UID])); else fl6.flowi6_uid = iif ? INVALID_UID : current_uid(); if (tb[RTA_SPORT]) fl6.fl6_sport = nla_get_be16(tb[RTA_SPORT]); if (tb[RTA_DPORT]) fl6.fl6_dport = nla_get_be16(tb[RTA_DPORT]); if (tb[RTA_IP_PROTO]) { err = rtm_getroute_parse_ip_proto(tb[RTA_IP_PROTO], &fl6.flowi6_proto, AF_INET6, extack); if (err) goto errout; } if (iif) { struct net_device *dev; int flags = 0; rcu_read_lock(); dev = dev_get_by_index_rcu(net, iif); if (!dev) { rcu_read_unlock(); err = -ENODEV; goto errout; } fl6.flowi6_iif = iif; if (!ipv6_addr_any(&fl6.saddr)) flags |= RT6_LOOKUP_F_HAS_SADDR; dst = ip6_route_input_lookup(net, dev, &fl6, NULL, flags); rcu_read_unlock(); } else { fl6.flowi6_oif = oif; dst = ip6_route_output(net, NULL, &fl6); } rt = dst_rt6_info(dst); if (rt->dst.error) { err = rt->dst.error; ip6_rt_put(rt); goto errout; } if (rt == net->ipv6.ip6_null_entry) { err = rt->dst.error; ip6_rt_put(rt); goto errout; } skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL); if (!skb) { ip6_rt_put(rt); err = -ENOBUFS; goto errout; } skb_dst_set(skb, &rt->dst); rcu_read_lock(); from = rcu_dereference(rt->from); if (from) { if (fibmatch) err = rt6_fill_node(net, skb, from, NULL, NULL, NULL, iif, RTM_NEWROUTE, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 0); else err = rt6_fill_node(net, skb, from, dst, &fl6.daddr, &fl6.saddr, iif, RTM_NEWROUTE, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 0); } else { err = -ENETUNREACH; } rcu_read_unlock(); if (err < 0) { kfree_skb(skb); goto errout; } err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid); errout: return err; } void inet6_rt_notify(int event, struct fib6_info *rt, struct nl_info *info, unsigned int nlm_flags) { struct sk_buff *skb; struct net *net = info->nl_net; u32 seq; int err; err = -ENOBUFS; seq = info->nlh ? info->nlh->nlmsg_seq : 0; skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any()); if (!skb) goto errout; err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0, event, info->portid, seq, nlm_flags); if (err < 0) { /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */ WARN_ON(err == -EMSGSIZE); kfree_skb(skb); goto errout; } rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, info->nlh, gfp_any()); return; errout: if (err < 0) rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err); } void fib6_rt_update(struct net *net, struct fib6_info *rt, struct nl_info *info) { u32 seq = info->nlh ? info->nlh->nlmsg_seq : 0; struct sk_buff *skb; int err = -ENOBUFS; skb = nlmsg_new(rt6_nlmsg_size(rt), gfp_any()); if (!skb) goto errout; err = rt6_fill_node(net, skb, rt, NULL, NULL, NULL, 0, RTM_NEWROUTE, info->portid, seq, NLM_F_REPLACE); if (err < 0) { /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */ WARN_ON(err == -EMSGSIZE); kfree_skb(skb); goto errout; } rtnl_notify(skb, net, info->portid, RTNLGRP_IPV6_ROUTE, info->nlh, gfp_any()); return; errout: if (err < 0) rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err); } void fib6_info_hw_flags_set(struct net *net, struct fib6_info *f6i, bool offload, bool trap, bool offload_failed) { struct sk_buff *skb; int err; if (READ_ONCE(f6i->offload) == offload && READ_ONCE(f6i->trap) == trap && READ_ONCE(f6i->offload_failed) == offload_failed) return; WRITE_ONCE(f6i->offload, offload); WRITE_ONCE(f6i->trap, trap); /* 2 means send notifications only if offload_failed was changed. */ if (net->ipv6.sysctl.fib_notify_on_flag_change == 2 && READ_ONCE(f6i->offload_failed) == offload_failed) return; WRITE_ONCE(f6i->offload_failed, offload_failed); if (!rcu_access_pointer(f6i->fib6_node)) /* The route was removed from the tree, do not send * notification. */ return; if (!net->ipv6.sysctl.fib_notify_on_flag_change) return; skb = nlmsg_new(rt6_nlmsg_size(f6i), GFP_KERNEL); if (!skb) { err = -ENOBUFS; goto errout; } err = rt6_fill_node(net, skb, f6i, NULL, NULL, NULL, 0, RTM_NEWROUTE, 0, 0, 0); if (err < 0) { /* -EMSGSIZE implies BUG in rt6_nlmsg_size() */ WARN_ON(err == -EMSGSIZE); kfree_skb(skb); goto errout; } rtnl_notify(skb, net, 0, RTNLGRP_IPV6_ROUTE, NULL, GFP_KERNEL); return; errout: rtnl_set_sk_err(net, RTNLGRP_IPV6_ROUTE, err); } EXPORT_SYMBOL(fib6_info_hw_flags_set); static int ip6_route_dev_notify(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct net *net = dev_net(dev); if (!(dev->flags & IFF_LOOPBACK)) return NOTIFY_OK; if (event == NETDEV_REGISTER) { net->ipv6.fib6_null_entry->fib6_nh->fib_nh_dev = dev; net->ipv6.ip6_null_entry->dst.dev = dev; net->ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(dev); #ifdef CONFIG_IPV6_MULTIPLE_TABLES net->ipv6.ip6_prohibit_entry->dst.dev = dev; net->ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(dev); net->ipv6.ip6_blk_hole_entry->dst.dev = dev; net->ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(dev); #endif } else if (event == NETDEV_UNREGISTER && dev->reg_state != NETREG_UNREGISTERED) { /* NETDEV_UNREGISTER could be fired for multiple times by * netdev_wait_allrefs(). Make sure we only call this once. */ in6_dev_put_clear(&net->ipv6.ip6_null_entry->rt6i_idev); #ifdef CONFIG_IPV6_MULTIPLE_TABLES in6_dev_put_clear(&net->ipv6.ip6_prohibit_entry->rt6i_idev); in6_dev_put_clear(&net->ipv6.ip6_blk_hole_entry->rt6i_idev); #endif } return NOTIFY_OK; } /* * /proc */ #ifdef CONFIG_PROC_FS static int rt6_stats_seq_show(struct seq_file *seq, void *v) { struct net *net = (struct net *)seq->private; seq_printf(seq, "%04x %04x %04x %04x %04x %04x %04x\n", net->ipv6.rt6_stats->fib_nodes, net->ipv6.rt6_stats->fib_route_nodes, atomic_read(&net->ipv6.rt6_stats->fib_rt_alloc), net->ipv6.rt6_stats->fib_rt_entries, net->ipv6.rt6_stats->fib_rt_cache, dst_entries_get_slow(&net->ipv6.ip6_dst_ops), net->ipv6.rt6_stats->fib_discarded_routes); return 0; } #endif /* CONFIG_PROC_FS */ #ifdef CONFIG_SYSCTL static int ipv6_sysctl_rtcache_flush(struct ctl_table *ctl, int write, void *buffer, size_t *lenp, loff_t *ppos) { struct net *net; int delay; int ret; if (!write) return -EINVAL; net = (struct net *)ctl->extra1; delay = net->ipv6.sysctl.flush_delay; ret = proc_dointvec(ctl, write, buffer, lenp, ppos); if (ret) return ret; fib6_run_gc(delay <= 0 ? 0 : (unsigned long)delay, net, delay > 0); return 0; } static struct ctl_table ipv6_route_table_template[] = { { .procname = "max_size", .data = &init_net.ipv6.sysctl.ip6_rt_max_size, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "gc_thresh", .data = &ip6_dst_ops_template.gc_thresh, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "flush", .data = &init_net.ipv6.sysctl.flush_delay, .maxlen = sizeof(int), .mode = 0200, .proc_handler = ipv6_sysctl_rtcache_flush }, { .procname = "gc_min_interval", .data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_jiffies, }, { .procname = "gc_timeout", .data = &init_net.ipv6.sysctl.ip6_rt_gc_timeout, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_jiffies, }, { .procname = "gc_interval", .data = &init_net.ipv6.sysctl.ip6_rt_gc_interval, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_jiffies, }, { .procname = "gc_elasticity", .data = &init_net.ipv6.sysctl.ip6_rt_gc_elasticity, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "mtu_expires", .data = &init_net.ipv6.sysctl.ip6_rt_mtu_expires, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_jiffies, }, { .procname = "min_adv_mss", .data = &init_net.ipv6.sysctl.ip6_rt_min_advmss, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec, }, { .procname = "gc_min_interval_ms", .data = &init_net.ipv6.sysctl.ip6_rt_gc_min_interval, .maxlen = sizeof(int), .mode = 0644, .proc_handler = proc_dointvec_ms_jiffies, }, { .procname = "skip_notify_on_dev_down", .data = &init_net.ipv6.sysctl.skip_notify_on_dev_down, .maxlen = sizeof(u8), .mode = 0644, .proc_handler = proc_dou8vec_minmax, .extra1 = SYSCTL_ZERO, .extra2 = SYSCTL_ONE, }, }; struct ctl_table * __net_init ipv6_route_sysctl_init(struct net *net) { struct ctl_table *table; table = kmemdup(ipv6_route_table_template, sizeof(ipv6_route_table_template), GFP_KERNEL); if (table) { table[0].data = &net->ipv6.sysctl.ip6_rt_max_size; table[1].data = &net->ipv6.ip6_dst_ops.gc_thresh; table[2].data = &net->ipv6.sysctl.flush_delay; table[2].extra1 = net; table[3].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval; table[4].data = &net->ipv6.sysctl.ip6_rt_gc_timeout; table[5].data = &net->ipv6.sysctl.ip6_rt_gc_interval; table[6].data = &net->ipv6.sysctl.ip6_rt_gc_elasticity; table[7].data = &net->ipv6.sysctl.ip6_rt_mtu_expires; table[8].data = &net->ipv6.sysctl.ip6_rt_min_advmss; table[9].data = &net->ipv6.sysctl.ip6_rt_gc_min_interval; table[10].data = &net->ipv6.sysctl.skip_notify_on_dev_down; } return table; } size_t ipv6_route_sysctl_table_size(struct net *net) { /* Don't export sysctls to unprivileged users */ if (net->user_ns != &init_user_ns) return 1; return ARRAY_SIZE(ipv6_route_table_template); } #endif static int __net_init ip6_route_net_init(struct net *net) { int ret = -ENOMEM; memcpy(&net->ipv6.ip6_dst_ops, &ip6_dst_ops_template, sizeof(net->ipv6.ip6_dst_ops)); if (dst_entries_init(&net->ipv6.ip6_dst_ops) < 0) goto out_ip6_dst_ops; net->ipv6.fib6_null_entry = fib6_info_alloc(GFP_KERNEL, true); if (!net->ipv6.fib6_null_entry) goto out_ip6_dst_entries; memcpy(net->ipv6.fib6_null_entry, &fib6_null_entry_template, sizeof(*net->ipv6.fib6_null_entry)); net->ipv6.ip6_null_entry = kmemdup(&ip6_null_entry_template, sizeof(*net->ipv6.ip6_null_entry), GFP_KERNEL); if (!net->ipv6.ip6_null_entry) goto out_fib6_null_entry; net->ipv6.ip6_null_entry->dst.ops = &net->ipv6.ip6_dst_ops; dst_init_metrics(&net->ipv6.ip6_null_entry->dst, ip6_template_metrics, true); INIT_LIST_HEAD(&net->ipv6.ip6_null_entry->dst.rt_uncached); #ifdef CONFIG_IPV6_MULTIPLE_TABLES net->ipv6.fib6_has_custom_rules = false; net->ipv6.ip6_prohibit_entry = kmemdup(&ip6_prohibit_entry_template, sizeof(*net->ipv6.ip6_prohibit_entry), GFP_KERNEL); if (!net->ipv6.ip6_prohibit_entry) goto out_ip6_null_entry; net->ipv6.ip6_prohibit_entry->dst.ops = &net->ipv6.ip6_dst_ops; dst_init_metrics(&net->ipv6.ip6_prohibit_entry->dst, ip6_template_metrics, true); INIT_LIST_HEAD(&net->ipv6.ip6_prohibit_entry->dst.rt_uncached); net->ipv6.ip6_blk_hole_entry = kmemdup(&ip6_blk_hole_entry_template, sizeof(*net->ipv6.ip6_blk_hole_entry), GFP_KERNEL); if (!net->ipv6.ip6_blk_hole_entry) goto out_ip6_prohibit_entry; net->ipv6.ip6_blk_hole_entry->dst.ops = &net->ipv6.ip6_dst_ops; dst_init_metrics(&net->ipv6.ip6_blk_hole_entry->dst, ip6_template_metrics, true); INIT_LIST_HEAD(&net->ipv6.ip6_blk_hole_entry->dst.rt_uncached); #ifdef CONFIG_IPV6_SUBTREES net->ipv6.fib6_routes_require_src = 0; #endif #endif net->ipv6.sysctl.flush_delay = 0; net->ipv6.sysctl.ip6_rt_max_size = INT_MAX; net->ipv6.sysctl.ip6_rt_gc_min_interval = HZ / 2; net->ipv6.sysctl.ip6_rt_gc_timeout = 60*HZ; net->ipv6.sysctl.ip6_rt_gc_interval = 30*HZ; net->ipv6.sysctl.ip6_rt_gc_elasticity = 9; net->ipv6.sysctl.ip6_rt_mtu_expires = 10*60*HZ; net->ipv6.sysctl.ip6_rt_min_advmss = IPV6_MIN_MTU - 20 - 40; net->ipv6.sysctl.skip_notify_on_dev_down = 0; atomic_set(&net->ipv6.ip6_rt_gc_expire, 30*HZ); ret = 0; out: return ret; #ifdef CONFIG_IPV6_MULTIPLE_TABLES out_ip6_prohibit_entry: kfree(net->ipv6.ip6_prohibit_entry); out_ip6_null_entry: kfree(net->ipv6.ip6_null_entry); #endif out_fib6_null_entry: kfree(net->ipv6.fib6_null_entry); out_ip6_dst_entries: dst_entries_destroy(&net->ipv6.ip6_dst_ops); out_ip6_dst_ops: goto out; } static void __net_exit ip6_route_net_exit(struct net *net) { kfree(net->ipv6.fib6_null_entry); kfree(net->ipv6.ip6_null_entry); #ifdef CONFIG_IPV6_MULTIPLE_TABLES kfree(net->ipv6.ip6_prohibit_entry); kfree(net->ipv6.ip6_blk_hole_entry); #endif dst_entries_destroy(&net->ipv6.ip6_dst_ops); } static int __net_init ip6_route_net_init_late(struct net *net) { #ifdef CONFIG_PROC_FS if (!proc_create_net("ipv6_route", 0, net->proc_net, &ipv6_route_seq_ops, sizeof(struct ipv6_route_iter))) return -ENOMEM; if (!proc_create_net_single("rt6_stats", 0444, net->proc_net, rt6_stats_seq_show, NULL)) { remove_proc_entry("ipv6_route", net->proc_net); return -ENOMEM; } #endif return 0; } static void __net_exit ip6_route_net_exit_late(struct net *net) { #ifdef CONFIG_PROC_FS remove_proc_entry("ipv6_route", net->proc_net); remove_proc_entry("rt6_stats", net->proc_net); #endif } static struct pernet_operations ip6_route_net_ops = { .init = ip6_route_net_init, .exit = ip6_route_net_exit, }; static int __net_init ipv6_inetpeer_init(struct net *net) { struct inet_peer_base *bp = kmalloc(sizeof(*bp), GFP_KERNEL); if (!bp) return -ENOMEM; inet_peer_base_init(bp); net->ipv6.peers = bp; return 0; } static void __net_exit ipv6_inetpeer_exit(struct net *net) { struct inet_peer_base *bp = net->ipv6.peers; net->ipv6.peers = NULL; inetpeer_invalidate_tree(bp); kfree(bp); } static struct pernet_operations ipv6_inetpeer_ops = { .init = ipv6_inetpeer_init, .exit = ipv6_inetpeer_exit, }; static struct pernet_operations ip6_route_net_late_ops = { .init = ip6_route_net_init_late, .exit = ip6_route_net_exit_late, }; static struct notifier_block ip6_route_dev_notifier = { .notifier_call = ip6_route_dev_notify, .priority = ADDRCONF_NOTIFY_PRIORITY - 10, }; void __init ip6_route_init_special_entries(void) { /* Registering of the loopback is done before this portion of code, * the loopback reference in rt6_info will not be taken, do it * manually for init_net */ init_net.ipv6.fib6_null_entry->fib6_nh->fib_nh_dev = init_net.loopback_dev; init_net.ipv6.ip6_null_entry->dst.dev = init_net.loopback_dev; init_net.ipv6.ip6_null_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); #ifdef CONFIG_IPV6_MULTIPLE_TABLES init_net.ipv6.ip6_prohibit_entry->dst.dev = init_net.loopback_dev; init_net.ipv6.ip6_prohibit_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); init_net.ipv6.ip6_blk_hole_entry->dst.dev = init_net.loopback_dev; init_net.ipv6.ip6_blk_hole_entry->rt6i_idev = in6_dev_get(init_net.loopback_dev); #endif } #if IS_BUILTIN(CONFIG_IPV6) #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) DEFINE_BPF_ITER_FUNC(ipv6_route, struct bpf_iter_meta *meta, struct fib6_info *rt) BTF_ID_LIST(btf_fib6_info_id) BTF_ID(struct, fib6_info) static const struct bpf_iter_seq_info ipv6_route_seq_info = { .seq_ops = &ipv6_route_seq_ops, .init_seq_private = bpf_iter_init_seq_net, .fini_seq_private = bpf_iter_fini_seq_net, .seq_priv_size = sizeof(struct ipv6_route_iter), }; static struct bpf_iter_reg ipv6_route_reg_info = { .target = "ipv6_route", .ctx_arg_info_size = 1, .ctx_arg_info = { { offsetof(struct bpf_iter__ipv6_route, rt), PTR_TO_BTF_ID_OR_NULL }, }, .seq_info = &ipv6_route_seq_info, }; static int __init bpf_iter_register(void) { ipv6_route_reg_info.ctx_arg_info[0].btf_id = *btf_fib6_info_id; return bpf_iter_reg_target(&ipv6_route_reg_info); } static void bpf_iter_unregister(void) { bpf_iter_unreg_target(&ipv6_route_reg_info); } #endif #endif int __init ip6_route_init(void) { int ret; int cpu; ret = -ENOMEM; ip6_dst_ops_template.kmem_cachep = kmem_cache_create("ip6_dst_cache", sizeof(struct rt6_info), 0, SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, NULL); if (!ip6_dst_ops_template.kmem_cachep) goto out; ret = dst_entries_init(&ip6_dst_blackhole_ops); if (ret) goto out_kmem_cache; ret = register_pernet_subsys(&ipv6_inetpeer_ops); if (ret) goto out_dst_entries; ret = register_pernet_subsys(&ip6_route_net_ops); if (ret) goto out_register_inetpeer; ip6_dst_blackhole_ops.kmem_cachep = ip6_dst_ops_template.kmem_cachep; ret = fib6_init(); if (ret) goto out_register_subsys; ret = xfrm6_init(); if (ret) goto out_fib6_init; ret = fib6_rules_init(); if (ret) goto xfrm6_init; ret = register_pernet_subsys(&ip6_route_net_late_ops); if (ret) goto fib6_rules_init; ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_NEWROUTE, inet6_rtm_newroute, NULL, 0); if (ret < 0) goto out_register_late_subsys; ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_DELROUTE, inet6_rtm_delroute, NULL, 0); if (ret < 0) goto out_register_late_subsys; ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, inet6_rtm_getroute, NULL, RTNL_FLAG_DOIT_UNLOCKED); if (ret < 0) goto out_register_late_subsys; ret = register_netdevice_notifier(&ip6_route_dev_notifier); if (ret) goto out_register_late_subsys; #if IS_BUILTIN(CONFIG_IPV6) #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) ret = bpf_iter_register(); if (ret) goto out_register_late_subsys; #endif #endif for_each_possible_cpu(cpu) { struct uncached_list *ul = per_cpu_ptr(&rt6_uncached_list, cpu); INIT_LIST_HEAD(&ul->head); INIT_LIST_HEAD(&ul->quarantine); spin_lock_init(&ul->lock); } out: return ret; out_register_late_subsys: rtnl_unregister_all(PF_INET6); unregister_pernet_subsys(&ip6_route_net_late_ops); fib6_rules_init: fib6_rules_cleanup(); xfrm6_init: xfrm6_fini(); out_fib6_init: fib6_gc_cleanup(); out_register_subsys: unregister_pernet_subsys(&ip6_route_net_ops); out_register_inetpeer: unregister_pernet_subsys(&ipv6_inetpeer_ops); out_dst_entries: dst_entries_destroy(&ip6_dst_blackhole_ops); out_kmem_cache: kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep); goto out; } void ip6_route_cleanup(void) { #if IS_BUILTIN(CONFIG_IPV6) #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) bpf_iter_unregister(); #endif #endif unregister_netdevice_notifier(&ip6_route_dev_notifier); unregister_pernet_subsys(&ip6_route_net_late_ops); fib6_rules_cleanup(); xfrm6_fini(); fib6_gc_cleanup(); unregister_pernet_subsys(&ipv6_inetpeer_ops); unregister_pernet_subsys(&ip6_route_net_ops); dst_entries_destroy(&ip6_dst_blackhole_ops); kmem_cache_destroy(ip6_dst_ops_template.kmem_cachep); }